
Universidade de Évora - Escola de Ciências e Tecnologia

Mestrado em Engenharia Informática

Dissertação

Deep learning for speech to text transcription for the
Portuguese language

Eduardo Farófia Medeiros

Orientador(es) | Paulo Miguel Quaresma

Lúıs Rato

Évora 2023

Universidade de Évora - Escola de Ciências e Tecnologia

Mestrado em Engenharia Informática

Dissertação

Deep learning for speech to text transcription for the
Portuguese language

Eduardo Farófia Medeiros

Orientador(es) | Paulo Miguel Quaresma

Lúıs Rato

Évora 2023

A dissertação foi objeto de apreciação e discussão pública pelo seguinte júri nomeado pelo Diretor
da Escola de Ciências e Tecnologia:

Presidente | Ĺıgia Maria Ferreira (Universidade de Évora)

Vogais | Lúıs Rato (Universidade de Évora) (Orientador)

Miguel José Barão (Universidade de Évora) (Arguente)

Évora 2023

To Yaroslav, João, Francisco, and Danilo, as well as my parents, Dinis and Isabel, who have truly
inspired, supported, and believed in me during this adventure.

Acknowledgements

Foremost, I would like to thank Professor Luís Rato for inviting me to join this project on which I would write
this dissertation. I would like to thank Professor Luís Rato and Professor Paulo Quaresma for mentoring
me throughout this dissertation. To finish off the first batch of acknowledgements, I would like to thank
Leonel Corado and Professor Pedro Salgueiro for all the help provided in the countless hours we have spent
brainstorming possibilities for improvements and correcting issues during the development of this work.

Secondly, but just as important, I would like to thank Margarida Sampaio for all the psychological support
provided along this journey, without which this would not have happened in the same way.

Finally, I want to acknowledge my friends, family and housemates for being supportive throughout the
entirety of my academic life and, especially, in the writing of this dissertation.

vii

Contents

Contents ix

List of Figures xiii

List of Tables xv

Acronyms xvii

Abstract xix

Sumário xxi

1 Introduction 1
1.1 Automatic Speech Recognition . 1
1.2 Motivation . 2
1.3 Objectives . 2
1.4 Main contributions . 3
1.5 Structure . 3

2 State-Of-The-Art 5
2.1 Automatic Speech Recognition . 6
2.2 Approaches to ASR . 6

2.2.1 Probabilistic - Gaussian Mixture Models and Hidden Markov Models 6
2.2.2 End-to-end - Artificial Neural Networks . 8
2.2.3 Hybrid - Hidden Markov Models and Artificial Neural Networks 9

2.3 ASR applications . 9
2.4 ASR in Portuguese . 10

ix

x CONTENTS

2.5 Transfer Learning . 11

3 Datasets 13
3.1 Datasets for ASR . 13
3.2 LibriSpeech . 14
3.3 Multilingual LibriSpeech . 15
3.4 SpeechDat . 15

4 ASR Deep Learning 19

4.1 Artificial Neural Networks . 20
4.2 Deep Learning . 22
4.3 DNNs in ASR . 22

4.3.1 Connectionist Temporal Classification . 24
4.3.2 Speech features in DL ASR . 26

4.4 Deep learning frameworks . 27
4.5 Data-centric . 30

5 Proposed System 33

5.1 System objectives . 33
5.2 Architecture . 34
5.3 Design . 35

5.3.1 NVIDIA NeMo . 35
5.3.2 Model architecture . 36

5.4 Overview . 37

6 System Implementation 39
6.1 Docker environment . 40
6.2 Developed software . 40

6.2.1 Data pre-processing software . 40
6.2.2 Model software . 41

6.3 Data pre-processing . 43
6.3.1 SpeechDat original directory structure and data 43
6.3.2 SpeechDat modified directory structure and data 44

6.4 API and web interface . 47
6.5 Implementation issues . 47

7 Experiments 49
7.1 Infrastructure . 50

CONTENTS xi

7.2 Experiments . 50
7.2.1 Metrics . 51
7.2.2 Train from scratch . 52
7.2.3 Transfer learning . 53

8 Conclusion and Future Work 59
8.1 Conclusion . 59
8.2 Future work . 60

Bibliography 61

A Developed software 67
A.1 Train script . 67
A.2 Test script . 68
A.3 Configuration example . 70
A.4 Makefile . 76
A.5 Dockerfile . 77

List of Figures

2.1 Pipeline (top) vs. end-to-end (bottom) ASR ([GPCB21]) 7

2.2 Different speech features obtained at different processing stages ([GPCB21]) 7

4.1 Artificial neural network neuron example . 20
4.2 Artificial neural network example . 21
4.3 MFCCs calculation pipeline [Spe] . 27

4.4 Mel-filterbank composed of triangular filters [Fay16] . 27

4.5 Mel-filterbank features [Fay16] . 28

4.6 MFCC Coefficients [Fay16] . 28

4.7 Pipeline of methodology based on algorithm tuning [GTK22] 30

4.8 Data-centric pipeline with complete machine learning cycle [GTK22] 32

4.9 Data-centric pipeline using a base model [GTK22] . 32

5.1 Work pipeline and toolkit . 35
5.2 NeMo Integration with PyTorch and PyTorch Lightning 35

5.3 Standard convolution (left) and depthwise separable convolution (right) [GLF+] 36
5.4 1D time-channel separable convolution . 37

6.1 QuarzNet BxR architecture [KBG+19] . 42

6.2 ASR API Demo - Web Interface . 48

xiii

List of Tables

2.1 APIs architecture and respective training hours . 10

2.2 APIs results on Mozilla Common Voice (MCV) Corpus and Voxforge Corpus datasets . . . 10

3.1 Hours of audio recordings of English and Portuguese present in LibriVox audiobooks and
MLS dataset . 16

3.2 Hours of audio recordings for each audio quality label . 17

5.1 Performance (WER) of QuartzNet and Jasper architectures on the LibriSpeech dataset
(Table 4 from [KBG+19]) . 36

6.1 QuartzNet Architecture. The model starts with a conv layer C1 followed by a sequence of
5 groups of blocks. Blocks in the group are identical, each block Bk consists of R time-
channel separable K-sized convolutional modules with C output channels. Each block is
repeated S times. The model has 3 additional conv layers (C2,C3,C4) at the end. [KBG+19] 43

7.1 Models developed from scratch using subsets of the MLS dataset 52
7.2 WER of models developed from scratch using the MLS dataset 52
7.3 Models developed from scratch with the SpeechDat dataset as defined in Definition 7.1 . . 53
7.4 Models developed from scratch with the SpeechDat dataset as defined in Definition 7.2 . . 53
7.5 Pre-trained English model performance on the different test subsets 54
7.6 Performance on the English test subset on models created with transfer learning 54
7.7 Performance of models developed using transfer learning with the MLS subsets 54
7.8 Performance of models developed using SpeechDat as transferring set 55
7.9 Performance of models developed using SpeechDat as transferring set after data processing 55
7.10 Audio instances from each dataset used on each training and validation mix 56
7.11 Audio instances from each test set used . 56
7.12 Individual and average performances of the models developed with MIX 0.00 56

xv

xvi LIST OF TABLES

7.13 Individual and average performances of the models developed with MIX 0.25 57
7.14 Individual and average performances of the models developed with MIX 0.50 57
7.15 Individual and average performances of the models developed with MIX 0.75 57
7.16 Individual and average performances of the models developed with MIX 1.00 57
7.17 Average performance of the models of each MIX . 57
7.18 WER difference from the first (MIX ID 0.00) and last mix (MIX ID 1.00) 58

Acronyms

AI Artificial Inteligence
ANN Artificial Neural Network
ASR Automatic Speech Recognition
BP Brazilian Portuguese
CNN Convolutional Neural Network
DL Deep Learning
DNN Depp Neural Network
E2E End-to-end
EP European Portuguese
GMM Gaussian Mixture Models
HMM Hidden Markov Models
ML Machine Learning
RNN Recurrent Neural Network
TDNN Time Delay Neural Network

UE Universidade de Évora
WER Word Error Rate

xvii

Abstract

Automatic speech recognition (ASR) is the process of transcribing audio recordings into text, i.e. to
transform speech into the respective sequence of words. This process is also commonly known as speech-
to-text. Machine learning (ML), the ability of machines to learn from examples, is one of the most relevant
areas of artificial intelligence in today’s world. Deep learning is a subset of ML which makes use of Deep
Neural Networks, a particular type of Artificial Neural Networks (ANNs), which are intended to mimic
human neurons, that possess a large number of layers.

This dissertation reviews the state-of-the-art on automatic speech recognition throughout time, from early
systems which used Hidden Markov Models (HMMs) and Gaussian Mixture Models (GMMs) to the most
up-to-date end-to-end (E2E) deep neural models. Considering the context of the present work, some deep
learning algorithms used in state-of-the-art approaches are explained in additional detail.

The current work aims to develop an ASR system for the European Portuguese language using deep
learning. This is achieved by implementing a pipeline composed of stages responsible for data acquisition,
data analysis, data pre-processing, model creation and evaluation of results.

With the NVIDIA NeMo framework was possible to implement the QuartzNet15x5 architecture based on 1D
time-channel separable convolutions. Following a data-centric methodology, the model developed yielded
state-of-the-art Word Error Rate (WER) results of WER = 0.0503.

Keywords: Machine Learning, Deep Learning, Deep Neural Networks, Speech To Text, Automatic Speech
Recognition, NVIDIA NeMo, GPUs, data-centric, Portuguese language

xix

Sumário

Aprendizagem profunda para transcrição de fala
para texto para a Língua Portuguesa

O reconhecimento automático de fala (ASR) é o processo de transcrever gravações de áudio em texto, i.e.,
transformar a fala na respectiva sequência de palavras. Esse processo também é comumente conhecido
como speech-to-text. A aprendizagem de máquina (ML), a capacidade das máquinas de aprenderem através
de exemplos, é um dos campos mais relevantes da inteligência artificial no mundo atual. Deep learning é um
subconjunto de ML que faz uso de Redes Neurais Profundas, um tipo particular de Redes Neurais Artificiais
(ANNs), que se destinam a imitar neurónios humanos, que possuem um grande número de camadas

Esta dissertação faz uma revisão ao estado da arte do reconhecimento automático de fala ao longo do
tempo, desde os primeiros sistemas que usavam Hidden Markov Models (HMMs) e Gaussian Mixture
Models (GMMs até sistemas end-to-end (E2E) mais recentes que usam modelos neuronais profundos.
Considerando o contexto do presente trabalho, alguns algoritmos de aprendizagem profunda usados em
abordagens de ponta são explicados mais detalhadamente.

O presente trabalho tem como objetivo desenvolver um sistema ASR para a língua portuguesa europeia
utilizando deep learning. Isso é conseguido por meio da implementação de um pipeline composto por etapas
responsáveis pela aquisição de dados, análise dos dados, pré-processamento dos dados, criação do modelo
e avaliação dos resultados.

Com o framework NVIDIA NeMo foi possível implementar a arquitetura QuartzNet15x5 baseada em con-
voluções 1D separáveis por canal de tempo. Seguindo uma metodologia centrada em dados, o modelo
desenvolvido produziu resultados de taxa de erro de palavra (WER) semelhantes aos de estado da arte de
WER = 0.0503.

Palavras chave: Aprendizagem de Máquina, Aprendizagem Profunda, Redes Neuronais Profundas, Fala
para texto, Reconhecimento Automático de Fala, NVIDIA NeMo, GPUs, abordagens centradas em dados,
língua portuguesa

xxi

1
Introduction

This introduces the dissertation topic following the subsequent set of contents:

• 1.1 - Automatic Speech Recognition - a brief introduction to automatic speech recognition

• 1.2 - Motivation - presentation of the motivation and scope of the present dissertation

• 1.3 - Objectives - general explanation of the goals of the present work

• 1.4 - Main contributions - overview of the main contributions of the present work

• 1.5 - Structure - presents the structure of the document

1.1 Automatic Speech Recognition

Automatic speech recognition is the process of putting sounds into text, i.e. to transform speech into the
respective sequence of words. This process is also commonly known as speech-to-text. In today’s world,

1

2 CHAPTER 1. INTRODUCTION

most of the writing process has mostly shifted from being done by hand to being done on computers (laptops,
tablets or smartphones). Although typing is predominant, dictation has shown to be faster [RWL+16], which
opens the opportunity for automatic speech recognition to become the primary way of getting text written.
Despite this scenario being a probable future, some work still needs to be developed in the automatic
speech field mostly regarding its efficiency in less favourable conditions, e.g. noisy environments.

1.2 Motivation

In recent years the field of artificial intelligence (AI), which in its simplest form, is a field, which combines
computer science and datasets, to enable problem-solving [Wha], has seen major growth in popularity and in
technological advancements. Machine learning (ML), the ability of machines to learn from examples, is one
of AI’s most predominant fields in today’s world. Without realising it ML is present in almost everyone’s
life, either when using weather forecasts, recommendation systems, for instance, on online shopping or
streaming services, or in smart devices to model our routines. Deep learning (DL) is a subset of ML
which makes use of Deep Neural Networks, a special type of Artificial Neural Networks (ANNs), which are
intended to mimic human neurons, that possess a large number of layers. This large amount of layers allows
features to be extracted from the raw input data without any pre-processing needed [Ami21]. Alongside a
very rapid growth of available data, DNNs have started to be used in a variety of fields such as computer
vision, natural language processing and speech recognition.

In spite of the Portuguese language being one of the most spoken languages in the world, there is not
much research developed in the area of speech recognition. The Portuguese language is divided into
different variants such as Brazilian and European Portuguese. Among other variants, European Portuguese
represents a small fraction of Portuguese speakers hence consequentially having less research developed in
this area.

The just-mentioned state-of-the-art methodology and the scarcity of research developed in the area are the
main motivation for the current work.

1.3 Objectives

The work presented for this dissertation was developed in the scope of the project “AlticeLabs/Optimized
Portuguese Speech To Text” developed in a collaboration between the University of Évora and Altice Labs.
Considering the latter topic mentioned in the motivation, the project aimed to develop an automatic speech
recognition model using deep learning techniques for the Portuguese language. To achieve such a goal the
following objectives were defined:

1. Analysis on the automatic speech recognition state-of-the-art methodologies, frameworks and datasets
for the Portuguese language

2. Selection the best fit framework considering the final goal and the infrastructure available

3. Develop experiments based on data pre-processing

4. Test and evaluate models created using the chosen framework and data with different degrees of
pre-processing

1.4. MAIN CONTRIBUTIONS 3

1.4 Main contributions

The main contributions of the current work are:

• The main output of the present dissertation is the developed model using NVIDIA NeMo. The
presented model can be used to perform different tests, e.g. with different test sets, or as a starting
point for new models.

• The restructured SpeechDat dataset can also be used in future works and different data selection
and manifest creation can be achieved using the scripts developed in the current work.

• Under the scope of the current work, a simple web interface and web API were developed in order
to provide a more user-friendly interface for audio transcription.

1.5 Structure

The present work is organised into a total of eight chapters. The list below provides a brief description of
the topics addressed in each chapter:

• 1 - Introduction - introduces the dissertation topic, motivation and objectives

• 2 - State-Of-The-Art - provides a review of the literature on automatic speech recognition method-
ologies

• 3 - Datasets - presents an introduction to data on automatic speech recognition and introduces the
dataset used in the current work

• 4 - ASR Deep Learning - introduces different deep learning algorithms, frameworks and method-
ologies to automatic speech recognition

• 5 - Proposed System - describes the automatic speech recognition system proposed in the current
work

• 6 - System Implementation - presents the methodology used to implement the proposed system in
the previous chapter

• 7 - Experiments - describes the infrastructure in which the current work was developed, the experi-
ments and respective results and conclusions

• 8 - Conclusion and Future work - presents an overall conclusion of the current dissertation followed
by the view on future work

2
State-Of-The-Art

The current Chapter addresses the state-of-the-art in automatic speech recognition and follows the structure
presented below.

• 2.1 - Automatic Speech Recognition - brief statement on the definition of ASR

• 2.2 - Approaches to ASR - study of different approaches used in the development and improvement
of ASR systems

• 2.3 - ASR applications - examples of today’s world applications which use ASR

• 2.4 - ASR in Portuguese - review on developed work in this area regarding Portuguese

• 2.5 - Transfer Learning - look at a technique used, in ASR and other research fields, for the
development of new models using prior developed models as a starting point

5

6 CHAPTER 2. STATE-OF-THE-ART

2.1 Automatic Speech Recognition

Automatic speech recognition (ASR) is a technology which aims, through the use of a variety of techniques
and algorithms, to transcript an acoustic sound, usually a human voice, into text (this task is also known
as speech-to-text). This technology can be used for different purposes. As stated by Laurent Besacier et
al. [BBKS14], different types of speech will produce different types of ASR systems. Thus, speech can be
classified into categories such as:

• Spelled speech (with pauses between letters or phonemes)

• Isolated speech (with pauses between words)

• Continuous speech (when a speaker does not make any pauses between words)

• Spontaneous speech (e.g. in a human-to-human dialog)

• Highly conversational speech (e.g. meetings and discussions of several people)

As said, for different types of speech different types of ASR solutions can be developed, and, thus ASR
systems are usually built, according to the context and purpose.

2.2 Approaches to ASR

Approaches to developing ASR systems have been around since the early 50s [DBB52] and have been
under continuous development until today. Throughout the years the main focus of ASR systems has
shifted between different types of approaches, starting from probabilistic ones, that made use of Markov
Models [BJM83] or Hidden Markov Models (HMM) combined with Gaussian Mixture Models (GMM) [ZA,
Lee94], to the most up to date end-to-end (E2E) deep neural networks (DNN) [ZXL+, CPS, LLG+19,
HDY+12, AAB+] and passing by hybrid approaches [BM94] which made a combination of the previous
two. In spite of the state-of-the-art evolution, ASR systems have some components and processes which
are present in the majority of the approaches, such as feature extractors, acoustic models and linguistic
models.

The following sub-sections present different approaches used to develop ASR systems using different
methodologies to implement the previous components.

2.2.1 Probabilistic - Gaussian Mixture Models and Hidden Markov Models

In contrast to E2E systems, probabilistic approaches are often characterised as pipelines since they are
composed by a variety of components which depend on the output from other components of the system
(Fig 2.1) [GPCB21].

