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Abstract The Weibull tail coefficient (WTC) is the parameter @ in a right-tail func-
tion of the type ¥ :=1 — F, such that H := —InF is a regularly varyingfunction
atinfinity with an index of regular variation equal to @ € R*. In a context of extreme
value theory for maxima, it is possible to prove that we have an extreme value index
(EVI) & = 0, but usually a very slow rate of convergence. Most of the recent WTC-
estimators are proportional to the class of Hill EVl-estimators, the average of the
.&om-mwoommom associated with the & upper order statistics, 1 < k <7. The interest-
ing performance of EVI-estimators based on generalized means leads us to base
the WTC-estimation on the power mean-of-order-p (MO,,) EVl-estimators. Consis-
 tency of the WTC-estimators is discussed and their performance, for finite samples,
is illustrated through a small-scale Monté Carlo simulation study. :
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1 A Brief Introduction

Extreme value theory (EVT) and statistics of extremes help us to control poten-
tially disastrous events, of high relevance to society and with a high social impact.
Domains of application of EVT are quite diverse. We mention biostatistics, finance,
insurance, structural engineering and also environment, hydrology, meteorology and
seismology. Earthquakes, fires, floods and other extreme events have provided impe-
tus for several recent re-developments of extreme value analysis (EVA), of statistics
of univariate extremes (SUE) and also multivariate and spatial extremes.

By the late seventies, it was common to work in the field of parametric statis-
tics of extremes, essentially through the use of the limiting models for extremes.
The developments of the asymptotic EVT led researchers to work under semi-
imetric and non-parametric frameworks. Nowadays, with the increase in compu-
tational resources, the parametric modelling gained a new dynamism with the use of
Bayesian and spatial techniques.

Apart from the estimation of the extreme value index (EVI), one of the primary
parameters in EVA, the reliable estimation of other important parameters of rare
eveats, like the Weibull tail coefficient (W'TC), the shape parameter in a Weibull-
type right-tail, will be among the topics to be addressed. Among a large variety
of Weibull-type right-tails, we mention the Exponential, the Gamma, the Logistic
and the Normal tails. They thus form an important and large subgroup of light and
exponential right-tailed distributions of a Gumbel type, being of high interest in
hydrology, meteorology, environmental and actuarial science, among other areas of
application. As mentioned above, we shall emphasize the use of generalized means
(GMs) in the WTC-estimation.

2 > Brief Motivation for the mea. of EVT

To motivate the interest for this area, and despite the great variety of disasters that
have happened recently, we merely mention the historical floods in the North Sea,
on February 1, 1953. According to Encyclopaedia Britannica [1], this was the worst
storm recorded in the North Sea with extensive floodings in several North sea coun-
tries that caused 2551 deaths and vast destruction.

As a way of preventing future floods, the Dutch government created the Delta
project, to determine the height of the dikes and dams so that the probability of
flonding in a future year would be extremely small [1]. And EVT was used as a tool
to reliably answer this question.

‘When dealing with extreme or rare events, we are interested in working with
maximum or minimum values and we want to characterize the tails’ behaviour. For
this, we need to use asymptotic methods, being necessary to make a compromise
since there are generally not many observations in the tails of the distributions and
extrapolation upwards or downwards of the observed sample is required.
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EVTisa Statistics’ branch that provides the probabilistic tools to fully characterize
and understand extreme and rare events. Even when dealing with ‘big data’, the tails
are scarce, and just as mentioned above it is often required an estimation beyond the
sample extremes. The answer to the question, ‘Is there a hidden pattern underlying
this type of extreme events?’, is positive, being next partially and briefly provided.

3 A Brief Touch on Asymptotical EV¥F

Some of the key tools that have led to the way statistical EVT has been exploding
in these last decades are the following ones: 1 — The key result obtained by Fréchet
[2], on the functional equation of stability for maxima, which led him to the now
rightly called Fréchet law; 2 — Such a functional equation was later solved, still with
some restrictions, by Fisher and Tippett [3], who derived the possible non-degenerate
limiting laws of the linearly normalized sample maxima,

.Nz”: . @:

z v Ay >0, b eR, X, =max(X,,.. &) (D
i i
associated with an independent and identically distributed (1ID) random sample,
X, = (X1,..., X,) from a cumulative distribution function (CDF) F.

