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Abstract This paper describes an implementation of a Constraint Programming 
approach to the problem of multi-criteria forest management optimization. The goal 
is to decide when to harvest each forest unit while striving to optimize several criteria 
under spatial restrictions. With a large number of management units, the optimization 
problem becomes computationally intractable. We propose an approach for deriving 
a set of efficient solutions for the entire region. The proposed methodology was tested 
for Vale do Sousa region in the North of Portugal. 

Keywords Forest management · Constraint programming · Constraint modeling ·
Multi-criteria optimization · Pareto frontier 

1 Introduction 

This paper presents an extension to previous work [ 1] of the authors on single crite-
ria Forest Management optimization by considering multiple-criteria. Forest Man-
agement remains an activity of prime ecological importance where the interests of 
multiple stakeholders can lead to complex combinatorial and optimization problems, 
more so when different measures of economic performance such as wood yield and 
cash flow have to be balanced with environmental impact measures such as soil loss 
and fire resistance. 
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Fig. 1 Vale De Sousa forest 
and its regions 

Traditionally these problems are modelled and implemented with Integer Pro-
gramming approaches and adjacency constraints [ 2– 5], which work by applying 
conditions to when activities like harvesting can be applied to adjacent units of land. 
These approaches offer varying results depending on the model and the specific for-
est case. This paper describes an approach utilizing Constraint Programming (CP) 
[ 6] to solve a concrete problem of multiple-objective optimization, those objectives 
being wood yield, soil loss and fire resistance. 

The effort to develop this approach was made possible by the MODFIRE project, 
which provided us with funding as well as all the relevant data regarding the forest 
which we based this implementation on, the Vale de Sousa forest, with the goal of 
optimizing multiple objectives when managing the forest throughout the 50 year 
planning horizon (2020-2070). 

The forest is divided into 1406 Management Units (MUs), as shown in Fig. 1. 
For each MU several different prescriptions were defined. Each prescription pro-

vides an option as to when each MU should be harvested (cut down every tree and 
making a clear-cut) or its branches thinned, as well as what “reward” is obtained by 
applying either of those actions in terms of the different optimizable criteria. It is 
assumed that in each MU there is only 1 species of tree which is specified by the 
prescriptions, with the possible tree species being eucalyptus (Ec), cork oak (Sb), 
pine tree (Pb), chestnut tree (Ct), pedunculate oak (Qr) and different riparian species 
of trees (Rp).
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The main restriction regarding the harvest action is that to prevent issues of soil 
erosion the environmental authority imposes a limit to the continuous amount of 
forest area that can be harvested (cut down) and this limit is generally set at 50ha. 

The combinatorial problem is thus as follows: to attribute a prescription to each 
MU so that in any given year, the continuous adjacent area of MUs where the action 
to be taken that year is a harvest must be below 50ha, meaning there cannot be 
very large sections of continuous forest area being deforested in any single year. To 
simplify the model, restrictions on wood flow volume were not considered. 

The paper is structured as follows: after introducing the previous problem state-
ment, we briefly review the state of the art in sect. 2 and then succinctly recap Con-
straint Programming (CP) in Sect. 3. In Sect. 4 we discuss the implementation and 
computational environment and evaluate the performance of the system in Sect. 5. 
Section 6 concludes this paper with a brief analysis and possible directions for further 
development. 

2 Related Work 

As previously stated the present work comes as a continuation of our participation 
in the BIOECOSYS project, as documented in [ 1], and of our current participation 
in the MODFIRE project. In that project we worked with a different structure for 
the Vale de Sousa Forest: the Paiva sub-region was divided into north and south and 
Penafiel included a cluster of several large MUs which made it a hard sub-region 
to solve. This was because a valid combination of prescriptions where none of the 
MUs composing these clusters were harvested at the same time was never found 
by the solver. Moreover, the planning horizon was 90 years instead of 50 years and 
the prescriptions only came associated with one optimizable criterion which was the 
wood yield. 

The implementation we have now is more complete and able to also model and 
deal with multi-criteria optimization. 

