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Abstract: Assuring a proper environment for the fulfillment of professional activities is one of the
Sustainable Development Goals and is contemplated in the One Health approach assumed by the
World Health Organization. This particular study is applied to an often neglected sector of our
society—the conservators/restorers—despite the many health issues reported by these professionals.
Three different specialties (textiles, paintings and wood sculpture) and locations were selected for
evaluation by placement of electrostatic dust cloths. After treatment of the samples, bacterial and
fungal contamination were assessed, as well as mycotoxin determination, the presence of azole-
resistant strains and cytotoxicity of the microorganisms encountered. Bacteria were only present
in one of medias used and showed relatively low numbers. The highest level of contamination
by fungi was identified in one of the textiles settings. The textile area also showed the highest
variability for fungi. Aspergillus sp. are one indicator of possible environmental issues, and A. sections
Fumigati and Circumdati were particularly relevant in two of the settings and identified in all of
them. No mycotoxins were detected and the large majority of the fungi identified were non-cytotoxic.
Overall, these can be considered low-contaminated environments but attention should be given to
the Aspergillus sp. contamination. Additional studies are needed not only to make these results
more robust, but also to test if the environmental sampling alone is the best approach in a setting
where there is very little movement and dust displacement and where professionals are in very close
proximity to the artefacts being treated, which may suggest the existence of a micro-atmosphere
worth evaluating and comparing to the obtained results.

Keywords: occupational exposure assessment; Aspergillus; azole resistance; mycotoxins; cytotoxicity

1. Introduction

Among all microorganisms, fungi cause the degradation of cultural heritage sites to
the greatest extent [1]. In the case of archives, some of the fungi present in paper documents,
surfaces and air from archives, libraries and museums are also a threat to human health [2].
Due to their enormous enzymatic activity and their ability to grow at low water activity
levels values, fungi are able to inhabit and to decay paintings, textiles, paper, parchment,
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leather, oil, casein, glue and other materials used for historical art objects. In museums and
their storage rooms, climate control, regular cleaning and microbiological monitoring are
essential in order to prevent fungal contamination.

It is mandatory for Portuguese employers to assess and prevent occupational exposure
to chemical, physical and biological risks, as in all European countries [3]. Several studies
have reported that exposure to microorganisms, such as bacteria and fungi, can originate
respiratory diseases [4–6]. Nevertheless, those of biological origin are less recognized and
reported than chemicals [7].

Conservators–restorers—professionals that handle priceless cultural heritage artefacts
maintaining them for future generations—can work in a myriad of settings. From small
private ateliers to large, state-run facilities, handling organic substrates, such as paintings
or books or, conversely, working with stone or metals, doing their job high on a scaffold or
bent over a textile. Whatever the location, position or material being handled, the exposure
to the different hazards carried by each specialty should be addressed.

The biological hazards are, presumably, more relevant in the settings where the
conservator–restorer handles organic substrates. Anyone who has ever entered an archive
or library can recall a particular scent, and part of this aroma comes from paper, rag,
leather or parchment degradation [8,9]. In addition, some of these deterioration issues
come from the activity of microorganisms, acting on the organic substrate. Handling
potentially contaminated cultural heritage artefacts may provoke a diverse array of health
effects on the staff, due to the increased exposure [2,10–12]. In fact, high microbiological
contamination, previously reported in museums, libraries and archives, may be harmful to
workers [13–15].

Conservation measures and treatments used to inhibit fungal growth in paper-based
items of cultural heritage include mechanical, chemical and biological methods, such as
gamma rays and ethylene oxide fumigation [16]. If some of these disinfecting measures,
which are intended to fragment fungal DNA, present suboptimal efficacy, they might con-
tribute for the development of fungal tolerance, which is a risk factor for the development
of fungal resistance in the long-term. Fungal resistance to medical azoles has been described
in recent years as an important public health concern, which is expected to increase in the
next years due to the current scenario of climatic changes [17–19].

