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Abstract: Hybridization between native and nonnative fish species is a major conservation issue,
especially in ecosystems with high levels of endemism, such as Iberian streams. To date, hybridization
with the invasive bleak Alburnus alburnus has been reported for the Iberian chub Squalius alburnoides
and S. pyrenaicus and in scattered locations only. However, the bleak is spreading in the region,
potentially increasing the risks of hybridization with other Squalius species. To gather a more compre-
hensive picture on the current geography of hybridization, we compiled records on hybrids between
bleak and chub in Portugal and conducted genetical assessments of hybrids between bleak and
S. carolitertii. We found that hybridization with bleak is widespread throughout Portuguese river
basins and involves at least S. alburnoides, S. pyrenaicus and S. carolitertii. Hybridization with bleak
may not only cause waste of reproductive effort and damage the genetic integrity of these endemic
species but also promote shifts in the reproductive dynamics of the S. alburnoides hybrid complex,
which includes individuals with various ploidy levels and combinations of parental genomes, repro-
ducing sexually and asexually. We recommend that future studies characterize the fitness of bleak
hybrids and their ecological and genetic interactions with native fish, in order to design effective
conservation measures.

Keywords: biological invasions; introgression; reproductive effort; endemic species; freshwater
diversity; genetic integrity

1. Introduction

Biological invasions threaten biodiversity and contribute to species loss through
different mechanisms, including hybridization [1–4]. Interbreeding between nonnative
species colonizing new areas and local native species increases the extinction risk of the
latter, with conservation concerns even if hybrids are unviable or infertile due to wasted
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reproduction effort [5–8]. Fertile hybrids may form homoploid or polyploid lineages, poten-
tially displacing parental species and leading to admixture between native and nonnative
genomes [8–11]. The introgression of nonnative genes into native species is irreversible,
damaging genetic integrity and disrupting local adaptations through the introduction of
maladaptive genes, possibly causing the extinction of native genotypes [5,12–14]. Con-
versely, nonnative species may benefit from introgression of genetic variability and locally
adapted genes from the native species, alleviating the loss of genetic variation through the
founder effect [5,12,15,16].

Hybridization between native and nonnative species is particularly concerning in
Iberian streams, which are among the most biodiverse and invaded ecosystems in the
world [17]. Fish in particular are highly prone to interbreeding, due to external fertilization,
weak reproductive isolation, high interspecies genetic compatibility, and human-mediated
decrease in habitat complexity [18–21]. The spread of nonnative alleles among the gene
pools of Iberian fish through introgression may have serious consequences on the fitness,
ecology, behavior, and likelihood of population persistence [5,7,12].

After being introduced in Iberian streams as a foraging species by anglers in 1992,
the bleak (Alburnus alburnus) has been expanding through multiple intentional introduc-
tions and natural expansion, and is currently widespread and locally abundant across the
region [22–24]. The invasion of A. alburnus is associated with impacts on native fish fauna
related to trophic competition and hybridization [25]. The latter may be particularly preva-
lent, since A. alburnus hybridizes with many different species in their native range [26–31].
Hybridization between A. alburnus and the Iberian chub (Squalius pyrenaicus) and the
allopolyploid complex Squalius alburnoides has been reported in a few localities [32,33],
but the extent of interbreeding with these and potentially with other species of Squalius
remains unknown. Clarification of this issue is particularly important because endemic
S. alburnoides is a hybrid complex, including individuals with various ploidy levels and
combinations of parental genomes, reproducing sexually and asexually [34,35], whose
reproductive dynamics may be disrupted by the inclusion of another hybridizing species,
and particularly of the invasive A. alburnus.

Here, we sought to assess the geographical extent of interbreeding between the in-
vasive bleak and native chub across Portuguese river basins. We mapped the occurrence
of hybrids identified through morphological characters in multiple river basins across
the current distribution range of bleak and most widespread chub, building on records
gathered during ongoing projects. The first records of hybridization between bleak and
Squalius carolitertii were further confirmed by the molecular assessment of individuals with
intermediate morphology, captured in areas of sympatry between the two species. The
results provide a more comprehensive picture of the occurrence of hybridization associated
with bleak invasion throughout the Portuguese river basins and open new perspectives on
the consequences of hybridization associated with biological invasions.

