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Abstract

This thesis presents a comprehensive machine learning approach to model and
predict the power output of photovoltaic (PV) panels. It investigates the influ-
ence of various factors on the performance of PV panels, including weather con-
ditions and external influences. The study develops a machine learning model
using the Python programming language and the scikit-learn library.

The model is trained and evaluated on a carefully curated dataset of PV power
output measurements. Rigorous performance metrics are employed to assess
the accuracy and reliability of the model’s predictions. The results demonstrate
the effectiveness of the machine learning techniques in accurately forecasting
the power output of PV systems.

Furthermore, the project delves into the potential implications of government
policies and incentives in facilitating the growth and development of the PV
industry. It highlights the significant benefits of expanding the utilization of
renewable solar energy sources. Detailed discussions on the role of supportive
policies and incentives shed light on how the PV industry can thrive in the fu-
ture.

While achieving commendable results, this project acknowledges the need for
continuous improvements and future research in the modeling and measurement
of PV panels. Specific areas for future exploration include advanced feature engi-
neering techniques, incorporation of real-time weather data, and the integration
of additional data sources to enhance the accuracy and robustness of the models.

In summary, this project showcases a machine learning-based approach to accu-
rately predict the power output of PV panels. It underscores the importance of
supportive government policies and incentives for the growth of the PV industry.
The findings and future research directions presented in this study contribute
to the advancement of renewable energy technologies and their sustainable in-
tegration into our energy systems.

Keywords: Photovoltaic panels, Power output prediction, Machine learning,
Weather conditions, External influences, Python programming, Scikit-learn li-
brary, Dataset, Performance metrics, Accuracy, Reliability, Government poli-
cies, Incentives, Renewable energy, Solar energy, Feature engineering, Real-time
weather data, Data integration, Sustainable energy, Energy systems, Future
research.



Implementação de um Sistema In-
teligente para Painéis Fotovoltaicos

Resumo

Esta tese apresenta uma abordagem abrangente de aprendizado de máquina
para modelar e prever a sáıda de energia de painéis fotovoltaicos (PV). Inves-
tiga a influência de vários fatores no desempenho dos painéis PV, incluindo as
condições climáticas e influências externas. O estudo desenvolve um modelo
de aprendizado de máquina usando a linguagem de programação Python e a
biblioteca scikit-learn.

O modelo é treinado e avaliado em um conjunto de dados cuidadosamente elab-
orado de medições de sáıda de energia PV. Métricas rigorosas de desempenho
são utilizadas para avaliar a precisão e confiabilidade das previsões do modelo.
Os resultados demonstram a eficácia das técnicas de aprendizado de máquina
em prever com precisão a sáıda de energia de sistemas PV.

Além disso, o projeto explora as posśıveis implicações das poĺıticas governamen-
tais e incentivos no que diz respeito à promoção do crescimento e desenvolvi-
mento da indústria de PV. Ele destaca os benef́ıcios significativos da expansão
da utilização de fontes de energia solar renovável. Discussões detalhadas sobre
o papel de poĺıticas de apoio e incentivos lançam luz sobre como a indústria de
PV pode prosperar no futuro.

Apesar de alcançar resultados louváveis, este projeto reconhece a necessidade de
melhorias cont́ınuas e pesquisas futuras na modelagem e medição de painéis PV.
Áreas espećıficas para exploração futura incluem técnicas avançadas de engen-
haria de caracteŕısticas, incorporação de dados meteorológicos em tempo real e
a integração de fontes de dados adicionais para aprimorar a precisão e robustez
dos modelos.

Em resumo, este projeto apresenta uma abordagem baseada em aprendizado
de máquina para prever com precisão a sáıda de energia de painéis PV. Ele
destaca a importância de poĺıticas governamentais de apoio e incentivos para o
crescimento da indústria de PV. As descobertas e direções futuras de pesquisa
apresentadas neste estudo contribuem para o avanço das tecnologias de energia
renovável e sua integração sustentável em nossos sistemas de energia.

Palavras-chave: Painéis fotovoltaicos, Previsão de sáıda de energia, Apren-
dizado de máquina, Condições climáticas, Influências externas, Programação
Python, Biblioteca scikit-learn, Conjunto de dados, Métricas de desempenho,
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Precisão, Confiabilidade, Poĺıticas governamentais, Incentivos, Energia renovável,
Energia solar, Engenharia de caracteŕısticas, Dados meteorológicos em tempo
real, Integração de dados, Energia sustentável, Sistemas de energia, Pesquisa
futura.
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Chapter 1

Introduction

This project aims to enhance our understanding of photovoltaic (PV) panels by
developing a machine learning system to predict their power output accurately.
The research is divided into four chapters, each focusing on different aspects of
the project.

Chapter 2 introduces fundamental concepts related to solar energy and PV
panels. It explores modeling and simulation techniques to analyze the char-
acteristics of PV panels and investigates factors influencing their performance.
Additionally, the chapter scrutinizes the influential factors, both internal and
external, that impact the performance of PV panels. A vital component of this
chapter involves the presentation of a meticulously curated database, providing
a robust foundation for data analysis.

In Chapter 3, we configure and program an ESP32 model to collect necessary
data. This step involves integrating sensors with the ESP32 to retrieve sensor
values efficiently and store them in a designated database.

Chapter 4 focus on the development of a cutting-edge machine learning system
using the Python programming language and the powerful scikit-learn library.
This system represents the heart of the research project, propelling the accu-
rate prediction of PV panel power output. The chapter meticulously outlines
the comprehensive steps involved in the system’s development, encompassing
data exploration, preparation, model selection, evaluation, and deployment. By
leveraging state-of-the-art machine learning techniques, this chapter paves the
way for achieving the primary objective of the project.

Chapter 5 explores future prospects and potential enhancements in PV panel
modeling and measurement. It encompasses improving data quality and diver-
sity, refining measurement systems, and delves into the crucial role that govern-
ment policies and incentives can play in fostering the growth of the PV industry.
The chapter concludes by discussing the vast potential benefits that accompany
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the expansion of renewable solar energy usage. Providing a roadmap for future
research and development, this chapter contributes to the continuous advance-
ment of PV panel technology.

In summary, this project revolves around the pivotal goals of precise mod-
eling and measurement of PV panels, complemented by the development of
an advanced machine learning system for accurately predicting their power
output. Each chapter serves a vital role in addressing specific facets of the
research, propelling our understanding of PV panels and advocating for the
widespread adoption of renewable solar energy. By amalgamating fundamen-
tal concepts, cutting-edge data acquisition techniques, state-of-the-art machine
learning methods, and future considerations, this project aims to make signifi-
cant contributions to the field of PV panels, driving their seamless integration
into our sustainable energy systems.
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Chapter 2

State Of The Art

The introductory chapter provides an overview of solar energy and its utiliza-
tion through photovoltaic panels. It begins by establishing the context for sub-
sequent discussions on modeling and simulating these panels. These techniques
are crucial for understanding their behavior and performance in various appli-
cations. The chapter explores the analysis of I-V and P-V characteristics using
both five and seven-parameter models. This analysis enables researchers to gain
insights into the electrical behavior and efficiency of photovoltaic systems. Fur-
thermore, it examines the influence of external and internal parameters on the
performance of these panels, encompassing factors such as temperature, irradi-
ance, series resistance, and shunt resistance, among others. The significance of
each parameter is discussed, emphasizing its impact on the overall performance
and efficiency of photovoltaic systems. Lastly, the chapter includes a compre-
hensive review of the database utilized in the project, providing insights into
its purpose and relevance in supporting the research and analysis conducted
throughout the chapter.
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2.1 Current Advances in Photovoltaic Panel Tech-
nology

In recent years, photovoltaic (PV) technology has emerged as a promising renew-
able energy source, providing a clean and sustainable alternative to traditional
fossil fuels. PV panels convert sunlight directly into electricity, making them
an environmentally friendly and cost-effective solution for generating electric-
ity. As the demand for renewable energy continues to grow, PV technology has
gained increasing attention from researchers and policymakers worldwide.

The current state of the art in PV technology is constantly evolving, with ad-
vancements being made in both the materials and structures used in PV panels,
as well as the techniques used to optimize their performance. This chapter
provides an overview of the global state of the art in PV technology, followed
by a discussion of recent developments in the field of PV parameter extraction
and sensitivity analysis. Additionally, the chapter explores the growing use of
machine learning algorithms in PV technology, specifically in the areas of power
prediction and parameter extraction.

2.1.1 Global State of the Art in Photovoltaic Systems

Photovoltaic (PV) panels have been a rapidly growing technology in recent years
due to the increasing demand for renewable energy sources. The global market
for PV panels has been expanding at a compound annual growth rate of over
20% in the past decade, with an estimated installed capacity of 635 GW as of
2021. The market is dominated by several major players, including China, the
United States, and India, which collectively account for over 70% of the installed
capacity.

Recent advancements in PV technology have focused on improving the efficiency
and durability of PV panels. These efforts have included the development of
new materials, such as perovskite and organic photovoltaic materials, as well as
improvements in the manufacturing process to reduce costs and increase pro-
duction capacity[1].

Additionally, there has been a growing interest in integrating PV panels with en-
ergy storage systems to provide reliable and stable renewable energy generation.
The use of microinverters and power optimizers has also become increasingly
common, as they allow for better control and monitoring of the PV system per-
formance.
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Moreover, there has been a growing interest in using artificial intelligence (AI)
and machine learning (ML) techniques to optimize the performance and effi-
ciency of PV systems. These techniques can be used to predict power output,
optimize panel placement, and monitor system health. The use of ML algo-
rithms is expected to further improve the accuracy and efficiency of PV systems,
leading to increased adoption and a more sustainable future[2].

2.1.2 Recent Development on Photovoltaic Parameters Es-
timation: Total Least Squares Approach and Meta-
heuristic Algorithms

Photovoltaic parameter extraction is a crucial aspect of PV panel characteri-
zation, as it allows for the identification of internal parameters that affect the
performance of the panel. A recent study has proposed a new cost function
based on Total Least Squares (TLS) for parameter extraction and compared
its performance with the traditional Ordinary Least Squares (OLS) approach.
The study also employed eleven different metaheuristic optimization methods
to evaluate the performance of the two cost functions for both single and double
diode PV cell models.

The results showed that the TLS method outperformed the OLS approach in
parameter estimation, with the best results obtained when using the Teach-
ing Learning Based Optimization algorithm for the double diode model. The
convergence properties of the two cost functions were also evaluated, with the
Dragonfly method showing the biggest difference in mean value of RMSE be-
tween the two methods[3].

2.1.3 Photovoltaic Panel Characterization and Sensitivity
Analysis

Another recent study has investigated the behavior of a photovoltaic system
using single and double diode models. The study conducted a sensitivity anal-
ysis and a comparative study of two numerical algorithms to characterize the
system from the internal parameters point of view. The study also analyzed the
influence of temperature, ideality factor, and serial resistance on the PV panel’s
performance and studied the degradation of the panel.

The results showed that the internal parameters had a significant effect on
the PV panel’s performance, with the temperature having the largest influence.
The study also demonstrated that the use of a double diode model provided
better accuracy in predicting the PV panel’s behavior compared to the single
diode model[4].
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2.1.4 Sensitivity Analysis of a New Approach to Photo-
voltaic Parameters Extraction based on the Total
Least Squares Method

To address the issue of photovoltaic module degradation and subsequent loss
of performance, another recent study proposed a new algorithm based on the
TLS method to extract the parameters of a PV cell from the output voltage
and current measurements. The study compared the performance of the TLS
and OLS approaches and demonstrated the effectiveness of the TLS method in
identifying the parameters while taking into consideration the uncertainties in
the measured quantities[5].

2.1.5 Advancements in Photovoltaic Technology through
Machine Learning

In recent years, there has been a growing interest in using machine learning tech-
niques to improve the efficiency and performance of photovoltaic panels. Various
machine learning algorithms have been developed and applied to optimize the
design and operation of photovoltaic systems. The most commonly used ma-
chine learning algorithms for photovoltaic applications include Artificial Neural
Networks (ANNs), Support Vector Machines (SVMs), Decision Trees (DTs),
Random Forests (RFs), and Gradient Boosting Machines (GBMs). These algo-
rithms can be used to predict the energy output of photovoltaic panels, optimize
their operation, and monitor their performance.

Recent studies have shown that machine learning algorithms can significantly
improve the accuracy of photovoltaic panel energy output prediction. For in-
stance, a study showed that using SVM algorithm where its parameters are
optimized using ant colony optimization (ACO) can increase the accuracy of
photovoltaic panel energy output prediction, predicting the energy output of
photovoltaic panels[6]. Another study compared the performance of different
machine learning algorithms in predicting the energy output of photovoltaic
panels and found that the RF algorithm had the highest accuracy[7].

Machine learning-based condition monitoring have also been used to optimize
the design and operation of photovoltaic systems. For instance, machine learning-
based PV condition monitoring has been discussed in three groups, shallow,
hybrid, and deep networks[8].
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2.2 Modelization and simulation of photovoltaic
panel

2.2.1 Solar Energy

The Sun is a star, a significantly large ball made up of scorching gases(75% hy-
drogen, 24% helium, and 1% other materials) and dusty (small solid particles)
plasma at a temperature of about 15 million degrees Celsius. The Hydrogen
atoms are transformed into helium by a massive thermonuclear fusion reaction,
taking into consideration the famous Einstein’s formula E=mc2 where E is the
energy, m the mass, and c the velocity of light. Mass is converted into energy
and radiated in the form of electromagnetic radiation. This radioactive activity
is the source of the Sun’s energy. The Sun’s energy is emitted in the form of elec-
tromagnetic radiation, which is a form of energy that can travel through space.
The Sun emits electromagnetic radiation in the form of light, which is visible
to the human eye. The Sun also emits electromagnetic radiation in the form of
infrared radiation, ultraviolet radiation, X-rays, and gamma rays that are not
visible to the human eye. Visible light is a small part of the electromagnetic
spectrum but is the one that is more important for solar energy. Solar energy
comes from the Sun, and it’s captured by green plants through photosynthesis.