In this type of approach, to be able to transcribe a particular audio, or use it to train the model, the first
step is to extract the features from the audio (Fig 2.2). In probabilistic approaches to ASR systems, the
first procedure to obtain the audio features is to apply framing and windowing functions to the audio,
i.e., respectively, the audio is split into smaller slices, which normally range from 20 ms up to 40 ms,
being the most common 25 ms, and its borders are smoothed to reduce the impact of the framing on the
statistical properties of the signal. The next step is to apply filters to the raw audio wave. These filters
are usually also piped and are used accordingly to desired detail of the audio features. Some examples

2.2. APPROACHES TO ASR 7

Figure 2.1: Pipeline (top) vs. end-to-end (bottom) ASR ([GPCB21])

of filters are: Fast Fourier Transform (FFT) [HJB84], which changes the signal domain from time to
frequency (generates spectrograms), the application of a logarithm function, since humans tend to distinct
sounds better when in a logarithmic scale [KLGS17], Mel-filterbanks or Mel-Frequency Spectral Coefficients
(MFSC), use triangular filters to reduce the frequency range (usually to the lower part of the spectrum),
Mel-Frequency Cepstral Coefficients (MFCCs), reduce the correlation from MFSC coefficients since it might
affect the performance of some algorithms [Fay16], and I-vectors, most commonly used when it is intended
to retrieve characteristics from the speaker itself [GPCB21].

Figure 2.2: Different speech features obtained at different processing stages ([GPCB21])

In this stage, the ASR system already possesses the audio features and can now proceed to the next segment
of the pipeline which will be responsible for modelling the base units of the speech, phonemes, i.e. by using
GMM [ZA] it is able to determine which phoneme is present in the current audio sub-sample.

Following this classification of audio segments into phonemes comes the acoustic model, which is the part
of the system responsible for the encoding and decoding of the speech. This model must describe the
sequential (dynamic) characteristics of human speech. Such a model can be implemented through the use
of an HMM. The HMM is trained with the goal to learn transitions between phonemes, i.e. the emission and
transition probabilities are calculated using a special type of the expectation–maximization (EM) algorithm,
the Baum-Welch algorithm. When instead of training it is pretended to transcribe an audio, the task is to
find the best sequence of phonemes. To perform this speech decoding the Viterbi algorithm is used on the
previously trained HMM.

Although these components are enough to create a pseudo-ASR system, until this point we are only able to
obtain a sequence of phonemes. This output is not human-friendly and doesn’t completely fulfil the goal
of an ASR system. To complete the system and have a final transcription a phonetic model associates the
sequences of phonemes to the respective words. Other models, such as linguistic models, which model the
occurrences of sequences of words, can also be used to improve the performance of the system.

8 CHAPTER 2. STATE-OF-THE-ART

2.2.2 End-to-end - Artificial Neural Networks

Recent years have seen a growth in knowledge about the application of ANNs in a variety of research areas,
including ASR, computer vision (image processing and recognition), and natural language processing. End-
to-end (E2E) methods for ASR systems have increased in popularity due to these developments and the
exponential growth in the amount of data that is available.

A common approach to these end-to-end ANNs is to use convolutions. A convolution operation might be
interpreted as a filter kernel, e.g. a smoothing function, which is applied to another function, e.g. an audio
signal wave, and the result is the function, the audio signal in the previous example, filtered by the given
kernel, which in the example would be the audio signal smoothed by the smoothing function.

A type of ANNs which make use of this operation is Convolutional Neural Networks (CNN). CNNs are
frequently used when working in the computer vision domain since they allow to filter the images accordingly
to the recognition goal. The same occurs in the audio domain, where instead of an image we have a time
series describing the audio signal. In this situation filter kernels are adapted accordingly to features desired
to extract from the audio signal which allows CNNs to be used as a replacement for the feature extraction
component present in the other types of ASR systems.

Some approaches take advantage of the properties of the convolution operations and use convolutional
layers in E2E ANNs to perform the feature extraction step. The layers in these CNNs are representations of
determined filters to be applied to the input data, which in this case will be the raw audio [ZXL+]. Among
ASR systems that use E2E CNNs some, such as Wav2Letter [CPS], make use of another type of base unit,
graphemes, to train the system instead of phonemes. Graphemes are letters that represent a single phoneme,
using these as base units removes the need to have a phonetic transcription. Using Wav2Letter’s approach
as a starting point, Li et al. from NVIDIA, developed a new system, Jasper [LLG+19], which uses an even
deeper one-dimensional CNN (1D-CNN) (54 layers) and different activation and normalisation functions
(ReLU and batch normalisation), which shown to perform better than other function combinations. These
modifications showed an improvement in the Word Error Rate (WER) in comparison to other state-of-the-
art models.

Creating deeper neural networks comes with the problem of losing parts of the input data in later/deeper
layers, and, therefore, this brings the network to stop training furthermore since there is not enough
information to update the weights in a better way, also known as vanishing gradient. To address this
problem, Huang et al., implemented dense CNNs [HLVDMW17]. In this approach, each of the convolutional
layers takes as input the output of each of the preceding layers. Using such a technique enables the dense
CNN to reduce the vanishing gradient, making it possible to use the same features in shallower and deeper
layers of the network and thus reducing the number of parameters needed for the network.

Another type of ANNs commonly used in ASR systems is Recurrent Neural Networks (RNN). This type
of network is often used in problems of the sequential or temporal domain in which a relationship of order
between elements can be established, i.e. a set of events occur according to a sequence. The input of
each layer does not only depend on the output of the previous layer as in other types of ANNs. RNNs
possess a so-called “memory” which stores information from previous layers’ inputs, which, in combination
with the current input will determine the current layer’s output. Amodei et al. approach, Deep Speech
2, describes an E2E ASR system which makes use of RNNs and is capable of transcribing English and
Mandarin [AAB+].

In recent years, Vaswani et al. at Google Brain introduced a new architecture (Transformer) based on
attention mechanisms. These mechanisms allow modelling sequence dependencies without regard to their
distance in the input or output sequences. By using such mechanisms, the Transformer architecture

2.3. ASR APPLICATIONS 9

removes the usage of recurrence and convolutions [VBS+17]. In September 2022, Radford et al. at
OpenAI developed a neural network based on the Transformer architecture, Whisper [RKX+22]. Whisper
is trained on a 680000 hours multilingual and multitask dataset. The diversity and the large dimension of
the dataset enable Whisper to achieve robust and accurate speech recognition when compared to humans.

2.2.3 Hybrid - Hidden Markov Models and Artificial Neural Networks

Hybrid approaches to ASR systems are, in short, a mix of probabilistic ones, discussed in Section 2.2.1,
and End-To-End approaches, discussed in Section 2.2.2. Hybrid approaches to ASR systems using Artificial
Neural Networks (ANN) have been proposed since the mid-90s. Bourlard et al. [BM94], described an
approach on how ANNs and HMMs can be used together, pointing out some advantages and disadvantages
of using this combination of components in a hybrid approach and also stating the roles assigned to the
ANNs (feature extraction) and to the HMMs (probabilities emission). Hinton et al. [HDY+12] later stated
about Bourlard et al. that, at the time, neither the computing power nor the algorithms used were powerful
enough to train models with performances good enough to reach, or even outperform, the performances
achieved by the previous combination of HMMs and GMMs.

Replacing GMMs and audio filtering with ANNs to perform the feature extraction and determination of
the probabilities for the HMMs is not an easy task due to the difference in the input data required by the
two models. Some approaches try to make the link between GMMs and ANNs, either by using ANNs to
generate sub-word probabilities as a predecessor step of GMMs [HES00], or in the opposite way, by using
features provided by GMMs to train ANNs. The last method aims to be used as a universal method for
combining GMMs with the most commonly used types of ANNs, Deep Neural Networks (DNN) and Time
Delay Neural Networks (TDNN) [TKEY].

Instead of using a combination of GMMs and popular types of ANNs for this purpose (DNNs or TDNNs),
some researches discarded GMMs and made direct use of ANNs instead, particularly DNNs, in combination
with HMMs. Using these types of ANNs to simply replace feature extraction proceedings and GMMs, by
adapting the data as needed, has shown to provide better results in various datasets, especially large ones.
Some researches improved DNNs performance by using generative models, that were contextless about
HMMs states, and then using these results to initialise the DNNs [HDY+12].

2.3 ASR applications

ASR systems have multiple applications in today’s world which can vary accordingly to the specific domain,
e.g. health, industry, telecommunications, and the most common, smart devices and smart assistants. In
the context of healthcare, ASR systems can be used to speed up the documentation of medical records,
this speed-up is achieved since most of the paperwork can be taken care of quicker by using speech instead
of writing. This speed-up leads doctors to have more free time to take care of other patients [Tob05]. In
the industrial environment, ASR systems can provide help to workers in assembly lines, e.g. to pop up
a certain page of an instruction manual while mid-assembly. In telecommunications, these systems are
used to speed up customer support. Telecommunication companies usually use ASR systems to provide
automated attendants to understand and direct the customer to the type of support needed [Rab97]. The
most popular method of interaction with ASR systems is through the use of smart assistants present on so-
called smart devices. The most popular smart assistants are developed by tech companies, such as Google
(Google Assistant), Amazon (Amazon Alexa) and Apple (Apple Siri). After being prompted with specific
keywords, e.g. “Ok Google” or “Alexa”, these smart assistants make use of ASR systems to transcribe the
speech of the user and then execute the pretended task.

10 CHAPTER 2. STATE-OF-THE-ART

Although computationally demanding some smart devices are capable of running ASR models to transcribe
audio locally. For devices that run on batteries where power efficiency is key, e.g. smartphones and tablets,
performing audio transcription tasks locally is computationally expensive. Setting up devices with more
powerful hardware to perform such tasks and transcribe audios locally would lead to batteries running
out faster (or the need for bigger ones) and heat dissipation issues, thus, instead of running ASR models
locally and being able to perform transcriptions offline, these devices usually sacrifice this feature and use
remote services to perform transcriptions. Companies such as Facebook, Google and Microsoft provide
these services through APIs. These APIs use models based on neural networks but differ in type and in the
amount of data used for training as can be seen in Table 2.1.

Company Architecture Train hours
Facebook Encoder-Decoder built with fully connected CNN 1041
Google LAS with Multi-headed Attention 2025

Microsoft CNN Encoder and BiLSTM Decoder 12500

Table 2.1: APIs architecture and respective training hours

Sampaio et al. [XSPMLCdS+] evaluated these three APIs using two collaborative and public Portuguese
datasets, Mozilla Common Voice1 and the Voxforge2. The result of each API over each dataset can be
seen in Table 2.2.

Company MCV WER Voxfoge WER
Facebook 12.29% 11.44%
Google 12.58% 10.49%

Microsoft 9.56% 7.25%

Table 2.2: APIs results on Mozilla Common Voice (MCV) Corpus and Voxforge Corpus datasets

Sampaio et al. also concluded that the mentioned APIs show similar performances among the used metrics
being Microsoft’s the one that performed best and also observed that gender influences the performance
having the APIs performed better when transcribing male voices.

2.4 ASR in Portuguese

The Portuguese language is one of the most spoken in the world, not due to the size of Portuguese
population (10 million), which gives the language its name, but thanks to countries with a much larger
number of inhabitants, such as, Brazil (214 million), Angola (33 million) and Mozambique (32 million).
Despite speaking the same language the speech varies from country to country and even from region to
region, not only in accent but also in vocabulary, e.g. the northern region of Portugal has a different accent
from the Alentejo region, and words used to describe the same things also tend to vary. The goal of this
work is to use European Portuguese (EP), i.e. from Portugal, to develop the ASR system.

As already mentioned, EP does not have many speakers when compared to Brazilian Portuguese (BP) or
other variants. However, some research has already been developed in the field of ASR with the goal of
transcribing EP speech. Pellegrini et.al. [PHBDM+13] and Hämäläinen et al. [HCC+] aimed to transcribe
speech from elder and young people since in these age groups people have more difficulties expressing
themselves, therefore the goal was to improve the understatement of their speech through the use of
ASR systems. Other research aimed to create a speech recogniser for EP based on a corpus obtained from

1https://commonvoice.mozilla.org/pt
2http://www.voxforge.org/pt

https://commonvoice.mozilla.org/pt
http://www.voxforge.org/pt

2.5. TRANSFER LEARNING 11

broadcast news and newspapers. The AUDIMUS.media [MCNT03] speech recogniser makes use of a hybrid
system, a combination of an ANN, in this case, a multilayer perceptron (MLP), which is used to classify
the phones given the features extracted using Perceptual Linear Prediction (PLP), log-RelAtiveSpecTrAl
(Log-RASTA) and Modulation Spectrogram (MSG) separately, which are then combined and used in an
HMM for temporal modeling [MAP+].

In variants of the Portuguese language with a larger amount of speakers, such as Brazilian Portuguese,
there is also a lack of work related to the development of ASR systems. This shortage is mostly due to
the lack of data quantity, quality or detail on public datasets, or even being public at all, which is much
needed especially when creating models based on DNNs. Lima et al. [AdLDCA20] provided a list of 24
datasets which contain the Portuguese language alongside some of the available features, such as size,
quality, rate, amount of speakers, speaker’s age and if it’s either public or private. Of the 24 shown, only
6 of the list are public which leads Lima et al. to state that the amount of datasets available to build ASR
systems for the Portuguese language is acceptable and the types of data are diverse (with noise, different
age ranges, medical, commands), but the overall quantity, quality and standardisation of the same are
poor. Nevertheless, some research has shown possible to create models for ASR systems for the Portuguese
language using reduced amounts of data, as little as 1hr, and achieve some considerable results of WER,
34% [GCO+21]. Other works regarding ASR systems for Portuguese using DNNs worth mentioning are:
Gris et al. [RG] that makes use of Wav2vec 2.0 and pre-trained models in other languages (then fine-tuned
to BP) and achieves an average WER of 12.4% on 7 datasets; Quintanilha et al. [MQ17, QNB20] makes
use of 4 datasets (3 of which are open), and use models based on DeepSpeech 2 [AAB+] with convolutional
and bidirectional recurrent layers, making possible to achieve values of 25.45% of WER.

2.5 Transfer Learning

As stated before, despite having many speakers, Portuguese is a language with a great lack of data and the
existing one being of poor quality (explored in section 2.4). This factor is pointed out as one of the most
probable causes why the development of ASR systems for Portuguese [GCO+21] and other low-resourced
languages is such a difficult task.

Transfer learning (TL) is a process in machine learning (ML) in which different sets of data are used
to complement each other, i.e. data from a given set is assumed to have enough of the pretended
characteristics that denote the goal of the given task, which will help to generalise the data of a second
set [GBC16].

This has been shown helpful to develop or improve a variety of systems where performance tends to depend
on the amount of available data for training. E.g. a system trained to detect a type of animal, e.g. cats,
can be expanded to detect additional types, lions for instance if given enough examples of the new ones,
which usually have much fewer examples than the first ones. As for ASR systems, most rely on the same
principles, extracting features from the audio and then determining the sequence of phonemes. These steps
are common to most ASR systems and are independent of the language for which they are built. Thus,
transfer learning can be used as a means of creating ASR systems for languages with limited amounts
of data. Such can be achieved by transferring the knowledge of the previously mentioned steps from
models developed for languages with a greater amount of accessible data, such as the English language.
The already trained steps are then tuned for languages with fewer amounts of available data, such as the
Portuguese language.

Transferring knowledge on ANNs-based systems is the equivalent of reusing previously trained layers from
other models. This is done by reusing the already calculated weights to initialise determined layers of new
models followed by training the remaining layers. The reused layers of the new model can behave differently

12 CHAPTER 2. STATE-OF-THE-ART

accordingly to what is desired, they can either be fixed, which means the weights brought from the previous
model won’t change or be flexible, in which case the weights will be able to change a re-calibrate accordingly
to the new data [BKD21]. As for the remaining layers, the weights are randomly initialised as in a normal
ANN.

Working with weights from pre-trained models to initiate layers for new models comes with some challenges.
It is not easy to decide in which layers to split the network and which to reuse in new models due to some
layers being very fragile when it comes to performing this splitting of the network. Transferring layers closer
to the output is also a challenge since they may be too fitted to the original model, which makes it more
difficult to adapt to the new one. These challenges vary in dominance accordingly to where the knowledge
is being transferred from, retrieving weights from deeper or shallower layers determines how much each
of these challenges alters the transfer process. The dissimilarity among the tasks used as starting and
ending points of this process, i.e. how distant the original and target are from each other, is also a factor
that influences the performance of the transfer process. In spite of these challenges and concerns about
specialisation versus generalisation of layers, it has been shown that transferring knowledge among ANNs,
even if from reasonably distant tasks, outperforms models initialised with random weights [YCBL].

3
Datasets

Data is a crucial component in creating ASR systems because it is strongly necessary for the learning stage.
In this Chapter we find:

• 3.1 - Datasets for ASR - a brief introduction about datasets in ASR

• 3.3 - Multilingual LibriSpeech - presentation of the the open-source dataset based on LibriSpeech

• 3.4 - SpeechDat - presentation of a proprietary dataset made available for the development of the
present work

• 3.2 - LibriSpeech - presentation of a open-source English dataset

3.1 Datasets for ASR

The performance of ASR systems doesn’t only rely on the type of algorithms used, probabilistic or end-to-
end, it also depends on the quality and quantity of data available to train them. Some languages, such as

13

14 CHAPTER 3. DATASETS

English, are widely present in the majority of the ASR applications of today’s world, mostly smart assistants,
and have various research works in the field of ASR, e.g. [SKSKA+17]. A larger number of speakers provides
larger amounts of data to be available for these studies to be developed. In spite of some languages having
a wide range of data sources available others lack it, which is the case of the Portuguese language. There
are some sources of audio and the respective transcriptions available for Portuguese, but the quantity and
quality are not usually good enough to create ASR systems with acceptable performance. These sources
tend to fail in one or more important aspects of the dataset, either by having audio or transcriptions with
poor quality, low quantity of data or lack of structure standardisation. Lack of structure standardisation is
also an important aspect since it increases the difficulty of creating automatic data processors for different
data sources. There are a few different paths which can be used to gather data to develop an ASR system:

• private entities - through an agreement provide private datasets

• open access datasets - dataset available to use

• crowdsourcing - large groups of people donate data

• creating a dataset from scratch - using available data from different sources of audios and transcrip-
tions, e.g. audiobooks and respective transcriptions

3.2 LibriSpeech

As the amount of content available online increases, more data can be collected for research purposes. Such
data can be used to construct machine learning models for computer vision, natural language processing,
and automatic speech recognition, among others. When well organised and structured, even if from different
sources, these data can be easily retrieved by computers and used for the creation of datasets.

Taking advantage of this trend, the LibriSpeech1 dataset was built using data from the LibriVox2 audiobook
catalogue. Composed of 1000 hours of audio recordings of English speech, with a sampling rate of 16 kHz,
LibriSpeech was created with the purpose of being used to build and test ASR systems [PCPK15]. The
total 1000 hours of audio recordings are divided into three partitions. One with 100, and another with
360 hours of audio recordings, both containing audio with higher quality recordings and accents closer
to US English, and a third partition composed of approximately 500 hours of audio recordings. Speakers
were characterised as “clean” or “other” according to the WER of their transcripts obtained from a model
trained on Wall Street Journal data. 40 random “clean” speakers, 20 female and 20 male, were assigned
to a development set and the same process was repeated for a test set. The remaining “clean” speakers
were randomly assigned to train sets, one for each of the previously mentioned partitions of 100 and 360
hours of audio recordings. Speakers labelled as “other”, were divided into development, test and a train
set with 500 hours of audio recordings.

