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Due to the specificity of the Weibull tail coefficient, most of the estimators available in the literature are based on the log excesses
and are consequently quite similar to the estimators used for the estimation of a positive extreme value index. The interesting
performance of estimators based on generalized means leads us to base the estimation of the Weibull tail coefficient on the
power mean-of-order-p. Consistency and asymptotic normality of the estimators under study are put forward. Their
performance for finite samples is illustrated through a Monte Carlo simulation. It is always possible to find a negative value of
p (contrarily to what happens with the mean-of-order-p estimator for the extreme value index), such that, for adequate values
of the threshold, there is a reduction in both bias and root mean square error.

1. Introduction and Preliminaries

Statistics of extremes, either univariate or multivariate, have
been recently faced with many different challenges, which
have enabled to better understand the complexity of extreme
events in the most diverse areas of applications, like biosta-
tistics, dynamical systems, environment, finance, insurance,
and structural engineering, among other fields. Risky events
are commonly in the tails of the underlying distribution,
and there are usually only a few observations in those tails.
Consequently, and thinking only on the univariate situation,
estimates either much above the observed maximum or
below the observed minimum are often required. It is thus
necessary to consider models for the tails, and those models
are most of the times based on asymptotic results.

Let us assume that, possibly after an adequate transforma-
tion, the available transformed sample, Xn = ðX1,⋯, XnÞ, can
be regarded as a sample of size n of independent, identically

distributed (IID) random variables (RVs) from a cumulative
distribution function (CDF) F. More generally, Xn can be
assumed to be a sample of stationary weakly dependent RVs
from F. Let us use the notation X1:n ≤⋯ ≤ Xn:n for the associ-
ated ascending order statistics (OSs). Further assume that
there exist sequences of real constants fan > 0g and fbn ∈ℝ
g such that the linearly normalized maximum, ðXn:n − bnÞ/
an, converges weakly to a nondegenerate RV. Then (see Gne-
denko [1]), the limiting CDF is necessarily of the type of the
general extreme value (GEV) CDF, given by

GEVξ xð Þ ≡Gξ xð Þ = e− 1+ξxð Þ−1/ξ , 1 + ξx > 0, if ξ ≠ 0,
e−e

−x , x ∈ℝ, if ξ = 0:

(
ð1Þ

The CDF F is then said to belong to the max-domain
of attraction of GEVξ, and the notation F ∈DMðGEVξÞ is
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used. The GEVξ model, in (1), is perhaps the most relevant
univariate asymptotic model in statistical extreme value the-
ory (EVT). For other relevant asymptotic models and dif-
ferent approaches to statistics of univariate extremes, see
the reasonably recent overviews by [2–5].

The parameter ξ is the extreme value index (EVI), one of
the most relevant parameters of large events. This parameter
measures the heaviness of the right-tail function �FðxÞ≔ 1
− FðxÞ, and the heavier the right tail, the larger ξ is.
Heavy-tailed models, i.e., Pareto-type underlying CDFs, with
a positive EVI, belong to D+

M ≔DMðGEVξ>0Þ, with GEVξ ≡
Gξ defined in (1). Note that, in a univariate framework and
with Ra denoting the class of regularly varying functions at
infinity with an index of regular variation a, i.e., positive
measurable functions g such that lim

t⟶∞
gðtxÞ/gðtÞ = xa, for

all x > 0 (see Bingham et al. [6], for details on regular varia-
tion), and with the notation

U tð Þ≔ F⟵ 1 − 1
t

� �
, t ≥ 1, F⟵ yð Þ≔ inf x : F xð Þ ≥ yf g,

ð2Þ

the following equivalences hold:

F ∈D+
M ⇔ �F = 1 − F ∈ R−1/ξ ⇔U ∈ Rξ: ð3Þ

As an example of a CDF in D+
M , and among many others,

we mention the Fréchet CDF, FðxÞ = exp ð−x−αÞ, x ≥ 0, α > 0
(ξ = 1/α).