Additionally, fungi are known to produce mycotoxins, their exometabolites that can be
toxic for humans and animals. Mycotoxins are produced by specific fungal genera, mainly
by Aspergillus, Penicillium, Alternaria, Fusarium and Claviceps [20,21]. Several mycotoxins
are carcinogenic or probably carcinogenic to humans, as evaluated by the International
Agency for Research on Cancer [22]. Mycotoxins are considered the most frequently
occurring natural contaminants in the diet of humans and animals. Due to climate change,
an increased magnitude and/or frequency in the exposure of humans to mycotoxins is
expected to occur in temperate regions of Europe [23]. Mycotoxins can resist to adverse
environmental factors, such as high or low temperatures, and can persist long after the death
and disintegration of the fungal species responsible for their production [24]. Therefore,
and due to the health effects related with exposure to mycotoxins when studying fungal
contamination is reasonable to also study mycotoxins contamination [25].

This study aimed to assess microbial contamination present in four different work set-
tings: textiles (2), paintings and sculpture (mostly wood based). The study was performed
in the Lisbon area, applying electrostatic dust cloths as sampling method. The screening
of azole-resistance profile, Aspergillus sections detection, as well as the mycotoxins and
cytotoxicity assessment was also performed. Education and close collaboration of mycolo-
gists and restorers are needed to develop object specific methods for the conservation and
treatment of contaminated objects.
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2. Materials and Methods
2.1. Working Settings Assessed

This study sampling campaign was conducted between May and June 2021 in four
locations, three in the city of Lisbon and another one in a smaller coastal town. This last one
was a private home-based studio, where a single conservator handles historic and artistic
objects that can be made from a variety of substrates, some organic, some inorganic and
most a composition of both. The several objects in line to be treated are kept at this location
and the work is seldom initiated and maintained in different objects at the same time to
make up for the obligatory intervals some treatments demand. The other private studio is
dedicated to the restoration of paintings. At the time of the evaluation it was being used by
three conservators and a master’s student. It is a relatively small studio, with two different
stories and uses natural ventilation only. As happened in the previous case, there is also
an accumulation of other paintings besides the ones that are being treated at the moment,
either because the finalized work has not been collected, is between treatment phases or
has not been initiated yet. The remaining two settings analyzed are both public run studios
and both tend to the restoration of textiles. These are larger rooms and the only pieces that
are on display are being treated by the conservators. At the time of the evaluation, one
of the studios had 6 workers (this number can shift to 4 in case there is a low demand for
conservation work) and the other had 4 workers in the premises (Figure 1).
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Figure 1. Sampling locations, OE1 and OE4 for textiles, OE2 for sculpture and OE3 for the painting’s
restoration studio.

2.2. Sampling Approach Characterization through Culture-Dependent Methods

The EDCs were placed in each sampling site (Figure 2) for 30 days and transported
under refrigeration (0–4 ◦C) to the laboratory for further analyses [26]. EDCs were weighted
and processed with 20 mL of 0.1% Tween 80 saline (0.9% NaCl). For fungal assessment
malt extract agar (MEA) supplemented with chloramphenicol (0.05%), and dichloran-
glycerol agar (DG18) were used. EDC samples were incubated at 27 ◦C for 5–7 days.
For bacteria assessment, tryptic soy agar (TSA, 30 ◦C, 7 days) and violet-red bile agar
(VRBA 35 ◦C, 7 days) were used for mesophilic bacteria and coliforms (Gram negative
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bacteria), respectively. Microbial contamination densities (colony-forming units, CFU·g−1,
CFU·m−2, CFU·m−2·day−1) were calculated as previously reported [27,28]. Fungal species
were preliminary identified microscopically following procedures previous published [29].
Negative controls were employed to ensure the inexistence of background contamination,
namely culture media (all samples) and extracts of control samples (EDC) without prior
use were submitted to the same assays.
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Figure 2. Example of one of the EDCs placed at the assessed locations. A request for non-disturbance
accompanies the EDC.

2.3. Azole Resistance Screenin

Sabouraud dextrose agar (SDA) (Frilabo, Maia, Portugal), either alone or supple-
mented with 4 µg/mL itraconazole (ITZ), 2 µg/mL voriconazole (VCZ), or 0.5 µg/mL
posaconazole (PSZ), were used to screen fungal resistance to medical azoles (adapted
from [30,31]). The A. fumigatus ATCC 204305 reference strain, and a pan-azole-resistant
A. fumigatus were used as controls (both strains provided by National Health Institute
Doutor Ricardo Jorge, IP). Briefly, SDA media plates inoculated with samples’ extracts
from all the EDC were incubated at 27 ◦C (to enable optimal conditions for fungal growth)
for three to four days. After incubation, fungal colonies were counted and identified by
microscopy, as previously described [32].

