The influence of synorogenic extension on the crustal architecture of North Gondwana during the assembly of Pangaea (Ossa–Morena Zone, SW Iberia)

Ícaro Dias da Silva^{1*}, Manuel Francisco Pereira², Cristina Gama², Lourenço Steel Hart¹, Santos Barrios Sánchez³, Kelvin dos Santos Alves³, Juan Gómez Barreiro³, Colombo Celso Gaeta Tassinari⁴ and Kei Sato⁴

DIDS, 0000-0002-0185-9410; MFP, 0000-0001-9032-2318

Abstract: We present a new structural study of a D_2 – M_2 tectono-thermal structure in SW Iberia (Ponte de Sor–Seda gneiss dome) characterized by a spatial distribution of telescoping isograds providing a record of Buchantype metamorphic conditions. The gneiss dome comprises an infrastructure made up of a lower gneiss unit (LGU) and an intermediate schist unit (ISU), separated by early D_2 ductile extensional shear zones. The LGU and the ISU are composed of Ediacaran–Cambrian rocks that experienced the highest-grade M_2 metamorphic conditions (amphibolite facies). Late Ediacaran–Early Terreneuvian and Late Miaolingian–Early Furongian protolith ages for LGU (496 \pm 3 Ma) and ISU (539 \pm 2 Ma) orthogneisses are reported. A superstructure made of Cambrian–Devonian rocks (Upper Slate Unit, USU) deformed under M_2 greenschist facies conditions, tectonically overlies the ISU across a D_2 extensional shear zone. Kinematic criteria associated with D_2 – M_2 fabrics indicate top-to-ESE–SE sense of shear. A late- D_2 brittle-ductile high-angle extensional shear zone (Seda shear zone) crosscuts the gneiss dome. D_3 upright folds, thrusts and transpressive shear zones caused the steepening of D_2 structures and the local crenulation of S_2 foliation. The Mississippian D_2 – M_2 event recorded in the Ossa–Morena Zone may be regarded as a regional-scale phenomenon that markedly influenced the crustal architecture of North Gondwana during the assembly of Pangaea.

Supplementary material: Thin section and geochronology sample location and U-Pb data table of SHRIMP analysis of zircon grains (samples CHA-2.1 and VAL-4.1) are available at https://doi.org/10.6084/m9.fig-share.c.6828875

Partial melting of the continental crust has a profound impact on orogenic evolution as it causes weakening of the orogenic root and favours gravity-driven lateral flow and/or the development of gravitational instabilities (Vanderhaeghe 2009). Partial melting occurs as a result of tectonic crustal thickening involving terranes with high radioactive heat production and under specific kinematic regimes (Collins 2002; Vanderhaeghe 2012). The formation of tectono-thermal structures typically composed of a core of gneisses and migmatites, structurally overlain by metamorphic rocks of much lower metamorphic grade, can be classified as gneiss domes (Teyssier and Whitney 2002; Whitney et al. 2004; Yin 2004) or metamorphic core complexes (Coney

1980; Dewey 1988). The exchange of arguments on the classification of dome-like tectono-thermal structures, including consideration of the relationship between metamorphic core complexes and gneiss domes, is useful for a better understanding of the extensional exhumation processes (e.g. Whitney et al. 2013; Platt et al. 2015), but is beyond the scope of this study. Some metamorphic core complexes may include gneiss domes in their lower unit (e.g. Vanderhaeghe et al. 1999a; Vanderhaeghe 2004) complicating structure definition. Dome structures are flanked by flat-lying ductile extensional shear zones developed at mid-lower crustal levels along with migmatites and gneisses, which are exhumed and juxtaposed with upper crustal units

From: Nance, R. D., Strachan, R. A., Quesada, C. and Lin, S. (eds) *Supercontinents, Orogenesis and Magmatism*. Geological Society, London, Special Publications, **542**, https://doi.org/10.1144/SP542-2023-9

¹Faculdade de Ciências, Instituto Dom Luiz, Universidade de Lisboa, Campo Grande, Edifício C1, Piso 1, 1749-016 Lisboa, Portugal

²Departamento de Geociências, Instituto de Ciências da Terra, Universidade de Évora, Apt. 94, 7002-554 Évora, Portugal

³Departamento de Geología, Universidad de Salamanca, Plaza de la Merced, s/n, 37008 Salamanca, Spain

⁴Instituto de Energia e Ambiente/Instituto de Geociencias, Universidade de São Paulo, Av. Luciano Gualberto, 1289, Cidade Universitária, 05508-010 São Paulo, Brazil

^{*}Correspondence: ifsilva@ciencias.ulisboa.pt