In the present work, the 100 hours “clean” train set was used as the control dataset. This control was
meant to verify the performance of the transfer learning process, i.e., due to the disparity in the amount
of data, to verify if the models pre-trained in English were properly learning/adjusting to the Portuguese
data. The 100 hours set contains transcripts with a total of 990101 words, from which 33798 are unique
words. The average amount of words per sentence is 34.69.

1https:///www.openslr.org/12
2https://librivox.org

https:///www.openslr.org/12
https://librivox.org

3.3. MULTILINGUAL LIBRISPEECH 15

3.3 Multilingual LibriSpeech

OpenSLR3 is a popular public bank of speech and language resources. This bank provides the abil-
ity for individual contributors and organisations to publicly share resources and make them available for
download. In this bank we can find the LibriSpeech and the Multilingual LibriSpeech4 (MLS) datasets.
LibriSpeech is a dataset composed of 1000 hours of English speech audio recordings, based on data from
the LibriVox audiobook catalogue, and was created with the purpose of being used to build and test ASR
systems [PCPK15]. LibriSpeech was also used as the starting point for the creation of the other mentioned
dataset, the Multilingual LibriSpeech.

MLS is an extension of LibriSpeech in which the amount of English speech available is increased to 44.5K
hours of audio recordings and seven other languages are added with a total of 6K hours of audio recordings.
The new languages are German, Dutch, Spanish, French, Portuguese, Italian and Polish [PXS+20]. Since
LibriSpeech is used as starting point, MLS also uses audiobooks available at LibriVox. After obtained,
the audio from the audiobooks was segmented into 10-20 seconds segments at the longest silent part of
that interval, or, if there was no silence chunk in this interval, at the 20 second mark. Making use of
the previous segmentation’s acoustic models, pseudo labels were then generated for the audio segments.
The audiobooks’ data is then downloaded, parsed and normalised, i.e. some characters, like punctuations,
emojis and escape symbols, are removed. The original text is then split into overlapping documents. These
are retrieved if their content is one of the best matches for the pseudo labels of a certain audio segment,
but are only kept if the respective WER is lower than 40%. Further processing regarding numbers, hyphens
and apostrophes also took place. Pseudo labels, which matched the alignment of a certain number on the
book text, were used to replace numbers, and heuristics were used to determine where to remove or keep
hyphens and apostrophes in unexpected places.

MLS provides the dataset split into three sets, train, development and test in which there is no speaker
overlap. For the last two sets, it is also guaranteed that the gender and duration of the speaker are
balanced. These splits only include data from books with good metadata, i.e. there is no missing data
such as title or speakers’ or authors’ information. Audios are also ensured to unambiguously contain only
one speaker. This division into sets starts by ordering the speakers by the total duration of their speech.
The speakers whose total duration of readings is lower than a threshold are assigned to the training set,
while the remaining are grouped by the shortest duration of the speech equally in each gender and are then
divided equally by the development and test sets. Every remaining speaker is assigned to training.

Regarding the English language, the one which MLS extended from LibriSpeech, and the Portuguese
language, the one used in the present work, it is presented, in Table 3.1, the number of hours of audio
recordings originally present in LibriVox and then on MLS after the just stated construction steps took
place. With respect to Portuguese, MLS contains a large number of hours (≃167 hours of Brazilian and
≃1 hour of European Portuguese audio recordings) when compared with the majority of those (shown in
hours) stated by Lima et al. [AdLDCA20]. These hours correspond to a total of 1321326 words, of which
77292 are unique, and an average of 33.68 words per transcription.

3.4 SpeechDat

The SpeechDat European Project5 was developed between March 1st of 1996 and February 28th of 1998
with the objective of providing speech resources to stimulate research and development of automated

3https:///www.openslr.org/
4https://www.openslr.org/94
5https://cordis.europa.eu/project/id/LE24001

https:///www.openslr.org/
https://www.openslr.org/94
https://cordis.europa.eu/project/id/LE24001

16 CHAPTER 3. DATASETS

Language LibriVox MLS
Train Development Test Total

English 71506.78 44659.74 15.75 15.55 44691.04
Portuguese 284.59 160.96 3.64 3.74 168.34

Table 3.1: Hours of audio recordings of English and Portuguese present in LibriVox audiobooks and MLS
dataset

services such as speech recognisers. SpeechDat databases covered all 11 official languages of the Euro-
pean Union. Regarding Portuguese, the database was collected by Portugal Telecom, now named Altice
Portugal6, in collaboration with INESC and INESCTEL.

The current work was developed as a collaboration between Universidade de Évora and Altice Labs. Being
Altice Labs part of Altice Portugal, owner of the SpeechDat dataset, considering the scope of the project
this private dataset was made available for the development of the current study regarding ASR.

Data collection for the Portuguese database of the SpeechDat project was made by INESCTEL. Regarding
this task 4027 Portugal Telecom employees were selected as speakers for this data retrieval. Since the
company employees are widely spread geographically, they are guaranteed a good representation of regional
accents. These speakers were given prompt sheets to follow during the audio recordings. Some of these
sheets were specially designated for speakers who volunteered to perform recordings from public phone
booths.

Accordingly to the dataset’s documentation, the data retrieved from all recordings, the speech signals and
respective metadata, separate files for the speech signal and the respective headers. The audio files were
encoded using A-LAW 7 (an algorithm used for encoding audio signals, in particular, voice encoding) with
a sampling rate of 8 kHz 8-bit, which was accompanied by an ASCII label file containing rows regarding
the speech file:

• identification

• session

• recording conditions

• speaker

• file

Each label file contained an assessment code regarding the quality of the respective audio. The possible
values for the code are the following:

• OK - clean audios and ready to be used

• NOISE - audios with some background noise

• GARBAGE - empty audios, missing transcriptions, only background noise, noise produced by others

• OTHER - audios containing disfluencies, hesitations, stuttering or unintelligible speech
6https://www.telecom.pt/
7https://en.wikipedia.org/wiki/A-law_algorithm

https://www.telecom.pt/
https://en.wikipedia.org/wiki/A-law_algorithm

3.4. SPEECHDAT 17

Quality Label Hours
OK 152.99

NOISE 30.82
GARBAGE 1.04
OTHER 0.34
NO_PTO 0.90
TOTAL 186.09

Table 3.2: Hours of audio recordings for each audio quality label

The project’s documentation didn’t possess the Portuguese database size, thus, the number of hours of
audio recordings of each audio quality label (assessment code) was calculated and summed to a total. Dur-
ing this process it was noticed that some audio files didn’t possess the respective label file, therefore, their
duration wasn’t summed to the total. To address this problem, a pseudo audio quality label (“NO_PTO”)
was created to which these audios were assigned to. Table 3.2 presents the number of hours of audio
recordings of each audio quality label and the total hours of audio recordings of the SpeechDat dataset.
The 186 total hours of audio recordings represent a lexicon of approximately 15000 different words.

When comparing Table 3.1 and Table 3.2, it can be concluded that the SpeechDat dataset is slightly larger
than the Multilingual LibriSpeech by ≃18 hours. This reinforces the scarceness statement of speech data
concerning the Portuguese language.

4
ASR Deep Learning

Throughout time deep learning has varied in popularity and has been used in different areas. Deep learning’s
popularity is described in three waves. The first wave surged in the 1940s-1960s with cybernetics, from
1980-1995 a second wave rose with the usage of neural networks and the third and current wave began
circa 2006 [GBC16].

In the current Chapter we find:

• 4.1 - Artificial Neural Networks - an introduction to artificial neural networks

• 4.2 - Deep Learning - defining Deep Learning

• 4.3 - DNNs in ASR - a look on the usage of Deep Neural Networks to perform Automatic Speech
Recognition

• 4.4 - Deep learning frameworks - an overview of frameworks commonly used to develop state-of-
the-art deep neural models

• 4.5 - Data-centric - a view over a methodology to develop deep neural models based on data
processing

19

20 CHAPTER 4. ASR DEEP LEARNING

4.1 Artificial Neural Networks

Artificial neural networks are machine learning models inspired by the human brain and have as base units
neurons/nodes (illustrated in Figure 4.1) that are based on human neural neurons as well.

Each neuron of the network generates an output value which can be described by Equation 4.1. The
equation can be explained as follows: each neuron in the neural network receives as input the weighted
outputs of the N neurons connected to it. These inputs are summed to bias (b) and passed through an
activation function f . The activation function determines the output value of the neuron (y). This value
determines the impact of the neuron on the network or whether it is used at all. The simplest example of an
artificial neural network is a network with a single neuron generally called a perceptron or linear classifier.
This is exemplified in Figure 4.1.

y = f(b+
N∑
i=1

xiwi) (4.1)

Figure 4.1: Artificial neural network neuron example

In ANNs neurons are grouped together to create layers. Accordingly to their role, layers are normally
classified into one of three different types: input, hidden or output layers. Using weighted edges, these
layers are connected and thus form a network that resembles the neural networks of humans and other
animals [Wan03]. An example of a general ANN can be seen in Figure 4.2.

Differentiation is an essential subject when tuning machine learning models. Model tuning is driven by the
distance between the true value of a training instance (y) and the output generated by the model (ŷ) for
that same instance. This distance is usually called error, or loss, and is determined by a loss function that
is selected according to the model type and/or problem objective. The use of gradient methods allows the
convergence of the model’s loss function to a minimum, which means that the model will be optimised in
order to generate the smallest distance between y and ŷ.

The role of the activation function (f) in a neural network is to introduce a non-linear element to the
network. If no activation function, or a linear activation function, is used, only linear transformations
will be performed across the entire ANN, therefore it could be reduced to a simple linear regression. To

4.1. ARTIFICIAL NEURAL NETWORKS 21

Figure 4.2: Artificial neural network example

overcome this problem, ANNs use non-linear functions instead which enables backpropagation and layers
to become non-linear combinations of their inputs. Some examples of these functions are:

• Sigmoid - given by Equation 4.2 - logistic function that varies from 0 to 1

• Hyperbolic tangent - given by Equation 4.3 - logistic function that varies from 1 to -1

• Rectified Linear Unit (ReLU) - given by Equation 4.4 - linear if the value is greater than 0, else 0

sig(x) =
1

1 + e−x
(4.2)

tanh(x) =
2

1 + e−2x
− 1 (4.3)

ReLU(x) = max(0, x) (4.4)

Besides the base structure, neurons and layers, ANNs commonly have additional mechanisms, from data
pre-processors and augmentation to optimisers and schedulers.

Data pre-processors convert the raw input data into data representations accepted by the network, e.g. raw
waveforms converted to signal features. While data pre-processors modify existing data, data augmentation
methods generate new data by applying transformations to the existing dataset. Data augmentation
methods vary according to the problem’s domain, e.g. in the computer vision domain, image colours, scale
or orientation are modified to generate new instances of data.

22 CHAPTER 4. ASR DEEP LEARNING

As stated, ANNs use gradient methods to perform backpropagation and update the weighted edges to
reduce the loss value, i.e. to reduce the distance between y and ŷ. Optimisers are the mechanisms
responsible for such tasks. ANNs’ weights are updated based on the learning rate parameter whose value
is determined by a chosen scheduler. Schedulers can range from using a constant learning rate to a varying
learning rate which is updated in accordance with a chosen method, e.g. Cosine Annealing.

4.2 Deep Learning

Deep learning is a subfield of machine learning with several definitions accepted by the scientific community.
Some works, such as [ZYL+18], have put together some common definitions and developed unified ones.
Considering some of the mentioned definitions in the previously cited work, deep learning can be defined as
a class of machine learning algorithms that, by using deep neural networks (DNNs), ANNs with multiple
hidden layers, can model various levels of data representations. DNNs can model different levels of data
abstraction, from higher and more abstract levels to lower ones such as raw sound signals or images. This
variety of data representation can be achieved due to a large number of hidden layers that apply several
transformations and feature extraction methods to the raw data.

Automatic speech recognition systems have evolved over time and passed by different types of approaches
as seen in Chapter 2. Deep learning has seen its first appearance in automatic speech recognition systems
after 2009 with restricted Boltzmann machines (RBMs) to initialise a DNN whose role was to predict
probabilities for HMM states. At the time this approach helped to decrease the phoneme error rate from
26% to 20.7%. A few years forward, automatic speech recognisers based on DNNs, instead of using pre-
trained RBMs, started using other methods, that, by eliminating some neurons, decreased the network’s
over-fitting, which improves generalisation [GBC16]. Examples of the previously mentioned methods are:

1. the use of rectified linear units activation function (ReLU) instead of logistic functions

2. the dropout technique

The first mentioned method, the ReLU activation function, has become the most used activation function
in hidden layers, and, according to Zeiler et al. [ZRM+13], DNNs using ReLU have shown improvements
over the ones using logistic functions, such as:

• being easier to optimise

• faster to converge

• improved generalisation

• faster computation

The second method, the dropout technique, is used to improve the generalisation error associated with
large networks, such as DNNs, and decrease their over-fitting. Dropout accomplishes doing so by randomly
omitting a fraction of the hidden units in all layers [DSH13].

4.3 DNNs in ASR

Artificial Neural Networks have a wide variety of architectures whose use varies according to the scope and
objective of the problem. By selecting a specific class of problems the diversity of architectures decreases.

4.3. DNNS IN ASR 23

However, as in the case of automatic speech recognition, there continues to be more than one type of
architecture commonly used to solve this problem.

The most notable approaches to state-of-the-art automatic speech recognition systems are largely based
on three types of deep neural networks, being them:

• Convolutional Neural Networks (CNNs)

• Recurrent Neural Networks (RNNs)

• Time-Delay Neural Networks (TDNNs)

Convolutional Neural Networks

In contrast to other types of DNNs convolutional neural networks are ANNs where the shallower fully
connected hidden layers are replaced with convolutional and pooling layers. Convolutional layers perform
convolution operations which is an element-wise matrix multiplication between the input and a kernel (a
small matrix of weights). Pooling layers are used to reduce dimensionality. These operate similarly to
convolution layers, a window slides over the input and returns the maximum, average or another operation
over the current part of the input. This combination of layers allows the network to apply a set of filters
to the input. The type of input used in these layers varies accordingly to the domain of the problem being
tackled. In the computer vision domain images are used as input to the network [LHB04, LGTB97], but in
the speech recognition domain, the input can range from, 1D or 2D feature maps [AHMJ+14] to raw speech
signals [PDC15]. Filters not only vary according to the problem’s domain but also change throughout the
network. Lower layers filter more general features, such as e.g. edges, and deeper layers are meant to
detect more distinct features, such as e.g. specific objects. In the speech domain filters are applied to
the speech features which can be represented as an “image”, a spectrogram. The spectrogram of a sound
represents the amplitude of the sound as a function of frequency and time. Frequencies are important
to represent sound features since different combinations of frequencies characterise different pitches and
timbres. According to the representation used in these feature maps, the filters used are either one or two
dimensions (1D or 2D). Through an analogy with the computer vision domain, filters applied to sounds will
get more complex as the depth of the network increases, similarly to images, these will range from simple
filters, e.g. edges and phonemes, to more complex ones, e.g. objects and syllables. To be able to better
model the data CNNs stack several convolutional and pooling layers, i.e. multiple filters, which increases
the depth of the network [SMKR13] and allows for the extraction of more, and more complex, features
from the data.

Recurrent Neural Networks

Recurrent Neural Netowrks (RNNs) are a type of Artificial Neural Networks commonly used with sequential
data such as language translation and speech. RNNs perform well with sequential data since predictions
are based on previous ones, hence the recurrence. Although the current state prediction is based on the
predictions of previous states, due to the vanishing gradient, RNNs memory is short and only the latter
predictions truly impact the prediction for the current state. Some types of RNNs, such as Long Short-
Term Memory networks (LSTMs) [HS97], overcome this issue by implementing gating mechanisms. For
instance, LSTMs implement forgetting, ignoring and selection gates. Such mechanisms allow networks to
carry knowledge from shallower layers, i.e., from early parts of the sequence, to deeper layers. Consequently,
the network can determine which parts of the sequence to memorise for later use thus solving the short-
memory problem. RNNs use sequential data from previous stages to predict the current stage output but

24 CHAPTER 4. ASR DEEP LEARNING

in some domains, the input can be processed all at once. In speech recognition, for example, the input is
processed at once, hence it is possible to use information from both previous and future stages to make a
prediction for the current stage. Bidirectional RNNs (BRNNs) process audio transcriptions in both forward
and backward directions to generate a prediction for the current stage. BRNNs can also be improved
by using gating mechanisms such as Bidirectional LSTMs [GMH13, GS05]. Deep RNNs are described
as a stacking of multiple hidden recurrent layers. Like the ones just mentioned, these deep networks
vary depending on the type of hidden units used, “vanilla RNN”, LSTM, Bidirectional or Bidirectional
LSTM. Deep RNNs are used in end-to-end speech recognition to directly map acoustic features to phonetic
sequences [GMH13].

Time-Delay Neural Networks

The speech recognition task aims to transcribe an audio signal into the respective transcription. Time is a
very important factor when performing speech recognition since the relationship between the occurrence of
phonemes and the time in which they occur greatly impacts the final transcription. RNNs have been shown
to be very effective for modelling sequences, such as speech. Time-Delay Neural Networks (TDNNs)
are another type of ANNs which are also used to model data according to the context, which, in the
case of speech, are the previous time steps. TDNNs base units receive J inputs which are passed by N
delays (D). Besides being passed by the delays, each input is also passed without any delay applied to it.
These properties enable the TDNN unit to relate and compare present and prior time steps of the speech
signal [WHH+89]. TDNNs were used as part of the base of NVIDIA’s Japser architecture [LLG+19] which
in turn was the foundation for the QuartzNet architecture [KBG+19] used in the current work as described
in Section 5.3.2.

4.3.1 Connectionist Temporal Classification

The core concept of automatic speech recognition is to transcribe audio recordings into the correct tran-
scription. Although it may seem like a straightforward task, training a speech recogniser is trickier since
it is unknown which characters in the transcript correspond to each audio segment. If not provided, these
alignments must be calculated by hand. This task is difficult and time-consuming, especially when working
with large datasets containing hundreds or thousands of hours of audio recordings. This labelling can
also be accomplished by using algorithms that provide the alignment between the audio signal and the
transcriptions.

A possible algorithm is to assert that one output character corresponds to N samples of the input. Although
it could be a good approach to some problems, it isn’t for speech recognition. This algorithm isn’t fit for
speech recognition due to a variety of challenges carried out by this task. Both the length of the input and
the output might vary which will lead to the 1 to N rule not working in every case. A possible factor for this
length variation is the speech rate being different in each person. The speech rate influences the amount
of distinct information present in a specific time frame. Lower/slower rates carry less distinct information
in the same time interval than higher/faster rates. E.g., if two distinct people say “hello” but at different
rates, “heeellooo” (slower) and “heello” (faster), in the same time step, a sample from the lower rate
might only contain information to represent “ee” while the higher rate might contain enough information
to represent “el”. This variation in lengths would lead to character/sound misalignment from person to
person if using the 1 to N alignment algorithm. The same problem occurs in handwriting recognition since
the space between each character also varies from person to person.

