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Abstract: Landscape evaluation and monitoring enable us to understand the interactions between its
components and the effects of disturbances (whether they are natural or artificial) in its dynamics.
Forests have a wide variability and diversity, and their analysis at the landscape level allows us to
evaluate its spatial distribution pattern. This study focused on the analysis of the landscape spatial
variability of forest species with data derived from remote sensing and landscape metrics of a case
study in Alto Alentejo, Portugal. Sentinel-2 satellite images were used to produce a land use and land
cover map with a random forest classification algorithm, where the bands, vegetation and texture
indices were the explanatory variables. The obtained land use/cover map has classified five forest
classes and one non-forest class. The map was used to evaluate the diversity with eleven composition
and configuration landscape diversity metrics for Alto Alentejo and for four sub-regions delimited
according to their edaphic-climatic characteristics. The results showed that the land use/cover map
had a good precision (a global precision of 89% and a kappa of 86%) and that both Alto Alentejo and
its sub-regions had high forest diversity both in composition and configuration.

Keywords: Sentinel-2; forest land use; landscape metrics; beta diversity modelling

1. Introduction

The world’s surface is in constant change, resulting in dynamic landscape patterns,
and these can be due to natural (e.g., climate change) or anthropogenic (e.g., changes in
land use/cover and forest management) disturbances. These changes at the local, regional
and/or global levels affect many ecological processes [1]. The landscapes vary in space
from simple homogenous to complex heterogeneous ones, and they are the result of a suite
of factors from edaphic, climatic and topographic conditions to disturbances [2–4]. Actually,
the wide variety of remote sensing data obtained from Earth observation satellites play a
key role in the management of natural resources, the study of climate change, territorial and
forest management and measures that promote sustainable development [5,6]. These data
allow us to generate, periodically, land use/land cover (LULC) maps at several scales, and
they are a relevant tool to identify and understand the effects of the landscape dynamics
over time and space [1].

The landscape is heterogeneous, comprising several LULC classes with a certain
spatial distribution [7]. Landscape encompasses a set of patches that can be characterised
by composition (e.g., the quantity and proportion of patches) and configuration (e.g., the
patches’ form and their spatial arrangement) [8,9].
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Landscape patterns are studied using LULC maps, either with existing maps (older
or recent, from different data sources) or produced with remote sensing data [10–12]. The
LULC maps result from satellite image classification methods using several algorithms,
such as maximum likelihood, support vector machine or random forest [13]. The maps can
be generated with only one data set or with the conjugation of different spatial resolution,
temporal and/or sensors data [14]. The use of the abovementioned data sets enables us to
improve the data quality and earth surface monitoring at low costs [15]. The independent
variables used in the identification of LULC classes can be the multispectral bands from the
satellite images, as well as auxiliary bands, such as the vegetation or texture indices. This
is due to the different spectral response of each forest species [16]. In forest landscapes,
the LULC maps are determinants for their protection, conservation, biomass and carbon
evaluation and ecological processes [17]. The existing LULC maps and those derived from
remote sensing data have different spatial and temporal scales that enable the evaluation of
landscape composition and configuration [2,3] over space [18] and in time [10]. Based on
these maps, several analyses have been conducted with a focus on a set of features such
forest fires, forest monitoring and management [19], habitat fragmentation [10] and forest
land loss [1,4,7,11,18,20].

From 1992 onwards, a set of software packages were developed to analyse the land-
scape patterns with landscape metrics. These software packages use geographic infor-
mation systems tools with maps either in vectorial or in raster formats. The latter one is
more frequently used due to the wider availability of the data, both spatial and tempo-
ral data [1]. From those, Fragstats has been widely used as it encompasses most of the
landscape metrics [21].

Landscape patterns, both spatial and temporal ones, have been most frequently anal-
ysed with metrics. Landscape metrics are quantitative indices that allow us to evaluate
the composition and configuration of the LULC classes [8,9]. Several landscape metrics
are used, and some characterise the composition, whereas others characterise the config-
uration [1,9]. However, some landscape metrics may produce redundant results. Thus,
the selection of the better suited metrics is of the utmost importance, and it is dependent
on the area and the objectives of the study [1]. The eleven most frequently used indices
are: the total area (TA), Shannon’s evenness index (SHEI), Simpson’s evenness index (SIEI),
percentage of landscape (PLAND), largest patch index (LPI), patch area (AREA_MN),
number of patches (NP), weighted mean shape (AWMSI), edge density (ED), core area
percent of landscape (CPLAND) and interspersion juxtaposition index (IJI). These indices
enable us to characterise the landscape patterns, and they complement each other [9,21,22].

