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RESEARCH ARTICLE
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ABSTRACT
The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) provides an extraordinary opportunity to 
support global large-scale forest carbon mapping, but further research is needed in order to obtain 
wall-to-wall forest aboveground biomass (AGB) maps with this technology. The effects of vegeta-
tion structure on the performance of canopy height and AGB modeling using ICESat-2 photon- 
counting light detection and ranging (LiDAR) data in Mediterranean forest areas have not been 
previously studied in the literature. In this study, we combined recent ICESat-2 vegetation (ATL08) 
data, Airborne Laser Scanning (ALS)- and field-based estimates, and a multi-sensor earth observa-
tion composite for extrapolation of AGB estimates and AGB mapping. A diverse gradient of forest 
Mediterranean ecosystems, distributed over 19,744.15 km2 of forest area in the region of 
Extremadura (Spain), with different species and structural complexity forming 5 different forest 
types (3 Quercus spp. dominated and 2 Pinus spp. dominated forests), was used to (i) evaluate the 
precision of ICESat-2 canopy height estimations, (ii) develop ICESat-2-based AGB models, and (iii) 
generate a spatially continuous prediction of AGB by using data from the satellite missions 
Sentinel-1 (S1), Sentinel-2 (S2), Phased Array L-band Synthetic Aperture Radar (ALOS2/PALSAR2), 
and Shuttle Radar Topography Mission (SRTM). First, ALS- and ICESat-2-derived metrics that best 
described canopy height (p98 and rh98, respectively) were compared at the ATL08 segment level. 
Second, ALS-based AGB values were derived at the ATL08 segment scale. Third, ALS-based AGB 
estimates at the ICESat-2 segment level were used as dependent variables to fit ICESat-2-based 
AGB models. Fourth, a multi-sensor approach was then implemented to predict ICESat-2-derived 
AGB, by means of a Random Forest (RF) modeling technique, with predictors retrieved from S1, S2, 
ALOS2/PALSAR2, and SRTM. Finally, RF was used to generate wall-to-wall AGB maps that were 
compared with field-, ALS- and ICESat-2-based observations. The agreement between the ALS- and 
ICESat-2-derived metrics related to the canopy height distribution was higher for Pinus spp. forest 
than for the Quercus spp-dominated forests. The ICESat-2-based AGB models yielded model 
efficiency (Mef) values between 0.56 and 0.80, with a RMSE ranging from 7.76 to 17.71 Mg ha−1 

and rRMSE from 19.04 to 55.21%. The multi-sensor RF models provided the following results when 
compared with the ICESat-2- and ALS-based AGB observations: R2 values of 0.63 and 0.64, and 
RMSE values of 11.10 Mg ha−1(rRMSE = 28.15%) and 12.28 Mg ha−1 (rRMSE = 31.45%), respectively, 
and an approximately unbiased result (0.03 Mg ha−1 and 0.09 Mg ha−1). When applied to the field- 
based validation data set (4th Spanish National Forest Inventory (SNFI-4) plots = 508), the RF- 
derived AGB model showed a relatively lower predictive capacity (R2 = 0.45), a higher RMSE value 
(25.88 Mg ha−1) and slightly biased results (−1.47 Mg ha−1), especially for larger field-derived AGB 
intervals. The results of this study serve to provide an initial quantitative assessment of the ICESat-2 
ATL08 data for large-scale AGB estimation. The findings suggest that a multi-sensor approach may 
be feasible for extrapolating ICESat-2-derived AGB estimates over areas where field or ALS 
reference data are not available.
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Introduction

Regional-scale forest above-ground biomass (AGB) 
mapping using National Forest Inventories (NFI) is 
important for an effective forest management plan-
ning (Ene et al. 2013). Remote sensing data have 
been widely used for mapping forest inventory 
variables such as AGB (White et al. 2016; Gherardo 
et al. 2020; Saarela et al. 2020). Within this domain, 
active remote sensing is used to describe the three- 
dimensional (3D) structure of forests (Wulder et al. 
2012; McRoberts, Andersen, and Næsset 2014). 
Airborne laser scanning (ALS) has increasingly 
been used in the last decade to accurately map 
important forest variables in Mediterranean forests, 
e.g. canopy height (Guerra-Hernández et al. 2018), 
forest inventory variables (Guerra-Hernández et al. 
2021), aboveground carbon (Guerra-Hernández 
et al. 2016) and canopy fuel characteristics 
(Botequim et al. 2019), at a high spatial resolution.

Large-scale forest mapping using NFI data has relied 
on the Area-Based Approach (ABA) to build estimation 
models from which to predict spatially explicit forest 
attributes over forest landscapes (Chen et al. 2016; 
Huang et al. 2019a; Tang et al. 2021; Guerra- 
Hernández et al. 2022). Spatial alignment between 
NFI field data and co-registration of ALS surveys are 
being included in many NFI programs to improve the 
accuracy of the estimates and to enable the ABA 
method to be applied under robust conditions in 
terms of positioning. The region of Extremadura 
(Central-West of Spain) is a good showcase example. 
New and corrected positions for the fourth Spanish NFI 
(SNFI-4) samples have been collected, paving the way 
to improving the performance of ABA at the regional 
scale and optimizing model fitting with less training 
data (Pascual et al. 2020; 2021; Guerra-Hernández et al. 
2022). However, at larger scales, a design-based NFI 
approach may not produce accurate estimates at sub- 
regional or local scales (Tomppo et al. 2008). On the 
other hand, ALS 3D mapping comes with high acquisi-
tion costs for small-scale projects, and budget con-
straints and the availability of technology constrain 
the periodic mapping of AGB worldwide with the aim 
of monitoring carbon stocks and fluxes. Countrywide 
ALS-acquisitions are increasingly common in rich coun-
tries, but they remain an unreachable goal in many less 
developed countries, including some countries in the 
Mediterranean basin.

Satellite remote sensing is an alternative approach, 
to supporting AGB surveys and expanding coverage 
over remote territories without ALS data. Current 
spaceborne laser scanning missions have become 
practical and available options (Narine et al. 2019; 
Narine, Popescu, and Malambo 2020). The Global 
Ecosystem Dynamics Investigation (GEDI) (Dubayah 
et al. 2020) and Ice, Cloud, and Land Elevation 
Satellite-2 (ICESat-2) (Markus et al. 2017; Narine et al. 
2019; Neumann et al. 2019), both space-based laser 
altimeters, provide unprecedented opportunities for 
observing forest structures worldwide. The GEDI mis-
sion operates within the latitudinal limits of the 
International Space Station (ISS) orbit (i.e. ±52° lati-
tude). The GEDI laser instrument generates a total of 8 
ground tracks that are spaced approximately 600 m 
apart in the cross-track direction. Each track consists 
of ~25 m footprints spaced every 60 m along the 
ground track within a ~ 4.2 km swath. GEDI wave-
forms are processed to provide canopy height and 
profile metrics (GEDI Level 2 product). GEDI Level 3 
product includes gridded canopy height metrics pro-
ducts generated from Level 2 products and GEDI level 
4A and 4B products provide footprint and gridded 
aboveground carbon estimates

ICESat-2 uses a different approach to data collection 
than the GEDI mission. Notably, its revisiting orbit cycle 
(91 days) and inclination (92°) can even yield observa-
tions in boreal forests at high latitudes (88° N/S) 
(Montesano et al. 2015). ICESat-2 contains a multi- 
beam photon-counting laser altimeter (Advanced 
Terrain Laser Altimeter System, ATLAS), which splits 
a 532 nm laser beam into 6 beams arranged in 3 beam 
pairs. Each beam pair comprises a weak beam and 
a strong beam, with a detection ratio of approximately 
1:4. ATLAS generates footprints at a laser repetition rate 
pulse of 10 kHz, resulting in a separation of 0.7 m 
between shots in an along-track direction, with 
a footprint size of 10–12 m (Neumann et al. 2019). The 
mission provides several along-track products, including 
a dedicated land and vegetation data product or ATL08 
(Neuenschwander et al. 2020). The ATL08 product yields 
ground elevation above sea level, canopy height, and 
other descriptive variables estimated from a fixed step 
length of 100 m (as a segment) along the ground track 
(Neuenschwander and Pitts 2019). The sampling geo-
metry of segment size 100 m × 12 m guaranteed the 
availability of sufficient numbers of photons for ground 
and canopy height estimation (Figure 1).