The size of the Sun is about 1.4 million kilometers, about 333 000 times the
size of the Earth planet. Each, directly or indirectly, our Sun provides all the
facilities that has existed and supports all life on earth. Within one hour, the
Sun radiates more energy than the entire world consumes in one year. Electro-
magnetic waves that generates light energy known as photons. These photons
do not have any physical mass of their own. However, they carry vast amounts
of energy. Different photons carry different wavelengths of sunshine. Figure 2.1
shows the wavelengths of the visible light spectrum[8]:

Figure 2.1: Light´s Wavelength[9]

The figure depicts the wavelength of light in meters along a single axis. The x-
axis displays the wavelength in meters, ranging from the shortest to the longest.
The representation showcases the varying wavelengths of light and their corre-
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sponding values in meters. This information provides an understanding of the
differences in wavelength, which is a crucial aspect of light and electromagnetic
radiation.

The process of the photovoltaic effect is observed when photons, which are
the energy carriers of the Sun, are absorbed by solar cells and then transformed
into either thermal or electrical energy. The significance of this process lies in
its ability to harness the tremendous energy of the Sun for a variety of uses.
The structure of solar cells is comprised of a junction between two distinct types
of semiconductors, and it is through these semiconductors’ properties that the
photovoltaic effect is enabled. The following section will delve into the semi-
conductor world to examine their properties and how they play a role in the
functioning of solar cells[1].

2.2.2 Semiconductors

Atoms consist of a nucleus surrounded by negatively charged electrons. The
nucleus is made up of positively charged protons and neutral neutrons. The
number of protons in the nucleus determines the type of atom. The number
of electrons determines the charge of the atom. And the number of neutrons
determines the mass of the atom. Electrons of an isolated atom can have only
specific discrete or quantized energy levels due to the quantum and mechanical
nature of the motion of the electrons. When atoms are close together, the elec-
tronic energy of individual atoms is changed by the interaction with the other
atoms. The electrons of an atom can be excited to a higher energy level by
absorbing energy from the environment. The electrons can also be de-excited
to a lower energy level by emitting energy into the environment. The energy
emitted or absorbed by an atom is equal to the difference in energy between the
two energy levels and is called a photon. Thus the energy levels are sorted into
energy bands[10].

The theory of energy bands categorizes the energy levels into energy bands,
with the lowest energy band referred to as the valence band and the highest
band referred to as the conduction band.
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Figure 2.2: Bands Energy[11]

The figure above represents a band diagram for a semiconductor. A band dia-
gram is a visual representation of the energy levels of electrons in a solid mate-
rial. The diagram shows the conduction band, the small forbidden energy band,
and the valence band. The conduction band is the energy level where electrons
are free to move and conduct electricity. The small forbidden energy band is the
energy gap between the conduction and valence bands, where no electrons are
allowed to exist due to forbidden energy levels. The valence band is the highest
energy level occupied by electrons and is where electrons are tightly bound to
their parent atoms.

The valence band is the band of lower energy electrons. When electrons in
this band are excited, they can jump into the conduction band. The valence
band is just the outermost electron orbital of an atom of any specific material
that electrons occupy.

The conduction band is the band of higher energy electrons and electrons in
it are highly mobile. When the electrons are in these orbitals, they move freely
throughout the material. These are the electrons which carry electricity.

The energy difference between the highest occupied energy state of the va-
lence band and the lowest unoccupied state of the conduction band is called
the forbidden gap. The forbidden gap is like an electrical energy barrier, as the
electrons can not move from the valence band to the conduction band, because
it needs energy for this. The gap is called forbidden because the transition from
the valence to the conduction band is only possible by absorbing a photon with
energy equal to or larger than the energy of the forbidden gap.
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Semiconductors are materials that are imperfect conductors of electricity, ma-
terials that exhibit an intermediate electrical conductivity between conductors
such as metals and insulators such as glass. The conductivity of semiconductors
is in general lower than the conductors and higher than the insulators. In elec-
trical engineering, semiconductors are used as active components in solid-state
devices such as diodes, transistors, and integrated circuits. In a semiconductor,
an electric current is favored by two types of carriers: electrons and holes[12].

Pure silicon is an intrinsic semiconductor with a gap of about 1.12 eV. The
properties of a semiconductor can be controlled by doping it with impurities.
A semiconductor with more electrons than holes is then said to be of type N,
and the number of electrons exceeds the number of holes by one electron per
dopant atom. A semiconductor with more holes than electrons is said to be of
type P, and the number of holes exceeds the number of electrons by one hole
per dopant atom[13].

2.2.3 Silicon Doping

Doping of silicon means that atoms of other elements are added to the silicon
lattice. The substitution should be carried out by atoms with three or five
valence electrons. There wise the replaced atom creates a hole in the valence
band, and consequently, the semiconductor is in a short circuit situation[14].

• Type N doping : If an atom with five valence electrons is incorporated
into the crystal lattice, then this atom will have four bonds covalent and
a free electron. This weakly bonded electron can be easily excited to the
conduction band. In this kind of material, the number of electrons exceeds
the number of holes.

• Type P doping : If a trivalent atom is substituted for a silicon atom in
the crystal lattice, this atom creates three covalent bonds and one hole.
The transition from the valence band to the conduction band is then
favored since it decreases the electronic energy. In this kind of material,
the number of holes is larger than the number of electrons.

2.2.4 p-n Junction

A p-n junction is formed by two adjacent semiconductors of different doping
types. The semiconductor, whose doping is higher in one type of charge carrier,
is called a p-type semiconductor, and the semiconductor with an excess of the
other type of charge carrier is called an n-type semiconductor. When a p-type
and an n-type semiconductor are brought together, a junction is formed. The
junction will contain electrons on one side and holes on the other side. Since
electrons and holes are mobile charges, and because they are moving from one
side of the junction to the other, there is a spontaneous build-up of the elec-
trical field at the junction. This creates a potential current of electrons from
the n-type material across the metallurgical junction into the p-type material.
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The term “metallurgical junction” denotes the interface between the n-type and
p-type regions.

The p-n junction is the key component of a solar cell, which converts the light
energy into electricity. When two materials with different electrical conductiv-
ities are joined together, the excess electrons from the n-type jump to fill the
holes in the p-type, and the holes from the p-type diffuse to the n-type side,
leaving the n-side of the junction positively charged, and the p side negatively
charged. The negative charge on the p-type side attracts the electrons from the
n-type side, and the positive charge on the n-type side attracts the holes from
the p-type side. The excess electrons from the n side then flow into a neighbor-
ing region called the diffusion region to make an electrically neutral junction.
Therefore, a p-n junction behaves like a diode. The diffusion of electrons and
holes into the opposite regions is the reason why diodes have asymmetric IV
characteristics, i.e., they work as rectifiers. This is the essential property of a
solar cell, which makes the production of electricity out of sunlight possible.

In the p-type semiconductor, because the doped atoms are of the same type as
the majority charge carriers, the doped atoms are not able to accept electrons.
Therefore, the doped atoms are called acceptors. In the n-type semiconductor,
because the doped atoms are of the same type as the minority charge carriers,
the doped atoms are able to accept electrons. Therefore, the doped atoms are
called donors[15].

Figure 2.3: Schematic diagram of a p-n junction[16]

The figure above represents a schematic diagram of a p-n junction. It shows
both types of semiconductors, n-type in the part above, and p type in the part
below, forming a junction where they meet. The n-type semiconductor is cre-
ated by doping the semiconductor material with impurities that have one less
valence electron than the semiconductor material, and is represented by a nega-
tive sign (-). On the other hand, the p-type semiconductor is created by doping
the semiconductor material with impurities that have one more valence electron
than the semiconductor material, and is represented by a positive sign (+).
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2.2.5 Photovoltaic Effect

The photovoltaic effect is a phenomenon discovered in the early 19th cen-
tury when a French physicist Alexandre-Edmond Becquerel, observed that light
falling on certain semiconductor materials creates an electric field in it. When
a photon enters a photovoltaic material, it can be reflected, absorbed, or trans-
mitted depending on the amount of energy this photon has.The energy of the
electron is increased by the amount of energy of the photon absorbed by a va-
lence electron of an atom. If the energy of the photon is more than the energy
required for the electron to jump to the conduction band, the electron will jump
to the conduction band, where it can move freely. In the case of a silicon ma-
terial, which has an energy gap of 1.12 eV the energy of the photon must be
more than this, for the transition of an electron to take place which generate
an electrical charge. So the more photons that are absorbed by the solar cell,
the more charge is generated. Typically a photovoltaic cell that absorbs 1 J of
energy generates 1 C of charge.

But even the energy of the photon is very high, it can make jump only one
electron it can make jump only one electron, the rest of the energy is lost as hit.

Figure 2.4: Photovoltaic effect[16]

The figure above shows a diagram of a typical photovoltaic cell, which consists of
two semiconducting materials with different doping levels, typically p-type and
n-type silicon. The p-type semiconductor has an excess of positively charged
”holes” (vacancies in the valence band) while the n-type semiconductor has an
excess of negatively charged electrons.
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When light (photons) from the sun hits the surface of the photovoltaic cell, it
excites electrons in the semiconductors, causing them to move from the n-type
semiconductor to the p-type semiconductor. This creates a potential difference
or voltage between the two layers of the cell, which causes electrons to flow from
the p-type to the n-type semiconductor through an external circuit, generating
an electrical current. This flow of electrons creates the electrical power output
of the photovoltaic cell.

2.2.6 Photovoltaic Cell

Semiconductors are the electronic components of PV cells. PV cells consist of
two or more thin layers of semiconducting material, most commonly silicon, that
is prepared in such a way that one part of the atoms of the material becomes
negatively charged and the other part becomes positively charged. Facing the
sun to convert directly the sunlight into electricity is known as the Photovoltaic
effect. PV cells have been marketed under the name Solar Cells for about a
century.

Solar cells generate most of their electricity from direct sunlight. However,
solar cells typically generate little electricity under clouds or during the night
on bright moonlit nights. Individual solar cells typically only generate tiny
amounts of electricity. If any of these cells are connected and stacked up, a
panel of cells is created. Larger arrays of solar cells provide more electricity and
more power than single solar cells.

2.2.7 PV Cell Modelization

A PV generator is mainly an assembly of solar cells, connections, protective
parts, and supports. The photovoltaic effect applied into a photovoltaic cell
could be represented as the electrical circuit in figure 1 where the diode rep-
resents the n-p junction, the current source represents the photon energy, the
series resistance RS represents the resistance inside each cell and the diode´s
internal shunt resistance RSH .

19



Figure 2.5: Single-diode electrical equivalent circuit of the PV cell
[17]

The figure above represent a single-diode electrical equivalent circuit of a photo-
voltaic (PV) cell, it consists of four main components: a current source, a shunt
resistance, a series resistance, and a single diode. The current source represents
the current generated by the PV cell in response to sunlight, while the shunt
resistance represents the current leakage caused by defects in the cell’s semi-
conductor material. The series resistance accounts for the internal resistance of
the cell, which can be due to various factors, such as the resistance of the metal
contacts and interconnects. Finally, the single diode models the non-linear rela-
tionship between the cell’s current and voltage, which arises from the properties
of the semiconductor material.

The mathematical model of a photovoltaic cell using Kirchhoff law :

I = Iph − ID = Iph − Is{exp
[
q(V + IRs)

nkBTc

]
− 1} − V + IRs

Rsh
(2.1)

1. kB : Boltzmann′sgasconstant = 1.381× 10−23 J/K

2. Tc : absolute temperature of the cell (K)

3. V : voltage imposed across the cell (V)

4. Is : dark saturation current, which depends strongly on temperature (A)

5. n : junction idealisation factor

6. q : electronic charge = 1.602 ×10−19 J/V

7. Rs : series resistance (Ω)

8. Rsh: Shunt resistance or the parallel resistance (Ω)

20



When the cell is short-circuited, the current is at maximum (short-circuit cur-
rent, Isc), and the voltage across the cell is 0.
And when the PV cell circuit is open, the voltage is at its maximum (open-circuit
voltage, Voc), and the current is 0.

In this subsection, the topic of discussion was the photovoltaic cell modelization.
It is considered a vital aspect in determining the behavior and performance of
a photovoltaic system. To model the photovoltaic cell accurately, it is neces-
sary to estimate its parameters. That’s where the Newton-Raphson method
comes into play. This method is a popular numerical method used to estimate
parameters in many applications, including photovoltaic cell modelization. In
the following section, the application of the Newton-Raphson method to pho-
tovoltaic cell modelization will be explored, leading to a more accurate and
dependable estimation of the cell parameters.

2.2.8 The Newton Raphson Method

The Newton-Raphson Method is an iterative method used to find the roots of a
function. It consists of in estimate of a given function f(x) with an initial guess.
It´s a very simple method, but it is very effective. The method is based on the
fact that the tangent line to a function at a point is a good approximation to
the function itself[18].

The method is obtained through the Taylor series expansion in (x - x0) given
below:

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0) + ... = 0 (2.2)

It is said that when the initial guess is close to the real root of the equation, the
value of (x-x0) is small, and only the first terms are significant for calculating
the root, based on x0. By cutting off the series in the second term, the general
formula of the Newton-Raphson method can be derived[20].

x1 = x0 −
f(x0)

f ′(x0)
(2.3)

Therefore, given xn, the point xn+1 will be obtained by intersecting the tangent
line at f(x) in xn with the x axis.

xn+1 = xn −
f(xn)

f ′(xn)
(2.4)

The convergence of the Newton Raphson Method is guaranteed for a certain
interval [a,b] containing the root of f(x), provided that f(x) and f’(x) are con-
tinuous in this interval and that f(α) = 0, where α is the root of f(x).
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Figure 2.6: Newton Raphson Method Graph representation[20].

The x-axis of the graph above represents the iteration number, while the y-axis
represents the error between the current estimate of the root and the actual
root. It shows a curve that starts at an initial error value x0 and decreases as
the algorithm progresses through its iterations. While the curve approach zero,
the algorithm converges on the root.

2.2.9 Theoretical Simulation

Using Iph = 0.8A, Is = 10−5A, Tc = 198, 5K,n = 1.5, Rs = 0.01Ω, Rsh = 50Ω,
the following graphics (Figure 3 and 4) of current depending on voltage and
power depending on voltage has been reached.