Landscape composition is usually analysed with Shannon or Simpson indices, or
even both of them as they complement each other. The former one places more emphasis
on the most frequent classes, while the latter one highlights the influence of the less
frequent classes [23]. The landscape configuration is analysed with the metrics percentage
of landscape, largest patch index, mean patch area, number of patches, weighted mean
shape index, edge density, core area percent of landscape and interspersion juxtaposition
index [6,21,22]. The percentage of landscape quantifies the proportion of each LULC class
in the landscape. The largest patch index is a measure of dominance at the class level, and
it corresponds to the area of the largest patch. Mean patch area corresponds to the mean
area per LULC class. The number of patches is the total number of patches, and it can be
calculated at the landscape or class levels. The weighted mean shape index corresponds
to the ratio of the edge length to the standard edge length (assuming a standard square
patch). The edge density is the proportion of the length of the boundary of the patches in
relation to the area of the landscape. The core area percent of landscape corresponds to
the total core area of each LULC class. The interspersion juxtaposition index evaluates the
distribution of the patches of the LULC classes in relation to their neighbours, evaluating
the spatial pattern of the patches, which is their interspersion or mingling.

The advantage of using several landscape metrics is that it enables us to highlight
the effect of the interaction between the different metrics [8,9,21,24,25]. For example,
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the analysis of the mean patch area and the number of patches are indicative of the
fragmentation of the LULC classes: the smaller the mean patch area is and the larger the
number of patches is, the more fragmented the landscape is. The weighted mean shape
index, edge density and core area percent of landscape are indicative of the complexity
of the form of the patches: the higher the weighted mean shape index and edge density
are and the smaller the core area percent of the landscape is, the more complex the patch
forms are. Core area percent of landscape is also dependent on the mean patch area, edge
density and weighted mean shape index: the smaller the mean patch area is and the larger
the edge density and weighted mean shape index are, the smaller the core area percent of
the landscape is.

The goal of this study was the analysis of the spatial variability of the non-forest and
forest areas in Alto Alentejo, Portugal with an LULC map derived from Sentinel-2 data. The
three specific objectives were to: (i) produce an LULC map of the Alto Alentejo region with
Sentinel-2 images; (ii) use landscape metrics to evaluate the composition and configuration
of the landscapelevel; (iii) compare the landscape diversity in Alto Alentejo and in four
sub-regions with homogeneous edaphic and climatic conditions.

2. Materials and Methods
2.1. Study Area and Sentinel-2 Data

The study area, Alto Alentejo, is located in Eastern Central Portugal (Figure 1). It
is characterised by a Mediterranean climate, with high temperatures and dry summers,
and precipitation that is concentrated in the autumn and winter. The relief is irregular,
with it ranging from 400 to 1027 m in the Serra de São Mamede (northeast of the study
area), and in the remaining area, there is a mean elevation of around 250 m. The climate is
under Atlantic influence in the higher elevations, whereas the lower ones are influenced
by the Mediterranean climate [1]. The soils have a spatial heterogeneous distribution, and
they include cambisoils, litosoils, luvisoils, vertisoils and podzols [5]. It comprises two
watershed basins, Tagus and Guadiana [1].
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The Sentinel-2 satellite images used in this study were obtained from the Europe
Spatial Agency (ESA) Copernicus open access hub portal [6]. The Sentinel-2 product at
level 2 A corresponds to the bottom of atmosphere (BOA) reflectance. To enable a stronger
contrast between the forest cover and other LULC classes, the image acquisition dates
were selected during the dry months. Additionally, the images with less than 10% cloud
cover were selected. Two images were needed to cover Alto Alentejo, and were acquired in
September 2019. From the thirteen available multispectral bands, ten were used (Table 1),
as these were the better suited for the LULC evaluation [6,7].

Table 1. Characteristics of Sentinel-2 bands used in this study.

Bands Description Spatial Resolution
(m)

Central Wavelength
(nm)

B2 Blue 10 490
B3 Green 10 560
B4 Red 10 665
B5 Red Edge 1 20 705
B6 Red Edge 2 20 749
B7 Red Edge 3 20 783
B8 Near infrared (NIR) 10 842

B8A Red Edge 4 20 865
B11 Shortwave infrared (SWIR 1) 20 1610
B12 Shortwave infrared (SWIR 2) 20 2190

2.2. Methods

This study was developed in two phases: in the first phase, the LULC map was
produced, and in the second phase, this map was used to evaluate the diversity at the
landscape level (Figure 2).
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First, the LULC map was produced using the following sequential steps: (i) the
creation of the mosaic with the two satellite images; (ii) resampling the spatial resolution of
the bands from 20 m (B5, B6, B7, B8A, B11 and B12) to 10m using the nearest neighbour
algorithm; (iii) image classification using the supervised method with Random Forest (RF)
algorithm, which included the definition of the LULC classes, the definition of the training
areas, the selection of the exploratory variables and RF parameters (the number of decision
trees and knots).

In this study, nine classes of LULC were defined: five of them were forest species,
and four of them were non-forest. The forest classes correspond to the following forest
species: holm oak (Quercus rotundifolia, hereafter, HO), cork oak (Quercus suber, hereafter,
CO), eucalyptus (Eucalyptus spp., hereafter, EC), umbrella pine (Pinus pinea, hereafter, UP)
and maritime pine (Pinus pinaster, hereafter, MP). The non-forest (NF) classes encompass
the classes social area and soil, water, agricultural areas and shrubland. For each class, a set
of sampling areas were selected per LULC class.