They then arrived at the extreme value (EV) CDFs,

Typel: ARy =", 4R [Gumbel], 2)
Typell: @u(x) =e™*", x >0, a >0 [Fréchet], 3)
Type Il : Wy(x) =e™ ", x <0, o > 0 [Max — Weibull]; 4)

3 — Such a result was initially formalized by Gnedenko [4], used by Gumbel [5],
for applications of EVT in engineering and hydrology, and finally formalized by de
Haan [6].

SUE is thus mainly based on the aforementioned EV models, also called max-
stable laws, related to the non-degenerate limiting behaviour of the sequence of
linearly normalized maximum values, as in (1). SUE deals thus essentially with the

wvoé-agso:ma EV CDFs, in (2), (3) and (4), which can be encompassed in the
general extreme value (GEV) CDF,

e+ +&x >0,if & #0,

G =] = e, xeR if£=0

(&)

ith £ the so-called EVI, the primary parameter in SUE. But SUE is also based on
asymptotic results related to the non-degenerate limiting behaviour of a set of upper
_ rder statistics (OSs), either individually or jointly (Weissman [7, 8]; Pickands [9];
Gomes [10-12]; Smith [13]), or of excesses over high thresholds (Davison [14];
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Smith [15]; Davison and Smith [16]), linked (o generalized Pareto CDFs (GPg () =
1+ 1In GEV(-)). And the fact that min(Xy, ..., X;) = —max(—=X,,..., —X,)
enables the derivation of analogous results for minima and lower OSs.

The aforementioned main theoretical result on the non-degenerate limiting
behaviour of the linearly normalized maximum in (1) is commonly known as the
Fisher-Tippett-Gnedenko’s theorem, also called extremal types theorem (ETT), and
vrole similar to the central limit theorem (CLT) for averages (or sums). The CDF
s then said to belong to the max-domain of attraction (MDA) of GEV¢, and we
write I € Dy ﬁomfv . The EVI measures the heaviness of the right-tail function
(RTI), F(x) := | — F(x). The heavier the right-tail, the larger £ is.

Statistical applications of EVT have given emphasis to the relaxation of the inde-
pendence condition and homoscedasticity, to the consideration of multidimensional
and spatial frameworks and from a theoretical point of view, to a deeper and deeper
use of regular variation and point processes.

4 Semi-parametric Estimation in SUE

The crucial parameter in SUE is the already defined EVI, denoted by £ (€ R). For
dependent samples, we also have the extremal index, related to the mean size of
clusters of extreme events. Under a semi-parametric framework, there is no fitting
of an adequate parametric model. It is only assumed that F € Da(GEV;), with
GEV¢(+) given in (5), & being the unique primary parameter of extreme events to
be initially estimated, on the basis of a few upper observations, and according to an
adequate methodology.

Itis then common to consider the k upper observations above the random threshold
Xon—gms 1€ Xpp = -+ > Xy i1, Such a threshold needs to be an upper interme-
diate OS, i.e.

k=k, — 00, kell,n), k=o0(n) asn— oco. (6)

Let F* denote the generalized inverse function associated with the underlying

CDF, F. Let IJ be the associated reciprocal tail quantile function:

U):=F-(-1/8), te :,8__. (7)

The model F is commonly said to have a heavy right-tail if and only if there exists
a positive real & such that

F=1-FeRV_y, ifandonlyif U e RV, (8)
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with U (-) defined in (7) and where the notation RV stands for the class of regularly
varying functions at infinity with an index of regular variation equal to 8, i.e. positive

measurable functions g(-) such that ,=5 gltx)/g(t) = xf, forall x > 0.
— 0

Since risks are more dangerous when we deal with a heavy RTF, we often consider
heavy-tailed models, i.e. Pareto-type underlying CDFs, with a positive EVI, working
thus in ,

Dyt i= D (GEVino), ©)]
Wi

or equivalently, models F such that (8) holds.