Figure 2.7: Representative current-voltage curve for photovoltaic cells

Figure 2.7 is a graphical representation of the relationship between the current
generated by the PV cell and the voltage applied across it. The curve is used to
determine the operating point of the PV cell and to calculate its efficiency. The
current-voltage (I-V) curve is created by plotting the current generated by the
cell against the voltage applied to it. The I-V curve is unique for each PV cell
and is dependent on various factors such as temperature, light intensity, and
material quality.
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The I-V curve’s shape exhibits a sharp rise in current at lower voltage lev-
els, followed by a gradual decline as voltage increases. At the point where the
curve reaches its highest value, it is designated as the maximum power point
(MPP). The MPP is considered the optimal operating point for the PV cell, as
it corresponds to the maximum power that the cell can generate given specific
circumstances

Shunt resistance is usually much bigger than a load resistance, whats means
that less power is dissipated internally within the cell.Therefore, by ignoring
these two resistances, the equation become:

I = Iph − ID = Iph − Is{exp
[

qV

nkBTc

]
− 1} − V

Rsh
(2.5)

The output power, P, from a photovoltaic cell is given by

P = IV (2.6)

P = {Iph − Is{exp
[

qV

nkBTc

]
− 1} − V

Rsh
}V (2.7)

Figure 2.8: Representative power-voltage curve for photovoltaic cells

Figure 2.8 is a graphical representation of the output power of a photovoltaic
cell as a function of the voltage. This curve is typically plotted using the charac-
teristic values of the photovoltaic cell, such as the photocurrent, the saturation
current, the temperature coefficient, and the shunt resistance. The curve is im-
portant because it allows us to determine the maximum power point (MPP),
which is the operating point of the photovoltaic cell that produces the maximum
output power. This information is crucial in designing photovoltaic systems as
it helps to optimize the system’s efficiency.
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2.2.10 Simulation With Noise

Theoretical values often yield results that differ from experimental findings. To
achieve results that more closely reflect reality and follow a normal distribution,
a degree of randomness with a certain standard deviation can be introduced.
The graphics shown below (Figure 6 and 7) utilize a standard deviation of 2.5%:

Figure 2.9: Representative current-voltage curve for photovoltaic cells with noise

Figure 2.9 shows the relationship between the current and voltage of a pho-
tovoltaic cell when there is external interference, such as electrical noise, that
affects the performance of the cell. The presence of noise can cause fluctuations
in the current-voltage curve, resulting in deviation from the expected results.
This deviation can be seen as variations in the slope or shape of the curve, which
can have a significant impact on the output power of the photovoltaic cell. It is
therefore important to consider the effects of noise in photovoltaic cell modeling
and simulation to accurately predict the performance of the cell in real-world
applications.

Figure 2.10: Representative power-voltage curve for photovoltaic cells with noise

24



Figure 2.10 shows the relationship between the power and voltage of a photo-
voltaic cell, with added noise. The curve shows how the power output of the
photovoltaic cell varies with the voltage, while taking into account the effect of
noise.
The new findings, while not deviating significantly from theoretical values, are
more realistic. The results reveal that the region of the curve most impacted by
the introduced randomness is the area of the MMP.

Despite the simulation incorporating randomness, the measurements obtained
are not entirely indistinguishable from real-world data. To enhance the accu-
racy of the results, it is recommended to process them through an Analog to
Digital Converter (ADC)[21].

2.2.11 Analog To Digital Converter

An analog-to-digital converter is a device that converts an analog signal, such
as those captured by microphones, into a digital signal. This type of electronic
device is commonly used in electronic devices. The resolution of an ADC differs
from one to another, and its complexity is also decided to depend on the com-
plexity of the operation. An ADC converts continuous time and amplitude into
digital time and amplitude. The process is showed in the Flow Chart below in
figure 2.11:

Figure 2.11: ADC Flowchart
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The ADC flowchart describes a step-by-step process for converting an analog
signal into a digital signal using an Analog-to-Digital Converter (ADC). It be-
gins by determining the number of bits that will be used to represent the digital
signal. Next, the voltage range of the analog signal is determined by subtract-
ing the maximum voltage from the minimum voltage, and this value is assigned
to a variable called ”Period”. The voltage range is then divided into equal in-
tervals, each of which is assigned a value called ”Size”. The analog signal is
then divided into intervals of size, and each interval is assigned a digital value.
The digital value is obtained by multiplying the rounded interval value with the
interval size. Finally, the digital value obtained is returned as the output of the
ADC conversion process. Overall, the ADC flowchart provides a systematic and
logical approach for converting analog signals into digital signals with a fixed
number of bits, a defined voltage range, and a specific resolution.

2.3 Analysis of I-V and P-V characteristics

2.3.1 Effect of Solar Radiation Variation

The variation of both I-V and P-V curves will be examined by altering the solar
radiation values. Specifically, three distinct values (500, 1000, and 2000 W/m2)
will be utilized for this purpose.

(a) I-V characteristics (b) P-V characteristics

Figure 2.12: Characteristics with varying solar irradiation

The figure presented above demonstrates that:

• In a current-voltage curve (I-V), the increase of solar radiation is accom-
panied by an increase of short circuit current (Isc) and open circuit voltage
(Voc)
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• An increase in solar radiation from 500 to 1000 W/m2 resulted in a 0.2
A increase in Isc and a 0.01 V increase in Voc, while an increase in solar
radiation from 1000 to 2000 W/m2 resulted in a 0.4 A increase in Isc and
a 0.025 V increase in Voc

• In a power-voltage curve (P-V), the increase in solar radiation is accom-
panied by an increase in maximum power

• An increase in solar radiation from 500 to 1000 W/m2 resulted in a 0.0422
W increase in Pmax and a 0.01 V increase in Voc, while an increase in solar
radiation from 1000 to 2000 W/m2 resulted in a 0.0971 W increase in Pmax

and a 0.025 V increase in Voc

2.3.2 Effect of Cell Temperature Variation

The variation of both I-V and P-V curves will be examined by altering the
temperature values. Specifically, three distinct values (20, 40, and 60 °C) will
be utilized for this purpose.

(a) I-V characteristics (b) P-V characteristics

Figure 2.13: Characteristics with varying cell temperature

The figure above displays that:

• The increase in cell temperature is accompanied by a decrease in open
circuit voltage and an increase in short-circuit current

• An increase in cell temperature from 20 to 40 °C resulted in a 0.1 A increase
in Isc and a 0.01 V decrease in Voc. On the other hand, an increase in
cell temperature from 40 to 60 °C resulted in a 0.1 A increase in Isc and
a 0.005 V decrease in Voc

• The increase in cell temperature is accompanied by a decrease in maximum
power
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• An increase in cell temperature from 20 to 40 °C resulted in a 0.02 W
decrease in Pmax and a 0.03 V decrease in Voc. Moreover, an increase in
cell temperature from 40 to 60 °C resulted in a 0.017 W decrease in Pmax

and a 0.02 V decrease in Voc

2.3.3 Effect of Shunt Resistance Variation

The variation of both I-V and P-V curves will be tested by changing the shunt
resistance values, using three different values of 10, 50, and 100 Ω.

(a) I-V characteristics (b) P-V characteristics

Figure 2.14: Characteristics with varying Shunt Resistance

The figure above shows that:

• The increase of shunt resistance is accompanied by an increase in open
circuit voltage and stability in short circuit current

• Shunt resistance is used to measure high currents and it is connected in
parallel. With the increase of shunt resistance, both open circuit voltage,
and maximum power both the current-voltage (I-V) and power-voltage (P-
V) curves, it can be observed that increasing the shunt resistance results
in a decrease in the drop of the functions.

2.3.4 Effect of Diode Reverse Saturation Current Varia-
tion

The variation of both the current-voltage (I-V) and power-voltage (P-V) curves
will be tested by changing the diode reverse saturation current Is values. In
this case, three different values will be used: 1, 20, and 100 nA.
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(a) I-V characteristics (b) P-V characteristics

Figure 2.15: Characteristics with varying diode reverse saturation current

The figure above illustrates that:

• The increase of diode reverse saturation current (Is) is accompanied by a
decrease in open circuit voltage and stability in short circuit current

• The increase of diode reverse saturation current (Is) is also accompanied
by a decrease in maximum power output

• In both the current-voltage (I-V) and power-voltage (P-V) curves, it can
be observed that increasing the shunt resistance results in an increase in
the drop of the functions.

2.4 Five Parameters Model

This photovoltaic cell is characterized by its equivalent plan consisting of a con-
stant current source representing a solar cell’s photocurrent. This current varies
according to the temperature of the photovoltaic cells and the irradiance level
to which they are subjected. This current is connected in parallel to a diode
that has an ideality factor n to account for the recombination of electrons in
the depletion region of a p-n junction solar cell. In other words, the voltage
drop across the p-n junction of a solar cell. This model accounts for the losses
due to the module´s series and parallel resistance. The serial resistance is due
to the contact resistance and the resistance of the conductors and the shunt´s
resistance is due to resistance in the electrical connection of the solar cells.
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The equivalent circuit of this model is represented in the figure bellow:

Figure 2.16: Single diode model [16]

The mathematical model is given by :

I = Iph − Is{exp
[
q(V + IRs)

nkBTc

]
− 1} − V + IRs

Rsh
(2.8)

Its an equation with 2 unknowns (I and V) and five parameters to determinate.
These parameters are:

• Iph: photo-current (A)

• Is: diode reverse saturation current (A)

• n: diode ideality factor

• Rs: series resistance (Ω)

• Rsh: Shunt resistance or the parallel resistance (Ω)

2.5 Seven Parameters Model

The Seven Parameter Model is a mathematical representation of the perfor-
mance of photovoltaic (PV) panels. This model accounts for the effects of
various environmental factors on the performance of a PV panel, such as tem-
perature, light intensity, and angle of incidence. The seven parameters include
the short-circuit current, open-circuit voltage, maximum power point voltage,
maximum power point current, temperature coefficient of short-circuit current,
temperature coefficient of open-circuit voltage, and temperature coefficient of
power. These parameters are used to create an accurate model of a PV panel’s
electrical performance, which is crucial for optimizing the design and perfor-
mance of solar power systems. By considering these seven parameters, engi-
neers can predict the energy output of a PV panel under different conditions
and make necessary adjustments to improve its efficiency.
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This photovoltaic cell is the same as a five parameters photovoltaic cell, but
instead of one diode, this model consists of 2 diodes in parallel. The equivalent
circuit of this model becomes:

Figure 2.17: double diodes model [16]

The figure above represents the double-diode electrical equivalent circuit of a
photovoltaic (PV) cell, which is a more complex model than the single-diode
equivalent circuit. In addition to the four components of the single-diode model
- a current source, a shunt resistance, a series resistance, and a diode. The
double-diode model includes an additional diode to account for the recombi-
nation losses that occur within the PV cell. This more accurate model better
represents the behavior of the PN junctions in the PV cell, and is therefore more
suitable for analyzing and optimizing the performance of PV cells in practical
applications.

The mathematical model becomes:

I = Iph − Is1{exp
[
q(V + IRs)

n1kBTc

]
− 1}− Is2{exp

[
q(V + IRs)

n2kBTc

]
− 1}− V + IRs

Rsh

(2.9)

Which is an equation with 2 unknowns (I and V) and seven parameters to
determinate. These parameters are:

• Iph: photo-current (A)

• Is1: first diode reverse saturation current (A)

• Is2: second diode reverse saturation current (A)

• n1: first diode ideality factor

• n2 second diode ideality factor

• Rs: series resistance (Ω)

• Rsh: Shunt resistance or the parallel resistance (Ω)
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2.6 Dependency on external and internal pa-
rameters

Several parameters affect, directly and indirectly, the efficiency and the power
output of a photovoltaic panel. To improve the performance of the device and
to make it more predictable, it is important to understand the relation between
the most important characteristics of a photovoltaic panel and the different
parameters. Those parameters divide into internal and external ones[22].

2.6.1 Internal parameters

Internal parameters, or device-dependent parameters, determine the behavior of
the photovoltaic panel and have a significant influence on its performance. These
parameters are typically identified using simple electrochemical measurements,
such as short-circuit current Isc, open-circuit voltage Voc, maximum power
point MPP, the maximum power generated by the photovoltaic panel, and the
fill factor (FF).

Photocurrent

The photocurrent is produced in PV cells in direct proportion to the inten-
sity of incident radiation and depending on the technical characteristics of the
PV panel. Under normal operating conditions, the intensity of solar radiation
changes by a few percent, resulting in a change in the amount of photocurrent
generated in the cell. It should be noted that the temperature also affects the
output of the PV panel and reduces its efficiency. The current Iph for a period of
hours, when the sensor is illuminated, is calculated by the following expression:

Iph =
G

Gn
[Isc + α(T − Tn)] (2.10)

Where:

• G: intensity of solar radiation (W/m2)

• Gn: intensity of solar radiation at standard conditions (W/m2)

• α: Temperature coefficient of the short circuit current (A/K)

• T: cell´s internal temperature (K)

• Tn: cell´s internal temperature in the standard test condition (K)

• Isc: short circuit current (A)

Internal cell temperature

The internal cell temperature is the temperature of the PV cell, which is the
main factor affecting the efficiency of the photovoltaic panel. The temperature
of the PV cell is determined by the temperature of the environment, the intensity
of solar radiation, and the heat generated by the PV cell itself.
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Fill factor

The fill factor (FF) is another important parameter that characterizes the per-
formance of a photovoltaic panel. It represents the ratio of the maximum power
that can be obtained from a solar cell to the product of the open-circuit voltage
and short-circuit current. In other words, the fill factor indicates how well a
solar cell can convert sunlight into electricity.

The fill factor is influenced by various factors, such as the internal resistance of
the cell, the quality of the contacts between the cell and the external circuit,
and the non-uniformity of the cell material. Typically, the fill factor ranges from
0.5 to 0.8, and higher fill factors indicate better performance of the solar panel.

To optimize the performance of a photovoltaic panel, it is important to care-
fully select the materials and manufacturing processes used in its construction,
as well as to take into account factors such as the internal cell temperature and
the diode ideality factor. By optimizing these parameters, it is possible to in-
crease the efficiency and performance of a solar panel, making it a more effective
and sustainable source of energy.