The RF classification algorithm was selected due to its ability to derive LULC maps
with good accuracy and a shorter processing time [2,8,9]. The RF algorithm requires the
definition of the number of decision trees and knots. According to the literature [3,4,10],
good accuracy is attained with 500 decision trees and 20 knots, which were used in this
study. Additionally, RF requires the data set to be divided into two subsets: one is used for
fitting (corresponding to two thirds of the data set), and another one is used for validation
(one third of the data set), according to the suggestion by Pageot et al. [10]. The exploratory
variables selected for the classification included ten multispectral bands (Table 1), seven
vegetation indices and thirty texture indices (three for each original band) (Table 2). From
the existing vegetation indices, those with a better ability to discriminate between the
different LULC classes were selected. For example, the vegetatipon indices that differentiate
vegetation from other uses, different types of vegetation, water minimise the effect of soil
in areas with sparse vegetation, noise and atmospheric influence [11–15]. Similarly, the
selected gray-level co-occurrence matrix (GLCM) texture indices were the ones which
attained better performances in image classification in former studies [12,16–18], namely,
mean, variance and correlation.

Table 2. Vegetation and texture indices.

Indices Formula Eq.

Vegetation
Indices

NDVI (B8−B4)
(B8+B4)

1

SAVI 1.5×(B8−B4)
8×(B8+B4+0.5)

2

MSAVI2
0.5×{

2× (B8 + 1)−
√
(2× B8 + 1× (2× B8 + 1)− 8× (B8− B4)

} 3

EVI 2.5×(B8−B4)
(B8+6×B4−(7.5×B2)+1)

4

NDRE1 (B8A−B5)
(B8A+B5)

5

NDRE2 (B8A−B6)
(B8A+B6)

6

NDII (B8A−B11)
(B8A+B11)

7

Texture
indices

GLCM Mean
Ng

∑
i=1

Ng

∑
j=1

i × P(i, j) 8

GLCM
Variance

Ng

∑
i=1

Ng

∑
j=1

(i− u)2 p(i, j) 9

GLCM
Correlation

∑i ∑j(ij)P(i,j)−µx µy
σxσy

10

B2-Blue; B4-Red; B5-Red Edge 1; B6-Red Edge 2; B8-Near infrared; B8A-RedEdge 4; B11-Shortwave infrared 1;
p(i,j) is (i,j) gray-level co-occurrence matrix input; Ng—total number of grey levels in the image; µx and µy—Mean
deviation in row (x) and column (y), respectively; σx and σy—Standard deviation in row (x) and column (y),
respectively.

The classification accuracy was evaluated with the confusion matrix, overall accu-
racy (OA) and the kappa statistic (Table 3), according to the suggestion by several au-
thors [19–21].
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Table 3. Accuracy precision measures.

Formula Eq.

Overall accuracy k
∑

i=1

Nii
N

11

Kappa statistic N ∑r
i=1 xii−∑r

i=1(xi+x+i)
N2−∑r

i=1(xi+ .x+i)
× 100 12

N is the total value of observations included in the matrix; r is the number of rows in the matrix; xii is the total
number of observations in row i; xi+ is the total number of observations in column i; x+i is the total number of
observations in column i.

As the focus of this study was the analysis of the forest species, the LULC map
was reclassified into six classes: five forest ones, corresponding to the five forest species
and one non-forest one, corresponding to social area and soil, water, agricultural areas
and shrubland.

The data processing was performed using the software ENVI 4.8 [22]; the vegetation
indices and texture indices were calculated in ArcGIS 10.7.1 [23] and in SNAP (Sentinel
Application Platform) 8.0.0 [24], respectively; the training areas identification and delim-
itation were conducted using ArcGIS 10.7.1 [23] with the help of the images available in
the platform Google Earth Pro [25] and Portuguese cover map (COS) of 2018 [26]; the RF
algorithm was used in the Orfeo 7.1 tool of QGIS 3.16 [27].

In the second phase, the LULC map, in a raster format, with a spatial resolution of 10m,
was used to evaluate the diversity at the landscape level. For this analysis, two levels were
considered: Alto Alentejo and four homogenous sub-regions of Alto Alentejo (Figure 1).
The latter areas were considered as Alto Alentejo has topographic and ecological differences
in its territory. The division into homogeneous sub-regions according to the ecological,
edaphic and topographic characteristics was conducted to uncover further details in the
analysis of the study area.

Heterogeneity at the landscape level is frequently evaluated for the LULC classes’
diversity and number, size and spatial arrangement of the patches [28]. From the existing
landscape metrics, eleven (Table 4) of them were chosen, which enabled us to evaluate
the study area and its sub-regions. For the landscape metrics calculation, two parameters
had to be defined: the number of neighbours and the sampling approach. The number
of neighbours that were considered was four, as recommended by Mcgarigal et al. [29].
In terms of the sampling approach, two levels were considered, the landscape and the
class [29,30]. The total area, Shannon and Simpson evenness indices were calculated for the
former one, and for the latter one, the percentage of landscape, largest patch index, mean
patch area, number of patches, weighted mean shape, edge density, core area percent of
landscape and interspersion juxtaposition index were considered (Table 4).