4.1 A Class of GM EVI-Estimators

Among the large variety of EVI-estimators, we mention the Hill (H) estimators
[17]. The H EVI-estimators are the average of the log-excesses, Vi :=1n X, _; 1., —
InXppm, 1 <i <k <n,ie.

k
1
Hip = H) = Hik; X,) = M Vi lsk<n. (10)

We further mention one of the competitive generalizations of H(k), recently intro-
duced in the literature, and based on a simple GM.
First, note that we can write

1/k
1/k k e
=ik n—i+1mn .
z .N:IF:

i=1

k -
H(k) = I { ikl
m N: —k:n
"The H EVI-estimator in {10) is thus the logarithm of the geometric mean (or power
mean-of-order-0) of
i Na\_cl”: .

qhw””ﬂgu.mmmmﬁﬂz. A_Hu

Almost simultaneously, Brilhante et al. [18], Paulauskas and Vai¢iulis [19] and

der-p (MO,) of Uy, 1 <i <k, in (11), for p = 0. More generajly, Caeiro et al.
[22] considered the same statistics for any p € R, i.e.

k 1/p
i UR) .ifp#0,
M, (k) = Mnu irk
ﬂ Ui

; IFp=0Q;

Beran et al. [20] (see also [21]) considered as basic statistics, the power meafi-of--
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and the associated class of MO, EVI-estimators:

(1-Mp@)/p. if p < 1/E p #0.
Hin,p = Hpk) = Hpk; X)) = (12)

In My(k) = H(k), if p = 0.

The use of the extra tuning parameter p € R and the MO, methodology can thus
provide a much more adequate EVI-estimation. Asymplotic normality is achieved
for ;o < 1/(28). But, on the basis ol Gomes et al. [23] (see also [24]), we can now g0
up to p = 1/&, getting then a sum-stable hehaviour, with an index of sum-stability
o = L/(pE). And p = 1/&, we get, for Hy(k) —§, a deterministic dominant
component, of the order of 1/1Ink.

4.2 Semi-parametric Estimation of the WIC

The WTC is the parameter 6 in an RTF of the type
Fx)=1-F(x) =:eH%, HeRVyp, 6 €eR". (13)
Equivalently to (13), we can say that
Ue)y=H () € RVs = U@ =:(n’Ln1), (14)

witt. I € R Vy, a slowly varying function.

In a context of EVT for maxima, it is possible to prove that we have an EVI
£ =0, but usually a very slow rate of convergence. We are working with those
tails, like the Normal RTF, in the MDA of Gumbel’s law A(-), in (2), which can
exhibit a penultimate (or pre-asymptotic) behaviour, a concept introduced in the
aforementioned seminal paper by Fisher and Tippett, [3]. Such RTFs, despite double-
exponential, look more similar either to

— Max-Weibull, ¥, (x) = exp(—(—x)%),x <0 (£ =—1/a <0)
_ or to Fréchet, @,(x) = exp(—x %) x = 0(§ = 1/u > 0)

right-tails, according to 6 <1 or 6 > 1, respectively. Details on penultimate
behaviour can be found in Gomes [10, 25] and Gomes and de Haan [26], among
others.

Here, we merely mention the most relevant WTC-estimators in Gardes and Girard
[271, which are given by

k
o ,%M\ 9 3 Vi = In(n/ e, (15)

i=1
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with Hy ,, the already defined H EVI-estimators, in (10). More generally than m,.%;.
we now suggest the consideration of MO, WTC-estimators, based on the aforemen-
tioned GM EVI-estimators, in (12), i.e.