The Connectionist Temporal Classification (CTC) algorithm was designed to overcome these challenges

4.3. DNNS IN ASR 25

and provide the alignment between an input and an output sequence. CTC generates alignments between
an input sequence (X) and the output labels (Y) by calculating the probability distribution over all possible
values of Y . At each time step, for each audio recording segment (xt), CTC determines the probability of
each of the output labels (at), which includes the output alphabet and an additional special blank symbol.
The CTC alignments provide a direct path to get from probabilities at each time step to the likelihood of
an output sequence. Using Equation 4.5, the CTC algorithm is able to calculate p(Y |X), i.e. the likelihood
of a particular output sequence. This value is obtained by summing over all the probabilities of all the
possible alignments between an audio recording X of size T , (x1, x2, ..., xT) and the respective output
labels (a1, a2, ..., aT) with the transcript (true output label sequence) Y , (y1, y2, ..., yN), where N <= T .
We should note that, in general, there are several possible sequences A for each output sequence Y .

p(Y |X) =
∑
A

T∏
t=1

pt(at|X) (4.5)

This probability distribution can either be used to calculate the probability of a certain output sequence or
to infer a likely output label sequence [Han17].

Probabilities generated by CTC can be used as a loss function to train models. Generally, calculating p(Y |X)
is very computationally demanding due to the large number of possible alignments that can generate the
real output labelling sequence. The computational cost can be lowered by solving this problem using a
dynamic programming algorithm. The main concept is that the sum over alignments for a particular output
labelling can be transformed into an iterative sum over the alignments of prefixes of that labelling. If two
alignments achieve the same output at the same step, they can be combined into one from that step
onward [GCF+06, Han17]. CTC loss function, p(Y |X) is composed of sums and products of the output
probabilities of each time step, hence, it is differentiable with regard to them. This allows us to analytically
determine the gradient of the loss function for the non-normalized output probabilities and then proceed
with backpropagation [Han17].

At each time step, transitions can occur between each of the possible output labels, from an output label to
the blank symbol or from the blank symbol to an output label. CTC uses the blank symbol (ϵ) to separate
labels which are not meant to be collapsed together, e.g. a possible output sequence for the word “hello”
could be hheeeϵllϵlllϵooϵ. To generate “hello” from the previous alignment, CTC first merges sequences
of repeated labels into one, thus getting heϵlϵlϵoϵ, followed by the removal of the blank symbols, which
leads to the final alignment hello. Without using an extra blank symbol, transcripts with repeated labels,
such as the example “hello”, couldn’t be generated since all the “l” labels would be merged into a single
one given that they would appear sequentially.

Given an already trained model, one potential approach to inferring a likely output sequence could be a
greedy strategy, such as selecting the higher probability at each time step. Such an approach assumes that
selecting the highest probability at each time step achieves the most probable sequence. A better approach
is to use a beam search. The beam search has beam width of size B which can be interpreted as the
number of sequences explored in each time step. The sequences to be expanded/explored in each time
step are the B sequences with higher probabilities from the previous time step. Instead of maintaining a
list of B alignments in the beam, the search is optimised by storing the output prefixes after collapsing
repeated labels and eliminating blank letters [GCF+06, Han17, Ban19]1. The accuracy of the inference
process significantly improves when a language model is incorporated into the previous approach.

1Accessed 13/10/2022 https://sid2697.github.io/Blog_Sid/algorithm/2019/11/04/Beam-search.html

https://sid2697.github.io/Blog_Sid/algorithm/2019/11/04/Beam-search.html

26 CHAPTER 4. ASR DEEP LEARNING

4.3.2 Speech features in DL ASR

Speech and other audio signals are frequently represented in the time domain as amplitude waves. Despite
some information about the signal being provided by this representation, phonological features cannot be
easily extracted. To obtain additional information about an audio signal, waveforms can be changed such
that the audio signals can be defined by a set of parameters/features [ST13].

Speech is a quasi-stationary signal when considering very small time frames, usually from 5 ms to 100 ms.
Slight changes in these frames represent different sounds being spoken. Audio features, determined over
these small frames, can be grouped into different categories, such as linear predictive coefficients (LPC)
and Mel-Frequency Cepstral Coefficients (MFCCs).

Feature extraction aims to simulate the process carried out by the human cochlea, which performs a
quasi-frequency analysis on a nonlinear scale. This scale is approximately linear until 1000 Hz, where the
human achieves better sound distinction, and approximately logarithmic afterwards [GPCB21]. It is possible
to reduce speech variability by representing a speech signal through a set of features, i.e. a parametric
representation of the speech waveform. Speech variability occurs due to different people speaking in
different manners causing variance in speech base characteristics such as pitch, amplitude and frequency.

The LPC technique’s key concept is based on determining the current speech sample based on a linear
combination of previous ones. At each frame of speech, usually 20 ms, LPC calculates a set of coefficients
using the Levinson-Durbin recursion algorithm. Due to high variance, these coefficients are then transformed
into a set of parameters known as cepstral coefficients which can be used in speech analysis.

The process of obtaining Mel-Frequency Cepstral Coefficients (MFCCs) is a feature extraction method
frequently used in today’s ASR systems. Obtaining these coefficients is achieved through a set of methods
assembled in a pipeline as shown in Figure 4.3. As in other feature extraction methods, making use of
the quasi-stationary speech property, the initial step in computing MFCCs is to frame the speech signal
with a size of ≈25 ms. A windowing function is then applied to the audio frame to eliminate sudden
transitions in its boundaries. A Fast Fourier Transform (FFT) is applied to convert the signal waveform
from the time to the frequency domain. Only the absolute value is retained from the FFT operation output,
which is then utilised to generate the signal’s spectrogram. Spectrograms represent the amplitude of a
collection of frequencies over time. This representation makes phonological information about the speech
more accessible to be used for speech analysis or recognition.

The human ear perceives sound more discriminatively at lower frequencies and less discriminatively at higher
frequencies. This implies that people distinguish sounds better at lower frequencies, such as 500-1000 Hz,
than at higher frequencies, such as 15000 Hz. Stevens, Volkmann, and Newman created the mel scale with
the goal of replicating the perception of sound by the human ear [SVN05]. This scale converts hertz into
mels using Equation 4.6 such that equal distances in pitch sounded equally distant to the listener2.

m = 2595 log10
(
1 +

f

700

)
(4.6)

Mel-filterbanks features, or Mel-Frequency Spectral Coefficients (MFSCs), are applied to the spectrogram
obtained from the FFT in the prior step. The filterbanks, shown in Figure 4.4, are formed of triangular filters
that aim to narrow the range of the original frequencies to the lower part of the spectrum by transforming
them using the mel scale [Fay16, GPCB21]. Figure 4.5 displays an example of Mel-filterbanks features or
Mel-Frequency Spectral Coefficients (MFSCs).

2Accessed 27/10/2022 https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53

https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53

4.4. DEEP LEARNING FRAMEWORKS 27

Figure 4.3: MFCCs calculation pipeline [Spe]

Figure 4.4: Mel-filterbank composed of triangular filters [Fay16]

MFCCs, frequently used features in speech recognition, can be obtained by applying a Discrete Cosine
Transform (DCT) to the results gathered after applying mel-filterbanks. DCT is used as a decorrelation
method for the mel-filterbanks coefficients. The result of this operation yields the MFCC coefficients as
shown in Figure 4.6.

4.4 Deep learning frameworks

As earlier stated in Section 4.1, artificial neural networks aim to mimic humans’ neural systems by im-
plementing interconnected artificial neurons. Deep neural networks enhance this concept by increasing
the number of neurons in the networks making it closer to its goal of mimicking the human nervous
system. Increasing the number of neurons in DNNs also increases the number of parameters that need
to be calculated. Calculating a larger number of parameters require additional computing power, which
leads to the need to use infrastructures that are suitable for this purpose, both in terms of software and
hardware [GBC16].

Central processing units (CPUs) are used to run software on a large range of devices, computers, smart-
phones, etc, but it has been demonstrated that CPU computing power is insufficient to train ANNs [GBC16].
Graphics processing units (GPUs) are computer components originally designed to execute graphical ap-

28 CHAPTER 4. ASR DEEP LEARNING

Figure 4.5: Mel-filterbank features [Fay16]

Figure 4.6: MFCC Coefficients [Fay16]

plications, such as video games. Graphical applications may involve matrix multiplications, for example, in
video games to convert 3D coordinates into 2D so that they can be displayed on screens. Performing these
operations requires large memory buffers and bandwidth and the ability to execute instructions in parallel.
To perform such demanding tasks GPUs have memories larger than CPUs’ caches, with the downside of
having slower clock speeds and less ability to perform branching.

The requirements for neural network algorithms are identical to those just mentioned for graphics algorithms,
i.e. large memory buffers and parallelism. At each step of the training process, neural networks calculate a
large number of parameters, activation function values and gradients of multiple neurons. Large memory
bandwidths and parallelism can greatly improve the performance of such operations [GBC16]. Therefore,
taking this into account, GPUs have the necessary properties for neural network training.

GPUs were first developed with the special goal of solving graphics tasks. Progressing in time, GPUs started
to be employed for more diverse purposes and were no longer just limited to graphics-related operations.
The scientific community began employing GPUs to train neural networks in the mid-2000s. Two examples
of these employments were a GPU implementation of a two-layer fully connected network, which showed a
3x speedup over the usage of a CPU [SBS05], and the demonstration of GPUs used to accelerate supervised
convolutional networks [CPS06].

Shifting from being task-specific components to becoming used in a broader range and more general
scenarios rises the necessity of GPUs to be fit and usable for a wider group of users. With this necessity
in mind, APIs, frameworks and toolkits have since been developed to ease the development of code that is
capable of using the parallelism and large memory buffers provided by General Purpose GPUs (GP-GPUs).

4.4. DEEP LEARNING FRAMEWORKS 29

One of the most well-known of these is CUDA, a C-like toolkit and API developed by NVIDIA. Even with
tools like CUDA, developing code in an efficient way to run on GPUs is still a difficult task given the
differences regarding parallelism and memory between CPUs and GPUs.

Due to the difficulty of developing efficient code for GPUs, it must follow the paradigm of not having to be
rewritten in the future, i.e. the code should be developed aiming to be reusable. This re-usability can be
achieved by compiling commonly used functions and algorithms, such as matrix multiplications, convolution
operations, activation functions and gradient methods, etc, in libraries. Following this methodology, code
can be developed such that it achieves high performance executing on GPUs and is easy to be used by
making calls to library functions [GBC16].

As earlier stated, neural networks greatly improve their performance when trained on GPUs. There is a vast
range of machine learning libraries, some of which are targeted to specific types of models, such as neural
networks, support vector machines, trees, etc. Regarding the scope of the current, the next paragraphs
introduce some of the popular frameworks used in the development of neural networks.

TensorFlow [AAB+15] is an end-to-end open-source platform for machine learning developed by Google that
enables beginners and advanced users to develop neural models with a higher or lower level of abstraction.
TensorFlow incorporates Keras [Co15] high-level API. With Keras, TensorFlow provides an easy and fast-
to-use neural network prototyping and training standard. This standard is used in research projects and in
products deployed to production by companies 3. Another feature of TensorFlow is being easily deployable
to a wide range of heterogeneous environments, varying from mobile devices (smartphones and tablets) to
highly distributed machines with a large number of components such as GPUs.

PyTorch [PGM+19] is a deep learning framework developed by Meta AI and aims to deliver usability
and speed. Based on frameworks like Torch7 [CKF] and TensorFlow [AAB+15], PyTorch provides an
array-based programming approach that is GPU-accelerated. PyTorch is developed to fit in the Python
ecosystem, i.e. to be a Python program. This aims to ease users familiar with the ecosystem, especially
researchers, to easily develop their models and integrate PyTorch with other commonly used libraries, e.g.
data visualisation libraries. Similar to how TensorFlow makes use of Keras, Lightning4 (previously PyTorch
Lightning) integrates with PyTorch to offer a higher-level abstraction. Lightning organises PyTorch code,
such as train, validation and test loops, optimisers, schedulers and predictors, into modules in order to
eliminate boilerplate and increase scalability5. If available, with Lightning GPUs can easily be enabled to
accelerate the training process. This can be done by changing the accelerator and strategy arguments
passed to the Trainer class.

NVIDIA, a company famously known for developing GPUs, as part of its AI platform, developed NeMo.
NeMo is a toolkit/framework targeting deep learning, more precisely the fields of Natural Language Pro-
cessing, Text-to-Speech and Automatic Speech Recognition. NeMo uses PyTorch and Lightning as its base
to offer a collection of modules for each of the research fields just mentioned. By being developed on top
of PyTorch and Lightning, NeMo can easily scale model training to be performed not only on multi-GPU
systems but also on multi-node clusters, i.e. multiple high-performance machines interconnected. NeMo
also uses Hydra [Yad19], a framework developed by Facebook Research. This framework allows complex
models, such as NeMo’s, to be configured using command line arguments or configuration files. The com-
ponents needed to set up a model architecture, such as the encoder and decoder, the optimiser, etc, can
be specified in a configuration file. This feature helps to reduce, even more, the boilerplate code needed
to develop a deep neural model. An example of a configuration file used to build a NeMo model using the
QuartzNet15x5 architecture can be seen in Appendix A.3.

3https://www.tensorflow.org/overview
4https://lightning.ai/
5https://pytorch-lightning.readthedocs.io/en/stable/starter/introduction.html

https://www.tensorflow.org/overview
https://lightning.ai/
https://pytorch-lightning.readthedocs.io/en/stable/starter/introduction.html

30 CHAPTER 4. ASR DEEP LEARNING

4.5 Data-centric

Machine learning can be described as the process in which an algorithm is applied to a dataset in order
to produce a model of such data. The models generated by this process can be tuned in order to improve
their performance, i.e. to improve how well the models represent the given data.

The tuning process is usually focused on the algorithm. Accordingly to a chosen criteria, e.g. the problem
context and respective goal, some algorithm parameters are chosen in order to find the optimal combinations
of their values. The search for the best combination is usually done using one of two methods:

• Grid Search - iteration over a set of value combinations of the selected parameters

• Random Search - randomly assigning values to the selected parameters in order to try to avoid local
maximums/minimums in which the grid search approach may fall into

Figure 4.7 presents a pipeline that describes a methodology based on algorithm tuning.

Figure 4.7: Pipeline of methodology based on algorithm tuning [GTK22]

As just stated, models are generated by applying algorithms to datasets, therefore, another possible strategy
to improve the results yielded by models is by focusing on a data-centric approach, i.e. focusing on the
data instead of the algorithm.

A data-centric approach aims to transform data so that the quality of the final dataset is higher than the
original. This raises the question of how data quality can be defined and measured. Data quality can be
described regarding two separate topics, the structure of a dataset, and the characteristics of the data.

Being data a crucial component for creating machine learning models, datasets must have sufficient en-
tries to enable algorithms to provide an accurate representation of the data. Larger isn’t always bet-
ter [WŠW+21], datasets with vast amounts of data must be well-organised and have an easy-to-work
structure in order to facilitate the analysis and manipulation of its contents. Despite the scarcity of stan-
dards, data can be collected and stored using different guidelines specific to different companies and/or
projects. Not following any standard, although well-organised some structures can contain directories or file
names which are not clear. Therefore, in addition to being well-organised and structured datasets should
also be well-documented.

In addition to how the data is structured, organised and documented, the data contents can also be
classified as good or poor regarding its quality. Obtaining data is a very delicate process since errors could

4.5. DATA-CENTRIC 31

lead to noise being introduced in the dataset.

Data noise, i.e. invalid data that overlaps valid one, can be present in various forms, from data corruption,
e.g. bits get corrupted when transmitting data through a network, to missing values, incorrect information
such as typing errors, and duplicate entries. Outliers are data points that differ significantly from the
majority of the data. These entries can either occur naturally or by data corruption. In the first case
characteristics of individual data entries just don’t fall in line with the majority and therefore are distant.
In the second one, the values of the attributes might have been modified and thus setting these points
further away from the majority.

Data entries with missing values can appear either by data corruption or because some values were not
collected. Another example can be missing labels due to human error. This problem can be resolved using
methods such as estimating the missing values and ignoring or removing the respective entries.

Creating a dataset might involve obtaining data from various sources which can lead to duplicate entries,
e.g. a person can be inquired twice. Similar data entries should be evaluated to determine their similarity
value, i.e. to measure how distant they are. When the distance between both entries reaches a threshold,
it can be determined to either merge or keep the entries as is.

When a dataset contains a large number of missing values, duplicate entries, or noise, such as data
corruption and outliers, the data content might become ambiguous. Having ambiguous data makes it
unclear if the dataset is fit to solve a specific problem.

Another aspect related to the quality of a dataset is the fairness and representativeness of its content.
Considering a dataset well-organised, structured and documented and with levels of noise and outliers
within a threshold. The dataset’s quality could still be considered “poor” if the data doesn’t have the
desired representativity, i.e. the balance between the data samples is not favourable to solve the problem
being addressed. Such a problem can be addressed by either discarding the dataset or by focusing on
collecting specific data in order to achieve the desired representativity [WŠW+21].

Validating data is an important and delicate task. When not properly validated data might be used incor-
rectly. Unvalidated data can either not be suitable to solve the problem or have undesired characteristics,
such as large amounts of noise. Data augmentation methods or generative models generated new data
based on existing data. Such systems generate new data instances according to the ones provided to them.
Therefore, when the original data is not validated, the generated data will contain undesired characteristics
present in the original, such as noise. This process is very delicate since increases the amount of data but
also amplifies its characteristics. When data is not carefully validated, the data augmentation processes
can reduce the overall quality of a dataset by augmenting characteristics such as noise, which in turn will
affect the performance when creating/tuning models [BZP+19].

In summary, data quality can be defined on top of the previously mentioned characteristics

• Organisation, structure and documentation

• Data noise and outliers

• Data fairness and representativity

which have the flexibility of being more or less relevant depending on the problem and the respective goal
and the approach to be taken.

In [GTK22] Garan et al. present the current view of the scientific community on the data-centric method-
ology and propose a new implementation. Figure 4.8 illustrates a pipeline of the community’s current view

32 CHAPTER 4. ASR DEEP LEARNING

of the data-centric methodology. This pipeline consists of performing a complete machine learning cycle
for each data-oriented scenario. Such an approach is both computationally demanding and time-consuming
since algorithm tuning takes place for every data preprocessing/feature selection scenario.