The differences in the metrics per sub-region were tested with ANOVA and a post hoc
Tukey test at a significance level of 0.05 [31] as the data did not meet the normality criteria
(evaluated with Shapiro–Wilk normality test). This analysis was implemented in IBM SPSS
Statistics 25 [32].
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Table 4. Landscape metrics.

Level Indices Formula Units Range Eq.

Landscape

TA A
(

1
10,000

)
ha [0, +∞] 13

SHEI −∑m
i=1(Pi o InPi)

Inm
Dimensionless [0, 1] 14

SIEI 1−∑m
i=1 P2

i
1−( 1

m )
Dimensionless [0, 1] 15

Class

PLAND ∑n
j=1 aij

A × 100 % [0, 100] 16

LPI

n
max

(
aij
)

j = 1
A × 100

% [0, 100] 17

AREA_MN aij
Ni

(
1

10,000

)
ha [0, +∞] 18

NP
n
∑

j=1
ni Dimensionless [0, +∞] 19

AWMSI n
∑

j=1

[(
0.25pij√

aij

) (
aij

∑n
j=1 aij

)]
Dimensionless [0, +∞] 20

ED ∑m
k=1 eik

A × 100,000 m/ha [0, +∞] 21

CPLAND ∑n
j=1 ac

ij
A × 100 % [0, 100] 22

IJI −∑m
K=1

[(
eik

∑m
k=1 eik

)
In
(

eik
∑m

k=1 eik

)]
In (m−1) × 100

% [0, 100] 23

A-total area of the landscape; Pi-proportion of the landscape occupied by the patch of class i; m-number of classes
in the landscape; aij-area of the patch ij; Ni-number of patches of the class i; ni-number of patches; pij-perimeter of
the ij patch; eik-total length of the border of all patches of classes; k; ac

ij-central area of the ij patch.

3. Results
3.1. Land Use/Cover Map

The land use/cover map (Figure 3) showed a predominance of cork oak and umbrella
pine in the southwest area, while holm oak prevailed in the central and south-eastern areas.
The non-forest class did not seem to have a clear distribution pattern, it is scattered all over
the area. Eucalyptus was scattered over the west of Alto Alentejo, and maritime pine was
concentrated in the central eastern area.
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The overall precision of the classification was good, with a producer precision and
user precision that is above 80% (Table 5) for all of the LULC classes. The overall accuracy
and kappa statistic were 89% and 86%, respectively. Thus, there was a high agreement
between the estimated and the observed values. Moreover, the higher commission errors
were observed in the holm oak, eucalyptus and umbrella pine classes, whereas higher
omission errors were observed in the remaining classes. These errors were related to the
spectral behaviour of the forest tree species: some of them have similar spectral behaviour,
making it difficult to separate them, e.g., holm oak vs. cork oak, eucalyptus vs. maritime
pine and umbrella pine vs. maritime pine.

Table 5. Confusion matrix.

LULC Class HO CO BG UP MP NF Total PP
HO 25,519 1414 267 215 3 668 28,086 91%
CO 2017 22,357 375 1049 659 1629 28,086 80%
BG 737 344 24,321 1236 545 903 28,086 87%
UP 649 915 1095 24,452 587 388 28,086 87%
MP 63 305 1579 1609 23,388 1142 28,086 83%
NF 1186 1234 587 1045 2467 105,825 112,344 94%

Total 30,171 26,569 28,224 29,606 27,649 110,555

PU 85% 84% 86% 83% 85% 96%

OA 89%
Kappa 86%

3.2. Diversity at Alto Alentejo Level

Alto Alentejo has a total area of 608 435ha, and the landscape was composed of 55%
non-forest areas, 19% cork oak, 17% holm oak, 6% eucalyptus, 2% maritime pine and
1% umbrella pine. The Shannon evenness and Simpson evenness indices (0.70 and 0.76,
respectively) corresponded to a high degree of diversity.

The largest patch index was the biggest for cork oak (2.48% of the total area), which
was followed by holm oak (1.82% of the total area). For the other three forest species
(eucalyptus, maritime pine and umbrella pine), the largest patch index was smaller than
1% of the total area.