In other methods and models for forest planning problems, such as the ones cited 
in this paper’s introduction, the authors usually represent the forests as adjacency 
graphs, so we did as well. 

In a 1999 paper Alan T. Murray [ 7] proposed modeling constraints on the maxi-
mum harvest area by allowing multiple adjacent units to be harvested as long as their 
combined area does not exceed a pre-defined limit. We adopt this approach, termed 
Area Restriction Model (ARM), with a parametric area limit. 

Latter Constantino et al. [ 8] proposed for this problem a compact mixed integer 
linear programming model, with polynomial number of variables and constraints. 
Multi-criteria and bi-level approaches have also been applied in forest manage-
ment [ 9– 11].
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3 Constraint Programming 

A good way to understand CP is that it stands as a synthesis of Mathematical Pro-
gramming, where the programmer specifies the problem and the system attempts to 
find a solution on its own, and Computer Programming, where the programmer has 
to instruct the system on how to go about finding a solution. In CP the programmer 
specifies the problem as a set of relations that must hold (not be broken) but they 
may also give hints on how the system could go about finding a solution. 

An application may be formulated as a Constraint Satisfaction Problem (CSP) 
. P , which consists of a triple .(V, D,C) where .V is a set of variables, .D is a set 
of domains for the elements of .V and .C is a set of constraints, i.e. relations over 
.P(D)which must hold. The nature of the domains for the variables (Finite Domains, 
Booleans, Sets, Real numbers, Graphs, etc.), together with the specific relations 
(i.e. the Constraints) greatly influence the class of problems and application areas 
for which Constraint Programming form a good match. 

A Constraint Optimisation Problem (COP) is like a CSP but we are also interested 
in minimizing (or maximizing) an objective function. To achieve this, one may equate 
the objective function to the value of a particular variable. It is then possible to solve 
a COP by iteratively solving interrelated CSPs, involving the addition of a constraint 
which establishes an inequation between the analytical definition of the objective 
function and the previously found value. 

The model for an application problem may be declaratively formulated as a CSP, 
which will form the specification for a constraint solver to find a solution thereto. 
Many successful approaches have been followed to solve CSPs, namely systematic 
search, in which variables see their domain progressively restricted and each such 
step triggers the reduction of the domains of related variables, as dictated by the 
consistency policy—these are in general designated as propagation-based constraint 
solvers and there are several ones, some being presented as libraries for use within a 
general-purpose programming language, such as Gecode [ 12] or Choco [ 13]. Others 
offer a domain-specific language (DSL) which may be used to model a problem and 
provide it as input to different solvers; such is the case for instance for MiniZinc [ 14] 
or PyCSP3 [ 15]. 

Another approach entails selecting an initial solution candidate and working a 
path towards an actual solution by means of an iterative repair algorithm. The latter 
forms the basis for several local search techniques, which may be generalised to 
related methods called metaheuristics. Solvers which derive the strategy used to 
guide the search from the specification of a CSP are called constraint-based local 
search solvers [ 16]. 

Solvers exist for both propagation-based search and metaheuristic search, which 
exhibit high performance and the capacity to make use of parallel hardware to attain 
yet better performance, e.g. as discussed in [ 17, 18]. 

Constraint modeling allows one to express a problem by means of both simple 
arithmetic and logic relations, but also resorting to global constraints. These are 
instance-independent yet problem-class-specific relations, for which particular ded-
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icated algorithms can be devised and encapsulated in a reusable specification com-
ponent. Intuitively, a global constraint expresses a useful and generic higher-level 
concept, for which there is an efficient (possibly black-box) implementation. For 
instance, the AllDifferent constraint applies to a set of variables and requires 
them to take pairwise distinct values. It may be internally implemented in a naïve 
way by saying that each distinct pair of variables in the list must be different, or 
it may resort to a more specialized algorithm to achieve the same result more effi-
ciently. The application programmer will benefit from the performance gain with no 
additional effort. 