To overcome these issues, Garan et al. proposed a new pipeline illustrated in Figure 4.9. The proposed
implementation tackles the computational power and time issues by performing algorithm tuning just once.
A base model is defined in the initial stage of the pipeline accordingly to the final model to be used in
order to evaluate each of the data-driven scenarios. A final model is then trained and tuned using the
data-oriented scenarios that yielded the best results.

Figure 4.8: Data-centric pipeline with complete machine learning cycle [GTK22]

Figure 4.9: Data-centric pipeline using a base model [GTK22]

5
Proposed System

As previously demonstrated, specific frameworks and approaches are utilised to create deep learning models.
The current Chapter describes the proposed system of the current work in:

• 5.1 - System objectives - description of the goals to be addressed by the system

• 5.2 - Architecture - characterisation of the architecture adopted for the ASR system

• 5.3 - Design - description of the framework and architecture used for the developed models

• 5.4 - Overview - final overview of the system

5.1 System objectives

The current work aims to create an Automatic Speech Recognition deep neural model that transcribes
European Portuguese speech into the respective transcription. Creating a final model which achieves such
goal implies several stages. These stages represent a variety of modules, from dataset acquisition and data

33

34 CHAPTER 5. PROPOSED SYSTEM

pre-processing to model training and evaluation. In the development of this work, in order to connect
these stages to achieve the final goal, the stages were assembled into a pipeline, described in Section 5.2.
Section 5.3 describes the framework and architecture used to develop the deep neural models.

5.2 Architecture

To achieve the goal of creating models capable of transcribing Portuguese audio into the respective tran-
scription using deep learning, a pipeline was set up to facilitate connections between each necessary stage
of this process. Figure 5.1 illustrates the pipeline built for the project whose stages are described below:

• Dataset Acquisition - this stage aims to explore and acquire new speech datasets in Portuguese
(audio recording files and respective transcriptions)

• Content Analysis - dataset analysis, assessment of the dataset’s initial structure, documentation,
content quantity and quality and audio file encodings

• Pre-Processing - dataset restructuring, data cleaning and manifest creation

• Model Creation - creation of models with pre-processed data

• Results Evaluation - testing and evaluation of the created model

Dataset Acquisition and Content Analysis

After obtaining a dataset candidate to fulfil the system’s objective, its contents are analysed to ensure
they satisfy quality and quantity requirements for model creation. In this stage, it is evaluated the number
of hours of audio recordings, the speech noise of small batches of data samples and the quality of the
transcriptions regarding its annotations.

Pre-Processing

If the candidate dataset fulfilled the previous verifications, the following step is to modify the dataset as
needed. These modifications can be restructuring the dataset in order to better integrate with further
data processing scripts and to clean data noise or change some of its characteristics. Examples of data
noise-cleaning are removing odd characters in the transcriptions or selecting only a set of pretended data
samples. Examples of data modification changing audio encodings and sampling rate.

Model Creation

After the data is properly organised and adjusted, the next stage is to train a model using the chosen
framework and architecture.

Results Evaluation

As a final, the model is tested and evaluated. The pipeline restarts according to the results yielded, e.g.
the results might indicate that a new analysis is required or other pre-processing of the data should be
applied.

5.3. DESIGN 35

Figure 5.1: Work pipeline and toolkit

5.3 Design

As examined in Section 4.4 a variety of frameworks is available to develop deep neural models. Section 5.3.1
describes the framework used for model creation and evaluation and Section 5.3.2 describes the architecture
of the models developed in the present work.

5.3.1 NVIDIA NeMo

State-of-the-art deep learning frameworks explore hardware features to their full potential. Multi-CPU,
multi-GPU, and multi-node with high-speed interconnectors allow algorithms to perform faster calculations
and therefore bring down the training time of models.

NVIDIA NeMo1 [KLN+19] is framework developed by NVIDIA built on top of the PyTorch and the Py-
Torch Lightning frameworks (Figure 5.2) and is meant “(...) for building, training, and fine-tuning GPU-
accelerated speech and natural language understanding (NLU) models with a simple Python interface.”2.
NeMo provides separate collections for Automatic Speech Recognition, Natural Language Processing, and
Text-to-Speech models. Each collection consists of prebuilt modules that include everything needed to train
new models. Every module can easily be customised, extended, and composed to create new conversational
AI model architectures3.

Figure 5.2: NeMo Integration with PyTorch and PyTorch Lightning

Given the infrastructure in which the present was being developed, shown in Section 7.1, and the features
made available by NeMo, NeMo was the framework selected to develop the current work models.

1https://github.com/NVIDIA/NeMo
2https://developer.nvidia.com/nvidia-nemo
3https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/starthere/intro.html

https://github.com/NVIDIA/NeMo
https://developer.nvidia.com/nvidia-nemo
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/starthere/intro.html

36 CHAPTER 5. PROPOSED SYSTEM

5.3.2 Model architecture

Regarding NeMo’s automatic speech recognition collection, Jasper [LLG+19] and QuartzNet [KBG+19] are
two end-to-end model architectures worth mentioning due to their role in the current work.

Jasper consists of a block architecture designed to ease fast GPU inference. The block architecture is
composed of one convolutional pre-processing block, B×R blocks (where B represents the number of
blocks and R the number of sub-blocks) and three convolutional post-processing blocks. Each block input
is connected to the last sub-block using a residual connection. Each of the R sub-blocks applies a set of
four operations: a 1D convolution, batch normalisation, ReLU and dropout. Models with this architecture
are trained using the CTC loss function. Jasper models achieve state-of-the-art results of 2.95% when
using a beam-search decoder and an external language model.

The QuartzNet architecture has the goal of achieving state-of-the-art results while using smaller models.
Smaller models have fewer parameters, therefore, they are easier to train and allow deployment on less
powerful machines. QuartzNet architecture is based on Jasper’s B×R block architecture. It also consists
of one convolutional pre-processing block, B×R blocks, and three convolutional post-processing blocks.
Like Jaspers, QuartzNet is also trained using the CTC loss function. The R sub-blocks perform similar
operations the only difference being the replacement of the 1D convolution with a 1D time-channel separable
convolution (comparison illustrated in Figure 5.3). The 1D time-channel separable convolution is an
implementation of depthwise separable convolutions which can be separated into two other convolutions, a
1D depthwise convolution and a pointwise convolution (see Figure 5.4). The 1D depthwise convolutional
layer performs convolutions across time, and a pointwise convolutional layer performs a 1×1 convolution
across features/channels [KBG+19, MVKK]. Changing the type of convolution used in the sub-blocks
enables the QuartzNet architecture to achieve state-of-the-art results and drastically reduce the number
of parameters. Table 5.1 shows a comparison between the results and the number of parameters of the
Jasper and QuartzNet architectures.

Figure 5.3: Standard convolution (left) and depthwise separable convolution (right) [GLF+]

Parameters WER
Jasper 333 millions 2.84%

QuartzNet 19 millions 2.69%

Table 5.1: Performance (WER) of QuartzNet and Jasper architectures on the LibriSpeech dataset (Table
4 from [KBG+19])

5.4. OVERVIEW 37

Figure 5.4: 1D time-channel separable convolution

5.4 Overview

The proposed system is capable of transcribing Portuguese audio into the respective transcription while
using deep neural models with a reduced number of parameters. This is achieved through the use of a
pipeline responsible for connecting each module of the system, and due to the use of a framework that
enables the development of models with the chosen architecture.

6
System Implementation

To develop deep neural models the system previously proposed in Chapter 5 was implemented. This Chapter
outlines the methodology used to accomplish such implementation. This is described in:

• 6.1 - Docker environment - the Docker environment where the system will be developed and
executed

• 6.2 - Developed software - description of the two types of software developed

• 6.3 - Data pre-processing - description of changes made to data with pre-processing software

• 6.4 - API and web interface - description of the developed API and web interface

• 6.5 - Implementation issues - review of the problems encountered during the system’s implemen-
tation

39

40 CHAPTER 6. SYSTEM IMPLEMENTATION

6.1 Docker environment

Being able to replicate the pipeline environment is crucial so experiments can be replicated in different
machines. Docker allows this by running applications inside containers, i.e. a self-contained environment,
isolated from the host operative system and other containers. A Dockerfile (Appendix A.5) was created
in order to set up the experiments’ environment based on NVIDIA’s NeMo framework. The Dockerfile
contains a set of instructions for Docker to be able to build the image of the environment in which the
project’s pipeline stages will be executed.

The image used to execute the pipeline stages of the project, namely the pre-processing, model creation
and model evaluation stages, uses the PyTorch image1 (NeMo’s base framework) as starting point. On top
of PyTorch’s image, required libraries and updates are installed in order for NeMo to be used in the most
efficient making the best use of GPUs. The list of relevant modifications can be seen below.

• Installation of NeMo requirements2:

– libsndfile1
– Cython (a superset of the Python language that additionally supports calling C functions and

declaring C types on variables and class attributes3)

• Installation of NeMo

• Updates of the pre-installed PyTorch libraries

6.2 Developed software

The work developed in the first two stages of the developed pipeline, i.e. Dataset Acquisition and Content
Analysis (Figure 5.1), is mostly done without resorting to any software. However, the Pre-processing,
Model Creation and Results Evaluation stages required software to be developed. The software developed
for these three stages is presented and divided into two groups:

• Data pre-processing software - software developed for the Pre-processing stage

• Model software - software developed to create and evaluate models in the Model Creation and
Results Evaluation stages respectively

6.2.1 Data pre-processing software

Under this category fall two types of software: the software developed to restructure the datasets, and the
software developed to generate the manifest files used as input for the model creation software.

Both types of software were developed separately for each of the datasets whose analysis from the previous
stage was positive regarding their use in the current work. The information retrieved during the analysis
stage is used to determine if the dataset needs restructuring and which data samples will be selected to be

1https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch
2ffmpeg was not installed due to incompatibility
3https://cython.org/

https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch
https://cython.org/

6.2. DEVELOPED SOFTWARE 41

used in the stage of model creation. Datasets lack structure standardisation, therefore, for each dataset,
Python scripts were developed separately in order to perform dataset restructuring and data selection.

To load the input data the NeMo framework uses manifest files. These files contain one entry per audio
file which contains the audio file path, audio duration, offset and audio transcription. Listing 6.1 shows an
example of a manifest file entry.

{
"audio_filepath": ".../a10041a1.wav",
"duration": 1.28,
"offset": 0,
"text": "repetir"

}

Listing 6.1: Example of manifest entry

6.2.2 Model software

This category includes software developed for training and evaluating models. For both training and testing
scenarios, Python scripts were developed using the NeMo framework.

Appendix A.1 shows the code developed for model training. This script is used in the training-from-scratch
and transfer learning experiments. By using Hydra, a framework “(...) that simplifies configuration for
complex applications”4, NeMo is able to use the same code for both training from scratch and trans-
fer learning purposes. Using external configurations eases the development and setup of neural models,
especially with complex architectures such as QuartzNet. The configurations used by NeMo specify the
components required by the PyTorch library to train deep neural models. The list below presents the fields
and respective descriptions used in the configurations for the current work:

• model - specifies the encoder, decoder, output labels, batch size, data pre-processors and augmenters,
optimisers and paths to the train, validation and test subsets

• trainer - sets the parameters for the trainer, being the more relevant the number of epochs, the
number and the parallelisation strategy

• init_from_nemo_model - when present, the code performs transfer learning using the specified
model as a starting point, else performs train from scratch

• exp_manager - experiment logging configuration

• hydra - provides configurations for the Hydra framework

In the current work, the default configuration for the QuartzNet15x5 architecture was used. This configu-
ration can be found in NeMo’s GitHub repository and is also exemplified in the Listing of the Appendix A.3.
Some relevant fields of the configuration used are:

• Data pre-processor - AudioToMelSpectrogramPreprocessor - converts wavs to mel spectrograms
4https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/core/core.html#configuration

https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/core/core.html#configuration

42 CHAPTER 6. SYSTEM IMPLEMENTATION

• Data augmenter - SpectrogramAugmentation - using Cutout [DT17] randomly masks out regions
of input during training

• Optimiser - NovoGrad [GCH+19] - stochastic gradient descent method

• Scheduler - Cosine Annealing [LH] - An learning rate starts high and is then quickly reduced to a
minimum and then quickly boosted again which provides a “warm restart”

QuartzNet architecture (Figure 6.1) is based on Jasper’s B×R block architecture. QuartzNet consists of
one convolutional pre-processing block, B×R blocks, and three convolutional post-processing blocks trained
with the CTC loss function. A residual connection connects each block input to the preceding sub-block
and each of the R sub-blocks performs the following four operations:

1. K-sized depthwise convolutional layer with cout channels

2. pointwise convolution

3. normalization

4. ReLU

Figure 6.1: QuarzNet BxR architecture [KBG+19]

6.3. DATA PRE-PROCESSING 43

The 1D depthwise convolutional layer performs convolutions across time, and a pointwise convolutional
layer performs a 1×1 convolution across features/channels [KBG+19, MVKK]. As already stated, the final
part of the architecture consists of three additional convolutions. Table 6.1 presents the repetitions (of
block and sub-blocks), kernel sizes, output channels and the total number of parameters of three different
variants of the QuartzNet architecture. As mentioned, the current made use of the variant QuartzNet15x5.

Block R K C S
5x5 10x5 15x5

C1 1 33 256 1 1 1
B1 5 33 256 1 2 3
B2 5 39 256 1 2 3
B3 5 51 512 1 2 3
B4 5 63 512 1 2 3
B5 5 75 512 1 2 3
C2 1 87 512 1 1 1
C3 1 1 1024 1 1 1
C4 1 1 ||labels|| 1 1 1

Params, M 6.7 12.8 18.9

Table 6.1: QuartzNet Architecture. The model starts with a conv layer C1 followed by a sequence of 5
groups of blocks. Blocks in the group are identical, each block Bk consists of R time-channel separable
K-sized convolutional modules with C output channels. Each block is repeated S times. The model has 3
additional conv layers (C2,C3,C4) at the end. [KBG+19]

Appendix A.2 presents the code developed for evaluating the trained models. This code evaluates the
selected model using the WER and ROUGE metrics. This script can additionally be used to transcribe
single audio files specified through execution parameters.

For easier and more intuitive use the software described in this Section is accompanied by a Makefile
(Appedix A.4). The make command should be executed followed by the target of the desired operation,
train, transfer, test or transcribe. In turn, the operation target must be given the required param-
eters, which are: CONFIG_PATH for both the train and transfer targets; TEST_PATH and MODEL_NAME
for test; MODEL_NAME and AUDIO_PATH for transcribe.

6.3 Data pre-processing

Datasets often lack structure standardisation, therefore there is usually the need to reorganise them to
improve workflow and compatibility with data processors. This section presents changes made to the
structure and data of the SpeechDat dataset.

6.3.1 SpeechDat original directory structure and data

The Portuguese database from the SpeechDat European Project was developed between March 1st 1996
and February 28th 1998. This database represents the SpeechDat dataset in the current work. The original
structure was composed of 11 different zip files. Each zip file contained one ISO file (CD image). Among
the ISO files were distributed 49 blocks (sub-directories). Each block was divided into session sub-directories
which in turn contained the respective audio recording files, as can be seen in the Listing 6.2. The original

44 CHAPTER 6. SYSTEM IMPLEMENTATION

audio recordings were encoded in A-LAW 5, an algorithm used for encoding audio signals, in particular,
voice encoding, with a sampling rate of 8 kHz 8-bit. In addition to containing a partition of the 49 blocks,
each ISO file also contained a copy o the following four sub-directories:

• doc/ - directory with documentation regarding the construction and structure of the dataset

• index/ - directory with content file, i.e. file indexing the dataset with the path, transcript and other
information regarding each audio recording

• source/ - empty directory

• table/ - directory of files regarding the sessions, speakers and lexicons information

SpeechDatII/���
FIXED1PT_01.7z���
...���
FIXED1PT_11.7z���

FIXED1PT_11.ISO���
fixed1pt/���

copyrigh.txt���
disk.id���
readme.txt���
block46/���
...���
block48/����

ses4800/����
...����
ses4841/����

a14841w4.pta����
a14841w4.pto����
...���

doc/���
table/���
source/���
index/���

...���
contents.lst

Listing 6.2: Original SpeechDat directory tree

6.3.2 SpeechDat modified directory structure and data

Structure

The original structure of the dataset was complex and challenging to work with, therefore there was a need
for restructuring to ease the use of the dataset with the modules of the proposed pipeline. The contents of
the four folders previously mentioned were identical among all ISO files, thus, these were moved to the root

5https://en.wikipedia.org/wiki/A-law_algorithm

https://en.wikipedia.org/wiki/A-law_algorithm

6.3. DATA PRE-PROCESSING 45

directory of the dataset “SpeechDatII/” (except “source/” since it was empty in all ISO files). Following
up, the respective sessions and audio recordings of each of the 49 blocks, which were in different ISO files,
were moved into a single sub-folder, “FIXED1PT/”, in the root directory. The resulting dataset structure
can be seen in Listing 6.3.

SpeechDatII/���
FIXED1PT/����

block00/����
...����
block48/����

ses4800/����
...����
ses4841/����

a14841a1.pta����
a14841a1.pto����
a14841a1.wav����
...���

doc/���
table/���
index/���

...���
contents.lst���
contents.csv���
contents_quality.csv

Listing 6.3: New SpeechDat directory tree

Data

After restructuring, the contents.lst file present in the index/ sub-folder was also subject to changes.
Its encoding was changed from ISO-8859-1 to UTF-8. The values of some fields were subject to minor
adjustments, e.g., in the field path, the backslashes (\) were replaced with (/) so they were compatible with
the filesystem of DGX OS 5.2.0, based on Ubuntu 20.04.4 LTS6. The updated content of the contents.lst
files was stored in the contents.csv file.

For each audio recording, the contents.csv file contains its path in the dataset, a corpus code (special
label for the type of recording), the region and gender of the speaker and the transcription of the audio.
Some transcriptions were presented with special tokens (presented below). These tokens described word
mispronunciation, truncation or unintelligible stretches of speech, speaker or background noise, or pauses.

• Tokens describing errors in pronouncing words:

– Mispronunciation (*)
– Unintelligible stretches of speech (**)
– Truncation (~)

• Tokens describing noise:
6https://docs.nvidia.com/dgx/dgx-os-release-notes/index.html#release-5

https://docs.nvidia.com/dgx/dgx-os-release-notes/index.html#release-5

46 CHAPTER 6. SYSTEM IMPLEMENTATION

– Stationary noise ([sta])
– Speaker noise ([spk])
– Intermittent noise ([int])
– Filled pause ([fil])

Besides the original audio recordings, each audio was also accompanied by a SAM label file, “.pto”, which
contained the following sets of rows with information regarding the audio recording:

• identification

• session

• recording conditions

• speaker

• file

The information from the file rows contained an assessment code which had one of the values described
below. This value was used to label each audio signal regarding its recording quality. For each audio
recording present in the contents.csv file, an additional column was added with this labelling. The
updated content is stored in the contents_quality.csv file under the index/ folder.