1510 J. GUERRA-HERNÁNDEZ ET AL.



Accuracy assessment of terrain and canopy height 
estimates from the GEDI and ICESat-2 missions are 
essential for model calibration and the development 
of applications to support decision-making. Different 
studies have assessed the accuracy of canopy height 
estimates produced by GEDI and ICESat-2 (Potapov 
et al. 2021; Li et al. 2020; Adam et al. 2020; Lang et al. 
2022; Guerra-Hernández and Pascual 2021) and their 
utility for AGB estimation (Narine et al. 2019; Narine, 
Popescu, and Malambo 2019, 2020; Duncanson et al. 
2020; Neuenschwander et al. 2020; Silva et al. 2021). In 
most cases, temporally matched or simulated ALS 
data have been used to confirm canopy heights 
(Potapov et al. 2021; Li et al. 2020; Adam et al. 2020; 
Lang et al. 2022) and to calibrate GEDI- and ICESat- 
2-based AGB models (Narine et al. 2019; Narine, 
Popescu, and Malambo 2020; Duncanson et al. 2020; 
Neuenschwander et al. 2020; Silva et al. 2021). As 
such, the accuracy assessment of post-launch ICESat- 
2 data and products is fundamentally important (Liu, 
Cheng, and Chen 2021), because results might differ 
from those achieved using simulated data and then to 
use spaceborne laser data to calibrate local and regio-
nal ALS-based AGB models (Dorado-Roda et al. 2021). 

Therefore, there is still a need to characterize vegeta-
tion using ICESat-2 over a wider spectrum of forest 
landscapes considering vertical and horizontal struc-
tural forest complexities.

The ecosystem dynamics in Mediterranean forests 
are particularly interesting, and the interpretation of 
single-photon detection technology remains more 
uncertain than in homogeneous boreal forest condi-
tions (Neuenschwander et al. 2020; Martin, White, and 
Coops 2021). Testing the performance of ICESat-2 to 
describe the forest structure and to predict AGB could 
provide important insights into how the vegetation 
structure of different forest types influences the per-
formance of ICESat-2-based estimates. The examina-
tion of AGB estimation with ICESat-2 can also facilitate 
comparisons with ALS-based estimation, especially 
when most studies have been developed for small 
study areas, where variation in forest complexity was 
not assessed. Thus, one of the main motivations for 
conducting this research was to analyze different 
types of forests over a large region.

This study investigates Mediterranean forests with 
canopy cover varying from scattered to dense, with 
the aim of comparing model performance for ALS- 

Figure 1. Left: the study area (blue boundary) and the Spanish forest map (SFM25) displaying the five dominant forest ecosystems in 
the region of Extremadura. Center: a detailed view (representing the extent of the red boundary on the left figure) of the five 
dominant forest ecosystems and ICESat-2 tracks. Right: a detailed view of the ATL08 100 m along-track segments, with different forest 
types denoted in color, and overlapping the Spanish National Plan for Aerial Ortophotography (PNOA project) aerial images (0.25 m 
resolution).
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predicted and ICESat-2-derived AGB. In this study, 
recent ALS surveys (2018–2019) and near coincident 
ATL08 (version 4) data (2018–2019) were used to 
develop and evaluate ICESat-2-based models for dif-
ferent forest types. Since the time interval between 
satellite products and ground truth information may 
be a source of additional errors, we validated the 
ICESat-2 ATL08 product (version 4) using ALS data 
acquired in the same time period (2018–2019). As far 
as we know, studies evaluating the performance of 
AGB models derived from the ongoing satellite 
ICESat-2 mission have not been conducted in 
Mediterranean forests. Yet, such an understanding is 
critical as a first step to monitoring terrestrial carbon 
fluxes with space-based laser data.

ICESat-2 data are acquired in transects over the 
landscape, and spatially continuous AGB maps are 
not mission data outcomes (Narine, Popescu, and 
Malambo 2019). For wall-to-wall estimates, ICESat- 
2-based AGB must be extrapolated from the segment 
scale to areas without ICESat-2 coverage (Shen et al. 
2018). Therefore, auxiliary data from alternative 
spaceborne missions are needed to achieve wall-to- 
wall coverage (Huang et al. 2019a; Li et al. 2020). Quite 
a few studies have recently demonstrated the feasi-
bility of combining ICESat-2 with multispectral ima-
gery and SAR data from other satellites to produce 
spatially explicit information for key forest structural 
variables, such as canopy height and AGB (e.g. Jiang 
et al. 2021; Li et al. 2020; Nandy, Srinet, and Padalia 
2021; Narine, Popescu, and Malambo 2019). Thus, the 
main goal of this study was to evaluate the usefulness 
of ICESat-2 data to estimate canopy height and 
aboveground biomass in five different types of 
Mediterranean forest in Central-West Spain. The moti-
vations and needs for the study are summarized in the 
following four specific objectives:

1. Evaluate the accuracy of ICESat-2-derived 
canopy height statistics by comparing these with ALS- 
derived metrics collected in the same time period,

2. Apply previously published ALS-based models 
for Mediterranean forests in the region to analyze 
the performance of ICESat-2-derived statistics on 
canopy metrics (height and cover) as exogenous vari-
ables to predict AGB,

3. Construct a wall-to-wall map of AGB at 25 m 
resolution by integrating ICESat-2 with multi-source 
remotely sensed data (Sentinel-1 (S1), Sentinel-2 (S2), 
Advanced Land Observing Satellite-2 (ALOS2/ 

PALSAR2) and the Shuttle Radar Topography Mission 
(SRTM)), and

4. Compare generated AGB maps with field-, ALS-, 
and ICESat-2-based AGB observations.

Material and methods

Study area, NFI, and ALS data sets

This study was carried out in the region of Extremadura 
(Central-West Spain) (Figure 1), covering an area of 
about 27,300 km2 of diverse forested landscapes. 
Elevation values vary from 116 m in the Guadiana 
valley to 2,405 m in the Calvitero peak located in the 
north-eastern part of the region, presenting a mean 
altitude of 425 m. The climate is a Mediterranean semi-
arid, with a mean annual precipitation varying from 
<400 mm in the center part of the region to 
>1000 mm in the northern and eastern mountainous 
areas. The Spanish Forest Map (Scale: 1:25,000) (SFM25) 
(MAPA 2018) and the 4th Spanish National Forest 
Inventory (SNFI-4) datasets were used as field training 
data for the AGB model, representing a wide spectrum 
of forest structural complexities in the region 
(MAGRAMA 2017). The most recent SFM25 version 
was based on a refined classification of the main spe-
cies present and forest stage of development using 
aerial photointerpretation. We selected five dominant 
Mediterranean forest ecosystems in the region: (i) 
Dehesas, (ii) Encinares, (iii), Pinaster, (iv) Alcornocales, 
and (v) Pinea (for more details about the description 
of the forest types, see Dorado-Roda et al. 2021).

The set of SNFI-4 training plots used to model AGB 
consisted of 508 concentric circular plots with 25 m of 
radius and accurately georeferenced plots (Table 1). 
These field inventory data were collected in 2017. 
Tree count and tree-level measurements of diameter 
at breast height and total height were extrapolated to 
area-level estimates of tree density (N, stems ha−1), 
basal area (G, m2 ha−1) and AGB (Mg ha−1). The allo-
metric equations of AGB used in the SNFI for each 
species were applied at tree level (Montero, Ruiz- 
Peinado, and Munoz 2005; Ricardo, Montero 
González, and Del Rio 2012; Ruiz-Peinado, Del Rio, 
and Montero 2011). For further details about the 
SNFI-4 field data and processing, see (Álvarez- 
González et al. 2014) and Dorado-Roda et al. (2021).

The ALS datasets used were covered the regions of 
Extremadura: EXT-N (Extremadura north, October 2018 
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and March 2019) and EXT-S (Extremadura south, 
October 2018 and July 2019). These datasets belong 
to the 2nd round of nationwide ALS measurements 
collected by the PNOA project (for more details about 
ALS data acquisition, see 2021).