Global constraints have proved to be a fertile ground for effective research, over 
the years. A limited common set of global constraints has been presented in the 
XCSP.3-core document [ 19], which lists 20 such frequently used and generally use-
ful constraints. This forms the basic vocabulary of XCSP.3-core, an intermediate 
representation for CSPs designed with the purpose of interfacing different high-level 
modeling tools with distinct specific constraint solvers. 

4 Implementation 

After experimenting with other tools of CP we settled on the Choco Solver [ 13], an 
open-source Java library for CP. This tool allowed us to mix the versatility of the java 
language with a suite of known constraints that come implemented with Choco such 
as the “Sum Constraint” where the sum total of values in an array is constrained to 
be within a set range of values or to be equal to a value. But crucially Choco allows 
for custom constraints to be created by defining how the effect of said constraints 
are propagated, this turns out to be how we create and apply the constraints needed 
to enforce the 50ha limit of continuously harvested forest area. We opted to base our 
work on the Choco Java constraint programming library, as we had already developed 
a dedicated global constraint in the form of a custom propagator. Other constraint 
programming libraries which we considered using include Gecode [ 20] and IBM 
ILOG CP Optimizer [ 21]. 

4.1 Model Description 

The process of implementing the problem entails firstly setting up 2 data structures, 
one is an array of Node objects called Nodes where each Node contains the area 
of the MU and the IDs of its adjacent MUs. The other array is called MUS, it has as 
many variables as there are MUs in the forest, it is a constraint variable array so each 
variable does not have a set value but a domain of possible values. These possible 
values are the possible prescriptions that may be applied in the corresponding MU 
and, after setting up the constraints, during the solving process the solver will attempt 
remove values from the domains of these variables as it attempts to find a state where
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the every variable has a value assigned to it that does not break the constraints 
between the variables. Another constraint variable array is called WoodYields, 
each index of the array corresponds to the wood yielded by harvesting/thinning one 
of the MUs in the forest when applying the prescription that the solver picked for the 
MU (this process involves using the “Element” constraint from the Choco-Solver 
framework). This is done so that once a solution is found the contents of this array 
can be summed up to obtain the total amount of wood yielded by that solution. This 
is done analogously for the other criteria we want to optimize. Once the setup is done 
we iterate through the main loop, as shown in Listing 1. 

Listing 1 Main Loop 

for (Var node in Nodes) { 
CreateConstraint (node, MUS, MAXLIMIT); 

} 
SumOfWood = sumConstraint(WoodYields, range=[−999999, 999999]); 
SumOfCrit2 = sumConstraint(Crit2Totals , range=[−999999, 999999]); 

This loop iterates through every MU in the input and imposes all valid constraints 
pertaining to it and its possible prescriptions. These constraints are implemented as 
a global constraint, via a custom propagator, as shown in Listing 2. 

The propagator essentially iterates through the MU’s possible prescriptions and 
checks if a prescription value can be applied by recursively checking its neighbouring 
MUs and their possible prescriptions. If at any one point the total sum of continuous 
forest area cut down exceeds the given limit, the propagator fails and another value 
will be chosen. The propagator calls a recursive function which verifies that a given 
MU is valid, with reference to the maximum cut area requirement, as shown in 
Listing 3. 

Listing 2 Custom Propagator 

void propagate (){ 
for ( int  year in node. yearsWithCuts) { 

try {gladePropagate(node, year , 0)} 
catch (Exception limitSurpassed) { fa i ls ( ) ; } 

} 
} 

Listing 3 Propagator Helper 

int  gladePropagate (node, year , sum) { 
i f  (node.hasCut() && node. isValid ( ) ) { 
sum += node. area ; 
i f  (sum > MAXLIMIT) { throw Exception ; } 
for (neighbourNode in node. neighbours ( ) ) 

sum = gladePropagate (neighbourNode, year , sum); 
} 
return sum; 

} 
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After leaving the main loop, the model has been fully setup. 
If the problem is one of constraint satisfaction and not optimization the solver can 

now be activated and the solution, if found, will be written onto an input file. 
The default search strategy that Choco-Solver uses to assign integer values to the 

constraint variables is based on attributing weights to these values and starting the 
assignment process with the lowest bound variable so the results are deterministic. 

