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1 Introduction

Let us consider the constitutive equation for an incompressible and homogeneous
linearly viscous fluid where the Cauchy stress tensor is given by

T =—pl+2uD, ¢y

where p is the hydrostatic pressure, p the constant viscosity, and D the symmetric
part of the velocity gradient, also called the rate of deformation tensor

D:= %(w +(v8)"), @

where! # = #(x,?) is the three-dimensional velocity field, V# is the spatial
velocity gradient, and (Vﬂ)T denotes the transpose of V#. The fluids that comply
with Eq. (1) are known in the scientific literature as Newtonian fluids. On the other
hand, there are fluids for which the viscosity is not constant, and it may depend on

ILet x = (x1,x2, x3) be the rectangular space Cartesian coordinates (for convenience, we set
x3 = z) and ¢ is the time variable.
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certain parameters, as pressure and/or shear rate. These fluids for which the viscosity
is not constant are known as non-Newtonian fluids.

For many real fluids, the viscosity of the flow changes with the intensity of the
rate of deformation tensor (see, for example, [1]). This change of the viscosity can
be very large in some fluids, and it cannot be ignored. Throughout this work, we
will consider that the viscosity only depends on the intensity of the shear rate. The
simplest way to model such behavior is to introduce in (1) the viscosity as a function
of shear rate:

u(lyl) : R - RY,
where y is a scalar measure of the rate of shear defined by
| =+2D : D.

Therefore, the Cauchy stress tensor in (1) takes the form

T=—pl+ u(|y|)(w + (w)’). 3)

The class of non-Newtonian fluids satisfying condition (3) is called generalized
Newtonian fluids (or quasi-Newtonian). In general, we can divide the generalized
Newtonian fluid into two subclass: the shear-thinning (or pseudoplastic) fluids
where the viscosity decreases with the increasing shear rate and the shear-thickening
(or dilatant) fluids for which the viscosity increases with the increasing shear rate.
The shear-thinning behavior is commonly observed in real fluids, for example,
suspensions, emulsions, polymeric fluids (see, for example, [2-4]). The shear-
thickening behavior is less common, although it can be observed at highly loaded
suspensions, for example, starch, plaster, and a few unusual polymeric fluids (see,
for example, [2-4]).

Next, we will present the specific viscosity function under study in this work,
that is, the cross model, where the viscosity function in (3) is given by

Ho — Moo

T+ @D @

w(YD = oo +

Here, parameters k and n are called the consistency index and the flow index
(positive constants), respectively. In this model, we consider fluids with bounded
low po and high limiting viscosities f1o. Considering, n = 1 in Eq.(4), the
Cauchy stress tensor (3) corresponds to the Newtonian fluid behavior with 1 =
(Moo + H0)/2. Moreover, if n < 1, we obtain

lim u(ly]) = oo, lim u(|y]) = po,
|yl—>o00 [y1=0
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Fig. 1 Cross model: (a) shear-thinning viscosity and (b) shear-thickening viscosity. Both cases

with values k = 1.007 s, o = 0.56 poise, and 1o, = 0.0345 poise (see, for example, [5, 6]), for
different values of flow index

and the fluid shows us a shear-thinning behavior (see Fig. 1). If n > 1, then
Hm pu(ly)) = po, lim u(|y]) = too,
[¥|—>o00 [y1=0

and we have a shear-thickening fluid behavior (see Fig. 1).