00 = In(n/k)Hp p- (16)

And recently, Lehmer’s mean-of-order-p EVI-estimators (Penalva et al. [28-30])

_ have revealed even a higher efficiency, but have not yet been considered for the

WTC-estimation. L

4.3 Consistency of the WI'C-Estimators

To achieve the consistency of the new class of WTC-estimators, we just need to
consider p # 0, in (16), since the case p = O that corresponds to the class mﬁ: in
(15), was already studied in Gardes and Girard [27]. We start by observing that, for
any p # 0, and with U(-) defined in (7),

it

ASS% 3 T i _Sua AE_; t+Inx)\?
uw ) Int L(lnt) .
mpuo.o L(.),defined in (14),isin R _._\? and applying a first-order Taylor expansion to

”_sm first term, we can write
b

: Uex)\? 1408 Inx
! o) PPt
; __Lﬂ Yins Yams o o o s Yo denote the OSs associated with a random sample of n inde-

pendent standard Pareto random variables with CDF Fy(y) = 1 — 1/y,y = 1. Then

A : , ' ;
wn..: =UYp) 1 <1 <nandYiiyim/ Ya-ien 2 ¥, _ir1. Inthis case, the following
distributional representation holds, with Uy defined in (11),

p d {UQu—i1a)\?

ey QAN._LG»V =
a4 (U Q:n?ﬁi.tivm o} il O1In Yijyik
U(Yu—ten) In(n/k)

wekn ~ In(n/k) — oo, for intermediate sequences of OSs satisfying (6), we then

1 pd po
ek = et B PEL

e —
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with o, (1) uniformin i, 1 < i < k (see [22]). From (12) and (16), the consistency of
the MO, WTC-estimators in (16) follows, in the whole D™, in (9), provided that
(6) holds.

5 Finite Sample Behaviour with Simulated Data

y In (16), through a Monte Carlo simulation study. The values for the tuning
parameter p were selected from a preliminary simulation study. The value p = 0
was always used, since it provides the estimator in (15). The value p = 1 was also
used as an example of a positive tuning parameter. We have considered the following
typical distributions within the class of Weibull-type models: the Gamma distribution
with a shape parameter equal to 0.75 (¢ = 1) and the Half-Normal model (¢ = 0.5).
In Figs. 1 and 2, we present, at the left, the simulated mean value and, at the right,
the corresponding simulated root mean squared error (RMSE), as a function of k,
provided by the aforementioned class of WTC-estimators and 20,000 samples of size
n = 1000. The horizontal solid line, at the left plot, indicates the true WTC value.
Similar patterns were obtained for other simulated models and sample sizes.

Iz Table 1, we present the simulated values of the RMSE at the simulated optimal
level, for samples of sizes 100, 200, 500, 1000, 2000 and 5000. For each model and
sample size, the smallest RMSE is written in bold. The smallest RMSE is always
achieved by @;ﬂ@. = In(n/k)Hy p,p, in (16), with p < 0. Moreover, the optimal p
decreases, as the sample size n increases. For large sample sizes, the choices —3 and
—1.5 seem to provide an overall good performance for the Gamma and Half-Normal
models, respectively.

Simulated Mean Value ) P Simulated RMSE
2.0 — p=3 . pe0 ' .
e pm2 —— pat
gy

1.5+

— p=3 =m pE-l —— pe
R - p=0
T T T T T T OO T T T T T T
3 200 400 600 800 1000 0 200 400 800 800 1000

Fig. 1 Simulated Mean values (left) and RMSEs (right) of the WTC-estimators under study from
samples of size n = 1000 from a Gamma(0.75, 1) parent (6 = 1)
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Table 1 Simulated RMSE at the simulated optimal level

Sample 100 200 500 1000 2000 5000
S1Ze. f .

_ Gamma(0.75, 1)

p=-3 0.2808 - {0.1868 0.1206 0.0942 - 0.0781 0.0653
p=-2 0.2311 0.1768.: 0.1369 0.1173 0.1023 0.0867
p=-1 0.2302 0.1948 0.1619 0.1413 0.1248 0.1068
p=0 0.2547 0.2242 0.1880 0.1651 0.1478 0.1273
p=1 0.2910 0.2573 0.2180 0.1936 0.1738 0.1494
M Half-Normal .
v =-2 0.1191 0.0814 0.0512 0.0377 0.0280 0.0195
p=~—15 ]0.0985 0.0678 0.0419 10.0300 0.0215 0.0137-
p=-1 0.0878 0.0637 0.0430 0.0320 0.0237 0.0157
p= 0.0873 0.0694 0.0507 0.0398 0.0311 0.0220
p= 0.0961 0.0792 0.0605 0.0489 0.0396 0.0295