4.2 Multi-criteria Optimization 

Multi-Criteria optimization requires the user to inform the solver of which crite-
ria to optimize, and the solver cannot mix and match maximization problems with 
minimization problems. If the user wants to maximize most variables and minimize 
others, he must convert the minimization problems into maximization problems by 
switching the sign of their criteria, as was done in the case of the Vale de Sousa forest 
with soil loss. 

Then, the solver runs on a loop to find as many valid solutions as possible, so 
solutions that simply do not break the 50ha limit. 

Theoretically, it is going to reach every possible valid solution. In practise, the 
search stops with a memory error or, given that the search may take too long otherwise, 
when a time limit set by the user is reached. 

Once the loop terminates the solver utilizes the objective criteria of all the solutions 
it found as points to calculate the Pareto efficient points and therefore the Pareto 
efficient solutions, which it writes to an output file so we can plot the Pareto Frontier 
and pick a point to paint on an output map. 

5 Experimental Evaluation 

The testing was done on a laptop running Ubuntu 20.04.3 LTS, with 4GB of available 
RAM and 4 cores. The code was compiled using the Java SDK version 8. 

It should be noted that no solution for the full problem could be found in a reason-
able time frame on this platform: the complete problem includes 1406 management 
units and the program ran for an entire day and a solution was not found. Conse-
quently we opted for an approximation to the problem.
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5.1 Solving the Problem by Sub-region 

Paredes and Penafiel 

In regards to simple constraint satisfaction problems valid solutions are always found 
for both of these sub-regions separately and even when solved together. 

Regarding multi-criteria optimization for Paredes and Penafiel together the results 
depend of the number of criterion which we are trying to simultaneously optimize, 
this type of optimization depends on the solver finding multiple valid solutions. There 
is a complexity cost in the number of constraints for each criterion the solver has to 
consider when finding these solutions and while it generally will find valid solutions 
when optimizing 1 to 4 criteria, depending on the criterion, more than that will leave 
the solver running for a long time without finding a valid solution. 

Being able to find valid solutions for Paredes and Penafiel together is significant 
since these 2 sub-regions are completely separated from the Paiva sub-region so they 
can be treated as a separate problem from Paiva. 

Paiva 

The Paiva sub-region is a source of difficulty for the implementation because the 
solver is left running for hours and hours and a valid solution is never be found. As 
this sub-region proved to be the most complex in the forest we deemed it expedient 
to divide the Paiva sub-region into 3 separate sub-regions which are individually 
solvable, with the goal of building a Pareto frontier for each of the sub-regions and 
“joining” the Pareto frontiers for a complete Paiva Pareto frontier. By closely observ-
ing the sub-region an attempt was made to divide Paiva in spots where there are few 
adjacent MUs between sub-regions, ending up with PaivaWest (Pink), PaivaEast 
(Red) and PaivaIslands (Yellow). PaivaWest is completely separated from PaivaIs-
lands, PaivaEast is only connected to PaivaIslands through 1 MU and PaivaWest is 
connected to PaivaEast through few MUs. So the forest is divided as shown in Fig. 2. 

Because this “joining” of the solutions is being done outside of the Constraint 
Programming implementation, there is no guarantee that the solutions in this com-
plete Paiva Pareto frontier will not break the 50ha area limit. Therefore we decided 
to first find a single valid solution to the “Contact Zone” (the group of MUs that are 
close to the border of 2 adjacent sub-regions) between PaivaWest and PaivaEast, also 
shown in Fig. 2, and “lock” the pairs of MU/Prescriptions of that solution for the 
solving process of PaivaEast and West, guaranteeing that the solutions found enforce 
the 50ha limit between sub-regions. We also developed a script to verify if a solution 
breaks the 50ha limit.
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Fig. 2 Vale de Sousa forest divided by sub-region and contact zone 

5.2 Joining the Sub-regions 

Let’s assume that we have 2 sub-regions with N1 and N2 Pareto points respectively. 
This “joining” process works by “adding” each Pareto efficient point of one sub-
region to each Pareto efficient point of the other sub-region, yielding . N1× N2
points. Since this may result in a large number of points some filtration is required 
to reduce this number. At first we round up the objective values of each point (for 
example by 4 decimal digits) and then we eliminate the non-efficient points (as well 
as points with the same objective values). After that we combine the “filtered” points 
of one sub-region with the “filtered” points of the other sub-region. From the set of 
obtained points we remove the dominated ones. 