Numerical simulations relating to a three-dimensional model for a homogeneous
incompressible fluid based on the Cauchy stress tensor (3) with viscosity function
(4), for a given geometry, require a high computational effort. In this sense, theories
that allow us to reduce the complexity of the problems under study by reducing
variables are important. A possible simplification is to consider the evolution of
average flow quantities using simpler one-dimensional models. Usually, classical
one-dimensional models are obtained by imposing additional assumptions related
to the nonlinear convective acceleration and the viscous dissipation terms. These
closure approximations are typically based on assuming a purely axial flow with
a field dependence on axial variables (see, for example, [7-9]). In this work, we
present an alternative theory to reduce the three-dimensional model under study to
a one-dimensional system of ordinary differential equations, which depend only on
time and on a single spatial variable, by using the Cosserat theory associated with
fluid dynamics (see Caulk and Naghdi [10]). The basis of this theory (see Duhem
[11]) and Eugene and Frangois Cosserat [12]) is to consider an additional structure
of deformable vectors (called directors) assigned to each point on a spatial curve
(the Cosserat curve). The use of directors in continuum mechanics goes back to
Duhem [11], who regarded a body as a collection of points, together with associated
directions. This theory has also been used by several authors in studies of rods,
plates, and shells (see, for example, [13-17]). An analogous hierarchical theory
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related to fluid dynamics has been developed by Caulk and Naghdi [10] and Green et
al. [18-20]. Recently, this hierarchical theory has been applied to models associated
with hemodynamics (see Robertson and Sequeira [21] and Carapau and Sequeira
[22]). Regarding the swirling motion, this hierarchical theory was used to study
several models (see Caulk and Naghdi [10] and Carapau et al. [23-25]). Also, this
hierarchical theory has been applied for specific models related to non-Newtonian
fluids under different geometries and perspectives (see Carapau [26, 27], Carapau
and Correia [28], and Carapau et al. [29, 30]). This alternative approach theory has
been validated by the works of Caulk and Naghdi [10], Robertson and Sequeira [21],
Carapau and Sequeira [22, 29}, and Carapau [27].

The advantage of using the Cosserat theory related to fluid dynamics is not so
much getting an approximation of the three-dimensional system but rather in using
it as an independent framework to predict some properties of the three-dimensional
problem under study. The main features of the director theory are as follows: it
incorporates all components of the linear momentum equation; it is a hierarchical
theory, making it possible to increase the accuracy of the model; the system of
equations is closed at each order and therefore unnecessary to make assumptions
about the form of the nonlinear and viscous terms; invariance under superposed
rigid body motions is satisfied at each order; the wall shear stress enters directly as
a dependent variable in the formulation; and the director theory has been shown to
be useful for modeling flow in curved tubes, considering many more directors than
in the case of a straight tube. A detailed discussion about Cosserat theory, related to
fluid dynamics, can be found in [10, 18-20]. The three-dimensional numerical study
of the flow associated with an incompressible fluid that follows the constitutive
equation (3) with viscosity function (4) in a circular cross-section tube with constant
radius is in fact a challenging and complex study in terms of computational effort
and infeasible in many relevant issues. Our one-dimensional approach is obtained
by integrating the linear momentum equation over the cross section of the tube,
taking the three-dimensional velocity field approximation provided by the Cosserat
theory. This procedure yields a one-dimensional system, depending only on time
and a single spatial variable, which is the axis of the symmetrical flow. This velocity
field approximation satisfies exactly both the incompressibility condition and the
kinematic boundary condition. Based on the work of Caulk and Naghdi (see [10]),
we consider the three-dimensional velocity field # = #(x, ) approximated by:2

k
t=v+ Z Xay -+ Xay Wal...(x]vv (5)
N=1
with
v=vi(z, )€, Wo oy =Ws o, 1D ei (6)

2 In the sequel, Latin indices take the values 1, 2, and 3 and Greek indices 1 and 2, and we use the
convention of summing over repeated indices.
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In condition (5), v denotes the velocity along the axis of symmetry z at time
t, Xa, - - - Xay are the polynomial weighting functions with order k, the vectors
Wo,..ey are the director velocities which are symmetric with respect to their
indices, and e; are the associated unit basis vectors. We remark that the number
k identifies the order in the hierarchical theory and is related to the number of
directors. In applications, these director velocities are associated with physical
characteristics of the fluid. Considering the velocity field approximation (5) with
nine directors (see [10]), i.e., k = 3 in (5) and the constitutive condition (3)
with viscosity function (4) in our one-dimensional model, we obtain the unsteady
equation for mean pressure gradient depending on the volume flow rate, Womersley
number, and viscosity parameters over a finite section of a straight, rigid, and
impermeable tube with constant circular cross section. Attention is focused on
some numerical simulations for constant and nonconstant mean pressure gradient
using a Runge-Kutta method. In particular, given a specific data, we get information
about the volume flow rate, and consequently we can illustrate the three-dimensional
velocity field behavior on the circular cross section of the tube.