B

. A few general comments:

.~ — For all simulated parents, we could always find 4 value of p (negative, contrary

o what happens with the MO, EVlI-estimation), such that, for adequate f-values,
_ there is a reduction in RMSE, as well as in bias, and for such a value of p, the
MO, often strongly beats the H = MO, WTC-estimators,

- — Algorithmic details on the choice of tuning parameters under play are st Il under

- progress, but can be easily devised, similar to what has been done for an EVL-
‘estimation in Caeiro and Gomes [31] and Gomes 2t al. [32], where R-scripts are
| provided.
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in risk modelling.
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where parametric models, both asymptotic and pre-asymptotic, became again quite
relevaat.
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— We have here considered the univariate case only, but EVT is of high relevance both
in the multivariate and in the spatial setup, whenever dealing with the modelling
of extreme events or equivalently the modelling of risk.
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estimator can be developed for censored data.

— Also corresponding estimators of extreme quantiles can be developed either for
complete or censored (mild/heavy) settings.

Mathematique 6, 93-116 (1927)

Fisher, R.A., Tippett, L.H.C.; Limiting forms of the frequency distributions of the largest of
smallest member of a sample. Proc. Camb., Philds. Soc. 24, 180-190 (1928). https://doi.osg/
10.1017/80305004 100015681

Gnedenko, B.V.: Sur la distribution limite du terme maximum d’une série aléatoire. Ann, Math.
44, 423-453 (1943). https://doi.org/10.2307/1968974 P

Gumbel, E.J.: Statistics of Extremes. Columbia University Press, NY (1958). https://doi.org/
10.7312/gumb92958

Haan, L. de: On Regular Variation and its Application to the Weak Convergence of Sample
Extremes. Mathematical Centre Tract 32, Amsterdam (1970)

Weissman, I.: Multivariate extremal processes generated by independent non-identically cis-
tributed random variables. J. Appl. Probab. 12, 477-487 (1975). https://doi.org/ 10.230%
3212862

. Weissman, I.: Estimation of parameters and large quantiles based on the k largest observati:
1. Amer. Stat. Assoc. 73, 812-815 (1978). https://doi.org/10.2307/2286285

Pickands III, J.: Statistical inference using extreme order statistics. Ann. Stat. 3, 119-131
(1975). https://doi.org/10.1214/a0s/ 1176343003 .

Gomes, M.I.: Some Probabilistic and Statistical Problems in Extreme Value Theory. Ph.D.
Thesis, The University of Sheffield (1978)

Gomes, M.L: An i-dimensional limiting distribution function of largest values and itsrelevarce
to the statistical theory of extremes. In: Taillie, C., et al. (eds.) Statistical Distributions in
Scientific Work, vol. 6, pp. 389—410. D. Reidel, Dordrecht (1981)

Gomes, M.L: Statistical theory of extremes—comparison of two approaches. Stat. Decis. 2,
33-37 (1985) ;
Smith, R.L.: Extreme value theory based on the » largest annual events. J. Hydrol. 86, 2743
(1986). hitps://doi.org/10.1016/0022-1694(86)90004-1 ‘
Davison, A.C.: Modeling excesses over high threshold with an application. In: Tiago de
Oliveira, J. (eds.) Statistical Extremes and Applications, pp.461-482. D. Reidel, Dordrzcht
(1984). https://doi.org/10.1007/978-94-017-3069-3_34 o
Smith, R.L.: Threshold methods for sample extremes. In: Tiago de Oliveira, I. (ed.) Statistical
Extremes and Applications, pp. 621-638. D. Reidel, Dordrect (1 984). https://doi.org/10.1007/
978-94-017-3069-3_48 ;

Davison, A.C., Smith, R.L.: Models for exceedances over high thresholds. J. R. Stat. Soc. B
Stat. Meth. 52, 393-442 (1990). http://www.jstor.org/stable/2345667 G