Implemented workflow

The complete workflow is shown in Figure 2. ALS point 
cloud data were processed using LAStools software 
(Isenburg et al. 2021) following the methodological 
steps described by Pascual et al. (2020). As a result, 
23 ALS-derived metrics (Table 2) computed for the area 
of each SNFI4 plot were used as potential explanatory 
variables to build ALS-based AGB estimation models 
(the AGB estimation models were fitted using field- 
based AGB as endogenous variable and ALS-derived 

metrics as exogenous variables) (see details in Dorado- 
Roda et al. (2021)). Using an area-based approach 
(ABA), these models were developed by integrating 
two Spanish countrywide datasets: the ALS PNOA pro-
ject (the Spanish National Plan for Aerial 
Ortophotography and LiDAR) and the fourth Spanish 
National Forest Inventory (SNFI4). Using the extent and 
location of ATL08 segments, a range of metrics were 
first derived from the ALS data for inclusion as expla-
natory variables in previously published models to 
produce ALS-based estimates of AGB. Lascanopy was 
used to compute the p98 (98th height percentile), and 
the previously selected ALS-derived metrics included 
in the ALS-based AGB estimation models at the ICESat- 
2 segment level (Figure 2). Second, the ALS- and 
ICESat-2-derived metrics that best describe canopy 
height (p98 and rh98, respectively) were compared at 

Table 1. Summarized field data from SNFI-4 for the five dominant forest types in the region of Extremadura at plot level: aboveground 
biomass (AGB, Mg ha−1), stand basal area (G, m2 ha−1), and tree density (N, trees ha−1).

Forest type
SNFI-4 
plots Min AGB

Max 
AGB Mean AGB

Min 
G

Max 
G

Mean 
G

Min 
N

Max 
N

Mean 
N

Dehesas 239 4.11 154.36 41.20 1.13 19.50 6.17 5.09 969.08 86.37
Encinares 90 1.72 101.56 28.25 0.43 17.80 5.32 5.09 1310.16 284.88
Alcornocales 45 1.69 112.41 29.85 0.54 25.64 8.26 10.19 1457.15 222.21
Pinaster 82 1.80 184.48 73.95 0.59 46.46 20.51 14.15 1464.23 348.38
Pinea 52 11.07 159.90 49.46 2.77 39.88 12.41 29.43 1973.52 310.88

Figure 2. Flowchart based on Lastools software, scripts in R and Python programming languages and GIS geospatial sequences used 
to (i) process ALS data, (ii) extract ALS-derived metrics at the level of the ICESat-2 segments, (iii) generate ICESat-2-based AGB model 
estimates for each forest ecosystems, and (iv) map AGB using a multi-sensor extrapolation approach.
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the ICESat-2 segment level. Third, the ALS-based AGB 
estimates at the ICESat-2 segment level were used as 
a dependent variable to fit ICESat-2-based AGB models, 
which were analyzed in terms of performance. Fourth, 
the multi-sensor approach was tested to predict AGB, 
by means of a Random Forest (RF) modeling techni-
que, with predictors retrieved from S1, S2, ALOS2/ 
PALSAR2, and SRTM. Finally, RF was used to generate 
wall-to-wall AGB maps that were compared with field-, 
ALS- and ICESat-2-based observations.

ICESat-2 data acquisition and processing

The boundary of the Extremadura region was used to 
select all ICESat-2 granules in the study area. The 
ATL08 V004 data acquired by the ICESat-2 satellite 
between October 2018 and September 2019 were 
downloaded and processed using the NSIDC DAAC 
Data Access and Service API (https://nsidc.org/data/ 
ATL08/versions/4) (Neuenschwander, et al. 2021). The 
ATL08 data product is delivered in HDF5 file format.

The pysl4landICESat-2.py (https://github.com/remo 
tesensinginfo/pysl4land) tool was used to generate 
ATL08 *.gpkg file from HDF5 files for only strong 
beams. A total of 95 files were created in HDF5 format. 
ICESat-2 segments that were completely included in 

SFM25 polygons were first selected for the five forest 
types. A final filter was used to exclude ICESat-2 seg-
ments where forest height estimates were less than 
2 m and where the 98th height percentile (rh98) 
values were higher than the maximum tree height 
measured in the SNFI4 plots within Extremadura. 
After spatial and data quality filtering (night_flag = 1 
and no scattering or msw = 0), we obtained 10,009 
sample segments containing valid measurements 
(Table 3): 7,712 for Dehesas, 1,055 for Encinares, 436 
for Alcornocales, 620 for Pinaster, and 186 for the Pinea 
forest ecosystem.

The ATL08 algorithm has been updated various 
times, and version 4 represents an improvement in 
canopy height estimation at high vegetation densi-
ties in order to classify photons as ground, top of the 
canopy, canopy, and noise (Neuenschwander, et al. 
2021). ATL08 contains three canopy height variables, 
specifically, h_max_canopy (maximum canopy 
height), h_canopy (98% relative height), and cano-
py_h_metrics (i.e. height metrics from the cumulative 
distribution of relative heights, calculated at 5% 
intervals for the range 10–95%) (Table 4). Although 
the h_max_canopy is equivalent to the rh100 metric 
(Neuenschwander, et al. 2021), its use can lead to 
errors because solar background noise may not have 
been completely removed. Therefore, h_canopy 
(rh98, the 98% relative canopy height) can be used 
as the height at the top of the canopy. The ATL08 
algorithm can be affected by solar background noise. 
Thus, the solar elevation angle, seasonal variation, 
and beam intensity may impact the signal radiome-
try which will affect the number of photons in the 
segment (n_seg_ph) classified as ground (n_te_pho-
tons) and canopy (n_ca_photons). In addition to 
canopy height metrics, two canopies cover metrics 
(Narine, Malambo, and Popescu 2022) were com-
puted from the ATL08 product, considering 
a combination of the variables n_ca_photons (num-
ber of canopy photons), n_toc_photons (number of 
top canopy photons), and n_te_photons (number of 
terrain photons identified in segment) (Table 4).

Table 2. Set of ALS-derived metrics, used as potential explana-
tory variables to fit the AGB estimation models at the ICESat-2 
segment level.

Metric Description

(A) Height metrics
hmean Mean
qav Quadratic mean height
hstd Standard deviation
hmax,hmin Maximum and minimum
hSkw Skewness
hKurt Kurtosis
CRR Canopy relief ratio ((mean height- min height)/ 

(max height – min height))
p01, p10 . . . . . . 

p98, p99
5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 

80th, 90th, 95th, 99th percentiles

(B) Canopy cover metrics: cover_cutoff: 2 m
CCALS Percentage of first returns above 2.00/total first 

returns
PARA2 Percentage of all returns above 2.00/total all 

returns

Table 3. Number of strong ATL08 samples during the filtering processing.
Forest Ecosystem Dehesas Encinares Alcornocales Pinaster Pinea

Incial 58,274 8384 2696 3189 1172
night_flag = 1 and p98 threshold 9810 2468 784 1116 389
Final (Clear Skies (msw = 0) 7712 1055 436 620 186
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To assess the strength of the relationship between 
the ICESat-2 and ALS-derived canopy height metrics 
(i.e. between rh98 and p98), Pearson’s correlation 
coefficient (r) (Eq. 1), overall root mean square error 
(RMSE, Eq. 2), relative root mean square error (rRMSE, 
Eq. 3), Bias (Eq. 4), and rBias % (Eq. 5) were used. 

r ¼
Pn

i¼1 xi � �xið Þ � xi � �yið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 xi � �xið Þ
2

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 yi � �yið Þ
2

q (1) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 xi � yið Þ
2

n

s

(2) 

rRMSE ¼
RMSE

�x
� 100 (3) 

Bias ¼
Pn

i¼1ðyi � xiÞ

n
(4) 

rBias ¼
Bias

�x
� 100 (5) 

where n is the number of ICESat-2 segments, xi is the 
p98 (m) computed at the level (100 × 12-m) of the 
ICESat-2 i-segment, yi is the rh98 (m) computed from 
ICESat-2 ATL08 product at the level of the ICESat-2 

i-segment, and �x is the mean of p98 observed at the 
levels of the ICESat-2 segment.