The fill factor (FF) is defined as the ratio of the maximum power output of
a solar cell to the product of its open-circuit voltage (Voc) and short-circuit
current (Isc), and is expressed mathematically as:

FF =
Pmax

V oc× Isc
(2.11)

Where Pmax is the maximum power output of the cell, and Voc and Isc are the
open-circuit voltage and short-circuit current, respectively.

Diode ideality factor

The diode ideality factor is a parameter that compares how much our diode
differs from an ideal diode. It describes the level of imperfection in the diode.
For an ideal diode, this factor would be equal to 1. This parameter depends on
the manufacturing process of the diode and especially on the kind of material
used. For instance, the ideality factor of a silicon diode is usually 1.5.

Diode reverse saturation current

The diode reverse saturation current is the current that flows through the diode
when it is reverse-biased. It has a high impact on the behavior of solar pan-
els. Mainly, it affects the current-voltage characteristic and limits the maximum
current in the circuit. It is controlled by temperature. Diode reverse saturation
current depends on the quality of solar panels and manufacturing process tech-
nology. The mathematical equation to calculate this current is as the following:

Is = Isn

(
T

Tn

)3

exp

[
qEg

nkB

(
1

Tn
− 1

T

)]
(2.12)
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Where:

• Eg: band gap energy (eV)

• kB : Boltzmann constant (J/K)

• n: diode ideality factor

• T: cell´s internal absolut temperature (K)

• Tn: cell´s internal temperature in the standard test condition (K)

• q: electronic charge (C)

• Isn: internal diode current in the standard test condition (A) and it’s
calculated as the following :

Isn =
Isc

exp
(

Voc

nVT

) (2.13)

Where:

– Isc: short circuit current (A)

– Voc: open circuit voltage (A)

– VT : thermal voltage and its calculated as the following :

VT =
kBT

q
(2.14)

Series resistance

Series resistance is situated in series with the diode and it affects the model
output but not significantly, especially if the load resistance is large enough The
influence of series resistance is negligible compared to the influence of shunt
resistance. Its initialized by the following equation:

RS = −
(
dV

dI

)
V=Voc

(2.15)

Shunt resistance

Shunt resistance is situated parallel to the diode so, when there is a voltage
applied and the current flows through the diode, it creates a voltage drop. It
also affects the model´s output. Lower shunt resistance causes a higher voltage
drop and a lower output current of the model. Increased temperature leads to
a lower shunt resistance value. Its initialized by the following equation:

Rsh = −
(
dV

dI

)
I=Isc

(2.16)
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2.6.2 external parameters

The external parameters that affect the performance of a photovoltaic panel
could be environmental such as irradiation and temperature and could be phys-
ical such as the shadow of an obstacle that interrupts irradiation or decreases
temperature.

Environmental Parameters

There are different environmental parameters such as irradiation, wind speed,
ambient temperature, humidity, and rain that influent the performance of the
photovoltaic system. Most of the parameters influence indirectly the system’s
efficiency by affecting the two most important parameters that have a high
impact on the performance of PV systems. The most important parameters are
solar irradiation and ambient temperature:

1. Irradiation: is a key factor in solar energy conversion and it could be
measured using a pyranometer. It is the amount of energy received by a
surface per unit of time. This energy is received as electromagnetic radia-
tion from the sun. The amount of energy received by a surface depends on
the angle of incidence of the sun’s rays, the angle of inclination of the sur-
face, the time of the day, the season of the year, the latitude of the place,
the presence of clouds, etc. The amount of energy received by a surface
is measured in W/m2. With sufficient solar radiation, photovoltaic cells
generate DC voltage and current, which can be used to power electrical
equipment.

2. Ambient temperature: this is an important factor in solar energy conver-
sion and it could be measured easily by a thermometer. Photovoltaic cells
operate with ideal efficiency in the range of 20 to 70°C. If the temperature
is lower than 20°C, the efficiency decreases slightly. The reason for this
is the reduction in mobility of the photovoltaic cells’ atoms, which has a
direct impact on the energy produced. Conversely, if the temperature is
greater than 70°C, the efficiency decreases significantly, as the photovoltaic
cells increase their resistance and limit the current flow. In addition to
the decrease in efficiency, temperature increases the degradation rate of
the photovoltaic panels, so they should be kept at a temperature as low
as possible.

Shadow of Obstacle on PV Panel

The photovoltaic panels have their potential power affected by the shadow of
obstacles. This can result in a decrease or even complete loss of performance for
the PV array. Shadows from buildings, trees, or other objects, as well as dust
and physical damage to the panels, are examples of obstacles that can cause
this reduction. These obstacles can be divided into two categories:
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1. Short-period shading: a short-term shadowing or temporary shadow. It
usually lasts only a few seconds. Short-term shadows can be caused by
birds, leaves, or clouds. There are also shadows from passing clouds, that
are moving with the clouds. It is also called a time-dependent obstacle
because time can change obstacle behavior.

2. Long-period shading : or long-time shadow is a long, fixed obstruction
and is also called a time-independent obstacle. This type of obstacle is
fixed to a certain place and does not change its position over time, and
it creates a permanent shadow (for example, buildings, trees, land cover,
etc...).

2.7 Generation of measurements database

An existing database is utilized for the purpose of training the model. The
database comprises 21046 samples of location, weather, and power measures
gathered over a period of 14 months, from May 2017 to October 2018. These
measures were taken at 12 distinct locations situated in the northern hemisphere
and consist of 17 features that provide descriptions of the weather, location, and
output power of the photovoltaic panels.

Let take a look of the first five rows of the data:
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The data can be separated into 3 types or categories:

• Location: are inputs that describe or have relation to the place of this data
was measured. It consists of location, latitude, longitude, and altitude
inputs.

• Date or timing: are inputs that describe or have relation to the position
of the panels. It consists of date, time, month, YRMODAHRMI, hour,
and season.

• Weather: are inputs that describe or have relation to the weather. It
consists of humidity, ambient temperature, wind speed, visibility, pressure,
and cloud ceiling.

Figure 2.18 represent the different locations that will be use within this project.

Figure 2.18: Locations
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The locations in our data consist of :

1. Travis

2. Peterson

3. USAFA

4. Hill Weber

5. March AFB

6. JDMT

7. Malmstrom

8. Grissom

9. Camp Murray

10. Kahului

11. Offutt

12. MNANG

In the subsequent chapter, a measurement system is established using an ESP32
model and a variety of sensors, in order to obtain new and realistic data related
to the solar panel. This will aid in enhancing the accuracy of the machine-
learning model.
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Chapter 3

Embedded system

In this chapter, the configuration and programming of an ESP32 model is car-
ried out for the purpose of taking the necessary measurements, formatting them,
and storing them in the database. The measurement system plays a crucial role
in data acquisition in the project. Given the limited time and resources, the
measurement will be added to the existing database to improve the model in
the future. The configuration of the ESP32 circuit using a few sensors is the
first step. Then, the model is programmed to retrieve values from the sensors.
Finally, the obtained data is formatted and stored in the database.

39



3.1 Literature Review of Supporting Techniques

The data acquisition processes described in this chapter are supported by sev-
eral techniques that have been documented in the literature. These techniques
include the use of microcontrollers such as the ESP32 for data collection and
processing, and the use of breadboards for connecting sensors and other hard-
ware components.

Microcontrollers have been widely used for data acquisition due to their ability
to collect and process data from various sensors. Some articles discusses how
microcontrollers can be programmed to perform specific tasks such as filtering
and analyzing data. This makes them a versatile tool for data acquisition in
various applications[23].

Breadboards are also commonly used for connecting hardware components in
data acquisition systems. Some books provides step-by-step instructions on how
to use a breadboard to connect various components such as sensors and micro-
controllers. She also provides tips on how to troubleshoot common issues that
may arise when using a breadboard[24].

In conclusion, the literature reviewed in this section provides valuable support
for the data acquisition processes described in this chapter. Further research can
uncover additional techniques that may be applicable to specific applications.

3.2 Configuration

To successfully complete the data acquisition processes described in this report,
several pieces of hardware must be configured to take the necessary measure-
ments. This section describes the hardware requirements for achieving this step
and includes images of the devices.

3.2.1 Hardware requirements

An ESP32 microcontroller is utilized and connected to a breadboard for this
project. Additional sensors are also connected to the breadboard.
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• ESP32 : a Wi-Fi-enabled 32-bit ARM Cortex-M0 + microcontroller that
features a dual-core ARM® Cortex™-M0 processor operating at 80 MHz.
It has 512 KB flash memory and is integrated with 2 MB RAM. It also
has a low-power Bluetooth Low Energy and a 128 MB SD card slot. The
ESP32 is manufactured with a 180 nm CMOS process and is an ideal
general-purpose microcontroller with a wide range of applications. It’s
presented in the following figure :

Figure 3.1: ESP32 model

• Breadboard : a rectangular plastic board with tiny holes arranged in
rows and columns. Small pieces of metal wire called breadboard straps
can be inserted to connect wires running to components mounted on the
breadboard such as sensors. It’s presented in the following figure :

Figure 3.2: Breadboard
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• Quectel L86 GPS Module : is an embedded patch antenna GPS receiver
module that comes with a built-in antenna, MCU with U-Blox GPS re-
ceiver, and tracking telemetry circuit. It can work with a smart device
through a BlueTooth connection, making it convenient for collecting data
from the solar system. It’s presented in the following figure :

Figure 3.3: Quectel L86 GPS

• AM2301B : a temperature and humidity sensor designed for environment
measurement. It is a self-integrated circuit, with low power consumption,
low cost, high performance, and easy to interface. It can be used to mea-
sure solar irradiation, indoor and outdoor temperature, and humidity. It’s
presented in the following figure :

Figure 3.4: AM2301B
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• BGT-FS1 : a wind speed sensor that uses a hot wire anemometer system.
The air velocity is measured with a probe and the total static pressure
is with a Pitot tube. By the end, the wind speed is calculated by the
pressure difference between the two tubes. It’s presented in the following
figure :

Figure 3.5: BGT-FS1

The process begins by connecting the ESP32 to the breadboard, which is then
linked to the power source. The Quectel L86 GPS is used to obtain the three
location parameters: latitude, longitude, and altitude. The AM2301B sensor is
used to acquire air humidity and ambient temperature, which can be converted
to relative humidity. The BGT-FS1 is employed to measure wind speed and
pressure. Since it is challenging to obtain values for visibility and cloud ceiling,
these parameters will be retrieved online. The other sensors are also connected
to the breadboard.

3.2.2 Software requirements

There are numerous websites that provide the values of visibility and cloud
ceiling, as well as other parameters, using the location parameters. An example
of such websites will be demonstrated.
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Figure 3.6: UAV forecast[25]

The UAV forecast website is represented in Figure 3.6. It provides the weather
forecast and its parameter values every minute, including ambient temperature,
pressure, humidity, wind speed, visibility, and cloud ceiling. These weather val-
ues can be obtained by using the website.

Taking the measurements using ESP32 sensors will be explained in the pro-
gramming section.

3.3 Programming

3.3.1 Software requirements

ESP32 can be programmed in different languages and different programming
environments. Some of the most common are:

• Arduino IDE: written in C++, using cross-platform libraries. IDE is avail-
able on Windows, Mac, and Linux.

• CircuitPython: MIT-licensed programming language specifically designed
for microcontrollers. Programming is done directly on the microcontroller
using its pins.

• Espressif IDF (IoT Development Framework): Espressif IoT IDE. It has
all the features of the Arduino IDE, plus a wide range of optimizations,
for use in industrial environments.
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• LUA : is a powerful programming language often used in IoT development.
CooCox IDE offers native support for LUA.

• CooCox IDE: written in C, for advanced users.

• MicroPython: open-source, community-driven programming language, de-
signed for microcontrollers.

• Net Micro Framework (MNF): It is a software platform designed for the
firmware development of microcontrollers.

3.3.2 Quectel L86 GPS Module Programming

Code Explanation

The necessary libraries are first imported. The machine library is imported for
the use of UART1, the time library for the sleep function, the pyb library for
the LED function, and the math library for the floor function. Then, UART1
is initialized[26]. After that, three functions are defined:

• convert to degrees: This function takes the latitude and longitude in de-
grees, minutes, and seconds as input and converts them to decimal degrees.
The decimal degrees are calculated by dividing the degrees by 100 and then
adding the minutes and seconds to it. The minutes and seconds are cal-
culated by dividing the minutes and seconds by 60 and then adding them
to the degrees. The decimal degrees are then rounded off to 4 decimal
places.

• checksum: This function takes the GPS data as input and calculates the
checksum. The checksum is calculated by XORing all the characters in
the GPS data. The checksum is then returned.

• get gps data: This function reads the GPS data from the UART1 and then
checks if the data is valid. If the data is valid, the latitude and longitude
are extracted from the data and converted to decimal degrees. The time,
number of satellites, altitude, and checksum are also extracted from the
data. The checksum is then calculated and compared with the checksum
extracted from the data. If the checksums match, the latitude, longitude,
time, number of satellites, and altitude are printed. If the checksums do
not match, an error message is printed. The latitude and longitude are
then returned.