Other sub-regions are “joined” with the resulting Pareto set in the same manner 
successively. 

Once the final Pareto frontier is built the user can pick a point on the Decision Map 
(see Fig. 3), learn the effects of applying the corresponding solution and observe its 
application throughout the planning horizon.
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Fig. 3 Visualization of 14833 Pareto points for the complete Vale de Sousa forest 

5.3 Results 

Firstly valid solutions were found for 3 criteria, wood yield, soil loss and fire resis-
tance, for all sub-regions. The solver was left running until a memory error occurred 
and all the solutions found until that point were considered, then the Pareto efficient 
solutions of each sub-region were joined as previously explained. The execution time 
until a memory error occurs varies depending on the sub-region, as show in Table 1 

In our implementation to “join” the results firstly the Pareto points of PaivaWest 
are joined with the ones from PaivaEast, yielding 103246 possible points but after 
filtering out the dominated points only 3498 remained. Then once these results are 
joined with PaivaIslands 9166 points are obtained. Finally, joining these points with 

Table 1 Execution details with all sub-regions 

Sub-region Execution time (h) Valid solutions Pareto solutions After filtering 

ParPen 04:08 9932 813 226 

PaivaIslands 06:00 21555 578 284 

PaivaWest 00:46 9364 742 247 

PaivaEast 03:40 11534 874 418 

CompleteForest – – 16901 14833
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the 226 filtered points from Paredes+Penafiel yields 16901 points (or complete forest 
solutions), furthered reduced to 14833 points after filtering. 

A point is then picked utilizing a visualizer [ 22, 23], this visualization is obtained 
by drawing the dominance cones of each point in the Pareto frontier, as shown in 
Fig. 3 the vertices of these cones are distributed uniformly so we may say that in this 
case we obtained well distributed points. 

The maximum wood yield represented in Fig. 3 is around 5.845 tons of wood, the 
minimum soil loss is 5.928 tons of soil lost and the maximum fire resistance index 
is 43.789. 

To showcase the results we opted to use as an example the compromise point 
marked by a cross in Fig. 3, yielding 5.8297 tons of wood, 5.9503 tons of soil lost 
and 43.705 fire resistance index. 

The point we picked as an example has a corresponding solution which assign a 
prescription number to each MU. This solution may then be visualized on maps rep-

Fig. 4 Example of an output map for a full solution of the Vale de Sousa forest, year 2041



86 E. Eloy et al.

Fig. 5 Graphs showing the year by year values of the wood yield, soil loss and fire risk protection 
of the chosen solution



Multi-objective Finite-Domain Constraint-Based Forest Management 87

resenting management units on which the harvest or thinning operations are applied 
in each year throughout the 50 year planning horizon. 

Figure 4 showcases an output map corresponding to the year 2041 where the 
colors represent both the species of tree planted in the MUs and the action to be 
taken upon them, for example dark red represents harvest of eucalyptus (Ec-h) and 
light green represents thinning of chestnut trees (Ct-t). Figure 5 showcases 3 graphs 
visualizing the values of the criteria obtained each year. 

6 Conclusions and Future Work 

In this work we solved the large scale multi-objective Vale de Sousa forest managing 
problem with adjacency constraints by applying a Constraint Programming approach. 

The problem was divided into computationally manageable sub-problems and for 
each of them a Pareto frontier was calculated by using the Choco-Solver. 

These partial Pareto frontiers were combined into a Pareto frontier for the entire 
Vale de Sousa region. The proposed methodology allowed us to obtain solutions for 
large scale multi-objective forest scheduling problems in a bounded time frame. 

In future developments, we’ll study the Vale de Sousa problem with more than 3 
criteria being considered and work on improving the constraint programming model 
and using metaheuristic search procedures. 
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