ICESat-2-based AGB models

ALS-based AGB estimation models specifically devel-
oped for the five forest types are described in detail 
by Dorado-Roda et al. (2021) (see Section 2.5 for 
methodology and Table A1 (appendix A) to check 
the performance of ALS-based AGB prediction models 
and evaluation of the plot-level accuracy). The ALS- 
based AGB models were applied to each of the 10,009 
ICESat-2 segments for which the complete set of ALS- 
derived metrics (Table 2) was computed. After pre-
dicting the ALS-based AGB (using the previously men-
tioned ALS-based AGB models), this was used as an 
endogenous variable to fit the ICESat-2-based AGB 
models, while the ICESat-2-derived metrics were 
used as exogenous variables in this process. The 
steps were similar to those described in Dorado- 
Roda et al. (2021) (see Section 2.6. GEDI-derived AGB 
models), but with ICESat-2-derived metrics instead of 
GEDI-derived metrics, and at the ICESat-2 segment 
level instead of GEDI footprints. In this case, we pro-
posed restricting the models to two explanatory vari-
ables in order for them to be parsimonious, and thus 

Table 4. Set of number of photon statistics derived from ATL08 data for each ICESat-2 segment ranging within the study area.
ICESat-2 ATL08 product

Label Variable ICESat-2-AGB Model Units Description

Height metrics computed fom ATL08
h_max_canopy (RH100) h_max_ICT2 m rh100
h_canopy h_canopy_ICT2 m rh98
Canopy_height_metrics_rh rh25, rh50, rh60, rh70, rh75, rh80, 

rh85, rh90, rh95, rh100
m rh 10–95, in 5% intervals. The height metrics are based on a cumulative distribution 

computed at 5% intervals starting from rh10 to rh95.
h_canopy_quad hquadvICS2 m The quadratic mean relative height of relative canopy heights.
h_canopy_mean hmeanICS2 m Mean canopy height
h_canopy_median hmedianICS2 m Median canopy height
toc_roughness toc_roughness m Standard deviation of relative heights of all photons classified as top of canopy 

within the segment

Canopy cover metrics computed from ATL08
Canopy_cover1 CC1_ICST2 % Percentage canopy and top-of-canopy photos of the total canopy, top-of-canopy 

and ground photons: 
(n_ca_photons + n_toc_photons)/(n_ca_photons + n_toc_photons + 
n_te_photons)

Canopy_cover2 CC2_ICST2 % Percentage canopy of total canopy of canopy and ground photons: 
n_ca_photons/ (n_ca_photons + n_te_photons)

Other parameter for spatial and data quality filtering the segments
Canopy_flag Canopy_flag 1 Flag indicating that canopy was detected using the Landsat Continuous Cover 

product for the L-k segment.
ground_track_flag: ground_track_flag: strong beam_flag: used for identifying power and coverage beams
night_flag night_flag 1 date_time: used to determine if data is acquired during the night
msw_flat msw_flat 0 An msw_flag value of 0 indicates no scattering observed in the atmosphere, 

whereas an msw_flag greater 
than 0 indicates scattering is present.
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only two exogenous variables computed from ATL08 
(one based on height, and one based on a cover 
metric) were retained in the final models to estimate 
AGB. We also applied a 3-fold cross-validation proce-
dure to each potential regression model, using the 
functions available in R (R Core Team 2020). We then 
calculated the performance of each forest-type model 
at the segment level. We used the model efficiency 
(Mef) statistic (Eq 7), which yields a simple index of 
relative performance, where Mef values close to 1 
indicate “a perfect” model fit, and negative values 
reveal poor model performance (Vanclay and Peter 
Skovsgaard 1997). Finally, we computed the overall 
root mean square error (RMSE, Eq. 8), relative root 
mean square error (rRMSE, Eq. 9), Bias (Eq. 10), and 
rBias (Eq. 11) to establish the accuracy of using ICESat- 
2-based models. 

Mef ¼ 1 �
n � 1ð Þ

Pn
i¼1 yi � ŷið Þ

2

n � pð Þ
Pn

i¼1 yi � �yið Þ
2

 !

(7) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 yi � ŷið Þ
2

n

s

(8) 

rRMSE ¼
RMSE

�y
� 100 (9) 

Bias ¼
Pn

i¼1ðŷi � yiÞ

n
(10) 

rBias ¼
Bias

�y
� 100 (11) 

where n is the number of segments, yi is the ALS- 
based AGB estimates at the ICESat-2 i-segment level, 
ŷi is the value of AGB estimated from the species 
specific ICESat-2-based AGB model, �y is the mean 
observed value of the ALS-based AGB estimates at 
ICESat-2 segment level, and p is the number of 
model parameters.

Predictor variables for wall-to-wall AGB mapping

Wall-to-wall statistics from three different satellite 
remote sensing products were retrieved from (i) 
multispectral data from S2, (ii) SAR data from S1 
and ALOS2/PALSAR2, and (iii) topographical data 
from SRTM.

S1 and S2 images from October 2018 to 
October 2019 were processed using the Google 
Earth Engine (GEE) platform (Gorelick et al. 2017). 
The S2 data corresponds to the Level-2A product 
which was already atmospherically corrected using 
the sen2cor processor (Louis et al. 2016). From the 
13 S2 spectral bands, only bands at 10 m and 20 m 
spatial resolution were used: Blue, Green, Red, Red 
edge 1, 2, and 3, NIR1, NIR2, SWIR1, and SWIR2. Each 
S2 image was pre-processed to remove clouds and 
poor-signal pixels using the QA60 band, which is 
a quality flag developed to identify and mask pixels 
affected by clouds and cirrus clouds. Based on the 
cloud-masked S2 imagery, six vegetation indices 
were calculated, namely the normalized difference 
vegetation index (NDVI), the normalized difference 
red edge index 1, 2, and 3 (NDRE1, NDRE2, and 
NDRE3), the normalized difference infrared index 
(NDII), and the normalized difference water index 
(NDWI) (Table A2, appendix A).

S1 is a C-band radar system providing images in 
dual polarizations (HH+HV, VV+VH) (Torres et al. 
2012). In this study, the VV (transmitter-vertical and 
receiver-vertical) and VH (transmitter-vertical, recei-
ver-horizontal) polarizations were extracted from S1 
Level-1 Interferometric Wide Swath (IW) Ground 
Range Detected (GRD) at a spatial resolution of 
10 m. In GEE, the S1 imagecollection is processed 
using the SNAP (Sentinel Application Platform) 
Toolbox to produce a calibrated and ortho- 
corrected product. The pre-processing steps include 
thermal noise removal, radiometric calibration that 
converts the intensity into normalized backscatter 
coefficient (σ°) in decibels (dB), and terrain correction 
using the Digital Elevation Model (DEM) data from 
the SRTM (Rosenqvist et al. 2007). After the pre- 
processing steps for both S1 and S2 data sets, 
a median composite image was computed for each 
band by temporally aggregating high-quality obser-
vations for each of the four seasons: autumn, winter, 
spring, and summer (Table A2, appendix A).

Two annual HH and HV mosaics (2018 and 2019) 
were obtained from the Phased Array L-band Synthetic 
Aperture Radar sensor on the Advanced Land 
Observing Satellite-2 (ALOS2/PALSAR2) of the 
Japanese Aerospace Exploration Agency (JAXA). 
These data, processed in GEE, were orthorectified and 
slope-corrected using the 90 m SRTM DEM, and they 
were converted to backscatter gamma-naught (γ0) 
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values in decibels (dB) using the equation provided by 
(Rosenqvist et al. 2007). For the S1 and ALOS2/ 
PALSAR2 polarizations, three textural metrics were 
computed using the Gray-level Co-occurrence Matrix 
(GLCM) algorithm (Haralick 1979), specifically Mean, 
Variance, and Homogeneity. These textural metrics 
were calculated with a window size of 3 × 3 pixels 
using the R package glcm (v.1.6.1) (Chen et al. 2016). 
As topographical predictor variables, elevation, slope, 
and aspect metrics were derived from the SRTM DEM 
data set at a 30-m resolution using GEE. All the above- 
mentioned datasets were resampled to a 25-m 
resolution.