Connection with ESP32

To implement the GPS module with ESP32, the following connections are made:
The GPS module is powered using the 3V3 pin of the ESP32. The GND pin
of the GPS module is connected to the GND pin of the ESP32. The TX pin of
the GPS module is connected to the RX pin of the ESP32 and the RX pin of
the GPS module is connected to the TX pin of the ESP32.
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Algorithm 1 GPS

1: procedure convert to degrees(raw value)
2: decimal value = raw value/100.00
3: degrees = int(decimal value)
4: mm mmmm = (decimal value− int(decimal value))/0.6
5: position = degrees+mm mmmm
6:

7: return position
8: end procedure
9:

10: procedure checksum(sentence)
11: checksum = 0
12: for c in sentence do
13: checksum=c
14: end for
15: return checksum
16: end procedure
17:

18: procedure get gps data
19: data = uart.readline()
20: if data is not None then
21: data = data.decode(′utf − 8′)
22: if data[0 : 6] == ’GPGGA’ then
23: sdata = data.split(”, ”)
24: if sdata[2] == ” then
25: lat = 0.0
26: lon = 0.0
27: else
28: lat = float(convert to degrees(float(sdata[2])))
29: lon = float(convert to degrees(float(sdata[4])))
30: end if
31: print(”Latitude: ”, lat)
32: print(”Longitude: ”, lon)
33: print(”Time: ”, sdata[1])
34: print(”Satellites: ”, sdata[7])
35: print(”Altitude: ”, sdata[9])
36: print(”Checksum: ”, sdata[15])
37: print(”Checksum calculated: ”, checksum(data[1:-4].encode()))
38: print(” ”)
39: return lat, lon
40: end if
41: else
42: return 0.0, 0.0
43: end if
44: end procedure
45:

46: while True do
47: get gps data()
48: time.sleep(1)
49: end while
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3.3.3 AM2301B Module Programming

Code Explanation

The code to implement the AM2301B module with ESP32 using micropython
is pretty straightforward. It takes to initialize the DHT11 sensor and then
call the measure() function to get the temperature and humidity values. The
measure() function will return the temperature and humidity values in Celsius
and percentage respectively[27].

Algorithm 2 AM2301B

1: procedure AM2301B(dht)
2: dht.measure()
3: print(dht.temperature())
4: print(dht.humidity())
5: time.sleep(2)
6: end procedure

Connection with ESP32

To implement the AM2301B module with ESP32, the following connections are
required:

• The VCC pin of the AM2301B module is connected to the 3.3V pin of the
ESP32.

• The GND pin of the AM2301B module is connected to the GND pin of
the ESP32.

• The DATA pin of the AM2301B module is connected to the GPIO4 pin
of the ESP32.

3.3.4 BGT-FS1

Code Explanation

The code to implement the BGT-FS1 module with ESP32 using micropython
is pretty straightforward. The wind speed is calculated by dividing the number
of rotations per second by 2πr.

Connection with ESP32

In order to implement the BGT-FS1 module with ESP32, the following connec-
tions are required:

• BGT-FS1 module pin 1 to ESP32 pin 32

• BGT-FS1 module pin 2 to ESP32 pin 3.3V

• BGT-FS1 module pin 3 to ESP32 pin GND
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Algorithm 3 BGT-FS1

1: procedure rotation(pin)
2: rotations← rotations+ 1
3: end procedure
4: sensor ← machine.P in(32,machine.P in.IN)
5: interval← 1
6: rpm← 0
7: rotations← 0
8: sensor.irq(trigger = machine.P in.IRQRISING, handler = rotation)
9: while True do

10: rpm← rotations× 60/interval
11: print(rpm/2πr)
12: rotations← 0
13: time.sleep(interval)
14: end while

3.4 Data formatting and storage

The data collected for this study is stored in a comma-separated values (CSV)
file. CSV is a format commonly used for storing and exporting data in plain
text, and can be created in any program that allows data to be saved in this
format.

The data consists of 17 columns, each with a specific format and meaning.
These columns are:

• Location: The location of the photovoltaic panel, stored as a string.

• Date: The date of the data, stored as an integer in the format YYYYM-
MDD.

• Time: The time of the data, stored as an integer in the format HHMM.

• Latitude: The latitude of the photovoltaic panel, stored as a floating-
point number.

• Longitude: The longitude of the photovoltaic panel, stored as a floating-
point number.

• Altitude: The altitude of the photovoltaic panel, stored as a floating-
point number.

• YRMODAHRMI: The date and time of the data, stored as an integer
in the format YYYYMMDDHHMM.

• Month: The month of the data, stored as an integer.

• Hour: The hour of the data, stored as an integer.
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• Season: The season of the data, stored as a string.

• Humidity: The relative humidity of the data, stored as a floating-point
number.

• AmbientTemp: The ambient temperature of the data, stored as a floating-
point number.

• Wind.Speed: The wind speed of the data, stored as a floating-point
number.

• Visibility: The visibility of the data, stored as a floating-point number.

• Pressure: The atmospheric pressure of the data, stored as a floating-
point number.

• Cloud.Ceiling: The height of the cloud ceiling, stored as a floating-point
number.

The purpose of the data collection is to analyze the relationship between the
power output of the photovoltaic panel and the other 16 columns. In the follow-
ing chapter, this relationship will be analyzed, and a machine learning algorithm
will be developed to predict the power output of the photovoltaic panel based
on the other 16 columns.
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Chapter 4

Machine learning system

This chapter will present a description of the machine learning system that
was developed for predicting the power of a photovoltaic panel. The system
was developed using the Python programming language and the scikit-learn li-
brary. The development of the machine learning system involved the following
steps:

• Data exploration

• Data preparation

• Model selection

• Model evaluation

• Model deployment
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4.1 Similar Work Review

The Medium post ”Predicting solar power output using machine learning tech-
niques”, covers data exploration, data pre-processing, and feature engineering.
The authors utilize machine learning techniques to predict solar power output
from 12 northern hemisphere locations. The data exploration step involves an-
alyzing the characteristics of the data that will be used to train and evaluate
the model, and identifying any potential challenges or issues that may affect the
model’s performance. Data pre-processing includes finding and handling out-
liers in the dataset and data encoding. Feature engineering is used to develop
three models, including Random Forest, Light Gradient Boosting Machine, Deep
Neural Network, and a stacked ensemble that are compared using the R-squared
metric.

Overall, the author’s research concludes that the Random Forest model was
the most accurate in predicting power output, and its performance is compara-
ble to those that include measurements of irradiance. The inclusion of location
and weather data without information about irradiance saves time, effort, and
cost in data collection. Additionally, the document includes details on state-of-
the-art photovoltaic technology and lays out a roadmap for future research and
development in the field of photovoltaic panels.

4.2 Data Exploration

Data exploration is an important step in the process of developing a machine
learning model. It involves analyzing the characteristics of the data that will be
used to train and evaluate the model, and identifying any potential challenges
or issues that may affect the model’s performance. This process typically in-
cludes a combination of summary statistics, visualizations, and other analysis
techniques to help understand the nature and structure of the data. By thor-
oughly exploring the data, researchers and data scientists can gain insights into
the data that can guide the development of the machine learning model and
help to ensure that it performs well on real-world data.

Figure 4.1 displays the output of data.info() for a dataset that contains 21,045
rows of environmental data. The dataset comprises 17 columns, including loca-
tion, date, time, latitude, longitude, altitude, and various environmental mea-
surements. The data.info() method provides an overview of the dataset’s struc-
ture, including the number of non-null values for each column, the data type of
each column, and the memory usage of the dataset.
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Figure 4.1: DataFrame.info output

As depicted in Figure 4.1, all columns in the dataset have 21,045 non-null val-
ues, indicating the absence of missing values. Most columns have a data type of
either float64 or int64, suggesting that they contain numerical data. Meanwhile,
the ’Location’ and ’Season’ columns are represented by object data types, which
contain categorical data. Furthermore, the output provides information on the
amount of memory consumed by the dataset, which is essential for optimizing
performance when working with larger datasets.

4.2.1 Mean, Standard Deviation and Quartiles

Mean, standard deviation and quartiles are metric statistics that describe the
distribution of the data.

Mean

The mean is the average value of a set of data and is calculated by adding all
the values together and then dividing the sum by the total number of values.
This provides a summary of the central tendency of the data. The mean can be
calculated using the following equation:

x̄ =
1

n

n∑
i=1

xi (4.1)
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Standard Deviation

The standard deviation (SD) is a measure of the dispersion of a set of values
from its mean. It’s calculated by finding the square root of the variance, which
is the average of the squared differences of each value from the mean. The
formula for calculating the standard deviation is:

σ =

√∑n
i=1(xi − µ)2

n
(4.2)

Quartiles

The quartiles are the 25th, 50th, and 75th percentiles of the data. The 25th
percentile is the value below which 25% of the data lies. The 50th percentile
is the value below which 50% of the data lies. The 75th percentile is the value
below which 75% of the data lies. The 50th percentile is the median of the
data.
The Interquartile Range (IQR) is the difference between the 75th and 25th
percentiles. It’s a measure of the spread of the data. after calculating the
quartiles and the IQR, the outliers could be found using the following formula:

• lower bound = Q1 - 1.5 ×IQRupperbound = Q3 + 1.5× IQR The values that
are below the lower bound or above the upper bound are outliers.

The mean, standard deviation, and quartiles can be obtained by using the de-
scribe function in pandas. A screenshot of the output of the describe() function
is shown in Figure 4.2.

Figure 4.2: describe output

Figure 4.2 presents the output of data.describe(), which provides statistical sum-
maries for each column in the dataset. The Date column ranges from 20170520
to 20181001, with a mean of 20177201. The Time column ranges from 1000 to
1545, with a mean of 1267. The Latitude column ranges from 20.89 to 47.52,
with a mean of 38.21 and a standard deviation of 6.32. The Longitude column
ranges from -156.44 to -80.11, with a mean of -108.59 and a standard deviation
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of 16.36. The Altitude column ranges from 1 to 1947, with a mean of 798.84
and a standard deviation of 770.68. The YRMODAHRMI column ranges from
201705010000 to 2018100100, with a mean of 2017718123343. The Month col-
umn ranges from 1 to 12. The Hour column ranges from 10 to 15. The Humidity
column ranges from 0 to 99.99, with a mean of 37.12 and a standard deviation
of 23.82. The AmbientTemp column ranges from -19.98 to 65.74°C, with a mean
of 29.29 and a standard deviation of 12.37. The PolyPwr column ranges from
0.26 to 34.29, with a mean of 12.98 and a standard deviation of 7.12. The
Wind.Speed column ranges from 0 to 49 km/h, with a mean of 10.32 and a
standard deviation of 6.39. The Visibility column ranges from 0 to 10, with a
mean of 9.70 and a standard deviation of 1.35. The Pressure column ranges
from 781.7 to 845.5, with a mean of 925.94 and a standard deviation of 85.22.
The Cloud.Ceiling column ranges from 0 to 722, with a mean of 515.97 and
a standard deviation of 301.90. The summary statistics presented in Figure 1
provide insights into the range, distribution, and variability of the data in the
dataset.
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4.2.2 Data Distribution

Data distribution is a crucial aspect in understanding the characteristics of a
dataset. It provides insights into how the data is spread across different values
and helps to identify any patterns or anomalies. The normal distribution, also
known as the Gaussian distribution, is the most common and widely studied
distribution. In a normal distribution, the data is symmetrically distributed
around the mean, median, and mode, and the majority of the data lies within
one standard deviation of the mean.

However, not all data follow a normal distribution. A skewed distribution is
one in which the data is not evenly distributed and has a long tail on one side.
A right-skewed distribution has a long tail on the right side, which means that
there are a few extreme values towards the right, and the majority of the data
is towards the left. In contrast, a left-skewed distribution has a long tail on the
left side, indicating that the majority of the data is towards the right and a few
extreme values towards the left.

In addition to normal and skewed distributions, bimodal data can also be ob-
served. A bimodal distribution is characterized by two peaks, indicating that
the data has two modes and two distinct groups of data. For instance, when
analyzing students’ test scores, researchers may observe two distinct groups -
one group of students who performed well and another group who did not per-
form well.

To determine the distribution of data, various statistical techniques and tools
can be used. One such tool is the hist function in pandas, which can be used to
create a histogram of the data. The histogram helps to visualize the distribution
of data and identify any patterns or anomalies that may be present. In the code
snippet above, the output of the hist() function for each column is shown in the
figures, which helps to analyze the data distribution of each column.
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Figure 4.3: Features Histograms
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Based on the histograms displayed above, it has been observed that the date
and YRMODAHRMI features share identical data. This finding suggests a
high degree of correlation between the two features and possible redundancy in
the information provided. Further analysis revealed that the YRMODAHRMI
feature does not offer any additional information beyond the date feature. Con-
sequently, it is recommended that this feature be removed from the dataset,
as doing so could simplify the dataset, reduce the feature space’s dimension-
ality, and potentially enhance the machine learning algorithm’s performance.
Furthermore, removing this feature could aid in reducing model complexity
and improving interpretability by eliminating any potential multicollinearity
between the features.

4.2.3 Correlation between the columns

the correlation is a statistical measure that indicates the extent to which two or
more variables fluctuate together. This means that when one variable is above
its mean, the other is likely to be above its mean as well. When computing
correlation, it is important to remember that correlation does not imply cau-
sation. Correlation measures only the extent of the linear relationship between
two variables. It tells us nothing about whether and how strongly the variables
are related in some other way. If the correlation is negative, it means that the
two variables are inversely related. If one variable increases, the other decreases.
If one variable decreases, the other increases. But if the correlation is positive,
it means that the two variables are directly related. If one variable increases,
the other increases. If one variable decreases, the other also decreases. How-
ever, the correlation between Longitude and other features is found to be very
weak. As a result, it has been decided to drop the Longitude variable. If the
correlation is zero, it means that the two variables are not related. Figure 4.3
shows the correlation between the columns of our data.

The analysis of the data in the plot above shows that there is a high nega-
tive correlation between humidity and ambient temperature. This is because
when the temperature is high, the air becomes dry, leading to a decrease in
humidity. Humidity is defined as the ratio of the actual water vapor pressure
to the maximum or saturation water vapor pressure in a stable temperature.
Therefore, the high correlation between humidity and temperature is due to the
fact that when the temperature is stable, humidity depends only on pressure.
Additionally, the amount of cloud cover can impact the temperature. When
there are more clouds, less sunlight is received by the Earth, which leads to
a decrease in temperature. However, the height of the cloud ceiling can also
impact the temperature. When the clouds are situated at a higher altitude,
they can reflect the sun’s rays back through the Earth, causing an increase
in temperature. This can explain the high correlation between humidity and
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Figure 4.4: Correlation between available features

temperature in the dataset. Overall, these findings suggest that humidity and
ambient temperature are closely related and can be used to better understand
the atmospheric conditions of a given environment.

Before explaining the other correlations between the data, let stop on an im-
portant point. The Location should have a high impact on the data but due to
its format it’s not checked in the correlation analyses. Subsequently, correlation
plots will be presented for each location. Figure 4.5 shows the different values
of the location feature and the count of each value.