The number of patches was the largest for the non-forest class. For the forest classes,
the larger number of patches was observed for cork oak (3697 patches) and holm oak
(3059 patches). Umbrella pine had the lowest number of patches (618 patches). The mean
patch area was larger for cork oak and holm oak than that of eucalyptus, maritime pine
and umbrella pine. The comparison of the number of patches and the mean area patches
(Figure 4) indicated higher fragmentation for eucalyptus, corresponding to 1939 patches,
with a mean area of 18.4 ha. The lowest patch fragmentation was observed for umbrella
pine, with 618 patches and a mean area of 11.5 ha.
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The weighted mean shape index and edge density are directly related to and char-
acterise the patch complexity. The highest values were attained for the non-forest class
(Table 6), while for the forest classes, the larger values were for cork oak and holm oak.
Overall, these three classes had more complex patches, with irregular shapes and higher
neighbourhood diversity. The weighted mean shape index and edge density were clearly
larger for holm oak and cork oak than they were for the other three forest species. The
irregularity of the patch form was higher for cork oak than it was for holm oak, which is
denoted by the smaller weighted mean shape index and larger edge density of the former
one. This difference can be explained by the largest patch index, which was larger for cork
oak than it was for holm oak (circa 2.5% and 1.8% of the total area, respectively. Umbrella
pine, maritime pine and eucalyptus, in spite of their low edge density, had some patch
form irregularity, which is denoted by the weighted mean shape index. This can be, at least
partially, explained by the terrain topography (e.g., slope and/or elevation).

Table 6. Weighted mean shape index (AWMSI) and edge density (ED).

LULC Class AWMSI ED (m/ha)

HO 11.18 19.36
CO 7.85 20.56
EC 3.70 7.74
UP 2.05 1.89
MP 4.60 3.62
NF 63.61 39.16

The core area percent of the landscape, corresponding to the central area of a patch,
attained the largest values for non-forest, cork oak and holm oak classes (Figure 5). This is
indicative of high fragmentation. Inversely, the lowest core area percent of the landscape,
and consequently, the lowest fragmentation was observed in the other three forest classes.
The analysis of the largest patch index, mean area patch and weighted mean shape index
gives insights about the heterogeneity of the landscape. The non-forest, cork oak and holm
oak classes had a larger mean area patch, thus reducing the effect of edge density due to
its larger weighted mean shape index. The interspersion of the LULC classes, which was
evaluated by the interspersion juxtaposition index, was the largest for the non-forest class,
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whereas for the forest classes, it was larger for maritime pine and eucalyptus (67% for both
of them), umbrella pine (61%), and cork oak (59%) than it was for holm oak (26%).
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3.3. Diversity at Sub-Region level

The analysis per sub-region enabled us to evaluate the spatial variability of the di-
versity in Alto Alentejo. The percentage of the landscape showed significant differences
among the four sub-regions (all p > 0.05) (Figure 1). The non-forest class in sub-regions
1 and 3 occupied more than half of their areas, while in sub-regions 2 and 4, it occupied
considerably less area (Table 7). Considering the forest classes for all of the sub-regions,
cork oak and holm oak comprised the largest percentage of the landscape, but in different
proportions. Eucalyptus and maritime pine had some expression (4–8% of the total area of
the sub-regions) in sub-regions 1 and 2.

Table 7. Percentage of landscape (PLAND) per sub-region.

LULC Class
PLAND (%)

1 2 3 4

HO 10.85 49.80 26.93 53.31
CO 16.74 32.51 19.46 20.98
EC 8.02 8.14 0.25 2.63
UP 0.18 2.74 0.19 0.62
MP 4.28 6.12 0.05 0.24
NF 59.94 0.68 53.12 22.31

The number of patches, the largest patch index and the patch area showed significant
differences between the sub-regions (all p > 0.05) (Table 8). In sub-region 1, holm oak, cork
oak and maritime pine were the forest classes with the higher number of patches, while
in the sub-regions 2 and 4, these were cork oak and holm oak. The largest patch index
was higher for holm oak in sub-regions 1 and 3 and for cork oak in sub-regions 2 and 4,
which is indicative of a lower level of fragmentation. For the other three species, the higher
number of patches was found for eucalyptus in sub-regions 3 and 1, for umbrella pine in
sub-regions 4 and 1 and for maritime pine in sub-regions 1 and 2.
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Table 8. Number of patches index (NP), largest patch index (LPI) and patch area (AREA_MN) per
sub-region.

LULC
Class

NP LPI AREA_MN

1 2 3 4 1 2 3 4 1 2 3 4

HO 568 369 179 642 48.56 0.46 51.24 0.41 173.56 26.36 164.60 35.07
CO 737 711 671 399 1.30 17.75 0.47 35.44 40.75 113.11 40.18 124.10
EC 483 259 618 212 0.06 0.16 6.44 3.11 13.57 11.20 76.68 54.33
UP 211 105 12 277 1.34 13.23 0.02 10.14 27.75 38.32 6.33 83.27
MP 729 225 20 20 1.48 1.29 0.08 0.06 37.97 22.79 20.40 17.60
NF 28 42 17 63 2.79 0.14 0.05 0.08 44.68 13.62 18.12 14.67

For sub-regions 1 and 3, the largest patch index was about half of the landscape area
for holm oak, which was much larger than it was for the other sub-regions and LULC
classes. The highest landscape fragmentation was observed in the sub-regions 1 and 2 with
a higher number of patches, a lower largest patch index and a lower patch area. The LULC
class with the lowest level of fragmentation was eucalyptus in the sub-regions 1 and 2,
umbrella pine in sub-region 3 and maritime pine in sub-region 4, which is denoted by the
lower patch area and number of patches.