2.6. Wall-to-wall forest biomass estimation

The AGB estimates derived from ICESat-2 segment- 
level data (Table 3) were used as dependent variables 
and were related to multispectral, SAR, and SRTM 
topographical parameters as predictors, to construct 
a spatially continuous forest AGB map for the entire 
area. For this purpose, the Random Forest (RF) algo-
rithm (Breiman 2001) was used to establish the rela-
tionship between ICESat-2-derived AGB estimates and 
up to 91 candidate predictor variables from the multi- 
source catalog (Table A2, appendix A). The good per-
formance of RF in predicting forest attributes with 
remote sensing data as explanatory variables has 
been widely demonstrated (e.g. Gherardo et al. 
2020; H. Huang, Liu, and Wang 2019; 2019a).

The RF algorithm has two important tuning para-
meters, mtry and ntree. The first refers to the number of 
predictor variables randomly selected at each split, and 
p

p, where p the number of predictor variables, was 
used to determine the value of mtry. The second para-
meter is the final number of independent trees to be 
grown. In this study, the ntree was set to 1000 trees to 
produce stabilized variable importance estimates (Liaw 
and Wiener 2002). For RF modeling, the ICESat-2 seg-
ment dataset was divided into training (80%) and test 
(20%) sets using createDataPartition function in the 

caret R package (Kuhn 2015). This function creates 
balanced splits in the data by ensuring that random 
sampling occurs within each forest type while also 
preserving the overall class distribution over the data 
set (Kuhn and Johnson 2013). The training dataset was 
used for RF model building, while the test dataset was 
used to evaluate model performance by examination 
of R2, RMSE, rRMSE, Bias, and rBias. The spatially con-
tinuous AGB maps for the five ecosystems were 
assessed using the ALS-based AGB estimates (section 
2.2) as reference data for computing R2 and RMSE.

Results

Accuracy of ICESat-2- vs ALS-derived metrics

For the five forest ecosystems considered, the p98 – 
h_canopy (rh98) comparison produced r Pearson 
values between 0.70 and 0.83 for Dehesas, Encinares, 
and Alcornocales and a value of 0.93 for Pinaster and 
Pinea forests (Table 5, Figure 3). For Dehesas, Encinares, 
Alcornocales, Pinaster, and Pinea, the RMSE values for 
the p98 – h_canopy (rh98) comparisons were 0.95, 1.64, 
1.71, 2.24, and 1.24 m, respectively. The respective 
rRMSE values were 12.13, 25.62, 22.31, 17.99, and 
11.94%, and bias values were −0.26, −0.14, −0.46, 
−0.56, and −0.30 m. Finally, the mean differences 
between h_canopy and p98 metrics for CCALS-based 
classification of the values (see Table 2) for all the forest 
types are shown in Figures 3b, d, f, h and j. For all forest 
types, negative differences in average bias were found 
for the rh98 and p98 comparison, which shows that 
ICESat-2 underestimates canopy height (rh98) relative 
to the estimate derived from ALS p98.

Performance of ICESat-2-based AGB models

The performance of the ICESat-2-based AGB mod-
els for the five forest types considered is shown in 
Table 6. Scatterplots of ALS-observed against 
ICESat-2 segment-level AGB estimates are pre-
sented in Figure 4 for the best-performing forest- 

Table 5. Comparison of ALS-based canopy height (p98) and ICESat-2 relative height h_canopy (rh98) metrics.
Forest Ecosystem Metrics comparison Pearson correlation (r) RMSE (m) rRMSE (%) Bias (m) rBias (%)

Dehesas p98 – rh98 0.83 0.95 12.13 −0.26 −3.34
Encinares p98 – rh98 0.70 2.24 25.62 −0.14 −2.24
Alcornocales p98 – rh98 0.74 1.71 22.31 −0.46 −6.08
Pinaster p98 – rh98 0.93 2.22 17.99 −0.56 −4.47
Pinea p98 – rh98 0.93 1.24 11.94 −0.30 −2.93
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specific model, as indicated by Mef. The reported 
accuracy of AGB estimation determined by 3-fold 
cross-validation procedures for the best model 
summarized by forest type is shown in Table A1 
and Appendix A. The final models included two 
variables (one related to the height distribution 

and another to canopy cover), which were highly 
statistically significant (P < 0.001) explanatory vari-
ables. The positive and negative mean values for 
bias (Mg ha−1) and rBias (%) indicate that ICESat-2 
overestimated (Encinares, Alcorncoles, Pinaster, and 
Pinea) and underestimated (Dehesa) the AGB 

Figure 3. Relationships of ALS- and ICESat-2-derived metrics for p98 – rh98 (labeled as h_canopy in the box plots) and mean difference 
between ALS and ICESat-2 metrics by canopy cover CCALS (%): Dehesas (a and b), Encinares (c and d), Alcornocales (e and f), Pinaster (g 
and h), Pinea (i and j). The solid red line denotes a 1:1 relationship and triangles represent mean differences values between p98 – 
rh98. Horizontal red-dashed lines represent y = 0.
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relative to the ALS-based observations, respec-
tively. Regression models for the five forest types 
produced Mef values ranging from 0.56 to 0.80. 
The rRMSE values were slightly lower for Dehesas 
(19.05%) Pinaster (34.09%) and Pinea (37.54%) than 
for Encinares (44.29%) and Alcornocales (55.29%). 
The results obtained for the best models (histo-
grams Figure 4b, d, f, h, j) indicated that the model- 
derived AGB estimates were slightly negatively 

biased at lower and higher intervals, which corre-
spond to low and high canopy closures, respec-
tively. The models, using mean canopy height 
(hmeanICS2) and CC1ICS2 and CC2ICS2 as predictors, 
were the most accurate and least unbiased models 
for all forest types, except the Encinares model, 
which included quadratic mean relative height 
(hquadICS2). The models for pure homogeneous 
Pinaster and Pinea coniferous forest performed 

Figure 3. (Continued)

Table 6. Summary of ICESat-2-based AGB models.
Regression fitting statistics

Forest type Model a b c Mef
RMSE 

(Mg/ha) rRMSE (%) Bias rBias (%)

Dehesas AGB ¼ a � hmeanb
ICS2 � CC1c

ICS2 25.9015*** 0.6911*** 0.3480*** 0.74 7.76 19.05 −0.02 −0.05
Encinares AGB ¼ a � hquadb

ICS2 � CC1c
ICS2 7.4339*** 1.0168*** 0.1248*** 0.57 9.05 43.57 0.30 1.47

Alconocales AGB ¼ a � hmeanb
ICS2 � CC1c

ICS2 8.8859*** 1.3421*** 0.6489*** 0.66 14.20 55.21 0.80 3.10
Pinaster AGB ¼ a � hmeanb

ICS2 � CC2c
ICS2 20.0009*** 0.7926*** 0.8153*** 0.80 17.45 34.09 1.15 2.25

Pinea AGB ¼ a � hmeanb
ICS2 � CC1c

ICS2 11.5694*** 1.1349*** 0.9116*** 0.74 17.71 37.54 0.02 0.04

All SNFI-4 combined Model Mef
RMSE 
(Mg/ha)

rRMSE  
(%)

Bias  
(Mg/ha)

rBias  
(%)

Global AGB ¼ a � hmeanb
ICS2 � CC1c

ICS2 19.6399*** 0.7319*** 0.2351*** 0.64 11.90 30.80 0.236 0.61
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best for the observed AGB (Figure 4g, h, i, j). The 
3-fold cross-validation indicated that the model 
performance, as indicated by Mef and RMSE, 
remained stable for all forest types. The non- 
linear global model (Table 6, Figure 4k, l) yielded 
Mef and rRMSE values of 0.64 and 30.80%, 
respectively.