2 Governing Equations

Taking into account the constitutive condition (3) with viscosity function (4), we
consider the motion of a homogeneous incompressible generalized Newtonian fluid
without body forces inside straight rigid and impermeable rectilinear tube with
circular cross section of constant radius (see Fig.2). The boundary of the fluid is
defined by the surface scalar constant function ¢, which is related to the circular
cross-section straight tube by the following relationship:

¢? = x? + x2. )

< ==
\ T2
\ / Q 1
i

i T,

Fig. 2 Fluid domain 2 with normal and tangential components of the surface traction vector p,
and 71, 72 with constant circular cross section ¢ along the axis of symmetry z. The boundary 92 is
composed by the proximal cross section I'y, by the distal cross section "7, and by the lateral wall
of the tube I'y,
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Therefore, the equations of motion, considering conservation of linear momentum
and mass, are given in Q x (0, T) by

p(%+0-Vﬁ)=V~T,
V.#=0, 3

- M0 = Koo T =T.
T= pI+(pLoo+1+(kh;|)1_”)(Vl9+(V1?) ) tu=T-n,

with the initial condition
#(x,0) =do(x) in L, )
and the homogeneous Dirichlet boundary condition
#(x,£)=0 on Ty x (0, 7), (10)

where p is the constant density of fluid. Equation (8); represents the balance of
linear momentum, and (8)7 is the incompressibility condition. The constitutive
equation appears in (8)3 and ¢,, denotes the stress vector on the surface whose
outward unit normal vector is n(x, t) = n;(x, t)e;. The components of the outward
unit normal vector to the surface ¢ are given by
X1 X2
n=—, ny=—,
¢ ¢
The theoretical study of the model (8)—(10), namely, existence, uniqueness, and
regularity of classical and weak solutions, still poses some difficulties. In this work,
we are interested in computational simulations of the model (8)—(10), using the
director approach related to fluid dynamics. Since Eq. (7) defines a material surface,
the three-dimensional velocity field # must satisfy the kinematic condition3

n3 =0. (11)

d
E(¢2‘x12—x22) =0,

ie.,
— X1 — x19 = 0, (12)

on the boundary defined by (7). Averaged quantities such as volume flow rate and
pressure are needed to study one-dimensional models. Consider S — S(z,t) a
generic axial section of the domain  at time ¢ defined by the spatial variable z,
bounded by the circle defined by (7), and let A(z,t) be the area of this section
§(z, t). Then, the volume flow rate Q is defined by

3 The material time derivative is givenby £(.) = 2()+9- v(-).
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0(z,t) = f *3(x, t)da, 13)
S(z,1)

and the average pressure p by

pz,t) = p(x, t)da. (14)

Az, 1) Jsn

Next, considering (5), it follows (see [10]) that the approximation of the three-
dimensional velocity field # = ¥;(x, t)e; using nine directors is given by

? =516 +06d +5D) — @+ 16 +xD) |er
+ [n@+n6E+5D) + 02 + 06T + 53 e
+ [ +vad+ xg)]e3, (15)

where &, w, v, 0, andn are scalar functions of the spatial variable z and time ¢. The
physical significance of these scalar functions in (15) is the following: y is related
to transverse shearing motion, w and 5 are related to rotational motion (also called
swirling motion) about e3, while £ and o are related to transverse elongation. We
use nine directors because it is the minimum number for which the incompressibility
condition and the kinematic boundary conditions on the lateral surface of the tube
are satisfied pointwise. Using the velocity approach (15), the kinematic conditions
(12) on the lateral boundary reduce to

~ ¢*(& +¢%0) =0, (16)
and the incompressibility condition given by Eq. (8); becomes
(13); + 2 + (&7 + x3)(y; +40) =0, a”n

where the subscripted variable denotes partial differentiation. For Eq. (17) to hold at
every point in the fluid, the velocity coefficients must satisfy the separate conditions:

(v3); +26 =0, y,+40=0. (18)