2.4. Molecular Detection of Aspergillus Sections

The extracts (8.8 mL) from the EDCs were used for molecular detection of Aspergillus
sections [26]. Fungal DNA was extracted using the ZR Fungal/Bacterial DNA MiniPrep
Kit (Zymo Research, Irvine, CA, USA) and molecular identification was performed by
Real Time PCR (qPCR) using the CFX-Connect PCR System (Bio-Rad, Amadora, Portugal).
Reactions included 1× iQ Supermix (Bio-Rad, Amadora, Portugal), 0.5 µM of each primer,
and 0.375 µM of TaqMan probe in a total volume of 20 µL. Amplification followed a three-
step PCR: 40 cycles with denaturation at 95 ◦C for 30 s, annealing at 52 ◦C for 30 s, and
extension at 72 ◦C for 30 s.

A non-template control and a positive control consisting of DNA obtained from a
reference that belonged to the culture collection of the Reference Unit for Parasitic and
Fungal Infections, Department of Infectious Diseases of the National Institute of Health,
from Dr. Ricardo Jorge were used. These strains have been sequenced for ITS, B-tubulin,
and Calmodulin.
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2.5. Mycotoxins Analysis

Nineteen samples were screened for mycotoxins presence. In all samples, 38 my-
cotoxins were analyzed by HPL-MS (HPLC) Nexera (Shimadzu, Tokyo, Japan) with a
mass spectrometry detector API 4000 (Sciex, Foster City, CA, USA) following the same
laboratory procedures described in previous papers [27,28]. The mycotoxin concentration
was calculated using external calibration. The limits of detection (LOD) obtained for each
mycotoxin with the analytical method used are presented in Table 1.

Table 1. LOD values for the analyzed samples.

Mycotoxins LOD
(ng/g)

15-Acetyldeoxynivalenol 8
3-Acetyldeoxynivalenol Aflatoxin B1 4

Aflatoxin B2 1
Aflatoxin G1 1
Aflatoxin G2 1
Aflatoxin M1 1

Deepoxydeoxynivalenol 5
Deoxynivalenol 8

Deoxynivalenol-3-glucoside 5
Diacetoxyscirpenol 2

Fumonisin B1 4
Fumonisin B2 3
Fusarenon X 10
Griseofulvin 2
HT-2 toxin 4
Mevinolin 7

Monoacetoxyscirpenol 2
Mycophenolic acid 3

Neosolaniol 3
Nivalenol 4

Ochratoxin A 2
Ochratoxin B 2

Patulin 8
Roquefortine C 2

Sterigmatocystin 1
T-2 tetraol 2
T-2 toxin 2
T-2 triol 5

Zearalanone 2
Zearalenone 1
α-Zearalanol 2
α-Zearalenol 2
β-Zearalanol 2
β-Zearalenol 3

2.6. Assessment of Cytotoxicity

The cell viability of human lung epithelial (A549), human liver carcinoma (HepG2)
and swine kidney (SK) cells, exposed to EDC samples for 48 h at 5% CO2, 37 ◦C, and humid
atmosphere, were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay at 510 nm, as previously described [33]. Briefly, cells were at first
maintained in Eagle’s minimum essential medium (MEM) supplemented with 10,000 units
penicillin and 10 mg/mL streptomycin in 0.9% NaCl and fetal bovine serum (Sigma-Aldrich,
St. Louis, MO, USA). After cell detachment (with 0.25% (w/v) Trypsin 0.53 mM EDTA),
100 µL cell suspension with densities of 2.0 × 105 to 4.5 × 105 cells/mL (Scepter™ 2.0 Cell
Counter, Merck, NJ, USA) was transferred to a 96-well plate. Cells were then exposed to the
EDC samples and cell viability was measured (ELISA LEDETECT 96, biomed Dr. Wieser
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GmbH; MikroWin 2013SC software). The threshold toxicity level was considered the lowest
concentration dropping absorption to <50% of cell metabolic activity (IC50).