• OK - includes clean audio recordings ready to be used

• NOISE - includes audio recordings with some speaker or background noise

• GARBAGE - includes empty audio recordings, audio recordings with no transcription and audio
recordings with a large number of errors pronouncing words or unintelligible speech

• OTHER - includes audio recordings with unknown problems, with it being only noise, some empty
transcriptions and others

After the analysis stage, it was concluded that some of the data wouldn’t be fit for the current work. The
list below shows the characteristics of the audio recordings which were left out, i.e. were never used in this
work experiments. All the audio recordings which didn’t include any of these characteristics were marked
as valid. This information was stored in the contents_quality.csv file under the index/ folder.

• audio recordings whose quality label was GARBAGE or OTHER

• audio recordings whose transcriptions was ** or empty

• audio recordings whose transcriptions contained ~ or *

The original audio recordings were encoded in A-LAW with a sampling rate of 8 kHz 8-bit. In this pre-
processing stage, the audio recordings marked as valid in the contents_quality.csv file were re-encoded
in the WAV encoding with a sampling rate of 16 kHz. The audio recordings were re-encoded and re-sampled
in order to match the formats accepted by the framework and the sampling rate of pre-trained models.

6.4. API AND WEB INTERFACE 47

After this re-encoding and re-sampling, each audio recording was added to a manifest file as shown in
Listing 6.1.

Two separate “versions” of the dataset were used in this work. The first version consisted of the dataset
with the restructuring and data pre-processing just mentioned. The second version had an additional pre-
processing in which the previously mentioned noise tokens, [sta], [spk], [fil] and [int], were removed
from the transcriptions.

6.4 API and web interface

An API and a simple web interface were developed to allow a user-friendly experience for audio transcription.
The API was run using the same Docker image used for training and testing.

The run.sh script setups and starts the API by performing the following steps:

• Installation of the requirements, FastAPI and Python-Multipart

• Fetch of the environment variables in the .env file, which are the host’s IP address and port

• Launches the API which can be accessed at localhost:28080.

The API provides one POST endpoint, /transcribe/. This endpoint receives a file as the value of the
field audio_file_path which should be encoded as multipart/form-data and returns the transcription
in JSON format, as shown in Listing 6.4.

{
"transcription": "exemplo de audio"

}

Listing 6.4: API transcription example

A demo of this API is live at http://voice.xdi.uevora.pt and is shown in Figure 6.2.

6.5 Implementation issues

Throughout the implementation of the system, some issues rose regarding the data and its encoding and
the infrastructure where the system was run.

One of the main issues of this implementation was the encoding of the contents files, originally being
ISO-8859-1. Some research had to be done to ensure a proper conversion from ISO-8859-1 to UTF-8 to
avoid any data loss.

The resources of the infrastructure where the system was built and tested are managed by the Slurm
Workload Manager7 [JG03]. Due to the SLURM configuration in this infrastructure being in an early
stage, and the experience with SLURM being very basic, some issues rose when configuring SLURM batch
scripts to use the system. Examples of such difficulties were the use of multiple resources, such as CPUs,
GPUs and especially multiple computational nodes, to either train or test the models.

7https://slurm.schedmd.com/

http://voice.xdi.uevora.pt
https://slurm.schedmd.com/

48 CHAPTER 6. SYSTEM IMPLEMENTATION

Figure 6.2: ASR API Demo - Web Interface

7
Experiments

Training deep learning models is very computationally demanding. To speed up this task, GPUs are a
good replacement for CPUs due to being more fit to execute parallel tasks and having a higher memory
bandwidth. The high level of parallelism provided by these devices is ideal for training machine learning
models as they can process multiple calculations simultaneously. Additionally, the GPU’s large memory
bandwidth is appropriate for working with the large amounts of data commonly used in this task.

This Chapter describes:

• 7.1 - Infrastructure - the infrastructure used in the experiments developed in the current work

• 7.2 - Experiments - presentation of the different types and sets of experiments and respective results
and analysis

– 7.2.1 - Metrics - definition of the metrics used to evaluate experiments
– 7.2.2 - Train from scratch - experiments based on when the whole model was trained from

the beginning
– 7.2.3 - Transfer learning - experiments based on model creation using the transfer learning

technique

49

50 CHAPTER 7. EXPERIMENTS

7.1 Infrastructure

The pipeline (Figure 5.1) described in Section 5.3 was run in the Vision Supercomputer1. Vision is an
HPC cluster made of 2 compute nodes, interconnected with 8 x 200Gb/s HDR InfiniBand links for parallel
processing. The compute nodes are NVIDIA DGX A100 systems, with the following characteristics:

• GPUS: 8x NVIDIA A100 40GB Tensor Core GPUs

• GPU Memory: 320GB total

• CPU: Dual AMD Rome 7742, 128 cores total

• Networking (clustering): 8x Single-Port NVIDIA ConnectX-6 VPI 200Gb/s InfiniBand

• Networking (storage): 1x Dual-Port NVIDIA ConnectX-6 VPI 200Gb/s InfiniBand

Data storage in Vision is shared across all nodes, using NFS over a 200Gb/s HDR InfiniBand link. To
minimise any I/O bottleneck when transferring data from the storage to the GPUs, the compute nodes
use NFS caching to mount the shared storage. The cluster resources are managed by the Slurm Workload
Manager2 [JG03], which is responsible for allocating the resources requested by each user for each job.

The results presented in this work were obtained in a single compute node: 8 x NVIDIA A100 GPUs, 256
CPUs and 1TB of RAM).

7.2 Experiments

In machine learning, creating models can be done following different paradigms. Two examples of these
are, from scratch and transfer learning. Following the from-scratch paradigm, an algorithm is fed with
data and the model is generated without any prior work done to it. In transfer learning, a new model is
developed using a previously developed model as a starting point. The base model is then tuned during
training accordingly to new data which is fed to the algorithm. Both of the previous paradigms were used
in the experiments developed in the present work.

Data is a key element in the development of an ASR system based on deep learning, however, there is not
much speech data available for Portuguese. Usually, large datasets in Portuguese are private, which means
their use is restricted (to certain groups or by payment of service). In the experiments developed in the
present work models were developed using the two datasets previously mentioned in Chapter 3:

• SpeechDat dataset (≃186 hours of audio recordings)

• Multilingual LibriSpeech 3 (≃168 hours of audio recordings)

The version of Python, Docker image, framework and libraries used in the experiments developed in Sec-
tions 7.2.2 and 7.2.3 were the following:

• Python - 3.8.10
1https://vision.uevora.pt/
2https://slurm.schedmd.com/
3https://www.openslr.org/94/

https://vision.uevora.pt/
https://slurm.schedmd.com/
https://www.openslr.org/94/

7.2. EXPERIMENTS 51

• PyTorch Docker image - 21.08-py3

• NeMo - 1.7.2

• libsndfile1 - 1.0.28-7

• Cython - 0.29.24

• torch - 1.11.0+cu113

• torchvision - 0.12.0+cu113

• torchaudio - 0.11.0+cu113

7.2.1 Metrics

Speech recognition models’ performance is evaluated according to the transcriptions generated by the
models on given test sets. Metrics are used to evaluate performance by measuring the distance between
the transcription generated by the model and the real one. The measurement of this distance differs
accordingly to the metric used. In the present work two metrics were used to evaluate the developed
models:

• Word Error Rate (WER)

• Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

WER is a metric for evaluating speech-to-text models and is defined as shown in Equation 7.1. This metric
determines the distance between transcripts by evaluating substitutions, insertions, and deletions made to
a single word or word sequence in order for the transcripts to match.

WER =
Substitutions+ Insertions+Deletions

Number Of Spoken Words
(7.1)

WER results range from 0 to 1 (or 0% to 100%), but these results can be higher than the upper bound if
the number of additional insertions, substitutions or deletions required for the transcripts to match is very
large.

ROUGE consists of a package of several methods for the evaluation of summaries. The method used
in the present work was ROUGE-L which compares the longest common sequence (LCS) between two
summaries/transcripts [Lin04].

Given two summaries X (reference) and Y (prediction) we have:

• Equation 7.2 - represents the recall - evaluates the model’s performance capturing all of the infor-
mation contained in the reference

• Equation 7.3 - represents the precision - allows evaluating the model regarding the generation of
more information than the contained in the reference, i.e. extra words

• Equation 7.4 - represents the F-measure and the definition of ROUGE-L - used to evaluate the
model regarding capturing as many words as possible (recall) but without outputting irrelevant words
(precision) [Lin04, Bri21]

52 CHAPTER 7. EXPERIMENTS

Rlcs =
LCS(X,Y)

length(X)
(7.2)

Plcs =
LCS(X,Y)

length(Y)
(7.3)

Flcs =
(1 + b2)RlcsPlcs

Rlcs + b2Plcs
(7.4)

7.2.2 Train from scratch

The MLS dataset contains an unbalanced mix of European (≃1 hour of audio recordings) and Brazilian
Portuguese (≃167 hours of audio recordings).

The Portuguese variants were divided into different subsets of the MLS dataset for these experiments.
Table 7.1 shows these experiments where the European Portuguese subset is represented by “PT” and the
Brazilian Portuguese subset by “BR”. Both variants of Portuguese were used separately and together in
order to carry out different sets of experiments and find out how data quantity affects the performance of
deep models developed from scratch.

Experiment Train Validation Test
MLS_S1 PT PT PT
MLS_S2 BR BR BR
MLS_S3 BR BR PT
MLS_S4 PT + BR PT + BR PT
MLS_S5 PT + BR PT + BR BR

Table 7.1: Models developed from scratch using subsets of the MLS dataset

The results of these experiments shown in Table 7.2 reveal that in any combination of the subsets the
amount of data available is not enough to generate deep models with acceptable performance. It can also
be concluded that the larger amounts of data produce better performances since the best results were
achieved when training and testing the models using the largest subsets. Such can be seen in experiments
MLS_S2 and MLS_S5 in which the models were trained and tested with the Brazilian Portuguese subsets.

Experiment WER
MLS_S1 0.9952
MLS_S2 0.8156
MLS_S3 0.8842
MLS_S4 0.8900
MLS_S5 0.8065

Table 7.2: WER of models developed from scratch using the MLS dataset

The experiments of training models from scratch were also performed with the SpeechDat dataset. Re-
garding these experiments, the models were developed with SpeechDat’s train and validation subsets.

As mentioned in Section 6.3.2, the SpeechDat dataset was divided into two “versions”. Definitions 7.1 and
Definition 7.2 define both versions of the dataset.

7.2. EXPERIMENTS 53

Definition 7.1: SpeechDat with noise describing tokens

The data pre-processing carried out in this iteration of the dataset only excluded audio recordings
labelled as GARBAGE or OTHER, with transcriptions being **, empty or containing ~ or *.
The audio recordings which were kept were also re-encoded from A-LAW into WAV and re-sampled
from 8 kHz to 16 kHz.

Definition 7.2: SpeechDat without noise describing tokens

The second iteration of the dataset has an additional pre-processing to Definition 7.1 in which the
noise describing tokens, [sta], [spk], [fil] and [int], were removed from the transcriptions.

Table 7.3 presents the experiments carried out using the SpeechDat dataset as defined in Definition 7.1.
Table 7.4 displays experiments performed using the SpeechDat dataset after an additional pre-processing
step defined in Definition 7.2. .

Experiment Train Validation Test WER
SD_S1 SpeechDat SpeechDat SpeechDat 0.3035
SD_S2 SpeechDat SpeechDat ENG 0.9962
SD_S3 SpeechDat SpeechDat PT + BR 0.9173

Table 7.3: Models developed from scratch with the SpeechDat dataset as defined in Definition 7.1

Experiment Train Validation Test WER
SD_S4 SpeechDat SpeechDat SpeechDat 0.1945
SD_S5 SpeechDat SpeechDat ENG 0.9924
SD_S6 SpeechDat SpeechDat PT + BR 0.9055

Table 7.4: Models developed from scratch with the SpeechDat dataset as defined in Definition 7.2

The WER results yielded from these experiments show that models developed using SpeechDat’s data per-
form better than models developed with the MLS dataset. This conclusion is true for both experiments with
and without the additional pre-processing of the data. Upon the removal of noise and word pronunciation
error tokens, it can be seen an increase in performance from experiment SD_S1 (0.3035) to experiment
SD_S4 (0.1945).

7.2.3 Transfer learning

Deep learning models require large amounts of data to be able to generate good results and, as far as
we know, there are no large public speech datasets for Portuguese. In contrast, English has a very large
quantity of public speech data available due to the larger number of speakers and the majority of work in
the area of speech recognition is developed for English. Considering the results from Section 7.2.2 it can
be concluded that creating deep neural models from scratch would require more data than we have access
to. Consequently, experiments using both the SpeechDat and MLS datasets have been developed using
the transfer learning technique.

A large variety of subsets, regarding training, validation and testing sets, were used in these experiments.
The “PT” and “BR” MLS subsets were again used separately and together. Furthermore, different mixes
of SpeechDat and MLS subsets were also created. The 100 hours “clean” train set (ENG) from the
LibriSpeech dataset was used as the control dataset for the English language. NVIDIA’s NeMo provides

54 CHAPTER 7. EXPERIMENTS

a model for the English language pre-trained with a dataset with ≃3300 hours of audio recordings4. This
model was used as the starting point for the transfer learning experiments.

During the development of the transfer learning experiments it was observed that the values of the ROUGE-
L metric were perfectly consistent with the WER values, i.e. the best WER (closer to 0) was also the best
ROUGE-L (closer to 1). Hence, as these values are consistent across metrics, we focused our analysis only
on the WER metric.

Table 7.5 shows the performance of the model pre-trained for the English language on the test subsets of
MLS, LibriSpeech (ENG) and SpeechDat. These results will allow an understanding of how effective the
transfer technique is in the following experiments, i.e. how much the pre-trained model adapts to/learns
from data of different subsets.

Train/Validation Test WER
ENG 0.0159

Pre-trained
ENG

PT 0.9865
BR 0.9863

PT + BR 0.9863

Table 7.5: Pre-trained English model performance on the different test subsets

Additionally, to complement the previous experiment, the transfer technique was applied to the pre-trained
English model using the MLS transfer subsets. Models were developed using the MLS transfer sets “PT”,
“BR” and “PT+BR” and were tested with the English test subset. Table 7.6 shows the results of this
additional experiment. Results reveal good effectiveness of the transfer process, i.e. the pre-trained model
updates towards the data of the transfer subsets, while performance decreases when testing with the English
subset.

Train/Validation Transfer Test WER

Pre-trained
ENG

PT ENG 1.0238
BR ENG 0.9905

PT + BR ENG 0.9922

Table 7.6: Performance on the English test subset on models created with transfer learning

The experiments on Tables 7.7, 7.8 and 7.9 are similar to scratch experiments carried out in Section 7.2.2.
The goal of these experiments is to make a comparison between the performance of models developed from
scratch and models created using the transfer learning approach.

Comparing both scratch and transfer learning approaches some conclusions can be made regarding the
quantity of data used during the training phase and how it affects performance.

4https://developer.nvidia.com/blog/jump-start-training-for-speech-recognition-models-with-nemo/

Train/Validation Transfer Test WER

Pre-trained
ENG

PT PT 1.0164
PT BR 0.9722
BR PT 0.7075
BR BR 0.5139

PT + BR BR 0.5025
PT + BR PT + BR 0.5083

Table 7.7: Performance of models developed using transfer learning with the MLS subsets

https://developer.nvidia.com/blog/jump-start-training-for-speech-recognition-models-with-nemo/

7.2. EXPERIMENTS 55

Train/Validation Transfer Test WER

Pre-trained
ENG

SpeechDat SpeechDat 0.1603
SpeechDat ENG 1.0186
SpeechDat PT + BR 0.7912

Table 7.8: Performance of models developed using SpeechDat as transferring set

Train/Validation Transfer Test WER

Pre-trained
ENG

SpeechDat SpeechDat 0.0557
SpeechDat ENG 1.006
SpeechDat PT + BR 0.7680

Table 7.9: Performance of models developed using SpeechDat as transferring set after data processing

1. The amount of data used during the training phase strongly impacts the model’s performance; transfer
learning improves the performance from 0.1945 to 0.0557

2. It has been found that pre-trained models successfully adapt to new data by moving away from the
data they were originally trained on.

Comparing both paradigms, from scratch and transfer learning, it can be concluded that models perform
better when developed with more data, i.e. using transfer learning. Although transferring knowledge from
previously developed models achieves better scores, it is observable that the transfer set still needs to have
a considerable amount of data. This conclusion is supported by the following:

• when using smaller quantities of data, i.e. MLS subsets, the best results were achieved when using
combinations with the largest subset (“BR”)

• models that yielded the best results were developed with the largest subsets available, i.e. SpeechDat
subsets

The results of these experiments are as well a reinforcement to the statement that better data quality
can be as important as data quantity and algorithm fine-tuning. Models developed with the SpeechDat
dataset have been shown an increase in performance after additional data processing even without any
model fine-tuning or additional data added.

Conclusions from the previous experiments led to another batch of experiments using transfer learning
whose goal is to evaluate the impact of data quality and quantity on the performance of the models. These
experiments consisted in using mixes of the SpeechDat and the MLS5 transfer and validation subsets. As
can be seen in Table 7.10, the proportion of each subset is defined by a linear variation between 0% and
100% with a step of 25%. This is done so that the number of instances remains constant across all mixes,
107158 for training and 22960 for validation. These proportions were defined in order for the total number
of audio recordings to be equal in all training and validation mixes respectively.

As explored in Chapter 3, the MLS and SpeechDat datasets differ in the quantity of data, audio recording
sources and consequently data quality. Combining both datasets makes it possible to investigate how the
data quality and the quantity, i.e., whether collected through an open source crowdsourcing (MLS) or in a
controlled environment (SpeechDat), affects the performance of automatic speech recognition models.

5In these experiments “MLS” represents the “PT + BR” both training and testing subsets

56 CHAPTER 7. EXPERIMENTS

MIX ID Transfer Validation
MLS SpeechDat MLS SpeechDat

0.00 0 107158 0 22960
0.25 9374 97784 206 22754
0.50 18749 88409 413 22547
0.75 28123 79035 619 22341
1.00 37498 69660 826 22134

Table 7.10: Audio instances from each dataset used on each training and validation mix

Test set Instances
SpeechDat 22961

ENG 28539
MLS 906

SpeechDat + MLS 23867

Table 7.11: Audio instances from each test set used

For each mix of the datasets, three models were developed and evaluated. The results of these experiments
on each of the mixes can be seen on Tables 7.12, 7.13, 7.14, 7.15 and 7.16. Table 7.17 presents a
summarised view of the average performance of each mix.

The performance of the models developed in these experiments was evaluated using the previously used
test sets, SpeechDat, MLS (“PT + BR”) and LibriSpeech (ENG). Additionally, a full combination of the
SpeechDat and MLS test sets (SpeechDat + MLS) was also used to evaluate the model’s performance.
Table 7.11 displays the number of audio instances present in each of the mentioned test sets.