Significant differences were found among the sub-regions for the weighted mean
shape index, edge density and core area percent of the landscape (all p > 0.05) (Table 9). The
largest irregularity and complexity of the patch form was found in sub-regions 1 and 3 for
holm oak due to the large mean area and edge density of the patches. A similar trend was
observed for cork oak in sub-regions 2 and 4. Inversely, in sub-regions 2 and 4, the holm oak
patches were more regular due to their smaller mean area and edge density. Eucalyptus,
umbrella pine and maritime pine were the classes with a more regular form, and they were
less complex and had a smaller edge density. The core area percent of landscape was the
largest for holm oak in sub-regions 1 and 3, for cork oak and umbrella pine in sub-regions
2 and 4, for eucalyptus in sub-regions 3 and 4 and for maritime pine in sub-region 1.

Table 9. Weighted mean shape index (AWMSI), edge density (ED) and core area percent of landscape
(CPLAND) per sub-region.

LULC
Class

AWMSI ED CPLAND

1 2 3 4 1 2 3 4 1 2 3 4

HO 18.66 1.80 13.31 1.70 20.71 6.66 18.66 1.70 59.94 8.15 63.12 2.63
CO 2.45 6.19 2.03 10.62 7.14 23.26 2.98 18.91 10.85 49.80 4.46 53.31
EC 1.24 1.18 5.20 3.22 0.20 3.26 17.43 13.25 0.18 2.74 31.93 20.98
UP 2.74 4.94 1.07 5.28 3.32 21.42 0.07 10.00 4.28 32.51 0.05 22.23
MP 2.61 1.90 1.25 1.53 11.47 5.11 0.21 0.23 16.74 6.12 0.25 0.24
NF 3.72 1.31 1.19 1.28 5.03 0.71 0.19 0.64 8.02 0.68 0.19 0.62

4. Discussion
4.1. Land Use/Cover Map

Alonso et al. [33] produced a LULC map for Galicia, Spain. In the classification,
the authors used multitemporal images from satellite Sentinel-2 with the RF algorithm,
obtaining an overall accuracy of circa 92% and a kappa statistic of 90%. In this study, the
accuracy was slightly lower (an overall accuracy of 89%, and a Kappa of 86%) using mono-
temporal Sentinel-2 image with RF. The difference in precision between the two studies can
be explained by the difference in the LULC classes. Kupidura [34] used two approaches
using multispectral bands and texture indices to classify images from satellites Pléiades
and Sentinel-2 to produce an LULC map. The approach with multispectral bands attained
overall accuracies of 78% and 93% and Kappa values of 71% and 90%, respectively. In the
second approach, the inclusion of the texture indices resulted in the improvement of both
the overall accuracy and kappa statistic. For the Pléiades image, the overall accuracy was
90%, and the kappa statistic 87%, while for the Sentinel-2 image, these were 95% and 93%,
respectively. In another study by Dobrinić et al. [35], the precision of the LULC map using
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the Sentinel-2 images with multispectral bands had an overall accuracy of 89%, whereas
when the multispectral bands and vegetation indices were used as independent variables,
the overall accuracy increased to circa 90%. Dobrinić et al. [35] and Kupidura [34] showed
the importance of the vegetation and texture indices in the classification process. Shao
and Wu [36] noted that the precision should be circa 90% to allow for consistency in the
landscape metrics. In this study, the abovementioned threshold was attained.

4.2. Landscape Level Analysis

The landscape metrics in this study were indicative of a high level of diversity [29,37].
This was the result of the arrangement of the six LULC classes in the landscape, whether
the analysis is made by number, form or dimension [38]. This can be explained by the
topography, climate and soil type distribution, as well as the ecological and cultural
characteristics of the species. This variability was highlighted in the analysis of the sub-
regions. Cork oak and holm oak were present in all of the sub-regions, occupying the
areas under Mediterranean climate influence and at lower elevations. This is in accordance
with the suitability maps for these species of Ferreira et al. [39]. Inversely, most of the
areas occupied by maritime pine are under Atlantic influence and at higher elevations,
such as Serra de São Mamede (sub-region 1), as this species is more sensitive to high
temperatures [39,40]. Eucalyptus and umbrella pine were mainly in sub-regions 1 and
2, which are under a Mediterranean climate, at lower elevations, and this is due to the
sensitivity of these two species to frost [39,41]. The number and area of patches per LULC
class, both for Alto Alentejo and for the sub-regions, presented a high variability, showing
a matrix for the six LULC classes. Although fragmentation was observed more for some
classes than it was others, it was the result of natural and artificial disturbances [38,42–45].
It was the largest for the classes that occupied a larger area. Moreover, the highest number
of patches was found in sub-region 1 (2756, of which 2728 correspond to the five forest
classes), which was followed by sub-region 2 (1711, of which 1669 belong to the five forest
classes) and sub-regions 3 and 4 (1517 and 1615, 1500 and 1550 of forest classes, respectively).
The mean patch area was the largest in sub-regions 3 and 4 for the forest classes (61.6 ha and
62.9 ha, respectively), which were followed by sub-regions 1 (58.7 ha) and 2 (42.4 ha). This
also reflected the effect of relief and edaphic and climatic conditions on the forest species
distribution due to their ecological and cultural traits [39]. Furthermore, in the study area,
it was observed that the patches varied from a rather regular form, with a low edge density
and a small area to very irregular form, with a high edge density and a large area. These
three metrics are related; the larger the area, the edge density and form irregularity are,
then the larger the complexity of the patches and the edges between the different patches
are [46–50].