Wall-to-wall forest biomass modeling

The RF model using 91 candidate predictors showed 
an R2 value of 64% and a RMSE value of 10.98 Mg/ha. 
From that model, the importance of each indepen-
dent variable in predicting AGB values was assessed 
by computing the percentage increase in mean 

Figure 4. Plots showing the relationships between ALS-observed and ICESat-2-segment level estimates of AGB, with associated 
histograms shown on the right: Dehesas (a and b), Encinares (c and d), Alcornocales (e and f), Pinaster (g and h); Pinea (i and j), and 
Global (k and j).
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squared error (%IncMSE), where higher values of % 
IncMSE indicate greater importance of the indepen-
dent variable. The variables that made a greater con-
tribution to AGB estimation among the 91 
independent variables (dashed vertical line in Figure 
A1, appendix A) are shown in Figure 5. The impor-
tance ranking showed that the summer mean com-
posite of the near-infrared band (B8a) was the most 
important variable (41.15%), followed by the mean HV 

SAR texture (38.99%) and the summer NDWI vegeta-
tion index (35.03%). The list of the five most important 
variables was completed by the variance of HV SAR 
texture (31.69%) and mean HH SAR texture (31.42%). 
Among the top five variables, the SAR L-band derived 
backscatter information (HV_mean, HV_var, and 
HH_mean) had a combined importance of around 
102.10%, while the two optical-derived variables 
(B8a_summer and NDWI_summer) represent 76.18%. 

Figure 4. (Continued)
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Evaluation of the relevance of the Sentinel-1 C-band 
polarizations (VV and VH) showed that these contrib-
uted little (<6.5%) to forest AGB prediction relative to 
the L-band polarizations. Regarding the topographi-
cal variables, slope was the most important, being 
ranked 18th among the 91 variables tested (Figure 5).

Considering the results from the relative impor-
tance assessment, a final RF model was built using 
only the top 24 most important variables, resulting 
in a substantial reduction in computation time, while 
suffering only a minor decrease in accuracy. The 
predictive accuracy of the RF model for estimating 
ICESat-2-derived AGB is plotted in Figure 6 for three 
different independent validation data sets: i) ICESat- 
2-derived AGB test set; ii) ALS-derived AGB; and iii) 
field-based AGB estimates. The estimated AGB 
values of the RF model showed a reasonable accu-
racy in predicting AGB from both ICESat-2 and ALS- 
derived AGB data sets, with R2 values of 0.63 and 
0.64 and RMSE values of 11.10 Mg/ha and 12.28 Mg/ 
ha, respectively (Figure 6a and 6c). When applied to 
the field-based validation data set, the RF model 
showed a relatively low predictive capacity 
(R2 = 0.43) and a higher RMSE value (25.88 Mg/ha). 
The observed mean bias of the RF predictions was 
0.03 Mg/ha and 0.09 Mg/ha when compared with 
the AGB observations from the ICESat-2 and ALS- 
based independent data sets, respectively. The 

calculation of the mean bias for RF predictions and 
the field-based AGB estimates showed that the RF 
model produced a negative bias (−1.47 Mg/ha), sug-
gesting greater underestimation of the RF predic-
tions. Overall, the histograms in Figure 6 (b, d, and 
f) reveal that the RF model tended to overestimate 
forest AGB in the range 0 to 45 Mg/ha, while the 
higher (>100 Mg/ha) levels of biomass are under-
estimated by the RF model. To assess the effects of 
spatial autocorrelation on the predictive perfor-
mance of the wall-to-wall mapping model, a spatial 
5-fold cross-validation was also performed. To do so, 
the blockCV R package (Roozbeh et al. 2018) was 
used to compute the variogram and build the spatial 
blocks (more details are provided in the Appendix). 
Testing the RF model in a spatial 5-fold cross- 
validation resulted in an R2 value of 0.58 and an 
RMSE of 11.53 Mg/ha, which are similar to those 
obtained from the ICESat-2-derived AGB test set 
(R2 = 0,63; RMSE = 11.10 Mg/ha). These results sug-
gest that the existing spatial autocorrelation had an 
effect, yet small (0.048%), on the predictive perfor-
mance of the RF model.

Forest biomass mapping

The map of the predicted forest AGB exhibited general 
consistency with the ALS-based AGB map across the 

Figure 5. Importance rank of the 24 most important variables (with %MSE higher than the mean importance).
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entire study area (Figure 7). The predicted RF AGB values 
were highly correlated with the ALS-AGB map, with an 
r value of 0.71. However, in accordance with the results 
shown in the histograms in Figure 6, underestimation by 
the RF model of higher biomass levels (>100 Mg/ha) 
(Figure 8, local 3) and overestimation of moderate bio-
mass levels (30–45 Mg/ha) (Figure 8, local 2) were clearly 
observed. Overall, the predicted RF AGB values over the 
study area range from 5.01 to 112.09 Mg/ha, with an 

average of 36.32 Mg/ha and a standard deviation of 
12.01 Mg/ha, while from the ALS-derived map the AGB 
values range from 1.01 to 262.33 Mg/ha, with an average 
of 35.31 Mg/ha and a standard deviation of 21.17 Mg/ha.

Discussion

Our study evaluated ICESat-2ʹs performance using 
robust AGB models under temporally coincident 

Figure 6. Relationship between AGB RF-predictions (y-axis) and three different independent data sets (x-axis): a) ICESat-2-derived AGB 
test set, c) ALS-derived AGB, and e) field-based AGB estimates. Right column represents the histograms of the reference (gray) and the 
predicted AGB (yellow).
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ALS and ICESat-2 datasets, and over five forest 
types with different vegetation structures. Despite 
recent literature evaluating the accuracy of real 
ICESat-2 data (Liu, Cheng, and Chen 2021; Nandy, 
Srinet, and Padalia 2021) or ALS-simulated ICESat-2 
data (Narine et al. 2019; Narine, Popescu, and 
Malambo 2020; Neuenschwander et al. 2020; Silva 
et al. 2021), to the best of our knowledge, our 
study is the first one evaluating the performance 
of on-orbit ICESat-2 ATL08 (Version 4) products for 
characterizing AGB by comparing with spatially 
and temporally coincident ALS coverage across 
vast areas of diverse Mediterranean forests. Our 
study area covers a variety of forest types and 
thus provides a basis to explore the impacts of 
forest structure on canopy height and forest AGB 
biomass estimations. Additionally, this work aimed 
to map AGB by integrating multi-sensor earth 
observation data to extrapolate the AGB derived 

at the ICESat-2 segment level to other areas with-
out ICESat-2 or ALS coverage.

Accuracy of ICESat-2-derived canopy height

Our results are consistent with those reported in 
previously published pre-launch studies that ana-
lyzed simulated ICESat-2 data (e.g. Amy and 
Magruder 2016), which found simulated top-of- 
canopy heights from ICESat-2, underestimating true 
top-of-canopy returns for all types analyzed with 
negative bias ranging from 0.28 m (1.39 m RMSE) 
to 1.25 m (2.63 m RMSE). However, it is important to 
evaluate the accuracies of post-launch ICESat-2 data 
across other forest types beyond boreal forests 
(Neuenschwander et al. 2020; Martin, White, and 
Coops 2021). Our results on canopy structure metrics 
show that the ATL08 relative height metrics (rh98) 
are reasonably accurate, with RMSE values stabilizing 

Figure 7. Forest AGB maps derived from the ALS (Guerra-Hernández et al. 2022) (left) and RF models (right)
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at 1.5–2 m in Mediterranean forest (RMSE varied 
from 0.95 m in Dehesas to 2.24 m in Pinaster), and 
substantially better than the values obtained in 
terms of performance from p98 – rh98 at the GEDI 
footprint level (level 2A using Version 0001) for the 
same study area (Dorado-Roda et al. 2021). In terms 
of bias, the p98 – rh98 relationship was slightly 
better in Dehesas than the other forest types. The 
results highlight that the accuracy of ICESat-2 
canopy heights is influenced by the vegetation struc-
ture. ICESat-2 segment estimates were better for 
regular-even-aged coniferous forests of P. pinaster 
and P. pinea species (r = 0.93) than in sparse canopy 
Quercus-dominated forests with values of r ranging 
from 0.70 (irregular-uneven-aged-multi-layered 
Encinares and Alcornocales forests) to 0.83 (sparse 
homogeneous Dehesas forests).