The English set once again allows to ensure that the transfer learning process is effective, i.e. the pre-
trained model is shifting towards the new data. The other three remaining test sets, SpeechDat, MLS and
SpeechDat + MLS, grant the possibility to study how models generalise based on the proportions of data
used in the transfer learning process.

In order, the mixes present in Table 7.10 start with a high number of instances from SpeechDat and a low
number from MLS and end with a more balanced proportion of both relative to their original sizes. Following
the mix order present in the previously mentioned table to look at the results in Tables 7.12, 7.13, 7.14, 7.15
and 7.16 the following conclusions can be taken regarding the results from these experiments.

After a general analysis of the results, some patterns are observable concerning the performance of each
test set on the models developed for each mix. The only outlier is the results obtained on the third model
of the second mix (MIX ID 0.25, Table 7.13)

It can be concluded that the SpeechDat dataset has the greatest impact on the performance of the models.

Test set WER
Model 1 Model 2 Model 3 Average

SpeechDat 0.0534 0.0503 0.0503 0.0513
ENG 0.9982 1.0019 1.0040 1.0014
MLS 0.7670 0.7616 0.7759 0.7682

SpeechDat + MLS 0.1903 0.1868 0.1966 0.1912

Table 7.12: Individual and average performances of the models developed with MIX 0.00

7.2. EXPERIMENTS 57

Test set WER
Model 1 Model 2 Model 3 Average

SpeechDat 0.0594 0.0630 0.2739 0.1321
ENG 0.9954 0.9940 1.0011 0.9969
MLS 0.4670 0.4723 0.7601 0.5665

SpeechDat + MLS 0.1377 0.1415 0.3672 0.2155

Table 7.13: Individual and average performances of the models developed with MIX 0.25

Test set WER
Model 1 Model 2 Model 3 Average

SpeechDat 0.0560 0.0603 0.0578 0.0581
ENG 1.0006 0.9986 1.0048 1.0013
MLS 0.3814 0.3974 0.3965 0.3918

SpeechDat + MLS 0.1185 0.1250 0.1228 0.1221

Table 7.14: Individual and average performances of the models developed with MIX 0.50

Test set WER
Model 1 Model 2 Model 3 Average

SpeechDat 0.0666 0.0646 0.0690 0.0667
ENG 0.9958 0.9939 0.9932 0.9943
MLS 0.3600 0.3499 0.3624 0.3574

SpeechDat + MLS 0.1229 0.1194 0.1253 0.1225

Table 7.15: Individual and average performances of the models developed with MIX 0.75

Test set WER
Model 1 Model 2 Model 3 Average

SpeechDat 0.0669 0.0721 0.0817 0.0735
ENG 0.9930 0.9951 0.9966 0.9949
MLS 0.3140 0.3314 0.3464 0.3306

SpeechDat + MLS 0.1143 0.1218 0.1332 0.1231

Table 7.16: Individual and average performances of the models developed with MIX 1.00

Test set Average WER
MIX ID 0.00 MIX ID 0.25 MIX ID 0.50 MIX ID 0.75 MIX ID 1.00

SpeechDat 0.0513 0.1321 0.0581 0.0667 0.0735
ENG 1.0014 0.9969 1.0013 0.9943 0.9949
MLS 0.7682 0.5665 0.3918 0.3574 0.3306

SpeechDat + MLS 0.1912 0.2155 0.1221 0.1225 0.1231

Table 7.17: Average performance of the models of each MIX

58 CHAPTER 7. EXPERIMENTS

The performance on the SpeechDat test set slightly decreased from mix to mix, having a variation on the
average performance of 0.0222 from the first (MIX ID 0.00, Table 7.12) to the last mix (MIX ID 1.00,
Table 7.16) and a variance of 0.0322 among the five mixes.

Although the MLS dataset is smaller, throughout the mix experiments, the increase in the number of
instances used is reflected in the gain of performance over the MLS and SpeechDat + MLS test sets
throughout the different mixes. Nonetheless, in spite of achieving better performances over these test sets,
the addition of these instances doesn’t show a negative impact on the performance over the SpeechDat
and LibriSpeech (ENG) test sets.

Concluding these experiments’ discussion, Table 7.18 shows the gain/loss of performance over the Speech-
Dat, MLS and SpeechDat + MLS test sets between the first (MIX ID 00.00) and last mix (MIX ID 1.00).
The mixture of these two sources of data has shown an overall increase in performance, leading to the
following conclusions:

• the quantity of data is undoubtedly essential for building deep neural models, either from scratch or
using transfer learning

• the larger the amount of data from a source used in the train or transfer process, the better the
performance over the test set from the same source

• data quality performs a major role in the model’s performance since the dataset with better data
quality (in this work was the SpeechDat dataset) yields the best performance

Test set Average WER WER differenceMIX ID 0.00 MIX ID 1.00
SpeechDat 0.0513 0.0735 -0.0222

ENG 1.0014 0.9949 0.0065
MLS 0.7682 0.3306 0.4376

SpeechDat + MLS 0.1912 0.1231 0.0681

Table 7.18: WER difference from the first (MIX ID 0.00) and last mix (MIX ID 1.00)

8
Conclusion and Future Work

This final Chapter describes:

• 8.1 - Conclusion - an overall conclusion of what was accomplished in the present work

• 8.2 - Future work - future work to be done in order to improve the developed system and yield
better results

8.1 Conclusion

In Section 1.3 it was proposed the development of an automatic speech recognition model for the Portuguese
language using deep learning techniques. After analysing the state-of-the-art literature and automatic
speech recognition frameworks, end-to-end deep neural networks were defined as the model to be used
in the current work. The core strategy of this work had the goal to develop such models following a
data-centric methodology.

59

60 CHAPTER 8. CONCLUSION AND FUTURE WORK

The system was developed using a pipeline. When assembled, this pipeline made the workflow of carrying
the current work’s experiments smooth and simple by providing simple methods for changing between
experiments. The use of independent services for each stage of the pipeline also made debugging easier
when encountering difficulties, such as the attempt to make use of multi-node computing.

The NVIDIA NeMo framework enabled the implementation of the QuartzNet15x5 architecture based on 1D
time-channel separable convolutions. In combination with the data-centric methodology, this architecture
allowed the development of the main contribution of this dissertation: an automatic speech recognition
system for the European Portuguese languages which achieves state-of-the-art results. The best model
achieves a performance of WER = 0.0503.

8.2 Future work

The present work presents very good results close to state-of-the-art. Future works in automatic speech
recognition for the Portuguese language have room to improve the yielded results. Among others, some
approaches that can be explored in future works and are worth mentioning are:

• algorithm fine-tuning, which was not carried out in this work

• a finer look and implementation of data-centric methodologies, which revealed to improve model’s
performance

• the implementation of language models that usually significantly improve the accuracy of the speech
recogniser [Han17]

Regarding algorithm fine-tuning, possible paths for future work could be tuning parameters of components
such as data augmenters, optimisers and schedulers. Investigating how varying these impacts the augmented
data and learning rate and hence the model’s performance.

A possible path to follow based on data-centric methodologies for future works could be focused on
approaches to integrate additional datasets and/or exploring different and/or additional data pre-processing.

Language models model the likelihood of a word in a sequence of words. Although such models tend
to perform better with other models than with CTC-trained models [Han17], separately trained language
models might improve the model’s performance by decreasing the number of miss-spelt or miss-placed
words.

Bibliography

[AAB+] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catan-
zaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Erich Elsen, Jesse
Engel, Linxi Fan, Christopher Fougner, Tony Han, Awni Hannun, Billy Jun, Patrick Legres-
ley, Libby Lin, Sharan Narang, Andrew Ng, Sherjil Ozair, Ryan Prenger, Jonathan Raiman,
Sanjeev Satheesh, David Seetapun, Shubho Sengupta, Yi Wang, Zhiqian Wang, Chong
Wang, Bo Xiao, Dani Yogatama, Jun Zhan, and Zhenyao Zhu. Deep Speech 2: End-to-
End Speech Recognition in English and Mandarin Baidu Research-Silicon Valley AI Lab
*.

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, Xiaoqiang Zheng, and Google
Research. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Sys-
tems. 2015.

[AdLDCA20] Thales Aguiar de Lima and Márjory Da Costa-Abreu. A survey on automatic speech
recognition systems for Portuguese language and its variations. Computer Speech and
Language, 62, 7 2020.

[AHMJ+14] Ossama Abdel-Hamid, Abdel Rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn, and
Dong Yu. Convolutional neural networks for speech recognition. IEEE Transactions on
Audio, Speech and Language Processing, 22(10):1533–1545, 10 2014.

[Ami21] José Manuel Amigo. Data Mining, Machine Learning, Deep Learning, Chemometrics Def-
initions, Common Points and Trends (Spoiler Alert: VALIDATE your models!). Brazilian
Journal of Analytical Chemistry, 8(32):45–61, 2021.

[Ban19] Siddhant Bansal. Decoding Connectionist Temporal Classification | Siddhant’s Scratch
Book, 2019.

[BBKS14] Laurent Besacier, Etienne Barnard, Alexey Karpov, and Tanja Schultz. Automatic speech
recognition for under-resourced languages: A survey. 2014.

61

62 BIBLIOGRAPHY

[BJM83] Lalit R Bahl, Frederick Jelinek, and Robert L Mercer. A Maximum Likelihood Approach to
Continuous Speech Recognition. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND
MACHINE INTELLIGENCE, 5(2), 1983.

[BKD21] Ruurd Buijs, Thomas Koch, and Elenna Dugundji. Applying transfer learning and var-
ious ANN architectures to predict transportation mode choice in Amsterdam. Procedia
Computer Science, 184:532–540, 1 2021.

[BM94] Hervé A. Bourlard and Nelson Morgan. Connectionist Speech Recognition. Connectionist
Speech Recognition: A Hybrid Approach, 1994.

[Bri21] James Briggs. Measure NLP Accuracy With ROUGE | Towards Data Science, 3 2021.

[BZP+19] Eric Breck, Marty Zinkevich, Neoklis Polyzotis, Steven Whang, and Sudip Roy. Data
Validation for Machine Learning, 2019.

[CKF] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A Matlab-like Envi-
ronment for Machine Learning.

[Co15] François Chollet and others. Keras. https://keras.io, 2015.

[CPS] Ronan Collobert, Christian Puhrsch, and Gabriel Synnaeve. Wav2Letter: an End-to-End
ConvNet-based Speech Recognition System.

[CPS06] K. Chellapilla, Sidd Puri, and P. Simard. High Performance Convolutional Neural Networks
for Document Processing. undefined, 2006.

[DBB52] K. H. Davis, R. Biddulph, and S. Balashek. Automatic Recognition of Spoken Digits.
undefined, 24(6):637–642, 1952.

[DSH13] George E. Dahl, Tara N. Sainath, and Geoffrey E. Hinton. Improving deep neural networks
for LVCSR using rectified linear units and dropout. ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing - Proceedings, pages 8609–8613, 10 2013.

[DT17] Terrance DeVries and Graham W. Taylor. Improved Regularization of Convolutional Neural
Networks with Cutout. 8 2017.

[Fay16] Haytham M Fayek. Speech Processing for Machine Learning: Filter banks, Mel-Frequency
Cepstral Coefficients (MFCCs) and What’s In-Between, 2016.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[GCF+06] Alex Graves, Alex@idsia Ch, Santiago Fernández, Faustino Gomez, Jürgen Schmidhuber,
and Juergen@idsia Ch. Connectionist Temporal Classification: Labelling Unsegmented
Sequence Data with Recurrent Neural Networks. 2006.

[GCH+19] Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin,
Ryan Leary, Jason Li, Huyen Nguyen, Yang Zhang, and Jonathan M. Cohen. Stochastic
Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks. 5
2019.

[GCO+21] Lucas Rafael Stefanel Gris, Edresson Casanova, Frederico Santos de Oliveira, Anderson
da Silva Soares, and Arnaldo Candido-Junior. Desenvolvimento de um modelo de recon-
hecimento de voz para o Português Brasileiro com poucos dados utilizando o Wav2vec 2.0.
Anais do Brazilian e-Science Workshop (BreSci), pages 129–136, 7 2021.

BIBLIOGRAPHY 63

[GLF+] Yunhui Guo, Yandong Li, Rogerio Feris, Liqiang Wang, and Tajana Rosing. Depthwise
Convolution is All You Need for Learning Multiple Visual Domains.

[GMH13] Alex Graves, Abdel-Rahman Mohamed, and Geoffrey Hinton. SPEECH RECOGNITION
WITH DEEP RECURRENT NEURAL NETWORKS. 2013.

[GPCB21] Alexandru-Lucian Georgescu, Alessandro Pappalardo, Horia Cucu, and Michaela Blott.
Performance vs. hardware requirements in state-of-the-art automatic speech recognition.
EURASIP Journal on Audio, 2021:28, 2021.

[GS05] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Networks, 18(5-6):602–610, 7 2005.

[GTK22] Maryna Garan, Khaoula Tidriri, and Iaroslav Kovalenko. A Data-Centric Machine Learning
Methodology: Application on Predictive Maintenance of Wind Turbines. Energies 2022,
Vol. 15, Page 826, 15(3):826, 1 2022.

[Han17] Awni Hannun. Sequence Modeling with CTC. Distill, 2(11):e8, 11 2017.

[HCC+] Annika Hämäläinen, Hyongsil Cho, Sara Candeias, Thomas Pellegrini, Alberto Abad,
Michael Tjalve, Isabel Trancoso, and Miguel Sales Dias. Automatically Recognising Eu-
ropean Portuguese Children’s Speech: Pronunciation Patterns Revealed by an Analysis of
ASR Errors.

[HDY+12] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel Rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kings-
bury. Deep neural networks for acoustic modeling in speech recognition: The shared views
of four research groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[HES00] Hynek Hermansky, Daniel P.W. Ellis, and Sangita Sharma. Tandem connectionist feature
extraction for conventional HMM systems. ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings, 3:1635–1638, 2000.

[HJB84] Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus. Gauss and the History of
the Fast Fourier Transform. IEEE ASSP Magazine, 1(4):14–21, 1984.

[HLVDMW17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
Connected Convolutional Networks. 2017.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735–1780, 11 1997.

[JG03] Moris Jette and Mark Grondona. SLURM: Simple Linux Utility for Resource Management
| Request PDF. 2003.

[KBG+19] Samuel Kriman, Stanislav Beliaev, Boris Ginsburg, Jocelyn Huang, Oleksii Kuchaiev, Vitaly
Lavrukhin, Ryan Leary, Jason Li, and Yang Zhang. QUARTZNET: DEEP AUTOMATIC
SPEECH RECOGNITION WITH 1D TIME-CHANNEL SEPARABLE CONVOLUTIONS.
2019.

[KLGS17] Karlis Kanders, Tom Lorimer, Florian Gomez, and Ruedi Stoop. Frequency sensitivity in
mammalian hearing from a fundamental nonlinear physics model of the inner ear. Scientific
Reports 2017 7:1, 7(1):1–8, 8 2017.

64 BIBLIOGRAPHY

[KLN+19] Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii Hrinchuk, Ryan Leary, Boris Gins-
burg, Samuel Kriman, Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook, Patrice Castonguay,
Mariya Popova, Jocelyn Huang, and Jonathan M Cohen. NeMo: a toolkit for building AI
applications using Neural Modules. 2019.

[Lee94] Chin Hui Lee. Maximum a Posteriori Estimation for Multivariate Gaussian Mixture Observa-
tions of Markov Chains. IEEE Transactions on Speech and Audio Processing, 2(2):291–298,
1994.

[LGTB97] Steve Lawrence, C. Lee Giles, Ah Chung Tsoi, and Andrew D. Back. Face recognition: A
convolutional neural-network approach. IEEE Transactions on Neural Networks, 8(1):98–
113, 1997.

[LH] Ilya Loshchilov and Frank Hutter. SGDR: STOCHASTIC GRADIENT DESCENT WITH
WARM RESTARTS.

[LHB04] Yann LeCun, Fu Jie Huang, and Léon Bottou. Learning methods for generic object recog-
nition with invariance to pose and lighting. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2, 2004.

[Lin04] Chin-Yew Lin. ROUGE: A Package for Automatic Evaluation of Summaries. pages 74–81,
2004.

[LLG+19] Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary, Oleksii Kuchaiev, Jonathan M
Cohen, Huyen Nguyen, and Ravi Teja Gadde. Jasper: An End-to-End Convolutional Neural
Acoustic Model. 2019.

[MAP+] Hugo Meinedo, Alberto Abad, Thomas Pellegrini, João Neto, and Isabel Trancoso. The
L2F Broadcast News Speech Recognition System.

[MCNT03] Hugo Meinedo, Diamantino Caseiro, João Neto, and Isabel Trancoso. AUDIMUS.media:
A Broadcast News Speech Recognition System for the European Portuguese Language.
Technical report, 2003.

[MQ17] Igor Macedo Quintanilha. END-TO-END SPEECH RECOGNITION APPLIED TO
BRAZILIAN PORTUGUESE USING DEEP LEARNING. 2017.

[MVKK] Gonçalo Mordido, Matthijs Van Keirsbilck, and Alexander Keller. Compressing 1D Time-
Channel Separable Convolutions using Sparse Random Ternary Matrices.

[PCPK15] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. LIBRISPEECH:
AN ASR CORPUS BASED ON PUBLIC DOMAIN AUDIO BOOKS. 2015.

[PDC15] Dimitri Palaz, Mathew Magimai Doss, and Ronan Collobert. Analysis of CNN-based Speech
Recognition System using Raw Speech as Input. 2015.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury Google, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf Xamla, Edward Yang, Zach Devito, Martin Raison Nabla, Alykhan Tejani,
Sasank Chilamkurthy, Qure Ai, Benoit Steiner, Lu Fang Facebook, Junjie Bai Facebook,
and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. 2019.

BIBLIOGRAPHY 65

[PHBDM+13] Thomas Pellegrini, Annika Hämäläinen, Philippe Boula De Mareüil, Michael Tjalve, Isabel
Trancoso, Sara Candeias, Miguel Sales Dias, and Daniela Braga. A corpus-based study of
elderly and young speakers of European Portuguese: acoustic correlates and their impact
on speech recognition performance. 2013.

[PXS+20] Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel Synnaeve, and Ronan Collobert.
MLS: A LARGE-SCALE MULTILINGUAL DATASET FOR SPEECH RESEARCH A
PREPRINT. Technical report, 2020.

[QNB20] Igor Macedo Quintanilha, Sergio Lima Netto, and Luiz Wagner Pereira Biscainho. An
open-source end-to-end ASR system for Brazilian Portuguese using DNNs built from newly
assembled corpora. Journal of Communication and Information Systems, 35(1):230–242,
9 2020.

[Rab97] Lawrence R. Rabiner. Applications of speech recognition in the area of telecommunications.
IEEE Workshop on Automatic Speech Recognition and Understanding Proceedings, pages
501–510, 1997.