Hill, B.M.: A simple general approach to inference about the tail of a distribution. Ann. Stat.
3, 1163-1174 (1975). r:mm..:dow.oﬂm:o.aﬁ&mo“w\:qaﬁmmﬁ. :
Brilhante, M.F.,, Gomes, M.I., Pestana, D.; A simple generalisation of the Hill estimator. Com-
put. Statist, Data Anal. 57(1), 518-535 (2013). s:nw&aow.o_.m:o.Hoﬁm:..nmam.wcmm.oq.g@

. Paulauskas, V., Vaidiulis, M.: On the improvement of Hill and some other estimators. Lith.
Math, J. 53, 336-355 (2013). https://doi.org/10.1007/s10986-013-9212-x

Beran, J., Schell, D., Stehlik, M.: The harmonic moment tail index estimator: asymptotic

. distribution and robustness. Ann. Inst. Statist. Math. 66, 193-220 (2014). https://doi.org/10.
1007/s10463-013-0412-2 W
Segers, J.: Residual estimators. J. Stat. Plann. Infer. 98(1-2), 15-27 (2001). hitps://doi.org/ 10.
1016/50378-3758(00)00321-9

Cagiro, F.,, Gomes, M.L, Beirlant, J., de Wet, T.: Mean-of-order p reduced-bias extreme value
index estimation under a third-order framework. Extremes 19(4), 561-589 (2016). https://doi.
org/10.1007/s10687-016-0261-5

T

>aw:ci_n@mo§m5m The research was partially supported by National Funds through FCT—
Fundagfio para a Ciéncia ¢ a Tecnologia (Portuguese Foundation for Science and Technology)

through projects UIDB/00297/2020 (CMA/UNL), UIDB/00006/2020 (CEA/UL) and
UIDB/04674/2020 (CIMA).




23

24

25,

29

30.

34,

35

42,

F. Caeiro et al.

Gomes, M.1., Henriques-Redrigues, L., Pestana D.: Non-regular Frameworks and the Mean-
of-order p Extreme Value Index Estimation. J. Stat. Theory Practice 16(37) (2022). https://doi.
org/10.1007/s42519-022-00264-w

Gomes, M.L., Henriques-Rodrigues, L., Pestana, D.: Estimac¢io de um indice de valores
extremos positivo através de médias generalizadas e em ambiente de nfo-regularidade. In:
Milhziro, P. et al. (eds.) Estatistica: Desafios Transversais is Ciéncias com Dados — Atas do
XXIV Congresso da Sociedade Portuguesa de Estatfstica, Edi¢des SPE, pp. 213-226 (2021)
Gomes, M.1.: Penultimate behaviour of the extremes. In: Galambos, J., Lechner, J;, Simiu, E.
(eds.) Extreme Value Theory and Applications, pp. 403—418. Kluwer Academic Publishers
(1994). https://doi.org/10.1007/978-1-4613-3638-9

Gomes, M.I, de Haan, L.: Approximation by penultimate extreme value distributions. Extremes
2(1), 71-85 (1999). https://doi.org/10.1023/A:1009920327187

Gardes, L., Girard, S.: Comparison of Weibull tail-coefficient estimators. Revstat.—Stat, J. 4,
163188 (2006). hips://doi.org/10.57805/revstat.vdi2. 34

Penaiva, H., Caeiro, F,, Gomes, M.L, Neves, M.M.: An Efficient Naive Generalization of the
Hill Estimator-Discrepancy between Asymptotic and Finite Sample Behaviour. Notas e Comu-
nicagdes CEAUL 02/2016 (2016). http://ceaul.org/wp-content/uploads/2018/10/NotaseCom-
2.pdf

Penatva, H., Gomes, M.I., Caeiro, C., Neves, M.M.: A couple of non reduced bias generalized
means in extreme value theory: an asymptotic comparison. Revstat,—Stat. J. 18(3), 281-298
(2020). https://doi.org/10.57805/revstat.v18i3.301

Penalva, H., Gomes, M.IL., Caeiro, C., Neves, M.M.: Lehmer’s mean-of-order-p ecxtreme value
index estimation: a simulation study and applications. J. Appl. Stat. 47, 13-15, 2825-2845
(2020). https://doi.org/10.1080/02664763.2019.1694871