2. Materials and Methods
2.1. Occurrence Data and Mapping

Data on the occurrence of hybrids between A. alburnus and Squalius spp. were col-
lected between 2015 and 2021 throughout the distribution range of A. alburnus in Portugal,
covering areas of sympatry with S. alburnoides, S. pyrenaicus and S. carolitertii, the most
widespread Squalius species in Portugal.

Records were obtained from several research projects (see Acknowledgments), cov-
ering seven basins and 503 sites (5 to 146 sites per basin), and involving electrofishing
surveys. These surveys mainly targeted species other than Squalius sp. and A. alburnus, but
whenever detected, hybrids were recorded. In all cases, hybrids were identified from mor-
phological traits, focusing on meristic characters recommended by Almodóvar et al. [32],
namely, number of: (a) lateral line scales; (b) transverse scales; (c) branched dorsal fin
rays; (d) branched ventral fin rays; and (e) branched anal fin rays. Meristic counts are not
informative in differentiating Squalius species that contributed to hybridization in areas
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where multiple Squalius species coexist. Nevertheless, they do not overlap with meristic
counts of hybrids involving other leuciscid species [32,36,37].

2.2. Molecular Analysis of Hybrids between A. alburnus and S. carolitertii

Records pointed for the first time to the occurrence of hybridization between A. alburnus
and S. carolitertii, which required molecular assessment. Specifically, to this end, additional
sampling was conducted in August 2020 and in June 2021 at two sites on Vizela River (Ave
basin; 41◦22′31.1′′ N 8◦20′01.7′′ W and 41◦22′30.7′′ N 8◦15′53.8′′ W), where both species are
abundant, using electrofishing (300 V, 1–2 A). Five putative hybrids were identified based
on intermediate morphology as described above, and fin clips were collected for molecular
analysis. Invasive A. alburnus and hybrids were euthanized with a lethal dose of anesthetic
(MS-222) and stored in 4% formaldehyde for deposition in the collections of the National
Museum of Natural History and Science, University of Lisbon. Native fish were returned to
the river.

Total DNA was extracted from the fin clips with a commercial isolation kit (E.Z.N.A.
Tissue DNA Kit, Omega Bio-Tek, Norcross, GA, USA) following manufacturer instructions,
checked for purity and concentration (ng/uL) with NanoDrop (Thermo Fisher Scientific,
Waltham, MA, USA), and stored at −20 ◦C. One nuclear and one mitochondrial loci
(beta-actin and COI, respectively) were amplified and sequenced for each putative hybrid
individual to assess genomic composition and direction of hybridization.

Beta-actin was amplified using the primers described in Sousa-Santos et al. [38],
and COI was amplified with a universal mix of four different primers, namely, VF2_t1,
FishF2_t1, FishR2_t1, and FR1d_t1, with M13 tails to facilitate sequencing, as described
in Ivanova et al. [39]. PCRs were performed with final concentrations of 5–15 ng/uL of
DNA template, 2 mM of MgCl2, 0.1–0.2 mM of each dNTP, and 0.03–0.05 U/µL of DNA
polymerase, namely, GoTaq (Promega, Madison, WI, USA) or Taq PCR Mix with MgCl2
(Abnova, Taipeh, Taiwan). PCR conditions for both genes were as follows: 1 cycle of
95 ◦C for 5 min (initial denaturation), 35 cycles of 95 ◦C for 30 s (denaturation), 55 ◦C
for 40 s (annealing) and 72 ◦C for 90 s (elongation), and 1 cycle of 72 ◦C for 10 min
(final elongation). A sample of each PCR product was run in 3% agarose gel to check for
successful amplification using EZ-Vision Bluelight DNA dye (VWR Life Sciences, Radnor,
PA, USA), purified using ExoCleanUp FAST PCR clean-up reagent (VWR Life Sciences,
Radnor, PA, USA), and sequenced at the forward direction in outsourcing at StabVida
(Caparica, Portugal). Sequences were deposited in GenBank (see Table S1).

Sequences of beta-actin and COI from the parental species (A. alburnus and S. carolitertii)
were obtained from GenBank (see Table S1), aligned in BioEdit, and used to create consensus
sequences to compare SNPs between the putative hybrids and the parental species. The
alleles of the beta-actin sequences of heterozygous individuals were extracted using Indigo
(Gear Genomics, EMBL, Heidelberg, Germany), and COI sequences were blasted in BOLD
(Barcode of Life Data System, Guelph, ON, Canada).