The comparison between ALS- and ICESat- 
2-derived metrics showed that the results for 

coniferous-dominated forest were better in terms of 
r than those obtained by Martin, White, and Coops 
(2021) who compared ICESat-2 ATL03 top of canopy 
photon height and 90th height percentile ALS in bor-
eal forest (r = 0.84, RMSE = 2.5 m, rRMSE = 19.2%, 
bias = −2 m). The performance between metrics was 
better in our study in terms of RMSE, rRMSE, and bias, 
when compared to a recent study over 40 sites cover-
ing the mainland USA using nighttime acquisitions 
and strong beam data (same as our study) and ALS 
data (1–4 point m−2) collected by the National 
Ecological Observatory Network (NEON) in 2019 (Liu, 
Cheng, and Chen 2021) (RMSE = 3.93 m, 
rRMSE = 24.8%, and negative bias = −0.87, n = 7543 
segments). Only the rRMSE for Encinares forest pro-
duced less accurate values than those reported in 
Martin, White, and Coops (2021). The comparison 
between ALS and ICESat-2-derived metrics in this 
study was slightly better in terms of bias and slightly 

Figure 8. Maps comparing the observed ALS-derived AGB and the RF predicted AGB for three different locations. The third row depicts 
the difference between ALS-derived AGB with the RF predicted AGB. White pixels represent non-forest areas.
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worse in terms of rRMSE than the results reported in 
Neuenschwander et al. (2020). Neuenschwander et al. 
(2020) compared ICESat-2-derived canopy height 
(h_canopy = rh98) with the same metric from the 
ALS data in boreal forests in Finland (strong beam/ 
night/summer acquisitions, underestimate with 
a negative bias = −0.56 m, bias% = 3.18%; RMSE 
% = 13.75%). Our results confirmed negative differ-
ences on average bias, between rh98 and p98 
(Figure 3), indicating that ICESat-2 underestimates 
canopy height (rh98) at the segment level when com-
pared with ALS p98 computed at the same extent. 
This negative bias compared to Neuenschwander 
et al. (2020), and Liu, Cheng, and Chen (2021) (see 
figure 11 b) is likely related to the forest vertical 
structure (2–20 m interval in our study). Overall, our 
bias and RMSE values were better than those 
obtained by Neuenschwander et al. (2020) and Liu, 
Cheng, and Chen (2021), respectively. Mediterranean 
vegetation has, in general, different structural com-
plexities when compared to boreal forests and the 
range of type of forest analyzed by Liu, Cheng, and 
Chen (2021) in the USA. This may be the main reason 
for the relatively low errors compared with these 
recently published studies (Neuenschwander et al. 
2020; Liu, Cheng, and Chen 2021; Lonesome and 
Popescu 2021).

The higher precision on the estimation of 
canopy cover with ICESat-2 was achieved in the 
40–90% range of canopy cover. The highest errors 
were computed in dense canopy closure condi-
tions (>90%) consistent with the findings of Liu, 
Cheng, and Chen (2021). This confirms that, at low 
canopy cover (<20%) conditions, both ICESat-2 
photon-counting and GEDI full-waveform (FW) 
LiDAR sensors are more likely to record returns 
reflected from the terrain rather than canopies, 
which impedes precise estimation of canopy 
height (Dubayah et al. 2020a, 2020b). On the con-
trary, for high canopy cover conditions (CC > 90%), 
the terrain-reflected signal received by both sen-
sors is weaker than the canopy signal, leading to 
errors in canopy height measurements 
(Neuenschwander et al. 2020). Therefore, rh metrics 
from both missions may be biased especially in 
low and high canopy cover conditions. Negative 
bias values exist between canopy height residuals 
for ICESat-2 when canopy cover exceeds 90%, indi-
cating that the underestimation of canopy may be 

due to the overestimation of terrain elevation (Liu, 
Cheng, and Chen 2021). In summary, our results on 
canopy height estimation confirmed that (i) ICESat- 
2 was more accurate in forests with canopy cover 
ranging between 40% and 85% and (ii) canopy 
height was underestimated on average by 0.14 to 
0.56 m, slightly better than recent studies in boreal 
forest that showed that canopy height was under-
estimated on average by 0.5 m – 0.6 m (Amy and 
Magruder 2019; Neuenschwander et al. 2020; 
Martin, White, and Coops 2021) and by −0.87 cov-
ering the US forest (Liu, Cheng, and Chen 2021).

Performance of ICESat-2 AGB-derived models

ICESat-2-derived AGB models using mean and quad-
ratic canopy heights and CC1ICS2 and CC2ICS2 as pre-
dictors represent a satisfactory description of 
vegetation structure compared to ALS-based AGB 
estimates. In terms of RMSE and rRMSE for the five 
forest ecosystems, the precision of the ICESat- 
2-derived AGB models were similar or better in the 
case of Pinaster (rRMSE = 36.67%) and Dehesas 
(rRMSE = 28.79%) than those values reported by 
Narine et al. (2019). In Narine et al. (2019), the simu-
lated ICESat-2-derived 10th and 90th height percen-
tiles and canopy cover statistics resulted, under linear 
regression modeling, an R2 value of 0.74, and an 
rRMSE of 32% with a RMSE of 25.50 Mg ha−1, using 
85 segments as training data under a nighttime acqui-
sition scenario. In our study, ICESat-2-based AGB esti-
mates for Encinares, Alcornocales, and Pinea yielded 
rRMSE values slightly worse than those reported by 
Narine et al. (2019). The rRMSE values achieved were 
also similar or better than those reported by Silva 
et al. (2021) (rRMSE of 54% for Sonoma County (US), 
using GEDI and ICESat-2 fused AGB and GEDI’s AGB 
models from Duncanson et al. (2020)). In general, the 
range of values in terms of Mef or adjR2 from ICESat- 
2-based models (Mef = 0.56–0.80) at the 100 × 12 m 
segment level were better than the values obtained 
by GEDI-based models (Mef = 0.31–0.46) at 25-m 
footprint level using version 001 in the same 
Mediterranean formations. The results confirmed the 
more complex and uneven-aged-multilayered 
forests as Encinares and Alcornocales 
(rRMSE = 44.29% and 55.21%) were, the lower the 
accuracies in modeling AGB for Mediterranean forests 
with GEDI and ICESat-2.
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Our ICESat-2-derived AGB models were less 
unbiased in terms of bias and rbias than those values 
obtained by Duncanson et al. (2020) (bias = −26.3 Mg 
ha−1 and bias% = −18.7%) using US-wide GEDI-based 
AGB models that rely only on rh metrics and simu-
lated AGB estimates at the footprint level. In general, 
the ICESat-2-based models were less biased at lower 
and higher AGB intervals than GEDI-based models, 
although ICESat-2 models underestimated at lower 
and higher canopy cover, similar to findings reported 
with simulated or real GEDI data (Dorado-Roda et al. 
2021; Duncanson et al. 2020). Our models achieved 
slightly better values of Mef (0.56 to 0.80) (similar to 
adj. R2) than those reported by Silva et al. (2021) (adj. 
R2 ranging from 0.46 to 0.51) at object-level segmen-
tation. The Mef values for Dehesas (Mef = 0.74), 
Pinaster (Mef = 0.80), and Pinea (Mef = 0.74) were 
similar to the values reported by Narine et al. (2019) 
(Mef = 0.74) using simulated ICESat-2 data (n = 85) in 
south Texas (US) with predominantly coniferous for-
ests. For the rest of Quercus-dominated forests, the 
ICESat-2-based models from our study got AGB varia-
tions slightly worse in terms of Mef, probably due to 
(i) less complex variety of vegetation structure ana-
lyzed in AGB modeling by Narine et al. (2019) and (ii) 
Narine et al. (2019) and Silva et al. (2021) used ALS- 
simulated GEDI and ICESat-2 data and the ALS point 
cloud density was higher than in our study.

The outcomes of our ICESat-2 exercise are better 
than those reported by (Dorado-Roda et al. 2021) at 
the 25 m GEDI footprint level over the same region, 
using the same ALS data for benchmarking. There are 
important reasons for the differences in the perfor-
mance between AGB models based on ICESat-2 or 
GEDI. The impacts of the GEDI (Version 0001) geolo-
cation errors in the study of (Dorado-Roda et al. 2021) 
were higher, as already discussed, than those from 
ICESat-2 (geolocation horizontal accuracy of ICESat-2 
is <5 m and it gets close to 2–3 m (Neuenschwander, 
et al. 2021), especially in scattered tree ecosystem as 
Dehesas (Dorado-Roda et al. 2021).