Figure 4.5: Location values

58



There are a total of 12 distinct values for the location feature. Travis, Pe-
terson, USAFA, Hill Weber, March AFB, JDMT, Malmsrom, Grissom, Camp
Murray, Kahului, Offutt, and MNANG. Each location is far from the other one
with at least 100 km which means that its has a huge impact on the other fea-
tures. And the next figures represents the correlation plot of each location.

Figure 4.6: Features Correlation
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Based on the above figures, it can be concluded that the location feature is
crucial, given that the correlation between the features, especially between the
features and the Polypower, changes significantly. As a result, the location
feature must be encoded during the pre-processing stage. Additionally, it can
be observed that the three features, Longitude, Latitude, and Altitude, do not
exist, meaning that for this location, these values are identical. In Figure 4.4,
a perfect correlation can be seen between Pressure and Altitude. Hence, this
column will be removed since its value remains constant for all rows in the same
location.

The correlation between the target feature, Polypower, and the other features
will now be examined. This correlation will be illustrated in Figure 4.7.

Figure 4.7: Power correlation

The figure presented above provides evidence of a high correlation between
power and three variables: temperature, humidity, and cloud ceiling. The plot
illustrates a clear positive relationship between power and these three variables.
As temperature and humidity increase, so does power consumption. Addition-
ally, a high cloud ceiling is associated with an increase in power consumption.
This relationship can be explained by the fact that as temperature and humid-
ity increase, the demand for cooling and air conditioning also increases, which
leads to a rise in power consumption. Similarly, a high cloud ceiling can indi-
cate an increase in solar radiation, which can cause an increase in temperature
and a subsequent increase in power consumption. These findings have impor-
tant implications for energy management and suggest that understanding the
relationship between weather conditions and power consumption is essential for
optimizing energy efficiency. By identifying the key weather variables that im-
pact power consumption, it may be possible to develop more accurate models
for predicting energy demand and improving energy management strategies.
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4.3 Data Pre-processing

Initially, the YRMODAHRMI, Longitude, and Altitude columns will be re-
moved. Subsequently, the data will be checked for any missing values. Figure
4.33 depicts that the data does not contain any missing values.

Figure 4.8: Missing values

The figure above depicts a dataset with 0 missing values in all of its features.
This is a highly desirable outcome, as missing data can often lead to biased or
inaccurate analyses. A dataset with no missing values allows for a more com-
plete and accurate understanding of the relationships between variables and can
improve the effectiveness of statistical models and machine learning algorithms.

4.3.1 Outliers

Outliers are the values that are far from the rest of the data. They can be
caused by measurement errors or they can be real values. Box plots are useful
to detect outliers within a data set. The next figures present the box-plots of
the features of our data.

61



Figure 4.9: Features Box-Plot

Figures above outlines the approach that will be taken to address outliers in
the temperature and wind speed features of the dataset. Firstly, temperature
outliers above 60 and under -10 will be eliminated as these values are outside
the normal range of ambient temperature. The values where the temperature
value is between the lower bound and -10 are considered true outliers and will
also be removed. Similarly, wind speed outliers above 30 will be eliminated as
they are outside the normal range of wind speed. However, instead of eliminat-
ing outliers, their values will be replaced with the mean or median, depending
on the nature of the data in each location. Box plots for both wind speed and
ambient temperature will be created for each location to determine whether the
outliers should be replaced with the mean or median. The approach of replacing
outliers with the mean or median is being taken as the box plots of both features

62



showed a low distance between the first and third quartiles, indicating that the
data values are very close. Box plots for each location will be created for both
the wind speed and ambient temperature features to determine the appropriate
replacement method for outliers.

Figure 4.10: Wind Speed Box-Plot For Each Location
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The analysis of the figures presented above revealed the presence of outliers
in the wind speed feature across six different locations, namely Travis, USAFA,
March AFB, Malmstrom, Grissom, and Camp Murray. In order to address
the issue of outliers and ensure the accuracy of the data, different methods of
replacement were employed depending on the nature of the data in each loca-
tion. Specifically, the data distribution in Travis, USAFA, and Malmstrom was
found to be normal, with the mean being equal to the median. Therefore, it
is appropriate to replace the outliers in these locations with the mean. On the
other hand, the data in March AFB was positively skewed, with outliers located
in the lower bound. In this case, replacement with the median is appropriate.
In Camp Murray and Grissom, the data was also positively skewed, but the
outliers were located in the upper bound. Therefore, replacing the outliers with
the mean is appropriate in these locations. By replacing the outliers with either
the mean or median, as appropriate, in each location, the data can be more
accurately represented and analyzed.
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Figure 4.11: Temperature Box-Plot For Each Location

Outliers were identified in the ambient temperature feature in six locations:
Hill Weber, March AFB, Malmstrom, Camp Murray, Kahului, and MNANG.
The data distribution in MNANG, Camp Murray, Kahului, and March AFB
was normal, with the mean being equal to the median. Therefore, in these
locations, replacing outliers with the mean is appropriate. In Hill Weber and
Malmstrom, the data was negatively skewed, with outliers located in the lower
bound. In these locations, replacement with the mean is appropriate. Hence,
the outliers in the ambient temperature feature will be replaced with the mean
in Hill Weber and Malmstrom, while in the remaining locations, the outliers
will be replaced with either the mean or median, as appropriate.
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4.3.2 Data Encoding

When dealing with categorical data, the data is typically stored as strings. How-
ever, this can lead to issues when attempting to apply mathematical algorithms
to the data. To avoid these problems, it is necessary to encode the data using
one of the following methodologies:

•• Nominal encoding : This is the simplest approach and it is used when
the order in the category doesn’t matter. Different techniques are used in
nominal encoding such as:

– One hot encoding : is a popular method for encoding categorical
data. This technique uses a binary column to represent each cate-
gory. While it is an efficient method, one-hot encoding has a major
disadvantage in that it typically creates very sparse data. As a result,
one-hot encoding is best used for categorical variables with a small
number of categories.

– Mean Encoding: is a technique for encoding categorical data, which
involves creating a column for each category and storing the mean
value of the feature for that category. However, this approach is
not very memory-efficient, and it may not be as accurate as other
encoding techniques.

– Label Encoding: is a technique for encoding categorical data, which
involves creating a column for each category and storing the category
label. However, this approach is not very memory-efficient and may
not be as accurate as other encoding techniques.

• Ordinal encoding: is a type of categorical data encoding that is a special
case of nominal encoding. In ordinal encoding, the order of the categories
is significant. The same techniques used in nominal encoding can be ap-
plied, but it is essential to consider the order of the categories.

The data set contains two categorical features: Location and Season. One-hot
encoding will be used for Location since it has only a few categories. For Season,
the power revenue follows the order Summer > Spring > Fall > Winter, so an
ordinal encoding will be used, with Summer being assigned the value of 4, Spring
the value of 3, Fall the value of 2, and Winter the value of 1.

Cyclical Encoding

The data contains a cyclic feature such as the hour of the day which repeats
after every 24 hours. However, this presents an issue in the model, where the
difference between the values of the feature is not accurately represented. For
instance, the difference between 23h and 00h would be considered as 23h by the
model instead of 1h. To resolve this issue, the feature must be encoded using
cyclical encoding. This involves normalizing the feature values to a range of 0
to 2π and then computing the cosine of the resulting values.
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To encode the Time feature, the HHMM value must be transformed to a float
number using the following equation:

HHMM = HH × (
100

24
)× 100 +MM × (

100

60
) (4.3)

The values of the date features were normalized between 0 and 2π in order to
calculate the cosine. The graph of the resulting feature is presented in Figure
4.12.

Figure 4.12: Cosine of normalized Time feature

Figure 4.12 shows the graph of the cosine function of the normalized Time
feature. It is noted that for certain values of Time, such as 0.5, there are
multiple corresponding values of the cosine function. To address this issue, a
new feature is created that presents the sine function, which is also graphed in
Figure 4.13.
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Figure 4.13: Sine of normalized Time feature

Figure 4.13 shows the graph of the sine function. The addition of the sine
feature allows for unique values to be assigned to each time point, which is
important for accurate data analysis. Overall, the addition of the sine feature
is a useful approach for avoiding duplicate values in the dataset and ensuring
accurate analysis of the data.

The same process will be applied to the Date feature. The cosine and sine
features are displayed in the two following figures:

Figure 4.14: Cosine of normalized
Date feature

Figure 4.15: Sine of normalized
Date feature

Figure 4.14 and Figure 4.15 shows the graph both the cosine and sine func-
tions of the normalized Time feature together.

The Hour feature contains values between 10 and 15, and based on the knowl-
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edge that the average of the maximum temperature is in the afternoon , essen-
tially the model will take it as an order data where 15 is the highest value. But
as the conductors of the photovoltaic panel take just the needed quantity of
energy and transform the rest into heat, the panel´s internal temperature will
increase and at a given level will affect the power out. To increase the model
accuracy, another feature will be created from the ambient temperature, this
feature will be the time range of the hour feature so the model can know how
many hours it had been working. Let’s plot the correlation between all the
features that include the encoded features.

Figure 4.16: Correlation between all the features including the encoded features

The figure above presents the correlation between all the features. Accord-
ing to Figure 4.16, the correlation between the Hour feature and other features
is shown to be equivalent to that of the AvgHour feature and other features.
Therefore, it is recommended that the Hour feature be dropped in favor of the
AvgHour feature, as it provides more information that may be useful for future
work. The correlation between the weather features and the encoded location
feature is observed to vary between different locations due to the change in lo-
cation. Additionally, there is a strong correlation observed between the season
and both the weather temperature and Polypower. These findings suggest that
location and season are important factors to consider in analyzing the data and
drawing meaningful conclusions.
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Pipeline

Because many changes were made to the data, a potential issue that could arise
when splitting it into training and testing sets is a difference in distribution
between the two sets. In order to ensure that the training and testing data are
normalized in the same way and thus able to be used for comparing models, a
pipeline will be employed. This pipeline will normalize the data and encode any
categorical features, and is essentially a single scikit-learn estimator that chains
together multiple processing steps.
The pipeline will be composed of the following steps:

• One hot encoding for the Location feature.

• Ordinal encoding for the Season feature.

• Cyclical encoding for the Time and Date features.

• Data scaling.

4.4 Model Creation and Implementation

4.4.1 Model Selection

Prior to model selection, it is important to note that in the feature encoding
step, cyclical features were encoded using the normalized cosine and sine values,
resulting in two features for each cyclical feature. Since decision tree-based
models process the data on a feature-by-feature basis, employing decision tree
models may not be optimal for this dataset.[29]

Linear Models

Linear models are a good choice for our problem because they are fast to train
and they are easy to interpret. They are also good for high-dimensional data.
The linear models that will be used are:

• Linear Regression: is a linear approach for modeling the relationship be-
tween a scalar response and one or more explanatory variables. The case
of one explanatory variable is called simple linear regression. The process
is called multiple linear regression for more than one explanatory variable.
[30] The model is defined by the following equation:

y = w0 + w1x1 + w2x2 + ...+ wnxn (4.4)

• Ridge Regression: is a linear model that incorporates L2 regularization,
which involves adding a penalty term to the loss function. This penalty
term is calculated as the sum of the squared values of the model coeffi-
cients. Ridge Regression is an effective model for reducing model complex-
ity when faced with a large number of features[30]. The model is defined
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by the following equation:

y = w0 + w1x1 + w2x2 + ...+ wnxn + α

n∑
i=1

w2
i (4.5)

• Lasso Regression: is a linear model that utilizes L1 regularization, which
adds a penalty term to the loss function that is calculated as the sum of
the absolute values of the model coefficients. Lasso Regression is a suitable
model for reducing model complexity in datasets with a large number of
features[30]. The model is defined by the following equation:

y = w0 + w1x1 + w2x2 + ...+ wnxn + α

n∑
i=1

|wi| (4.6)

• Elastic Net: is a linear model that incorporates both L1 and L2 regulariza-
tion techniques. It is an appropriate model for reducing model complexity
in datasets with a large number of features[30]. The model is defined by
the following equation:

y = w0 + w1x1 + w2x2 + ...+ wnxn + α

n∑
i=1

|wi|+ α

n∑
i=1

w2
i (4.7)

Non-Linear Models

Non-linear models are more complex than linear models, but they can capture
more complex patterns in the data. The non-linear models that will be use are:

• Support Vector Machine for Regression: is a non-linear model that uses
the kernel trick to transform the data into a higher dimension. Then it
uses the transformed data to find the best hyperplane that separates the
data. These hyperplanes are called support vectors[30] .

• K-Nearest Neighbors for Regression: is a non-linear model that uses the
distance between the data points to find the nearest neighbors. Then it
uses the neighbors to predict the value of the data point[30].

Neural Network

Neural networks are a suitable option for handling high dimensional data, data
with a significant amount of noise, and datasets with a large number of fea-
tures. However, in this case, the use of neural networks may not be optimal
due to the small dataset. Despite this, the multi-layer perceptron regressor will
be employed to gain insight into the potential performance of neural network
models for future work. The multi-layer perceptron regressor is defined by the
following equation:

y = f(w0 + w1x1 + w2x2 + ...+ wnxn) (4.8)
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Stacking Regressor

Stacking is a technique that uses multiple models to make a prediction. The
models are trained on the same data, and then the predictions are combined to
make the final prediction. The model is defined by the following equation:

y =

n∑
i=1

wifi(x) (4.9)

4.4.2 Model Evaluation

Cross Validation

Cross-validation is a technique that is used to evaluate the performance of a
model. It is used to avoid overfitting and to make sure that the model is not
biased. The cross-validation technique that will be used is the K-fold cross-
validation. In this technique, the data is split into K folds. Then the model is
trained K times, each time using a different fold as the testing set and the rest
of the folds as the training set. The final score is the average of the K scores[30].

Metrics

The metrics that will be used to evaluate the models are:

• Mean Absolute Error (MAE) : is the average of the absolute differences
between the predictions and the actual values. MAE is a suitable metric
to use when the data contains outliers[30].

• Mean Squared Error (MSE) : is the average of the squared differences
between the predictions and the actual values. MSE is a suitable metric
to use when there are no outliers in the data[30].