2.3. Ethical Statement

All field and laboratory procedures followed the recommended ethical guidelines
and legislation regarding animal capture, manipulation, and experimentation for scien-
tific purposes, and were conducted under permits obtained from the Portuguese Nature
Conservation Authority (ICNF—Instituto da Conservação da Natureza e das Florestas,
Lisbon, Portugal).

3. Results

Hybrids were detected based on intermediate morphology in 33 of the 503 sites,
but in all basins surveyed. These involved areas of sympatry between A. alburnus and
S. alburnoides, S. carolitertii, and S. pyrenaicus in the Ave, Douro, Vouga, Mondego, Tagus,
Sado, and Guadiana basins (Figure 1).
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coordinates of localities (World Geodetic System (WGS84), in decimal degrees). Gray vertical lines on
the right of the map indicate the areas of sympatry between A. alburnus and each Squalius species.

Sequencing of the beta-actin and COI confirmed the hybrid identity of five putative
hybrids between A. alburnus and S. carolitertii collected in the Ave river basin (Vizela River)
(Table 1). All were mothered by S. carolitertii and fathered by A. alburnus, as indicated
through direct analyses of diagnostic mitochondrial SNPs and by blasting COI sequences
in BOLD databases.
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Table 1. Results of SNP analyses of beta-actin nuclear gene and of BOLD blast of COI mitochondrial
gene, discriminating the parental species involved and the direction of hybridization for each hybrid
analyzed (ID codes V2H1, V4H1, V4H1_21, V4H2, V4H3_21). Low and top percentages of similarity
in BOLD blasts are shown under each COI identification. Ellipsis ( . . . ) represent sequence portions
upstream and downstream Beta-actin of the diagnostic SNP.

ID
Nuclear Genome Mitochondrial Genome Parentage

Beta-actin Gene SNP COI BOLD Systems Blast Mother Father

Squalius carolitertii
(consensus sequence)

. . . TAAACGTTTTA . . .
. . . TAAACGTTTTA . . . - - -

Alburnus alburnus
(consensus sequence)

. . . TAAACATTTTA . . .
. . . TAAACATTTTA . . . - - -

V2H1 . . . TAAACGTTTTA . . .
. . . TAAACATTTTA . . .

S. carolitertii
(95.22–100%) Squalius carolitertii Alburnus alburnus

V4H1 . . . TAAACGTTTTA . . .
. . . TAAACATTTTA . . .

S. carolitertii
(94.91–100%) Squalius carolitertii Alburnus alburnus

V4H1_21 . . . TAAACGTTTTA . . .
. . . TAAACATTTTA . . .

S. carolitertii
(95.17–100%) Squalius carolitertii Alburnus alburnus

V4H2 . . . TAAACGTTTTA . . .
. . . TAAACATTTTA . . .

S. carolitertii
(94.91–100%) Squalius carolitertii Alburnus alburnus

V4H3_21 . . . TAAACGTTTTA . . .
. . . TAAACATTTTA . . .

S. carolitertii
(94.97–100%) Squalius carolitertii Alburnus alburnus

4. Discussion

Records gathered in the current study show that hybridization between A. alburnus
and endemic Squalius occurs in seven of the major river basins in Portugal, indicating that
hybridization may be geographically widespread. This is consistent with previous studies
suggesting that interbreeding between nonnative and native species often leads to viable
offspring [12,40–43]. The extent of hybridization is likely higher than derived herein, given
that surveys were mostly directed to species with habitat requirements that may differ
significantly from those of hybrids (e.g., Lampetra spp.). This should thus require further
analysis based on an adequate sampling design.

Hybridization with A. alburnus is more extensive among Squalius spp. than previ-
ously thought. Besides interbreeding with S. alburnoides and S. pyrenaicus, as previously
reported for the Sado, Guadiana [33], and Tagus basins [32], A. alburnus also interbreeds
and produces viable hybrids with S. carolitertii in the Ave, Douro, Vouga, and Mondego
river basins. This apparent incomplete reproductive isolation between Iberian chub and
invasive A. alburnus raises significant conservation concerns. Indeed, as A. alburnus in-
creasingly spreads across the Iberian Peninsula, it is possible that it may also interbreed
with other critically endangered and endemic chub with very restricted distributions,
namely S. aradensis, S. castellanus, S. laietanus, S. malacitanus, S. palaciosi, S. torgalensis and
S. valentinus [44,45], which are likely to be severely impacted by hybridization. For exam-
ple, A. alburnus has already invaded the Mira river basin (Portugal), and it is urgent to
assess whether hybridization is also occurring with local S. torgalensis.