Hence, the boundary condition (12) and the incompressibility condition given by
Eq. (8); are satisfied exactly by the velocity field (15) if we impose the conditions
(16) and (18). On the wall boundary of the rigid tube, we impose the no-slip
boundary condition requiring that the velocity field (15) vanishes identically on the
surface (7), i.e., condition (10) is satisfied. Thus, it follows that

E+¢%0 =0, o+¢?n=0, vi+¢Zy=0. (19)
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Therefore, Eq. (16) is satisfied identically, and the two incompressibility conditions
(18) reduce to

(13); +26 =0, (¢%v3), =0. (20)
Considering the flow in a rigid tube with constant circular cross section given by

surface (7) without swirling motion (i.e., w = n = 0), conditions (13), (15), (19),
and (20), then the volume flow rate Q is just a function of time #, given by

mn=%&mmn, @1)

and, consequently, the velocity field (15) can be rewritten as

20() x? +x2
w2 (1- ¢? )83,

and the initial condition (9) is satisfied when we consider in computational
simulations Q(0) = const.

To simplify the computational effort, it is convenient to introduce the stress vector
t,, on the lateral surface in terms of its outward unit normal # and in terms of the
components of the surface traction vector 11, 75 and p, in the form (see [10])

Fx,t) = (22)

ty = T1A — pen + T2€9, (23)

where 11 is the wall shear stress, while A and ey are the unit tangent vectors defined
by

A=nxey es=(xa/P)eapep, (24)

with e11 = e = 0 and ej = —ey; = 1. Using conditions (11) and (24), the
expression for the stress vector (23) can be rewritten in terms of its rectangular
Cartesian components as

!
¢

Next, instead of the momentum equation (8); be verified pointwise in the fluid,
we impose the following integral conditions (see [10]):

tw=

1
(=Pex1 — T2x2)e1 + 5(_Pex2 + mx1)ez + Tie3. (25)

/;[V'T_p(%?'+0'vﬁ)]da=0, 26)
/S[V.T—p(%+0.v0)]xa, .. Xgyda =0, @7




Three-Dimensional Velocity Field Using the Cross-Model Viscosity Function 47

where N = 1,2,3. Using the divergence theorem and a form of Leibniz rule,
Egs.(26) and (27) for nine directors can be reduced to the following vector
equations:

oh
wtf=a (28)
and
-ain%lz.—”a_lv + [%1ON — pO1ON 4 pO1-ON @

where b, k%N m®1-®N are resultant forces defined by

h= / Tida, k%= / T.da, k% = f (Taxs + Tpxe)da, (30)
S S S
kPY = fs (Taxpxy + Tpxex, + Tyvaxs)da, 31)
and
mooN = ./L;T3x0,l ... Xgyda. (32)

The quantities @ and 5*!*N are inertia terms defined by

¥
= — +9.Vd)da, 33
a /Sp(at + ) a (33)
a9
Q)...ON _ .
b —-/Sp(—-—-at + 9 Vt’)xal ... Xgyda, (34)

and f, [*!“*N  which arise due to surface traction on the lateral boundary, are
defined by

f= f ty ds, @35)
as

jo-en — /as ty X - .- Xoyds. 36)

Next, we will derive the equation for the mean pressure gradient using the
computed values for the quantities (30)—(36) in Eqs. (28)—~(29) according to [10].



48 F. Carapau et al.
3 Main Results and Simulations

The computational effort to calculate the quantities (30)—(36) related to the con-
stitutive equation (8); for any index flow n (i.e., shear-thinning viscosity and
shear-thickening viscosity) is difficult to handle. This difficulty is related to
computational problems arising from the calculation of integrals with singularities.
However, for some positive integer values of n, the difficulty can be overcome.
Therefore, considering the choice n = 3 on Eq. (8)3, the equation for the mean
pressure gradient will be obtained using the resulting quantities from (30) to (36) on
Egs. (28)—(29).