The core area percent of landscape can be indicative of habitat degradation, where
the number of patches is high and the area is small. In this study, the classes non-forest,
holm oak and cork oak comprised a large core area percent of the landscape in spite of the
high number of patches, whereas eucalyptus, maritime pine and umbrella pine comprised
a lower core area percent of the landscape and number of patches. The variability of the
core area percent of the landscape of the forest classes in the four sub-regions seemed to be
also related to relief, climate and soils, with a trend towards its decrease with the increase
in the elevation. In all of the sub-regions, the more irregular classes had large mean areas,
and thus, they had less influence in the central areas. Inversely, in the more fragmented
classes, the mean areas were small, and the central areas were even smaller, thus increasing
the influence of edge density and the edge effect. Although all of the forest classes were
managed forest systems, some differences have to be noted. Holm oak and cork oak and
umbrella pine are managed as agroforestry systems with low density and high diversity
levels, [51] while eucalyptus and maritime pine are timber oriented systems [39]. The
classes of eucalyptus, umbrella pine and maritime pine had a lower number and area of
patches. This can be related to the suitability of the sites for these species traits. Yet, they
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can contribute to the reduction of the isolation of the large patches, thus, increasing the
connectivity between the patches [52].

The interspersion juxtaposition index values of this study indicate that the forest
classes of cork oak, eucalyptus, umbrella pine and maritime pine were spatially mingled
with other LULC classes. The number of patches of each class influences the mingling
between the LULC patches. For example, in the classes with a lower number of patches, they
can be spatially interspersed with other LULC classes [53]. The non-forest class included
several lands uses/covers (e.g., social area, water and agricultural areas), resulting in
patches that are more interspersed.

The diversity analysis in this study showed significant differences between the sub-
regions. Casimiro [46] performed a spatial analysis with sixteen metrics for the municipality
of Mértola (Southeastern Portugal), considering three sub-regions, and they attained signif-
icant differences among the sub-regions. The differences were explained, at least partially,
by the edaphic-climatic characteristics of the sub-regions and the ecological-cultural traits of
the species. Other studies [48,54] evaluating the dynamics of LULC in time with landscape
metrics also observed differences, and these indicated that the number of patches index is a
primordial metric.

5. Conclusions

An updated LULC map is of the utmost importance for the monitoring of the landscape
dynamics. The data sets derived from Sentinel-2 satellite images, namely, multispectral
bands, vegetation and texture indices with the random forest classification algorithm enable
us to obtain accurate LULC maps, such as that which was produced in this study with an
overall accuracy of 89%.

Alto Alentejo and the four sub-regions showed a landscape pattern of high variability
in terms of composition and configuration. The spatial heterogeneity increased with the
increase in the variability of relief, climate and soils. For Alto Alentejo, there was a trend
towards the irregularity and mingling of the patches. The forest classes with larger areas
had the higher edge density and form irregularity (holm oak and cork oak), whereas the
others (eucalyptus, umbrella pine and maritime pine) had a smaller number of patches
and more regular areas. The central areas were larger for holm oak and cork oak, where
edge density did not have a strong influence as it did in the other forest classes due to the
mean patch area dimension. All of the classes presented a high level of interspersion. This
trend was also observed at the sub-region level. The differences between the sub-regions
are related to the variability edaphic, climatic and topographic characteristics and their
suitability to the ecological and cultural traits of the forest species. All six classes exist in
the four sub-regions, but the proportion and fragmentation of each forest class varied from
one sub-region to another. In sub-regions 2 and 4, the predominant LULCs were the forest
classes, while for sub-regions 1 and 3, these were non-forest ones. Additionally, the former
two sub-regions were more fragmented than the latter two sub-regions were.

This study highlights the importance of updated and accurate LULC maps. Further
improvements to the maps can be made with multitemporal data and other vegetation
and texture indices. In the diversity analysis, the importance of the analysis at two spatial
scales was stressed (Alto Alentejo and sub-regions), which gave further insights about the
dynamics of the spatial arrangement of the landscape. Again, data sets that include more
detailed forest data, such as density measures (number of forest trees, basal area, volume
and biomass) would enable a more detailed diversity analysis at the landscape level.
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35. Dobrinić, D.; Gašparović, M.; Medak, D. Sentinel-1 and 2 Time-Series for Vegetation Mapping using Random Forest Classification:

A Case Study of Northern Croatia. Remote Sens. 2021, 13, 2321. [CrossRef]
36. Shao, G.; Wu, J. On the Accuracy of Landscape Pattern Analysis using Remote Sensing Data. Landsc. Ecol. 2008, 23, 505–511.