[RG] Lucas Rafael and Stefanel Gris. Brazilian Portuguese Speech Recognition Using Wav2vec
2.0. Technical report.

[RKX+22] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine Mcleavey, and Ilya
Sutskever. Robust Speech Recognition via Large-Scale Weak Supervision. 2022.

[RWL+16] Sherry Ruan, Jacob O Wobbrock, Kenny Liou, Andrew Ng, and James Landay. Speech Is
3x Faster than Typing for English and Mandarin Text Entry on Mobile Devices. 2016.

[SBS05] Dave Steinkraus, Ian Buck, and Patrice Y. Simard. Using GPUs for machine learning
algorithms. undefined, 2005:1115–1120, 2005.

[SKSKA+17] George Saon, Gakuto Kurata, Tom Sercu Kartik Audhkhasi, Samuel Thomas, Dimitrios
Dimitriadis Xiaodong Cui, Bhuvana Ramabhadran, Michael Picheny, Lynn-Li Lim, Bergul
Roomi, and Phil Hall Appen. English Conversational Telephone Speech Recognition by
Humans and Machines. Technical report, 2017.

[SMKR13] Tara N. Sainath, Abdel Rahman Mohamed, Brian Kingsbury, and Bhuvana Ramabhadran.
Deep convolutional neural networks for LVCSR. ICASSP, IEEE International Conference
on Acoustics, Speech and Signal Processing - Proceedings, pages 8614–8618, 10 2013.

[Spe] Speaker Identification Using Pitch and MFCC - MATLAB & Simulink.

[ST13] Urmila Shrawankar and V M Thakare. Techniques for Feature Extraction In Speech Recog-
nition System : A Comparative Study. 5 2013.

[SVN05] S. S. Stevens, J. Volkmann, and E. B. Newman. A Scale for the Measurement of the
Psychological Magnitude Pitch. The Journal of the Acoustical Society of America, 8(3):185,
6 2005.

[TKEY] Natalia Tomashenko, Yuri Khokhlov, Yannick Estève, and Estève Yannick. Exploring Gaus-
sian mixture model framework for speaker adaptation of deep neural network acoustic mod-
els Exploring Gaussian mixture model framework for speaker adaptation of deep neural net-
work acoustic models Exploring Gaussian mixture model framework for speaker adaptation
of deep neural network acoustic models. Technical report.

[Tob05] Richard Tobin. Automatic Speech Recognition Implementations in Healthcare. 2005.

66 BIBLIOGRAPHY

[VBS+17] Ashish Vaswani, Google Brain, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. 2017.

[Wan03] Sun-Chong Wang. Artificial Neural Network. Interdisciplinary Computing in Java Pro-
gramming, pages 81–100, 2003.

[Wha] What is Artificial Intelligence (AI) ? | IBM.

[WHH+89] Alexander Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and Kevin J.
Lang. Phoneme Recognition Using Time-Delay Neural Networks. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 37(3):328–339, 1989.

[WŠW+21] Hannes Westermann, Jaromír Šavelka, Vern R. Walker, Kevin D. Ashley, and Karim
Benyekhlef. Data-Centric Machine Learning: Improving Model Performance and Under-
standing Through Dataset Analysis. Frontiers in Artificial Intelligence and Applications,
346:54–57, 12 2021.

[XSPMLCdS+] Matheus Xavier Sampaio, Regis Pires Magalhães, Ticiana Linhares Coelho da Silva, Lívia
Almada Cruz, Davi Romero de Vasconcelos, José Antônio Fernandes de Macêdo, and Mar-
ianna Gonçalves Fontenele Ferreira. Evaluation of Automatic Speech Recognition Systems.
Technical report.

[Yad19] Omry Yadan. Hydra - A framework for elegantly configuring complex applications. Github,
2019.

[YCBL] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features
in deep neural networks?

[ZA] Yaxin Zhang and Mike Alder. USING GAUSSIAN MIXTURE MODELING IN SPEECH
RECOGNITION.

[ZRM+13] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le, P. Nguyen, A. Senior,
V. Vanhoucke, J. Dean, and G. E. Hinton. On rectified linear units for speech processing.
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing -
Proceedings, pages 3517–3521, 10 2013.

[ZXL+] Neil Zeghidour, Qiantong Xu, Vitaliy Liptchinsky, Nicolas Usunier, Gabriel Synnaeve, and
Ronan Collobert. Fully Convolutional Speech Recognition.

[ZYL+18] W. J. Zhang, Guosheng Yang, Yingzi Lin, Chunli Ji, and Madan M. Gupta. On Definition
of Deep Learning. World Automation Congress Proceedings, 2018-June:232–236, 8 2018.

A
Developed software

A.1 Train script

1 # NeMo"s "core" package
2 import nemo
3 import torch
4 import hydra
5 from omegaconf import DictConfig , OmegaConf
6

7 # NeMo"s ASR collection - this collections contains complete ASR models
and

8 # building blocks (modules) for ASR
9 import nemo.collections.asr as nemo_asr

10

11 import pytorch_lightning as pl # Used for training

67

68 APPENDIX A. DEVELOPED SOFTWARE

12

13

14 @hydra.main(config_path="./configs/")
15 def main(cfg: DictConfig):
16

17 trainer = pl.Trainer(**cfg.trainer)
18 model = nemo_asr.models.EncDecCTCModel(cfg=cfg.model, trainer=trainer

)
19

20 model.maybe_init_from_pretrained_checkpoint(cfg)
21

22 # Train the model
23 trainer.fit(model)
24

25 model.save_to(f"./models/{cfg.name}.nemo")
26

27

28 if __name__ == "__main__":
29 main()

Listing A.1: Script developed for model training

A.2 Test script

1 import argparse
2 import json
3

4 import nemo
5 import nemo.collections.asr as nemo_asr
6 from nemo.collections.asr.metrics.wer import word_error_rate
7 from torchmetrics import BLEUScore , WordErrorRate
8 from torchmetrics.text.rouge import ROUGEScore
9

10

11 BATCH_SIZE = 32
12

13

14 def calculate_wer(args, model):
15

16 test_manifest = args.test_path
17

18 ## Calculate WER between hypothesis and ground_truth
19 original_text = []
20 audio_filepaths = []
21

22 with open(test_manifest) as f:

A.2. TEST SCRIPT 69

23 for line in f:
24 json_line = json.loads(line)
25 original_text.append(json_line['text'])
26 audio_filepaths.append(json_line['audio_filepath'])
27

28 transcribes = model.transcribe(paths2audio_files=audio_filepaths ,
batch_size=args.batch_size)

29

30 if args.show_transcribes:
31 print(transcribes)
32

33 # Calculate WER
34 wer = word_error_rate(hypotheses=transcribes , references=

original_text , use_cer=False)
35 print(f"\nMETRICS:")
36 print(f"\tWER={wer}")
37

38 print(f"TORCH METRICS:")
39

40 metric = WordErrorRate()
41 print(f"\tWER={metric(transcribes , original_text)}")
42

43 metric = BLEUScore()
44 print(f"\tBLEUEScore={metric(transcribes , original_text)}")
45

46 metric = ROUGEScore()
47 print(f"\tROUGEScore={metric(transcribes , original_text)}")
48

49

50 def transcribe(args, model):
51

52 print(args.audio_path)
53

54 transcribes = model.transcribe(paths2audio_files=[args.audio_path],
batch_size=args.batch_size)

55

56 print(transcribes)
57

58

59 def parse_args() -> list:
60 parser = argparse.ArgumentParser()
61

62 parser.add_argument("--test_path", type=str)
63 parser.add_argument("--model_name", type=str)
64

65 parser.add_argument("--transcribe", action="store_true")
66 parser.add_argument("--show_transcribes", type=bool)
67 parser.add_argument("--audio_path", type=str)
68

70 APPENDIX A. DEVELOPED SOFTWARE

69 parser.add_argument("--batch_size", type=int)
70

71 args = parser.parse_args()
72

73 return args
74

75

76 if __name__ == '__main__':
77

78 args = parse_args()
79

80 save_path = f"{args.model_name}" if args.model_name.endswith(".nemo")
else f"{args.model_name}.nemo"

81

82 # To load a model from disk
83 model = nemo_asr.models.EncDecCTCModel.restore_from(restore_path=f"{

save_path}")
84

85 if args.transcribe:
86 transcribe(args, model)
87 exit(1)
88

89 calculate_wer(args, model)

Listing A.2: Script developed for model evaluation

A.3 Configuration example

name: &name "MODEL_NAME"

model:
sample_rate: &sample_rate 16000
repeat: &repeat 5
dropout: &dropout 0.0
separable: &separable true
batch_size: &batch_size 32
num_workers: &num_workers 256
labels: &labels [" ", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j",

"k", "l", "m", "n",
"o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y",

"z", "ç", "à", "á",
"â", "ã", "é", "ê", "í", "ó", "ô", "õ", "ú", "-", "'"]

train_ds:
manifest_filepath: "train_manifest.json"
sample_rate: *sample_rate
labels: *labels

A.3. CONFIGURATION EXAMPLE 71

batch_size: *batch_size
trim_silence: True
max_duration: 16.7
shuffle: True
tarred datasets
is_tarred: false
tarred_audio_filepaths: null
shuffle_n: 2048
bucketing params
bucketing_strategy: "synced_randomized"
bucketing_batch_size: null
num_workers: *num_workers

validation_ds:
manifest_filepath: "validation_manifest.json"
sample_rate: *sample_rate
labels: *labels
batch_size: *batch_size
shuffle: False
num_workers: *num_workers

test_ds:
manifest_filepath: "test_manifest.json"
sample_rate: *sample_rate
labels: *labels
batch_size: *batch_size
shuffle: False
num_workers: *num_workers

preprocessor:
target: nemo.collections.asr.modules.

AudioToMelSpectrogramPreprocessor
normalize: "per_feature"
window_size: 0.02
sample_rate: *sample_rate
window_stride: 0.01
window: "hann"
features: &n_mels 64
n_fft: 512
frame_splicing: 1
dither: 0.00001

spec_augment:
target: nemo.collections.asr.modules.SpectrogramAugmentation
rect_freq: 50
rect_masks: 5
rect_time: 100

encoder:

72 APPENDIX A. DEVELOPED SOFTWARE

target: nemo.collections.asr.modules.ConvASREncoder
feat_in: *n_mels
activation: relu
conv_mask: true

jasper:
- dilation: [1]

dropout: *dropout
filters: 256
kernel: [33]
repeat: 1
residual: false
separable: *separable
stride: [2]

- dilation: [1]
dropout: *dropout
filters: 256
kernel: [33]
repeat: *repeat
residual: true
separable: *separable
stride: [1]

- dilation: [1]
dropout: *dropout
filters: 256
kernel: [33]
repeat: *repeat
residual: true
separable: *separable
stride: [1]

- dilation: [1]
dropout: *dropout
filters: 256
kernel: [33]
repeat: *repeat
residual: true
separable: *separable
stride: [1]

- dilation: [1]
dropout: *dropout
filters: 256
kernel: [39]
repeat: *repeat
residual: true
separable: *separable

A.3. CONFIGURATION EXAMPLE 73

stride: [1]

- dilation: [1]
dropout: *dropout
filters: 256
kernel: [39]
repeat: *repeat
residual: true
separable: *separable
stride: [1]

- dilation: [1]
dropout: *dropout
filters: 256
kernel: [39]
repeat: *repeat
residual: true
separable: *separable
stride: [1]

- dilation: [1]
dropout: *dropout
filters: 512
kernel: [51]
repeat: *repeat
residual: true
separable: *separable
stride: [1]

- dilation: [1]
dropout: *dropout
filters: 512
kernel: [51]
repeat: *repeat
residual: true
separable: *separable
stride: [1]

- dilation: [1]
dropout: *dropout
filters: 512
kernel: [51]
repeat: *repeat
residual: true
separable: *separable
stride: [1]

- dilation: [1]
dropout: *dropout

74 APPENDIX A. DEVELOPED SOFTWARE

filters: 512
kernel: [63]
repeat: *repeat
residual: true
separable: *separable
stride: [1]

- dilation: [1]
dropout: *dropout
filters: 512
kernel: [63]
repeat: *repeat
residual: true
separable: *separable
stride: [1]

- dilation: [1]
dropout: *dropout
filters: 512
kernel: [63]
repeat: *repeat
residual: true
separable: *separable
stride: [1]

- dilation: [1]
dropout: *dropout
filters: 512
kernel: [75]
repeat: *repeat
residual: true
separable: *separable
stride: [1]

- dilation: [1]
dropout: *dropout
filters: 512
kernel: [75]
repeat: *repeat
residual: true
separable: *separable
stride: [1]

- dilation: [1]
dropout: *dropout
filters: 512
kernel: [75]
repeat: *repeat
residual: true

A.3. CONFIGURATION EXAMPLE 75

separable: *separable
stride: [1]

- dilation: [2]
dropout: *dropout
filters: 512
kernel: [87]
repeat: 1
residual: false
separable: *separable
stride: [1]

- dilation: [1]
dropout: *dropout
filters: &enc_filters 1024
kernel: [1]
repeat: 1
residual: false
stride: [1]

decoder:
target: nemo.collections.asr.modules.ConvASRDecoder
feat_in: *enc_filters
num_classes: 0
vocabulary: *labels

optim:
name: novograd
target: nemo.core.optim.optimizers.Novograd
lr: .01
optimizer arguments
betas: [0.8, 0.5]
weight_decay: 0.001

scheduler setup
sched:

name: CosineAnnealing

pytorch lightning args
monitor: val_loss
reduce_on_plateau: false

Scheduler params
warmup_steps: null
warmup_ratio: null
min_lr: 0.0
last_epoch: -1

trainer:

76 APPENDIX A. DEVELOPED SOFTWARE

gpus: -1 # number of gpus
max_epochs: 100
max_steps: -1 # computed at runtime if not set
num_nodes: 1
strategy: ddp
accumulate_grad_batches: 1
enable_checkpointing: False # Provided by exp_manager
logger: False # Provided by exp_manager
log_every_n_steps: 1 # Interval of logging.
val_check_interval: 1.0 # Set to 0.25 to check 4 times per epoch, or

an int for number of iterations

init_from_nemo_model:
model0:

path: "/data/asr-pt/nemo_models/QuartzNet15x5Base -En.nemo"
exclude: ["decoder"]

exp_manager:
exp_dir: null
name: *name
create_tensorboard_logger: False
create_checkpoint_callback: False
checkpoint_callback_params:

monitor: "val_wer"
mode: "min"

create_wandb_logger: False
wandb_logger_kwargs:

name: null
project: null

hydra:
run:

dir: .
job_logging:

root:
handlers: null

Listing A.3: NeMo example configuration

A.4 Makefile
Variables used for the python script commands
TEST_PATH = ./processed/altice_test.json

Audio directory for single or multiple transcription
AUDIO_PATH = ./audio_to_test

Default model name to train on the SpeechDat ds

A.5. DOCKERFILE 77

MODEL_NAME = "PT_PT"

Config path of model specs
CONFIG_NAME = "config"

Specs for training
BATCH_SIZE = 32

Different directory variables must be defined in the make command

Trains model and outputs to a .nemo file
train: nemo_train.py

@python3 nemo_train.py --config-name $(CONFIG_NAME)

Calculates WER on test dataset
test: nemo_test.py

@python nemo_test.py --test_path $(TEST_PATH) --model_name $(
MODEL_NAME) --batch_size=$(BATCH_SIZE)

Transcribes single or multiple audios in audio_directory
transcribe: nemo_test.py

@python nemo_test.py --transcribe --audio_path $(AUDIO_PATH) --
model_name $(MODEL_NAME) --batch_size=$(BATCH_SIZE)

Transfers already pre-trained model to another language
transfer: nemo_train.py

@python nemo_train.py --config-name $(CONFIG_NAME)

Listing A.4: Makefile created to ease the use of software

A.5 Dockerfile
Fetch base image.
FROM nvcr.io/nvidia/pytorch:21.08-py3

Get workdir from ARG so it can be changed when building.
ARG WORKDIR=/workspace

Get NeMo from ARG so it can be changed when building.
ARG NEMO_VERSION=main

Define workdir as an ENV to be available during run.
ENV WORKDIR=$WORKDIR

Setting WORKIDIR to run the following commands.
WORKDIR $WORKDIR

RUN apt install -y libsndfile1

78 APPENDIX A. DEVELOPED SOFTWARE

RUN git clone -b $NEMO_VERSION https://github.com/NVIDIA/NeMo.git
Setting WORKIDIR to install NeMo in a different location.
WORKDIR $WORKDIR/NeMo
RUN ./reinstall.sh
RUN pip3 install Cython
RUN pip3 install nemo_toolkit['all']==$NEMO_VERSION

Update PyTorch version because of the GPUS being used.
RUN pip3 install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio

==0.11.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.
html

RUN pip3 install torchtext

Install jupyter-lab.
RUN pip3 install jupyterlab

Update the WORKDIR to be set for the launch.
WORKDIR $WORKDIR

Exposes jupyter port.
EXPOSE 8888

Setting up de run CMD to open bash.
CMD /bin/bash

Listing A.5: Dockerfile develop to create the environment where the developed software will run

Contactos:
Universidade de Évora

Instituto de Investigação e Formação Avançada — IIFA
Palácio do Vimioso | Largo Marquês de Marialva, Apart. 94

7002 - 554 Évora | Portugal
Tel: (+351) 266 706 581
Fax: (+351) 266 744 677

email: iifa@uevora.pt

	Contents
	List of Figures
	List of Tables
	Acronyms
	Abstract
	Sumário
	Introduction
	Automatic Speech Recognition
	Motivation
	Objectives
	Main contributions
	Structure

	State-Of-The-Art
	Automatic Speech Recognition
	Approaches to ASR
	Probabilistic - Gaussian Mixture Models and Hidden Markov Models
	End-to-end - Artificial Neural Networks
	Hybrid - Hidden Markov Models and Artificial Neural Networks

	ASR applications
	ASR in Portuguese
	Transfer Learning

	Datasets
	Datasets for ASR
	LibriSpeech
	Multilingual LibriSpeech
	SpeechDat

	ASR Deep Learning
	Artificial Neural Networks
	Deep Learning
	DNNs in ASR
	Connectionist Temporal Classification
	Speech features in DL ASR

	Deep learning frameworks
	Data-centric

	Proposed System
	System objectives
	Architecture
	Design
	NVIDIA NeMo
	Model architecture

	Overview

	System Implementation
	Docker environment
	Developed software
	Data pre-processing software
	Model software

	Data pre-processing
	SpeechDat original directory structure and data
	SpeechDat modified directory structure and data

	API and web interface
	Implementation issues

	Experiments
	Infrastructure
	Experiments
	Metrics
	Train from scratch
	Transfer learning

	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography
	Developed software
	Train script
	Test script
	Configuration example
	Makefile
	Dockerfile