Caeiro, F., Gomes, M.I.: Threshold selection in extreme value analysis. In: Dey Yan (eds.)
Extreme Value Modeling and Risk Analysis: Methods and Applications (Chap. 4), pp. 69-87.
Chapman-Hall/CRC (2015). hitps://doi.org/10.1201/b19721-5

Gomes, M.1L, Caeiro, I, Henriques-Rodrigues, L., Manjunath, B.G.: Bootstrap methods in
statistics ol extremes. In: Longin, F. (ed.) Handbook of Extreme Value Theory and Its Appli-
cations to Finance and Insurance (Chap. 6), pp. 117-138 . Wiley (2016). https://doi.org/10.
1002/9781118650318.ch6

Araiijo Santos, P., Fraga Alves, M.1., Gomes, M.IL: Peaks over random threshold methodology
for tuil index and high quantile estimation. Revstat.—Statist. J. 4(3), 227-247 (2006). hitps://
doi.org/10.57805/revstat.v4i3.37

Stehlik, M., Potocky, R., Waldl, H., Fahidn Z.: On the favourable estimation of fitting heavy
tailed data. Comput. Stat. 25, 485-503 (2010). https://doi.org/10.1007/500180-010-0189-1
Embrechts, P., Kliippelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and
Finance. Springer, Berlin (1997). https://link.springer.com/book/10.1007/978-3-642-33483-
2

Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applica-
tions. Wiley, England (2004). https://onlinelibrary.wiley.com/doi/book/10.1002/0470012382
Gomzs, M.L, Fraga Alves, M.I,, Neves, C.: Andlise de Valores Extremos: uma Introducfo.
Edigdes S.P.E. and LN.E. (2013). ISBN: 978-972-8890-30-8

Dey, D.K., Yan, J.: Exireme Value Modeling and Risk Analysis: Methods and Applications.
Chapman and Hall/CRC (2015). https://doi.org/10.1201/b19721

Davison, A.C., Husgr, R.: Statistics of extremes. Ann. Rev. Stat. Appl. 2(1), 203-235 (2015).
https://doi.org/10.1146/annurev-statistics-010814-020133

Gomezs, MLIL, Guillou, A.: Extreme value theory and statistics of univariate extremes: a review.
Interfi. Stat. Rev. 83(2), 263-292 (2015). https://doi.org/10.111 1/insr. 12058

Diebelt, J., Gardes, L., Girard, S., Guillou, A.: Bias-reduced extreme quantile estimators of
Weibull tail distributions. J. Stat. Plan, Infer. 138, 13891401 (2008). https://doi.org/10.1016/
j.jspi 2007.04.025

Gardes, L., Girard, S.: Estimation of the Weibull tail-coefficient with linear combination of
upper order statistics. J. Stat. Plan. Infer. mum 1416-1427 (2008). https://doi.org/10.1016/j.
js$pi.2007.04.026f

43.

44,

45,

Estimation of the WTC through the Power Mean-of-Order-p 53

B

Gardes, L., Girard, S.: On the estimation of the functional Weibull tail-coefficient. J. Multivar,
Anal. 146(C), 29-45 (2016). https://doi.org/ 10.1016/j.jmva.2015.05.007

Goegebeur, Y., Beirlant, J., de Wet T.: Generalized kernel estimators for the Em_g: tail
coefficient. Commun, Stat: Theory Methods 39, 3695-3716 (2010). https://doi.org/10.1080/
03610920903324882

Gong, C., Ling, C.: Robust estimations for the tail index of Weibull-type distribution. Risks 6,
119 (2018). https://doi.org/10.3390/risks6040119

Kpanzou T.A., Gamado K.M., Hounnon H.: A Beran-inspired estimator for the Weibull-type
tail coefficient. J. Stat. Theory Pract. 13 (2019) Hittps://doi.org/10.1007/s42519-018-0013-8
Worms, J., Worms, R.: Estimation of extremes for Weibull-tail distributions in the presence of
random censoring. Extremes 22, 667-704 (2019). https://doi.org/10.1007/s10687-019-00354-
2