[CrossRef]
37. Malinowska, E.; Szumacher, I. Application of landscape metrics in the evaluation of geodiversity. Misc. Geogr. 2013, 17, 28–33.

[CrossRef]
38. McGarigal, K.; Marks, B. FRAGSTATS Manual: Spatial Pattern Analysis Program for Quantifying Landscape Structure. University

of Massachusetts: Amherst, MA, USA, 1995.
39. Ferreira, A.G.; Gonçalves, A.C.; Pinheiro, A.C.; Gomes, C.P.; Ilhéu, M.; Neves, N.; Ribeiro, N.; Santos, P. Plano Específico De

Ordenamento Florestal Para O Alentejo, Évora; Universidade de Évora: Évora, Portugal, 1995.
40. Oliveira, A.C.; Pereira, J.S.; Correia, A.V. A Silvicultura do Pinheiro Bravo; Centro Pinus: Viana do Castelo, Portugal, 2000.
41. Correia, A.V.; Oliveira, A.C. Principais Espécies Florestais Com Interesse Para Portugal: Zonas de Influência Mediterrânica; DGF: Lisboa,

Portugal, 2001.
42. Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 1999, 34, 487–515. [CrossRef]
43. Turner, M.G. Spatial and temporal analysis of landscape patterns. Landsc. Ecol. 1990, 4, 21–30. [CrossRef]
44. Smith, A.C.; Koper, N.; Francis, C.M.; Fahrig, L. Confronting collinearity: Comparing methods for disentangling the effects of

habitat loss and fragmentation. Landsc. Ecol. 2009, 24, 1271–1285. [CrossRef]
45. Betts, M.; Forbes, G.; DIamond, A.; Taylor, P. Independent Effects of Fragmentation on Forest Songbirds: An Organism-Based

Approach. Ecol. Appl. 2006, 16, 1076–1089. [CrossRef]
46. Casimiro, P.C. Uso Do Solo, Teledetecção e Estrutura da Paisagem Ensaio Metodológico–Concelho de Mértola; Universidade NOVA de

Lisboa: Lisboa, Portugal, 2002.
47. Cushman, S.A.; McGarigal, K. Landscape Metrics, Scales of Resolution. In Designing Green Landscapes; Springer: Dordrecht, The

Netherlands, 2008; pp. 33–51.
48. Flowers, B.; Huang, K.T.; Aldana, G.O. Analysis of the habitat fragmentation of ecosystems in belize using landscape metrics.

Sustainability 2020, 12, 3024. [CrossRef]
49. Martins, R.N.; Abrahão, S.A.; Ribeiro, D.P.; Colares, A.P.F.; Zanella, M.A. Spatio-temporal Analysis of Landscape Patterns in the

Catolé Watershed, Northern Minas Gerais. Rev. Arvore 2018, 42, e420407. [CrossRef]
50. Saura, S.; Martínez-Millán, J. Sensitivity of Landscape Pattern Metrics to Map. Photogramm. Eng. Remote 2001, 67, 1027–1036.
51. Azevedo, J.C. Florestas, Ambiente e Sustentabilidade: Uma Abordagem Centrada Nos Serviços de Ecossistema das Florestas do

Distrito de Bragança. CIMO—Cent. De Investig. De Mont. 2011, 18, 1–25.
52. Ribeiro, S.C.; Lovett, A. Associations Between Forest Characteristics and Socio-Economic Development: A case Study From

Portugal. J Environ. Manag. 2009, 90, 2873–2881. [CrossRef]
53. Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory and Practice; Springer: New York, NY, USA, 2001.
54. Ersoy Mirici, M.; Satir, O.; Berberoglu, S. Monitoring the Mediterranean Type Forests and Land-use/Cover Changes using

Appropriate Landscape Metrics and Hybrid Classification Approach in Eastern Mediterranean of Turkey. Environ. Earth Sci. 2015,
79, 492. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1111/j.1461-0248.2010.01559.x
http://doi.org/10.3390/rs13122237
http://doi.org/10.3390/rs11101233
http://doi.org/10.3390/rs13122321
http://doi.org/10.1007/s10980-008-9215-x
http://doi.org/10.2478/v10288-012-0045-y
http://doi.org/10.1146/annurev.ecolsys.34.011802.132419
http://doi.org/10.1007/BF02573948
http://doi.org/10.1007/s10980-009-9383-3
http://doi.org/10.1890/1051-0761(2006)016[1076:IEOFOF]2.0.CO;2
http://doi.org/10.3390/su12073024
http://doi.org/10.1590/1806-90882018000400007
http://doi.org/10.1016/j.jenvman.2008.02.014
http://doi.org/10.1007/s12665-020-09239-1

	Introduction 
	Materials and Methods 
	Study Area and Sentinel-2 Data 
	Methods 

	Results 
	Land Use/Cover Map 
	Diversity at Alto Alentejo Level 
	Diversity at Sub-Region level 

	Discussion 
	Land Use/Cover Map 
	Landscape Level Analysis 

	Conclusions 
	References