In sequence, using the velocity field (22), the surface (7), the volume flow rate
(21), and the stress vector (25) in Egs. (30)-(36), we can explicitly calculate the
forces h, k%, k®, k®PY, m®1-2N | the inertia terms a, b**N, and the surface
tractions f, /%N Hence, plugging these solutions into Egs. (28)—(29) and using
Eq. (14), by solving a linear system, we get the unsteady equation for the average
pressure gradient, given by

- 4p 8;1,0
P(z,t) = —WQr(t) - ;a;;Q(t)
n3¢® 32k*Q%(r) + m2¢S
+ (”'0 - 'u'°°)[64 k4 03(1) n n2¢6 )
n¢?
T2 Q(t)]’ @7

Integrating condition (37) over a finite section of the tube between z; and z; with
21 < z2, we obtain the mean pressure gradient over the interval [z1, z2] at time ¢,
given by

_dp 8o np?
G@) = WQ:O‘) + WQO) + (uo — l‘«oo)[Zkz—Q(t)'
m3¢8 32k2Q%(1) + m2¢S
T ek Q) w2¢5 )]’ (38)
where
G(t) = Pt = pi2, 1)
2—2
Next, let us consider the following dimensionless variables:
Pmo, 0B =200, 60 =260 (39)
- ol, - T[¢k ’ - k4 ’
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where wo is the characteristic frequency for unsteady flows. In the cases where a
steady volume flow rate is specified, the nondimensional volume flow rate Q is
identical to the classical Reynolds number used for flow in tubes (see Robertson
and Sequeira [21]). Substituting the new variables (39) in Eq. (38), we obtain the
nondimensional mean pressure gradient:

s 20 R 1 1¢C, 0%
6@ = 3’W0Q;(t3+45‘(uQ(t3+Bu[Q® —§Q3®ln(8 c. +1)]
(40)

where W, = ¢3\/ 03wo/ k3 is the Womersley number, which is the most commonly
used parameter to reflect the pulsatility of the flow and A, B,,, and C,, are viscosity
parameters, given by

244 4,44 2.4
Hop“d (Ko — Hoo)p™ @ PP
=g =g G @D
Moreover, using (39), and the dimensionless variables
=l 5=2 =% ba.n=%se0, “2)
¢ ¢ ¢ k

at the velocity equation (22), we get the nondimensional three-dimensional velocity
field:

3R, = Q(i)(l — @2 +£22))e3. 43)

In the next section, we present numerical simulations associated with the
Egs. (40) and (43) for specific flow regimes, considering

A, —>1, B,—>0, C,#0, (44)

in order to reduce the computational effort.

3.1 Constant Mean Pressure Gradient

In Fig. 3, we can observe the behavior of the unsteady volume flow rate solution
given by (40) obtained using a Runge-Kutta method with constant mean pressure
gradient G(f) = 1 when we increase the Womersley number. Therefore, we
note that the amplitude of the solution in the initial transient phase increases and
becomes less pronounced as the Womersley number increases. In this particular
case of a constant mean pressure gradient, the volume flow rate given by (40)
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Fig. 3 Unsteady volume 0.3 1
flow rate given by Eq. (40)
with constant mean pressure
gradient G() = 1 where
0(0) = 0.1 and

W, = (0.5; 1.5; 3) for
shear-thickening fluids with
n=3

-

0 T T T

0 1 2 3 :1
[—— w0=05——wo=15----- Wo=3
n=3.00, Time=0.2s n=3.00, Time=0.6 s
0.6
0.5
Q)
4 £
z
38
2
0.2
0.1

-1 05 0 05 1 1 05

0

Flg 4 Three dimensional velocity field (43) where the volume flow rate is obtained by (40) thh
G(i) =" Q(O) = 0.1, W, = 1.5, and n = 3 (shear-thickening fluid). Time parameters: / =
02,f=0.6

converges toward to the steady-state solution, converging faster for small values
of the Womersley number, i.e., when W, — 0.