2.7. Statistical Analysis

Data were analyzed using SPSS statistical software for windows, version 27.0. The
results were considered significant at the 5% significance level. To test the normality of
the data, the Shapiro–Wilk test was used. For the comparison of bacterial contamination,
fungal contamination and fungal resistance, the Kruskal–Wallis test was used, since the
assumption of normality was not verified and given the small size of the sample. To
study the relationship between bacterial contamination, fungal contamination and fungal
resistance, Spearman’s correlation coefficient was used, since the assumption of normal-
ity was not verified. To assess species diversity, Simpson and Shannon indices, given
by Shannon Index (H) = −∑s

i=1 pi ln(pi) and Simpson Index (D) = 1
∑s

i=1 p2
i
, were used,

where pi is the proportion (ni/n) of individuals of one particular species found (ni) divided
by the total number of individuals found (n).

3. Results
3.1. Viable Bacterial Contamination

Total bacteria contamination ranged from 0 to 21.23 CFU·m−2 in one of the textile’s
working area (OE1) and from 0 to 7.08 CFU·m−2 in the other one (OE4). It ranged
from 3.54 to 10.62 CFU·m−2 in the paintings area (OE3) and in OE2 the counts were
7.08 CFU·m−2. Among the sampled areas, no statistically significant differences were
detected (χ2

K−W (2) = 2.498, p = 0.287), with the sculpture area excluded, since it
only had one observation. From the analysis of Figure 3 (boxplot), it can be seen that
OE3 displays the highest contamination in TSA and the OE1 is the one presenting
higher variability. No gram-negative bacteria (VRBA) were detected in any of the
areas sampled.
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Figure 3. Bacterial contamination in the four sampled locations observed in TSA. On the top right
is the boxplot for comparison of bacterial contamination in TSA medium between sampled areas
(excluding OE2, since it has a single record). * severe outlier.

3.2. Viable Fungal Contamination

Total fungal contamination in indoor sites was 233.5 CFU·m−2·day−1 on MEA and
28.3 CFU·m−2·day−1 on DG18 in the OE1 (textiles); 46 CFU·m−2·day−1 on MEA and
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10.6 CFU·m−2·day−1 on DG18 in OE2 (sculpture); 173 CFU·m−2·day−1 in MEA and
31.8 CFU·m−2·day−1 in DG18 in the paintings area (OE3). The highest fungal counts
were found in the OE1 textiles area (233.5 CFU·m−2·day−1 on MEA; 28.3 CFU·m−2·day−1

on DG18) (Figure 4).
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Boxplot for comparison of fungal contamination in MEA (A) and DG18 (B) media between sampled
areas (excluding the sculpture area (OE2), since it has a single record).

In both MEA and DG18 medium, no statistically significant differences were detected
between the sampled areas (χ2

K−W(2) = 5.696, p = 0.058 and χ2
K−W(2) = 0.177, p = 0.915,

respectively). However, from the analysis of Figure 4 (boxplot), it can be seen that on MEA,
OE3 was the one that presented the greatest fungal contamination and OE1 the one with
the greatest variability. In DG18, one can see that OE1 and OE3 were the ones with the
highest contamination, with the OE3 showing greater variability (sculpture area excluded
as before).

Concerning fungal distribution per sampling location, Figure 4 presents the quantita-
tive results and Figure 5 presents the qualitative results.

The highest number of fungal species was obtained on the OE1 (8 species MEA;
4 species DG18, more details on all identified genera are on Table 2), closely followed by
OE4 (6 species MEA; 3 species DG18). Aspergillus section Fumigati was the most common
species obtained in OE1 in MEA (43.94%) while Penicillium sp. was the most common
species obtained on DG18 (50%) in this same location; in the sculpture area—OE2—the
most common species were Aspergillus section Circumdati on DG18 (66.66%) and Penicillium
sp. on MEA (53.85%), and in OE3 (paintings) the most common species observed was
Cladosporium sp. both in MEA (87.76%) and in DG18 (44.44%). In OE4 Cladosporium
sp. accounted for 44.84% in MEA, while Penicillium sp. was the prevalent genera on
DG18 (60%).
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Table 2. Shannon and Simpson indexes to assess species diversity.