The metrics derived from ATL08 products at the 
segment level, such as mean canopy height 
(hmeanICS2 = rh98), quadratic mean relative height 
(hquadICS2), and canopy cover metrics (CC1ICS2 and 
CC1ICS2), were found to be significant predictors of 
AGB. The exhaustive search step to identify the best 
metric included hmeanICS2, which is more stable to 
changes in both the vertical and horizontal canopy 

structures (Lefsky et al. 2002; Ni-Meister et al. 2010; 
Asner et al. 2012; Guerra-Hernández et al. 2016). The 
use of canopy height metrics alone may ignore some 
information in profiles with more vegetation struc-
tural heterogeneities, such as in natural 
Mediterranean forest. The canopy cover metric 
(CC1ICS2 and CC1ICS2) also improved the fit in all the 
ICESat-2-derived AGB models, consistent with 
a previous study using ICESat-2 simulated data 
(Narine et al. 2019). Our results also demonstrate 
that a second metric related to canopy cover from 
photon-count LiDAR is important for improving 
ICESat-2 AGB-derived models (Table 6).

Wall-to-wall forest biomass mapping

The approach of combining wall-to-wall multispectral 
imagery, SAR, and topographic data to extrapolate 
estimates of forest AGB values from ICESat-2 tracks 
to obtain wall-to-wall coverage showed a reasonable 
agreement when benchmarking with ALS-based AGB 
predictions. The moderate agreement between RF 
predictions and ALS-based model estimates of AGB 
(R2 = 0.64) reflects the challenging study area, and 
a mosaic of structurally complex Mediterranean forest 
ecosystems which imposes limitations in acquiring 
vegetation structure information from space-borne 
lidar systems (Glenn et al. 2016; Gwenzi et al. 2016). 
The performance of our RF model in predicting AGB 
values agrees with previous studies that utilize similar 
methodological approaches. For instance, Narine 
et al. (2019), who mapped AGB by combining 
ICESat-2 and Landsat-8 OLI data, found an RF model 
explaining 58% of the variations in AGB. In a study 
carried out by Huang et al 2019b in China, an AGB 
map was produced with an R2 value of 0.64 by inte-
grating ICESat GLAS sensor data with Landsat and 
PALSAR-derived predictor variables.

To the best of our knowledge, the present study is 
the first to predict AGB for areas outside of ICESat-2 
coverage by combining S-2, S-1, ALOS2/PALSAR2, and 
topographical data. The variable importance ranking 
indicated that both spectral information from Sentinel- 
2 and L-band SAR data from ALOS2/PALSAR2 played 
an important role in predicting AGB. From the multi-
spectral source, it was found that near-infrared and 
shortwave region (B8a and NDWI) were key in predict-
ing AGB, which is consistent with other studies 
focused on mapping AGB and tree canopy height 
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(e.g. (Campbell et al. 2021; Nandy, Srinet, and Padalia 
2021; Zhu et al. 2020). With regard to the L-band 
derived variables, this study also corroborates with 
findings from Huang et al. (2019a), who showed that 
texture features of HV and HH polarizations contribute 
more to AGB predictions than the original backscatter 
PALSAR data. This may suggest that SAR texture mea-
surements have a higher capability to discriminate 
spatial information, as well as to reduce the noise in 
the SAR data (e.g. (Sarker et al. 2012; Laurin et al. 2017). 
When accounting for the combined variable impor-
tance of the top five most important variables, it was 
found that SAR L-band outperformed the Sentinel-2 
derived variables, which demonstrates the usefulness 
of ALOS-2/PALSAR-2 L-band in predicting AGB. In 
terms of the Sentinel-1 data, this study showed that 
SAR C-band polarizations had a limited effect on the 
RF model accuracy. Previous studies assessing the uti-
lity of L- and C-band SAR data for AGB estimation 
emphasize that L-band data generally produce better 
results than C-band due to its higher penetration abil-
ity through the canopy (e.g. Huang et al. 2018; Naidoo 
et al. 2015). Therefore, the overall R2 value of 0.63 and 
the outcomes from RF-based variable importance 
might justify the synergetic use of ICESat-2, Sentinel- 
2, and ALOS2/PALSAR2 L-band SAR satellite data to 
derive AGB over large areas lacking complete coverage 
of ALS data and temporally co-registered NFI data to 
build AGB estimation models.

The RF-approach to generate wall-to-wall maps of 
AGB may lead to improved temporal resolution as 
weekly/monthly data become available. As a result, 
changes from growth or silvicultural activities, for 
instance, can be traceable. Results from variable 
importance in the RF modeling exercise highlight the 
potentialities and capabilities of the upcoming NASA- 
ISRO Synthetic Aperture Radar (NISAR) satellite mission 
in 2023 (NISAR 2022) that will deliver denser L-band 
time-series data at a higher spatial resolution (12 m) 
with the potential to further boost the approach pre-
sented (Khati, Lavalle, and Singh 2021). Nevertheless, 
and although this methodological approach can be 
applied in other ecological contexts, the direct appli-
cation of our RF model to other regions with different 
ecological characteristics should be approached with 
caution, particularly for areas where field and ALS 
reference data are not available.

The accuracy of satellite-based AGB estimations is 
influenced by many factors, such as the 

characteristics of the satellite systems used, the 
methodological approach implemented, the eda-
phoclimatic and topographic characteristics of the 
study area, and the human and equipment errors 
when measuring vegetation structural parameters 
from the field (e.g. Arnan et al. 2022). In this study, 
with the exception of the expected uncertainty asso-
ciated with tree measurements in the field and the 
allometric equations used for AGB estimations, 
a potential source of uncertainty may be related to 
the sampling nature of the ICESat-2 mission. The 
sparse spatial distribution and the gaps between 
ICESat-2 segments over the landscape may have 
impacted the accuracy of the RF model used for 
wall-to-wall AGB mapping (e.g. Huang et al. 2019). 
Therefore, detailed analysis should be carried out to 
identify the processes of error propagation in the 
extrapolation processes.

Conclusions

Real ICESat-2 data were used to assess the use of 
canopy forest height for estimating AGB in five differ-
ent Mediterranean forest types representing a wide 
spectrum of forest structural complexity in the region. 
The workflow comprises the use of ICESat-2 data and 
several satellite earth observation (EO) sensors (S1, S2, 
ALOS2/PALSAR, and STRM), in addition to two Spanish 
countrywide data sets (ALS PNOA project and SNFI4). 
The Spanish countrywide data sets were used in the 
training and validation phases of the ICESat-2-based 
AGB model development, while the EO data sets were 
used to scale up the AGB estimates and to generate 
spatially explicit AGB maps for the study area. This 
initial assessment of the capacity of ICESat-2 to esti-
mate AGB indicated feasibility of the approach. The 
results serve as a basis for further extrapolation efforts 
and are of particular interest for areas or countries for 
which field and ALS reference data are not available. In 
this respect, it is important to highlight the strong 
correlations between the ALS- and the ICESat- 
2-derived metrics that best describe the top of the 
canopy height (p98 and rh98, respectively), together 
with the high percentage of the AGB variability 
explained by the ICESat-2-based models, since ALS- 
based AGB (and other key forest variables) observa-
tions are currently the most reliable ground truth 
reference data available for model fitting and extrapo-
lation of estimates. These features are particularly 
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relevant to scientists investigating methods to better 
understand AGB dynamics and associated uncertain-
ties using ongoing wall-to-wall satellite image and SAR 
missions, especially considering the high acquisition 
costs of field reference data. Moreover, the high corre-
lation between ALS- and the ICESat-2-derived metrics 
opens the door to further examination of the utility of 
previously developed species-specific or global AGB 
models derived in former ALS surveys and expensive 
field surveys. This is important in relation to country- or 
region-wide sampling designs, especially in countries 
that cannot afford to acquire new ALS or field data. 
Finally, the multi-sensor EO composite was analyzed 
and validated, producing promising results and reveal-
ing an approach that could be considered for extra-
polation of AGB estimates and mapping. Nevertheless, 
further research should be conducted to optimize the 
design of field data sampling and ALS acquisition in 
order to reduce costs and to maintain the robustness 
of the estimates.
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