• R2 Score: also known as the coefficient of determination, is a metric that
provides information on the proportion of variance in the data that is
explained by the model. R2 Score is an appropriate metric to use when
the objective is to assess the model’s ability to explain the variability in
the data[30].

4.5 Results

4.5.1 Linear Models

Linear Regression
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Metric Value
Mean Absolute Error 3.5945
Mean Squared Error 22.1607

R2 Score 0.5629

Table 4.1: Linear Regression Results

Table 4.1 presents the performance of linear regression model. The model has
a MAS of 3.5945, an MSS of 22.1607, and an R-squared value of 0.5629.

Ridge Regression

Metric Value
Mean Absolute Error 3.5943
Mean Squared Error 22.1584

R2 Score 0.5630

Table 4.2: Ridge Regression Results

Table 4.2 presents the performance of a ridge regression model. The model
has a MAS of 3.5943, an MSS of 22.1584, and an R-squared value of 0.5630.

Lasso Regression

Metric Value
Mean Absolute Error 4.5193
Mean Squared Error 30.6571

R2 Score 0.3954

Table 4.3: Lasso Regression Results

Table 4.3 presents the performance of a lasso regression model. The model
has a MAS of 4.5193, an MSS of 30.6571, and an R-squared value of 0.3954.

Elastic Net

Table 4.4 presents the performance of an elastic net model. The model has
a MAS of 4.4210, an MSS of 29.0551, and an R-squared value of 0.4270.
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Metric Value
Mean Absolute Error 4.4210
Mean Squared Error 29.0551

R2 Score 0.4270

Table 4.4: Elastic Net Results

4.5.2 Non-Linear Models

Support Vector Machine for Regression

Metric Value
Mean Absolute Error 2.7350
Mean Squared Error 18.3983

R2 Score 0.6372

Table 4.5: Support Vector Machine for Regression Results

Table 4.5 presents the performance of a support vector machine (SVM) re-
gression model. The model has a MAS of 2.7150, an MSS of 18.3983, and an
R-squared value of 0.6372.

K-Nearest Neighbors for Regression

Metric Value
Mean Absolute Error 2.9926
Mean Squared Error 20.1517

R2 Score 0.6023

Table 4.6: K-Nearest Neighbors for Regression Results

Table 4.6 presents the performance of a K-nearest neighbor (KNN) regression
model. The model has a MAS of 2.9926, an MSS of 20.1517, and an R-squared
value of 0.6023.

4.5.3 Neural Network

Table 4.7 presents the performance of a neural network regression model. The
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Metric Value
Mean Absolute Error 2.7909
Mean Squared Error 16.8960

R2 Score 0.6679

Table 4.7: Neural Network Results

model has a MAS of 2.7909, an MSS of 16.8969, and an R-squared value of
0.6679.

4.5.4 Stacking Regressor

Metric Value
Mean Absolute Error 2.9039
Mean Squared Error 18.9112

R2 Score 0.6301

Table 4.8: Stacking Regressor Results

Table 4.8 presents the performance of a stacking regressor model. The model
has a MAS of 2.9039, an MSS of 18.9112, and an R-squared value of 0.6301.
Stacking is an ensemble learning technique that combines multiple regression
models to improve their overall performance.

The support vector machine (SVM) regression model has the lowest Mean Abso-
lute Square (MAS) and Mean Squared Square (MSS) values, indicating better
accuracy in predicting the target variable. It also has the highest R-squared
value, indicating that it explains the highest proportion of the variation in the
dependent variable. The neural network model and the K-nearest neighbor
(KNN) regression model also performed well, with relatively low MAS and MSS
values and high R-squared values.

The linear regression, ridge regression, and elastic net models performed rel-
atively poorly compared to the other models. The lasso regression model per-
formed the worst, with the highest MAS and MSS values and the lowest R-
squared value.

Finally, the stacking regressor model performed well, with low MAS and MSS
values and a high R-squared value.

In conclusion, the support vector machine (SVM) regression model, the neu-
ral network model, and the K-nearest neighbor (KNN) regression model are the
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best performing models for the given dataset, while the lasso regression model
is the worst performing model. However, the stacking regressor model also per-
formed well and is worth considering as an option. Therefore, a hyperparameter
tuning should be performed to optimize the performance of these models further.

4.5.5 Hyperparameter Tuning

Hyperparameters are parameters that pertain to the model itself, rather than
the data. They are utilized to control the model, and are not learned by the
model, but rather set by the user. To determine the optimal hyperparame-
ters for a model, various techniques can be employed, including Grid Search.
This technique involves defining a grid of hyperparameters, and then training
the model for each combination of hyperparameters. The best combination of
hyperparameters is determined by the one that yields the highest score[30].

Support Vector Machine for Regression

• kernel: is the kernel type to be used in the algorithm. It can be ‘linear’,
‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’, or a callable. The linear kernel is
the default one[30].

• C: is the penalty parameter C of the error term. It controls the trade-off
between smooth decision boundaries and classifying the training points
correctly. If C is too low, the penalty for miss-classifying the training
points is too low and the model will not be able to learn the data. If C
is too high, the penalty for miss-classifying the training points is too high
and the model will overfit the data[30].

• gamma: is the kernel coefficient for ‘rbf’, ‘poly’, and ‘sigmoid’. If gamma
is ‘auto’ then

1

nfeatures
(4.10)

will be used instead. If gamma is ‘scale’ then

1

nfeatures ×X.var()
(4.11)

will be used instead[30].

Results of the Grid Search:

Table 4.9 shows the hyperparameters and their corresponding values for a sup-
port vector machine (SVM) regression model. The kernel used for this model is
the radial basis function (rbf), which is a popular kernel for SVMs. The C value
is set to 100, which controls the trade-off between achieving a low training error
and a low testing error. The gamma value is set to ’scale’, which means that it
is calculated as the inverse of the number of features in the input data. Gamma
determines the influence of a single training example on the decision boundary.
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Hyperparameter Value
kernel rbf
C 100

gamma scale

Table 4.9: Support Vector Machine for Regression Hyperparameter Tuning Re-
sults

K-Nearest Neighbors for Regression

• n neighbors: is the number of neighbors to use by default for kneighbors
queries[30].

• weights: is the weight function used in prediction. Possible values: ‘uni-
form’: uniform weights. All points in each neighborhood are weighted
equally. ‘distance’: weight points by the inverse of their distance. in this
case, closer neighbors of a query point will have a greater influence than
neighbors who are further away[30].

• algorithm: is the algorithm to be used by the NearestNeighbors module
to compute pointwise distances and find nearest neighbors.

• leaf size: is the leaf size passed to BallTree or KDTree. This can af-
fect the speed of the construction and query, as well as the memory re-
quired to store the tree. The optimal value depends on the nature of the
problem[30].

Results of the Grid Search:

Hyperparameter Value
n neighbors 10
weights distance
algorithm auto
leaf size 10

Table 4.10: K-Nearest Neighbors for Regression Hyperparameter Tuning Results

Table 4.10 shows the hyperparameters and their corresponding values for a
K-nearest neighbors (KNN) regression model, which has been tuned for optimal
performance. The hyperparameter ’n neighbors’ is set to 10, which specifies the
number of neighbors to consider when making a prediction. The ’weights’ hyper-
parameter is set to ’distance’, which weights the contributions of the neighbors
according to their distance. The ’algorithm’ hyperparameter is set to ’auto’,
which means that the algorithm automatically chooses the best algorithm based
on the input data. Finally, the ’leaf size’ hyperparameter is set to 10, which is
the number of points at which the algorithm switches to brute-force search.
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Linear Regression

• fit intercept : whether to calculate the intercept for this model. If set to
False, no intercept will be used in calculations (i.e. data is expected to be
already centered)[30].

• n jobs : is the number of jobs to use for the computation. This will only
provide speedup for n targets ¿ 1 and sufficient large problems[30].

• copy X : If True, X will be copied; else, it may be overwritten[30].

• positive : When set to True, forces the coefficients to be positive[30].

Results of the Grid Search:

Hyperparameter Value
fit intercept True

n jobs None
copy X True
positive False

Table 4.11: Linear Regression Hyperparameter Tuning Results

Table 4.11 shows the hyperparameters and their corresponding values for a
linear regression model, which has been tuned for optimal performance. The
hyperparameter ’fit intercept’ is set to True, which specifies whether or not to
calculate the intercept for the model. The ’n jobs’ hyperparameter is set to
None, which means that the number of parallel jobs to use for the computation
is set to the number of CPU cores. The ’copy X’ hyperparameter is set to True,
which means that a copy of the input X data is made. The ’positive’ hyperpa-
rameter is set to False, which means that the coefficients are not constrained to
be positive.

Ridge Regression

For this model, the same hyperparameters will be used as the Linear Regression
model, with the exception of n jobs, in addition to the following hyperparameter:

• alpha : is a constant that multiplies the L2 term. This parameter con-
trols the regularization strength. The higher the value of alpha, the more
restriction on the coefficients. This makes the coefficients more robust to
collinearity[30].
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Results of the Grid Search:

Hyperparameter Value
fit intercept True

copy X True
positive False
alpha 1.0

Table 4.12: Ridge Regression Hyperparameter Tuning Results

Table 4.12 presents the hyperparameters and their corresponding values for
a Ridge regression model that has been tuned for optimal performance. The
hyperparameter ’fit intercept’ is set to True, which specifies whether or not to
calculate the intercept for the model. The ’copy X’ hyperparameter is set to
True, which means that a copy of the input X data is made. The ’positive’
hyperparameter is set to False, which means that the coefficients are not con-
strained to be positive. The ’alpha’ hyperparameter is set to 1.0, which controls
the regularization strength of the model.

Lasso Regression

In this model, the same hyperparameters as the Linear Regression model will
be used, including n jobs, in addition to the following hyperparameter:

• alpha : is a constant that multiplies the L1 term. This parameter con-
trols the regularization strength. The higher the value of alpha, the more
restriction on the coefficients. This makes the coefficients more robust to
collinearity[30].

Results of the Grid Search:

Hyperparameter Value
fit intercept True

copy X True
positive False
alpha 0.001

Table 4.13: Lasso Regression Hyperparameter Tuning Results

Table 4.13 displays the hyperparameters and their corresponding values for
a Lasso regression model that has been tuned for optimal performance. The
hyperparameter ’fit intercept’ is set to True, which specifies whether or not
to calculate the intercept for the model. The ’copy X’ hyperparameter is set
to True, which means that a copy of the input X data is made. The ’posi-
tive’ hyperparameter is set to False, which means that the coefficients are not
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constrained to be positive. The ’alpha’ hyperparameter is set to 0.001, which
controls the regularization strength of the model.

Elastic Net Regression

In this model, the same hyperparameters as the Linear Regression model will
be used, in addition to the following hyperparameters:

• alpha : is a constant that multiplies the L1 term. This parameter con-
trols the regularization strength. The higher the value of alpha, the more
restriction on the coefficients. This makes the coefficients more robust to
collinearity[30].

• l1 ratio : is the Elastic Net mixing parameter, with 0 ¡= l1 ratio ¡= 1.
For l1 ratio = 0 the penalty is an L2 penalty. For l1 ratio = 1 it is an L1
penalty. For 0 ¡ l1 ratio ¡ 1, the penalty is a combination of L1 and L2[30].

Results of the Grid Search:

Hyperparameter Value
fit intercept True

copy X True
positive False
alpha 0.001
l1 ratio 0.0

Table 4.14: Elastic Net Regression Hyperparameter Tuning Results

Table 4.14 shows the hyperparameters and their corresponding tuned values
for Elastic Net regression. The fit intercept hyperparameter indicates whether
to calculate the intercept for the model. The copy X hyperparameter is set
to True to ensure that the input dataset is copied before being modified. The
positive hyperparameter is set to False to indicate that the coefficients should
not be constrained to be positive. The alpha hyperparameter is set to 0.001 to
control the strength of the regularization. Finally, the l1 ratio hyperparameter
is set to 0.0 to indicate that the regularization is an L2 penalty.

Neural Network

• momentum : is the momentum for gradient descent update. It will accel-
erate the learning process[30].

• batch size : is the number of samples per gradient update[30].
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Results of the Grid Search:

Hyperparameter Value
momentum 0.3
batch size 100

Table 4.15: Neural Network Hyperparameter Tuning Results

Table 4.15 shows the hyperparameters and their corresponding tuned values
for a neural network. The momentum hyperparameter is set to 0.3, which con-
trols the amount of influence the previous weight update has on the current
update. The batch size hyperparameter is set to 100, which is the number of
samples used in each iteration of training.

Stacking Regressor

• final estimator : is the meta-estimator to be fitted on the ensemble of the
base estimators[30].

Results of the Grid Search:

Hyperparameter Value
final estimator Elastic Net Regression

Table 4.16: Stacking Regressor Hyperparameter Tuning Results

Table 4.16 shows the hyperparameters and their corresponding tuned values
for a stacking regressor. The final estimator hyperparameter is set to Elastic
Net Regression, which is the final estimator used in the stacking regressor model.
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4.6 Model Training

4.6.1 Training Data

Model Training R2
Linear Regression 0.5561
Ridge Regression 0.5562
Lasso Regression 0.5563

Elastic Net Regression 0.5563
Neural Network 0.6609
KNN Regression 0.6087

SVR 0.6558
Stacking model 0.6558

Table 4.17: Training Results

Table 4.17 shows that the neural network has the highest training R2 score
of 0.6609, which means it has the best performance among all the models. The
other models have similar scores ranging from 0.5561 to 0.6558, with Ridge Re-
gression, Lasso Regression, and Elastic Net Regression having almost identical
scores. The results suggest that the neural network is the most effective model
for this particular dataset, while the other models have moderate performance.