Sampled Areas Species
Culture Media

MEA
(CFU/g−1·day−1)

Shannon
Index (H)

Simpson
Index (D)

OE1

Alternaria sp. 3.539

1.514 3.408

Aspergillus section
Fumigati 102.619

Aureobasidium sp. 10.616
Chrysosporium sp. 7.077
Cladosporium sp. 67.233

Fusarium verticilloides 7.077
Penicillium sp. 24.770
Rhizopus sp. 10.616

Totals 8 233.546

OE2 Aureobasidium sp. 3.539

0.227 1.199
Cladosporium sp. 17.693
Penicillium sp. 24.770

Totals 3 46.001

OE3 Aspergillus section
Fumigati 3.539

0.416 0.425Cladosporium sp. 152.159
Penicillium sp. 17.693

Totals 3 173.390
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Table 2. Cont.

Sampled Areas Species
Culture Media

MEA
(CFU/g−1·day−1)

Shannon
Index (H)

Simpson
Index (D)

OE4 Aspergillus section
Fumigati 3.539

1.977 0.371

Aspergillus section
Nidulantes 3.539

Cladosporium sp. 38.924
Mucor sp. 3.539

Penicillium sp. 28.309
Trichoderma sp. 7.077

Totals 6 84.926

Regarding Aspergillus sp., they were present in all the assessed environments. The
highest value obtained in MEA (43.94%) was found in OE1 and in OE2 in DG18 (67%). On
MEA, the areas with the highest values of the genera were the OE1 (43.94%), followed by
the OE4 (8.16%). OE3 displays a lower percentage in MEA (2.04%). The genus was not
identified in the MEA media in OE2 but accounts for 67% of the CFUs identified in this
location when using DG18.

On DG18, two Aspergillus sections were identified, namely Circumdati (96.67%) and
Fumigati (12.50%), also on MEA, two sections were reported, as follows: Fumigati (50.06%)
and Nidulantes (4.08%). As for sections identification in OE1, one Aspergillus section was
detected both on MEA (43.94% Fumigati) and DG18 (12.50% Fumigati). In OE2, no sections
were detected on MEA and one section was detected on DG18 (66.66% Circumdati). In the
painting area, OE3, two sections were identified, namely section Fumigati on MEA (2.04%)
and section Circumdati on DG18 (33.33%). In the second textiles area, OE4, two sections
were detected on MEA (4.08% Fumigati and 4.08% Nidulantes) and one section was detected
on DG18 (30.00% Circumdati) (Figure 6).
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Regarding species diversity on MEA, OE1 was the one with higher diversity (Shannon
index (H) = 1.514, Simpson index (D) = 3.408) (Table 2).

3.3. Fungal Growth in Azole-Supplemented Media

Regarding fungal contamination in azole-supplemented media, the results are pre-
sented in Figure 7. The most contaminated local was OE4 and the most frequent fungi
in SDA (Saboraud Dextrose Agar) was Cladosporium sp. (5.0 × 102 CFU·m−2·day−1),
followed by Penicillium sp. (1.0 × 102 CFU·m−2·day−1). Looking into each azole supple-
ment individually, the most frequent fungi was Cladosporium sp. in voriconazole (VCZ)
(7.8 × 101 CFU·m−2·day−1) and itraconazole (ICZ) (3.2 × 101 CFU·m−2·day−1), followed
by Penicillium sp. in voriconazole (2.5 × 101 CFU·m−2·day−1). Aspergillus sections Flavi
(3.5 CFU·m−2·day−1) and Fumigati (7.0 CFU·m−2·day−1) were observed in SDA but not in
any of the azole added media. The media with PSZ recorded the lowest contamination rate
in all settings.
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SDA = Saboraud dextrose agar; ICZ = itraconazole; VCZ = voriconazole; PSZ = posaconazole. Please
mind the different scale used in OE4.