Moreover, with the information of the volume flow rate given by (40), obtained
for certain flow regimes, we can return to the three-dimensional problem to obtain
the behavior of the three-dimensional velocity field (43) in time on the circular cross
section of the tube. Figures 4 and 5 illustrate the three-dimensional velocity field
(43) behavior in the circular cross section of the tube when we increase the time
parameters.
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n=3.00, Time=1.0s n=3.00, Time=20s

< . o o
@ kN o =
Velocity (m/s)

o
Y

o
b

-1 -0.5 0 0.5 1
0

Fig. 5 Three-dimensional velocity field (43) where the volume flow rate is obtained by (40) with

G(i) =100 =0.1,W, =15,andn = 3 (shear-thickening fluid). Time parameters: { =
1,=2

3.2 Nonconstant Mean Pressure Gradient

Let us consider the nonconstant mean pressure gradient function, given by

s1n2(ﬁ

e

GH =1+ 45)

which shows an interesting behavior (see Fig.6). More specifically, it shows a
strong variation in the initial stage and after the initial transient phase has small
fluctuations, which tend to decrease with time. In Fig. 7, we can observe the behavior
of the unsteady volume flow rate solution given by (40) obtained using a Runge-
Kutta method with nonconstant mean pressure gradient (45), when we increase the
Womersley number ‘W, = (0.5; 1.5; 3). In the initial phase of transition, we can
verify the variation of the volume flow rate with the increase of the Womersley
number, but with time the volume flow rate tends to stabilize regardless of the period
of variation of the nondimensional parameter.

Finally, with the information of the volume flow rate given by (40), obtained for
certain flow regimes with nonconstant pressure gradient (45), we can return to the
three-dimensional problem to obtain the behavior of the three-dimensional velocity
field (43) in time on the circular cross section of the tube (see Figs. 8 and 9).
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Fig. 6 Nonconstant mean
pressure gradient given by
Eq. (45)

Fig. 7 Unsteady volume
flow rate given by Eq. (40)
with nonconstant mean
pressure gradient (45) where
Q(0) =0.1and

W, = (0.5; 1.5; 3) for
shear-thickening fluids with
n=3
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1151

1.104

1.05 1

1.00

F. Carapau et al.

0

~>
o

-~




Three-Dimensional Velocity Field Using the Cross-Model Viscosity Function 53

n=3.00, Time=0.2s n=3.00, Time=0.6 8

Velocity (m/s)

Fig. 8 Three-dimensional velocity field (43) where the volume flow rate is obtained by (40) with
nonconstant mean pressure gradlent (45), 0(0) = 0.1, W, = 0.5, and n = 3 (shear-thickening
fluid). Time parameters: = 0.2, f = 0.6

n=3.00, Time=1.0s n=3.00, Time=2.0s

Velocity (m/s)

Fig. 9 Three-dimensional velocity field (43) where the volume flow rate is obtained by (40) with
nonconstant mean pressure gradlem (45), Q(O) = 0.1, W, = 0.5, and n = 3 (shear-thickening
fluid). Time parameters: f = 1,7 =2

4 Conclusions

Based on the works [10, 21, 22, 27, 29], we are facing a one-dimensional theory
relevant to the study of physical problems involving the flow of Newtonian and
non-Newtonian fluids under different geometries and perspectives, being a valid
alternative to the classics one-dimensional models. The nature of Eq. (40) shows us
in general the difficulty and the challenge of studying the flow of an incompressible
fluid where the viscosity varies with the shear rate. In this work, based on a one-
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dimensional model obtained by using the Cosserat theory, we studied the behavior
of the unsteady volume flow rate and the unsteady three-dimensional velocity field
of an incompressible fluid where the viscosity function was given by Eq.(4), i.e.,
by cross-model viscosity function. Our one-dimensional approach is difficult to
implement for any power index r, the difficulty being associated with computational
problems due to the singularities presented in the integral calculus caused by
constitutive equation (8)3. In this sense, it was not possible to obtain a general
equation for the mean pressure gradient involving the volume flow rate, Womersley
number, power index n, and viscosity parameters. Based on the computational work
and considering n = 3, we obtain specific ordinary differential equation to the
mean pressure gradient involving the volume flow rate, Womersley number, and
viscosity parameters. Using a Runge-Kutta method to solve the ordinary differential
equation, we present the behavior of the unsteady volume flow rate by fixing the
mean pressure gradient for specific flow regimes. Furthermore, we illustrate the
three-dimensional velocity field behavior related to the model (8)~(10). Future
work related to the Cosserat theory, which we are currently under study, include
fluid-structure interaction, curved tubes, and the case of tubes with branches or
bifurcations.
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