Hybridization with A. alburnus is likely to cause impacts on native chub even if
hybrids are sterile, due to the wasted reproductive effort. Alburnus alburnus is generally
abundant throughout its invasive range [22–24], and it may be a competitor for reproductive
resources of Squalius, with which it shares early maturation and multiple spawning, among
other traits [46–50]. Hybridization with the invasive bleak will be particularly concerning
for S. pyrenaicus and S. carolitertii species, which are already sexually parasitized by the
allopolyploid S. alburnoides [34]. In contrast to previous studies reporting hybridization
with S. alburnoides and S. pyrenaicus to be bidirectional [32,33], only hybrids between
S. carolitertii females and A. alburnus males were found, suggesting the process may be
unidirectional. This needs further analysis, given our small sample size (N = 5), but if
confirmed, it will imply that parental contributions to hybrids may vary and warrants
understanding of the behavioral and molecular mechanisms involved.
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Interbreeding with the invasive bleak may affect the intricate reproductive dynam-
ics of the S. alburnoides allopolyploid complex. Squalius alburnoides includes males and
females with different ploidy and combinations of the parental genomes (i.e., genomo-
types) that are fertile, able to breed with each other and with parental species, and to
produce offspring [34]. This reproductive network, upheld by crosses among genomotypes
with variable frequencies, may maintain populations at a stable hybrid state (i.e., triploid-
dominated) or route towards hybrid speciation (i.e., allotetraploidy) [51]. The interbreeding
with invasive bleak may cause imbalances in the genomotype composition of populations
and changes in gamete availability, which may ultimately increase extinction risk. Shifts
in reproductive dynamics due to nonnative species have already been reported for the
Pelophylax hybrid system [11], which shares many traits with the S. alburnoides complex.

Hybridization with A. alburnus may also lead to introgression of nonnative genes into
native species genes, resulting in the deterioration of their genetic resources. Introgression
may be particularly detrimental for S. alburnoides, which includes a genome of an extinct
species that currently is expressed without recombining with other native genomes [34],
but is phylogenetically close to the genome of A. alburnus [52], which may favor meiotic
recombination. Besides disrupting local adaptations by introducing maladaptive genes,
admixture may affect female mate choice, which is determined by the genetic integrity of
their own genomes and those of mates [35].

Finally, we highlight the importance of early detection of hybrids especially for threat-
ened species because introgression may occur quickly and even be favored by natural
selection [14,53,54]. Here, we used a combination of meristic characters and sequences
of two diagnostic loci to identify hybrids. Including molecular data overcame some of
the ambiguities of the meristic approach, namely, in identifying parental Squalius species
and highlighting the need of implementing an integrative approach for hybrid detection.
The combination of mitochondrial information with the beta-actin marker may effectively
identify early-generation hybrids, but largely misdiagnose individuals introgressed via
backcrossing [55], thereby underestimating the extent of introgressive hybridization. Such
limitations can be overcome by complementing morphological analysis with genome-wide
molecular approaches, such as RAD sequencing [56], SNP panels [57], or SSR-GBS [58],
tools that are becoming increasingly available. Including these methods in further studies
will be critical to clarify whether hybrids are fertile and reproduce sexually, and to evaluate
the possible impacts of ongoing hybridization on the genetic integrity of native fish fauna.

5. Conclusions

Biological invasions have received increasing attention in the last few decades, but
the inconspicuous and silent consequences of hybridization between native and nonnative
species remain poorly addressed. The occurrence of hybrids between invasive A. alburnus
and several Squalius species across Portugal suggests that hybridization may be widespread
and have potential impacts on endangered endemic chub. Interbreeding with the invader
may waste reproductive effort of individual species and interfere with several aspects of
the reproductive dynamics of the S. alburnoides complex. Finally, if hybrids are fertile and
reproduce sexually, native and nonnative genomes may admix, irreversibly altering the
genetic composition of native species. Given these potentially serious impacts and the
continued expansion of A. alburnus, we recommend that future studies integrate molecular
tools and characterize hybrid fitness and their ecological and genetic interactions with
native Squalius species to elucidate effective conservation measures for the latter.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fishes7050247/s1, Table S1: List of GenBank accession numbers
of all sequences produced.
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