Among the sampled areas, no statistically significant differences were detected in any
of the media (p’s > 0.05) regarding fungal contamination. However, from the analysis of
Figure 8A, it can be seen that, for the SDA, the textile area OE4 was the one with the highest
values. The ICZ supplemented media (B) with the highest contamination was recorded in
OE3. The textile working areas, both OE1 and OE4 presented similar results in in VCZ (C).
Lastly, OE3 registered the highest contamination in PSZ (D).
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3.4. Contamination of EDCs by Mycotoxins and Cytotoxicity Assessment

EDC sampling did not reveal the presence of any of the 38 mycotoxins evaluated
at the sampled sites. Regarding the assessment of cell viability of the three distinct cell
lines exposed to EDC, the results showed a majority of non-cytotoxic EDC, with only
two samples exhibiting an IC50 value of 10 mm2/mL (one in A549 lung epithelial cells and
another in SK cells).

3.5. Correlation Analysis

Only a significant positive correlation of moderate intensity was detected between
bacterial contamination in TSA and fungal contamination in MEA (rS = 0.621, p = 0.013),
revealing that greater bacterial contamination in TSA is related to greater fungal contami-
nation in MEA (Table 3).

Table 3. Study of the relationship between bacterial and fungal contamination and fungal resistance:
Results of Spearman’s correlation coefficient.

Bacteria Fungi Fungal Resistance

VRBA MEA DG18 SDA ITZ VCZ PSZ

Bacteria
TSA - 0.621 * −0.003 0.191 −0.149 −0.403 0.480

VRBA - - - - - -

Fungi MEA 0.209 −0.329 −0.072 −0.177 0.239
DG18 −0.016 0.139 −0.482 0.073
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Table 3. Cont.

Bacteria Fungi Fungal Resistance

VRBA MEA DG18 SDA ITZ VCZ PSZ

Fungal
resistance

SDA −0.269 −0.505 0.157
ICZ −0.098 0.018
VCZ −0.108

*. Correlation is significant at the 0.05 level (2-tailed).

4. Discussion

Conservators–restorers are a professional class that has yet to see some of its oc-
cupational hazards being correctly addressed [11,34–36]. It is not difficult to imagine
experiencing allergic respiratory or dermatological symptoms when handling old docu-
mentation or textiles that have been exposed to dust or pesticides in the past [12,34,37,38].
As far as health issues are concerned, allergic symptoms (eye and throat pruritus, nasal
congestion) and traumatic disorders from the adoption of awkward and stressful body
positions, are the top cause of absenteeism or even the abandonment of the profession
(personal inquiry). Performing a comprehensive microbiological analysis is, therefore, an
essential step to understand the environments where these workers perform their activities.
The assessed locations, as mentioned earlier, are mostly dedicated to the treatment of
organic-based art pieces (in this case textiles, canvas and wood-based sculptures).

In what concerns fungal contamination assessment, different results were obtained
with the two different culture media applied (MEA and DG18), following the trend also
found in other occupational environments already assessed [27,39]. In fact, a greater
number of fungal counts was obtained in MEA; what is expected since DG18 favors the
presence of xerophilic fungi and restricts some fungi with fast growing rates, such as the
Mucorales order [27,40]. There appears to be no correlation to be made between the type
of materials being handled and the results obtained. The differences in results, for both
bacterial and fungal contamination, can be related to the accumulation of dust and the
movement due to the performed activities indoors [41–43] that may cause its displacement
and deposition on the EDC. In addition, outdoor air flow, besides human activities, was
reported to be the leading factor responsible for the fungal contamination indoors [44].
The two locations where the fungal counts were higher had other artworks that were not
being handled at the moment, which adds to the dust deposition, although this was more
evident in OE3. The fungal counts follow the same tendency as bacteria results, which also
deem OE1 as the more contaminated. Because conservators spend long hours in the same
position, devoted to one task, future studies might find it useful to include the collection
of dust from each particular art piece for analysis, as well as the surrounding dust, as
performed in this study.