In the study[28], the choice to use decision tree-based algorithms on cyclic en-
coded data may not have been ideal. Cyclic encoding involves transforming a
feature into two new features that represent different aspects of cyclic patterns,
such as time or direction. However, decision tree-based algorithms typically
operate by making decisions based on individual features, going feature by fea-
ture in a top-down manner. This approach may not be well-suited for cyclic
encoded data, as the transformed features may represent cyclical patterns that
span across both branches of the decision tree. Consequently, the decision tree
algorithm might struggle to effectively capture and utilize the cyclic information
encoded in the data.
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Chapter 5

Future Work

This chapter will focus on the future work and improvements that can be made
to the modeling and measurement of photovoltaic panels. This will include im-
proving the quality and diversity of the data used to train and evaluate the
models, as well as improving the measurement systems used to collect the data.
The chapter will also discuss the potential role of government policies and in-
centives in supporting the growth and development of the PV industry, and the
potential benefits of increasing our use of renewable solar energy. Overall, this
chapter will provide a roadmap for future research and development in the field
of photovoltaic panels.
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5.1 Generation And Measurement Of Database

To improve the work, the database needs to be improved. Using a larger and
more diverse dataset can provide the model with more information to learn from,
which can improve its accuracy and reliability. The data can be measured with
greater precision and more precise sensors and measurement systems can also
be used to ensure that the model is trained on high-quality and reliable data,
which can further improve its performance. However, it is also important to
consider the trade-offs and limitations of these approaches, such as the cost and
time required to collect and process the data, and the potential for overfitting
the model to the training data.
There are several parameters that can influence the prediction of power output
from a photovoltaic panel, including:

• Weather conditions: Factors such as sunlight, temperature, humidity, and
wind speed can affect the amount of solar energy that a panel can capture,
and therefore its power output.

• Time of day: The amount of sunlight and the angle of the sun’s rays can
vary throughout the day, affecting the panel’s power output.

• Panel orientation and tilt: The orientation and tilt of the panel can im-
pact how much solar energy it can capture, with optimal angles varying
depending on the location and season.

• Panel age and maintenance: Over time, a panel’s performance may de-
grade due to factors such as dust and debris, or damage from extreme
weather. Regular cleaning and maintenance can help to maintain its power
output.

• Location and altitude: The amount of sunlight and ambient temperature
can vary depending on the panel’s location and altitude. For example,
a panel at a higher altitude or closer to the equator may receive more
sunlight and have a higher power output.

• Panel size and type: The size and type of the panel, such as the number
of cells and the type of material used, can affect its power output.

• External factors: External factors such as shading from nearby objects
or changes in the local electrical grid can also impact the panel’s power
output.

It is difficult to determine which of the above parameters are the most impor-
tant for predicting the power output of a photovoltaic panel, as this can vary
depending on the specific conditions and goals of the model. In general, weather
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conditions are likely to be a significant factor, as they can directly affect the
amount of solar energy that a panel can capture. Time of day, panel orientation
and tilt, and location and altitude may also be important, as these can impact
the amount of sunlight that the panel receives. Panel age and maintenance,
panel size and type, and external factors may also play a role, depending on the
specific circumstances.

5.2 Measurement System

There are several ways to improve the measurement system for a photovoltaic
panel, in order to collect more accurate and reliable data for training and eval-
uating a machine learning model:

• Use high-precision sensors: Using sensors with a higher resolution and
accuracy can improve the quality of the data collected by the measurement
system. This can help to reduce measurement errors and capture more
detailed information about the panel’s power output.

• Calibrate and maintain the sensors: Regularly calibrating the sensors and
ensuring that they are working properly can help to maintain the accuracy
of the measurement system. This can include checking for and correcting
any drift or bias in the sensors, as well as cleaning and replacing the sensors
as needed.

• Use multiple sensors: Using multiple sensors to measure different aspects
of the panel’s power output, such as current, voltage, and temperature,
can provide a more complete picture of the panel’s performance. This can
help to capture more detailed and accurate data, and reduce the impact
of any errors or inconsistencies in a single sensor.

• Use redundant measurements: Taking multiple measurements of the same
quantity, and averaging or otherwise combining the results, can help to
reduce the impact of any random errors or noise in the data. This can im-
prove the accuracy and reliability of the measurement system, and provide
more robust data for training the machine learning model.

• Collect data over a longer period of time: Collecting data over a longer
period of time can help to capture the panel’s performance under a wider
range of conditions and scenarios. This can provide the machine learning
model with more information to learn from, and improve its ability to
generalize to new situations.
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5.3 Machine Learning Algorithm

5.3.1 Feature Engineering

Training a neural network to perform feature engineering can be a useful ap-
proach in some cases. Feature engineering is the process of transforming raw
data into features that can be used in machine learning models. It can be a time-
consuming and labor-intensive process, especially when working with large and
complex datasets. By training a neural network to perform feature engineer-
ing, you can potentially automate this process and improve its accuracy and
efficiency. However, there are also some potential drawbacks to this approach.
Neural networks can be difficult to design and train, and they require a large
amount of data and computational resources. Additionally, they can be less
transparent and interpretable than other methods, which can make it harder to
understand and debug the feature engineering process. As with any machine
learning approach, it is important to carefully consider the pros and cons and
decide if using a neural network for feature engineering is appropriate for your
specific problem.

To use a neural network for feature engineering, you would first need to collect
and prepare your training data. This would involve cleaning and preprocess-
ing the data to remove any errors or inconsistencies, and transforming it into
a format that can be used by a neural network. Next, you would design and
train a neural network to perform the feature engineering process. This would
involve defining the network architecture, selecting the appropriate algorithms
and hyperparameters, and using your training data to train the network. Once
the network is trained, you can use it to generate new features from your raw
data. These features can then be used as input to a machine learning model,
which can be trained to make predictions or perform other tasks. Using a neural
network for feature engineering can potentially improve the accuracy and effi-
ciency of the feature engineering process, but it also comes with some potential
challenges and limitations.

5.3.2 Model Creation

Cyclical encoding is a method for representing cyclical data, such as hours in a
day or days in a week, in a way that can be used as input to machine learning
algorithms. In this case, decision tree-based algorithms may be a good choice,
since they are able to handle nonlinear data and can automatically learn the
optimal splits between different categories of the cyclical data.

Decision tree-based algorithms typically split the data based on a single fea-
ture at each step in the tree. However, these algorithms can handle multiple
features and can automatically learn the optimal splits based on all of the avail-
able features. In the case of cyclical data that has been transformed using sin
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and cos, the decision tree algorithm would learn to split the data based on the
values of the two new features, rather than the original cyclical data.

Training multiple models is one approach that can be used to improve the
performance of a machine learning system. By training multiple models and
using techniques such as ensembling, you can combine the predictions of multi-
ple models to create a more accurate and robust prediction. This can help to
improve the overall performance of your system by reducing the effect of over-
fitting and capturing a wider range of patterns in the data.

5.3.3 Models Ensembling

Weighted Ensembling

Weighted ensembling is a method of combining the predictions of multiple mod-
els to create a more accurate and robust prediction. In this approach, each model
is assigned a weight, which indicates the importance of that model’s prediction
in the final ensemble prediction. The weight can be determined using a variety
of methods, such as by training the models using different algorithms or on dif-
ferent subsets of the data, and then evaluating their performance on a holdout
dataset. The ensemble prediction is then calculated by taking a weighted av-
erage of the predictions of the individual models, with the weights determined
based on the performance of each model. This approach can be effective in
improving the overall performance of a machine learning system by combining
the strengths of multiple models and reducing the effects of overfitting.

Optimization

There are a few different methods that can be used to optimize the weights in a
weighted ensembling approach. One common method is to use cross-validation
to evaluate the performance of each individual model, and then use the perfor-
mance metrics from cross-validation to determine the weights for each model.
For example, you could use cross-validation to evaluate the accuracy of each
model, and then assign higher weights to the models that have higher accuracy.
Another approach is to use a machine learning algorithm, such as a neural net-
work, to learn the optimal weights for the ensemble. In this case, you would
train the neural network on a dataset that includes the predictions of the indi-
vidual models, along with the true labels, and the neural network would learn
to predict the true labels by learning the optimal weights for the ensemble.

Using Constraint Programming For Optimization

In this case, you would specify the constraints that the weights must satisfy,
such as the sum of the weights must equal 1, and the constraint solver would
search for a set of weights that satisfies all of the constraints. This approach
can be effective for finding the optimal weights for an ensemble, particularly if
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the weights are subject to complex constraints or if there are a large number
of possible weight combinations. However, it is important to note that the
performance of the ensemble will ultimately depend on the individual models
that are included in the ensemble, and optimizing the weights will not improve
the performance of the ensemble if the individual models are not accurate. It
is also important to carefully evaluate the tradeoffs involved in using constraint
programming, as this approach can be computationally expensive and may not
be suitable for all types of problems.

5.4 Training A Model For Each Group, Then A
Model for All

Training models on individual groups of panels, and then using another algo-
rithm to take into account the relationships between the different groups of
panels, is a common approach in machine learning. This can be a powerful
way to improve the performance of a predictive model by allowing it to cap-
ture complex relationships and dependencies between different groups of data.
For example, in the case of panels, training individual models on each group of
panels can allow the model to capture the unique characteristics of each group,
and then using another algorithm to take into account the relationships between
the different groups can allow the model to capture how the groups of panels
influence each other.

5.5 Government Policies

Government policies and incentives can play a crucial role in supporting the
growth and development of the photovoltaic (PV) industry. By implementing
policies and programs that encourage the use of PV panels, governments can
help to accelerate the transition to renewable energy and reduce our reliance
on fossil fuels. For example, governments can provide financial incentives, such
as subsidies or tax credits, to individuals and businesses that install PV pan-
els. This can help to reduce the upfront cost of PV systems, making them
more affordable and accessible. Governments can also implement policies that
require utilities to generate a certain percentage of their electricity from renew-
able sources, such as solar energy. This can help to create a stable and reliable
market for PV panels, encouraging manufacturers to invest in research and de-
velopment and drive down the cost of PV technology.

In addition to supporting the growth of the PV industry, increasing our use
of renewable solar energy can also provide a range of benefits for society. For
example, solar energy is a clean and renewable source of electricity, meaning
that it does not produce greenhouse gases or other pollutants. This can help
to combat climate change and improve air quality, leading to a healthier and
more sustainable environment. Solar energy can also provide a more reliable
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and resilient source of electricity, as it is not subject to the same disruptions
and shortages as fossil fuels. This can help to reduce our dependence on fossil
fuel imports and improve energy security. In addition, the use of solar energy
can create jobs and stimulate economic growth, as it requires a skilled workforce
to design, install, and maintain PV panels. Overall, the potential benefits of
increasing our use of renewable solar energy are numerous and significant, and
implementing policies and incentives to support the growth of the PV industry
can help to realize these benefits.
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Chapter 6

Conclusion

The exploration of photovoltaic panel modeling and measurement through this
project has yielded significant insights and results. The development of a ma-
chine learning system to predict the power output of a photovoltaic panel has
shown the potential for using artificial intelligence to improve the accuracy and
reliability of such predictions. This project has demonstrated the criticality of
accurate modeling and measurement in order to accurately predict the perfor-
mance of photovoltaic panels.

However, it is important to note that the current model and measurement sys-
tem do have limitations and there is much room for improvement. For instance,
the quality and diversity of the data used to train and evaluate the models can
be enhanced, and the measurement systems used to collect this data can be
refined. These improvements can lead to the development of more precise and
dependable models of photovoltaic panel performance.

In addition to these technological advancements, government policies and in-
centives play a crucial role in the growth and development of the photovoltaic
industry. By supporting renewable solar energy, governments can promote its
widespread use and encourage a shift towards a more sustainable energy mix.

Overall, this project has established a solid foundation for further research and
development in the field of photovoltaic panels. The potential for machine learn-
ing to aid in understanding and utilizing this important renewable energy source
has been highlighted and is deserving of continued attention and investment.
With advancements in data collection, measurement systems, and government
support, the future of photovoltaic panel performance prediction is bright and
holds tremendous promise for a cleaner, greener energy future.
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Zeman, Solar Energy: The Physics and Engineering of Photovoltaic Conver-
sion, Technologies and Systems, 2016.

[15] Ben G. Streetman, and Sanjay Kumar Banerjee, Solid State Electronic
Devices, Prentice Hall, 2006.

[16] Soteris Kalogirou, (2009), Solar Energy Engineering, Madrid – España

[17] Muhammad Ali Mughal, Qishuang Ma, and Chunyan Xiao, Photovoltaic
Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and
Simulated Annealing, IEEE Journal of Photovoltaics, vol. 7, no. 4, 2017, pp.
1019-1024.

[18] Amparo GilAmparo Gil, Javier SeguraJavier Segura, and Nico Temme
(2007), Numerical methods for special functions. Society for Industrial and
Applied Mathematics, ISBN 978-0-89871-634-4..

[19]

[20] Richard L. Burden, J. Douglas Faires, and Annette M. Burden, Numerical
Analysis, 10th ed. Brooks/Cole, 2015.

[21] Chihchiang Hua, Jongrong Lin, and Chihming Shen, Implementation of a
DSP-controlled photovoltaic system with peak power tracking, IEEE Journal
of Photovoltaics, 1998.

[22] Rashel, Masud Rana, Modeling Photovoltaic Panels Under Variable Inter-
nal and Environmental Conditions with Non-Constant Load, University of
Evora, 2018.

[23] Gulam RabbaniGulam Rabbani (2014), Microcontroller Based Data Acqui-
sition, System Journal of Chemical Biological and Physical Sciences

[24] Jennifer Fox, Beginning Breadboarding: Physical Computing and the Basic
Building Blocks of Computers (The Maker Innovations), 2023.

92



[25] UAV. (2023, March 11).
https://www.uavforecast.com/

[26] CIRCUIT DIGEST. (2018), Interfacing GPS with Arduino.

[27] Rajesh Singh, Anita Gehlot, Bhupendra Singh, and Sushabhan Choud-
hury. (2018), Arduino Based Embedded Systems: Interfacing, Simulation,
and LabVIEW GUI, Springer.

[28] Predicting solar power output using machine learning techniques. (2023,
March 01).
https://towardsdatascience.com/predicting-solar-power-output-using-
machine-learning-techniques-56e7959acb1f

[29] cyclical features encoding it’s about time. (2023, March 01).
https://towardsdatascience.com/cyclical-features-encoding-its-about-time-
ce23581845ca

[30] scikit-learn documentation (2023, February 01).
https://scikit-learn.org/stable/

93