In terms of variability—for fungi only—Figures 5 and 6 confirm a higher variability
in the two locations where textiles are handled. This variability is particularly noticeable
in OE4, where three sections of Aspergillus were identified. Thus, the workstations OE1
and OE4 can be identified as hotspots for widespread Aspergillus and seen as a priority for
risk management intervention. Previously, this genus was found to be the most prevalent
on historical textiles and also reported that even with maintenance of recommended
conditions, the growth of xerophilic fungi cannot be prevented [45]. In addition, several
Aspergillus sections (Circumdati, Flavi, Fumigati and Nidulantes) considered as indicators of
harmful fungal contamination were observed, indicating the need for the implementation
of corrective measures [46,47]. For this particular case, and because it is organic materials
that we are discussing, it is important also to address the impact these fungal and bacterial
contaminations can have on the artwork itself. In fact, the textiles’ microbial colonization
can promote conservators–restorers occupational exposure to these microbiologic risks
but also the biodeterioration of historical textiles. Fungi can promote the biodeterioration
of cellulosic and proteinaceous archaeological textiles, whereas bacteria are the main
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players for silk biodegradation [45,48]. Bacteria, however, do need higher water availability,
and these art objects are normally kept within safe intervals of relative humidity and
temperature [49].

The screening of azole resistance revealed one textile handling environment (OE4)
as the one with the highest fungal load in Sabouraud media. Although a limited fungal
diversity was found, with predominant Cladosporium and Penicillium sp., two important
Aspergillus sections with toxigenic potential—Flavi and Fumigati—were present in the
assessed environments. The results come to add another Aspergillus genus to the ones
already identified (Figure 6). These results are in accordance with previous studies assessing
textile specimens contaminated by fungi in Slovene and Jordanian museums, in which the
dominant contaminant fungal species also belonged to the genus Penicillium, Aspergillus
and Cladosporium [45].

The fact that Cladosporium sp. and Penicillium sp. were able to grow at tested concentra-
tions of voriconazole and itraconazole must be further investigated in order to determine
fungal susceptibility to other commonly used medical azoles for the treatment of fungal
infections in humans. Moreover, although not determined during this assessment, azole-
resistant Fumigati isolates have been increasingly reported in different environments [50]
and described as a potential health menace, especially for immunocompromised individ-
uals [18,51]. A deeper knowledge of fungal susceptibilities to azoles or other biocides
is also relevant to guide the adoption of better fungal control strategies in restoration
environments and suitable policies on cultural heritage conservation, while ensuring the
maintenance of the effectiveness of antifungals in the treatment of infections in humans
and animals [52,53].

As reported, none of the mycotoxins analyzed were detected. This might be related
with many factors, such as the occupational environment characteristics (e.g., humidity, tem-
perature, availability of fungal nutrients), and the materials being used and handled [54,55].
However, this does not mean that exposure might not happen in this occupational environ-
ment since the environmental conditions are constantly changing. It might also depend
of the previous contamination of the materials and pieces to be handled and their storage
conditions. Further studies are warranted to confirm these scenarios.

No relevant cytotoxicity was observed in EDC samples and the reduced number
of samples does not allow further conclusions. Nevertheless, the use of relevant cell
lines to assess biological effects and estimate health risks is a valid strategy for risk
assessment [56–58].

5. Conclusions

This work presents important findings concerning microbial contamination in an occu-
pational setting not commonly studied. In this particular study, the workplace environment
where textiles were handled revealed itself as more prone to a diverse fungal contamination
and, more specifically, to Aspergillus sp. contamination. The results, obtained with the
techniques identified above, show low contaminated environments overall, considering
and comparing with other settings. Thus, after the results are analyzed and compared with
different studies using the same methodology, the behavior and particularities of these
particular professionals and settings may warrant a conjugation of different approaches.
Conservation and restoration is a task that is developed slowly and with care, and this
means the workers do not engage in activities that contribute to the aerosolization of
particles and, therefore, of fungi and bacteria. This is good news because it reduces the
exposure to air contaminants, and good cleaning practices may render the working place
safe. However, future studies must accommodate not only the environmental approach,
with the EDC placed strategically on the workplace, but also the analysis of the painting,
textile, etc., being treated because the conservator works in close proximity to the artefact
and shares a micro-atmosphere with the piece itself. Comparing the EDC results with the
results obtained by vacuum cleaning, the artefact will possibly increase our knowledge on
the particularities of these settings.
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As such, in future studies an innovative approach (One Health approach)—simultaneously
targeting workplaces, workers (and users) and the cultural heritage—should be imple-
mented to allow researchers to map the potential risk of microorganism’s dissemination
and then, if needed, define an appropriate remediation strategy to simultaneously pro-
tect the health of workers and users and prevent further biodeterioration on the cultural
heritage artefacts.
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