In this paper, our interest lies essentially in the estima-
tion of the Weibull tail coefficient (WTC), another relevant
parameter of extreme events. Regularly varying cumulative
hazard functions HðxÞ≔ −ln ð1 − FðxÞÞ will thus be consid-
ered. Indeed, the WTC is the parameter θ in a right-tail
function of the type:

�F xð Þ = 1 − F xð Þ = e−H xð Þ, withH ∈ R1/θ, θ ∈ℝ+: ð4Þ

The class of models with a Weibull-type tail is quite
broad and includes, among others, the normal, the gamma,
the Weibull, and the logistic distributions. This type of
models is quite useful in several areas of applications such
as hydrology, meteorology, environmental sciences, and
nonlife insurance (see de Wet et al. [7]). Further note that
condition (4) is equivalent to assume that the inverse cumu-
lative hazard function H⟵ is a regularly varying function
with index θ. Thus,

U et
� �

=H⟵ tð Þ ∈ RVθ ⇔U tð Þ = ln tð ÞθL ln tð Þ, ð5Þ

with L ∈ R0, a slowly varying function.

1.1. Semiparametric Estimators of the WTC. Regarding the
estimation of the WTC, one of the first WTC estimators in
the literature was based on record values [8]. The use of
the k upper order statistics in the sample was considered in
Broniatowski [9], Beirlant et al. [10, 11], and Dierckx et al.

[12]. Most WTC estimators are based on the relative
excesses:

Uik ≔
Xn−i+1:n
Xn−k:n

, 1 ≤ i ≤ k ≤ n − 1 andXn−k:n > 0, ð6Þ

or on the log excesses:

Vik ≔ ln Xn−i+1:n − ln Xn−k:n, 1 ≤ i ≤ k ≤ n − 1 andXn−k:n > 0:
ð7Þ

Indeed, Beirlant et al. [10] proposed the estimator with
functional form:

bθB
kð Þ≔ ln n

k

� � 1
k
〠
k

i=1
Uik − 1

 !
, k = 1, 2,⋯, n − 1: ð8Þ

Beirlant et al. [13] and Girard [14] considered the fol-
lowing estimator of the WTC:

bθG
kð Þ≔ 1/k∑k

i=1Vik

1/k∑k
i=1lnln n + 1ð Þ/ið Þ − lnln n + 1ð Þ/ k + 1ð Þð Þ

,

  k = 1, 2,⋯, n − 1: ð9Þ

Weighted versions of the estimator bθGðkÞ can be
found in Gardes and Girard [15] and Goegebeur et al.
[16]. The following Hill-type WTC estimator was studied
in Gardes and Girard [17]:

bθGG
kð Þ≔ ln n/kð Þ

k
〠
k

i=1
Vi,k = ln n

k

� �
H kð Þ, ð10Þ

with HðkÞ being the classical Hill (H) [18] EVI estimators
for heavy-tailed models, which can be written as the aver-
age of the log excesses, i.e.,

H kð Þ≔ 1
k
〠
k

i=1
Vik, 1 ≤ i ≤ k < n, ð11Þ

with Vik defined in (7). Consistency of the Hill estimator
for ξ holds if k = kðnÞ is an intermediate sequence, i.e., if

k⟶∞, k
n
⟶ 0, as n⟶∞: ð12Þ

Recent developments in the estimation of the WTC
can be found in papers [19–23].

The quite positive performance of most of the EVI esti-
mators based on generalized means (GMs) leads to the con-
sideration of a simple generalization of the H EVI
estimators, in (11), studied in Brilhante et al. [24], and
almost simultaneously in Paulauskas and Vaiciulis [25] and
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in Beran et al. [26] (see also Segers [27]). Such a generaliza-
tion leads to the so-called power mean-of-order-p (Hp) EVI
estimators. Indeed, on the basis of (11), it is possible to write

H kð Þ = 〠
k

i=1
ln Xn−i+1:n

Xn−k:n

� �1/k
= ln

Yk
i=1

Xn−i+1:n
Xn−k:n

 !1/k

≕ ln
Yk
i=1

Uik

 !1/k

:

ð13Þ

Since the H EVI estimators are the logarithm of the geo-
metric mean (or mean-of-order-0) of Uik, 1 ≤ i ≤ k, defined
in (6), the mean-of-order-p of Uik, for any real p (see Gomes
and Caeiro [28] and Caeiro et al. [29], among others), can be
more generally considered. This leads to the mean-of-order-
p EVI estimators:

Hp kð Þ≔
1 − 1/kð Þ∑k

i=1U
p
ik

� �−1
p

, if p < 1
ξ
, p ≠ 0,

H kð Þ, if p = 0:

8>><>>:
ð14Þ

Just as mentioned above, GMs have recently been used
with high success in the estimation of a positive EVI allow-
ing one to obtain reduced bias estimators of ξ. The adequate
choice of p, in (14), enables such bias reduction for the
mean-of-order-p EVI estimators. Due to the specificity of
the WTC, its relevance and its deep link to a positive EVI,
the GMs, in (14), will now be used for the estimation of
the WTC, with the consideration of

bθp kð Þ≔ ln n
k

� �
Hp kð Þ, ð15Þ

with HpðkÞ defined in (14), for any real p. Notice that the

estimator bθGGðkÞ in (10) is a particular case of bθpðkÞ.
Indeed, we have bθGGðkÞ ≡ bθ0ðkÞ.

In Section 2 of this paper, after a few comments on the
role of the WTC and some preliminary results, a few
details on the asymptotic behaviour of the WTC estimators
in (8), (9), and (15) are provided. Again, a high variance
for small k and a high bias for large k can appear, and thus
it is necessary to reduce bias and/or properly choose the
tuning parameters in play. Section 3 is dedicated to an
extensive Monte Carlo simulation of the WTC estimators
under study. Regarding the mean-of-order-p estimation, it
was always possible to find a value of p (negative, con-
trarily to what happens with the mean-of-order-p EVI esti-
mation), such that, for adequate values of the threshold,
there is a reduction in both bias and root mean square
error (RMSE). Finally, in Section 4, a few overall conclu-
sions are drawn. One of the main points of the article is
that, as even asymptotically equivalent estimators may
exhibit very diversified finite sample properties, it is always
sensible to work, in practice, with a few WTC estimators,
possibly dependent on tuning parameters, which make
them more flexible.

2. Asymptotic Properties

2.1. Preliminary Results. To study the nondegenerate asymp-
totic behaviour of the estimators, a second-order condition
is required to specify the bias term. This condition can be
expressed in terms of the slowly varying function Lð·Þ in
(5). Let us assume that the rate of convergence of ln LðtxÞ
− ln LðtÞ towards 0 is ruled by a function B. Then, there
exists β ≤ 0:

ln L txð Þ − ln L tð Þ
B tð Þ ⟶

t⟶∞

xβ − 1
β

, ð16Þ

and jBj ∈ RVβ. This second-order parameter β quantifies the
rate of convergence of ln LðtxÞ/LðtÞ to 0. The closer β is to 0,
the slower is the convergence.

Remark 1. In the context of EVT, the EVI and the second-
order parameter ρ are null ðξ = 0, ρ = 0Þ. Associated tails
are then in the domain of attraction for maxima of Gumbel’s
law ΛðxÞ = exp ð−exp ð−xÞÞ, x ∈ℝ, which exhibit a penulti-
mate behaviour, looking more similar either to Weibull or
Fréchet tails, according to θ < 1 or θ > 1, respectively. For
details on penultimate behaviour, see Gomes [30, 31] and
Gomes and de Haan [32], among others. Indeed, notice that
ln UðtÞ = θ ln ðln tÞ + ln Lðln tÞ, and consequently,

ln U txð Þ − ln U tð Þ = θ ln ln t + ln x
ln t

� �
+ ln L ln t + ln xð Þ

L ln tð Þ :

ð17Þ

Moreover, employing the Taylor expansion to the first
term,

ln U txð Þ − ln U tð Þ = θ
ln x
ln t

+ ln2x
2 ln2t

1 + o 1ð Þð Þ
( )

+ ln L ln t + ln xð Þ
L ln tð Þ

= θ

ln t
ln x + ln2x

2 ln t
1 + o 1ð Þð Þ

( )

+ B ln tð Þ ln x/ln tð Þβ − 1
β

1 + o 1ð Þð Þ:

ð18Þ

Then,

ln U txð Þ − ln U tð Þ
θ/ln t

⟶
t⟶∞

ln x, ð19Þ

i.e., ξ = 0. Moreover, there exists a slowly varying function A
such that

ln U txð Þ − ln U tð Þð Þ/ θ/ln tð Þð Þ − ln x
A tð Þ ⟶

t⟶∞
ln2x, ð20Þ

i.e., ρ = 0.
Next, we provide some information regarding the distri-

butional behavior of Vik, defined in (7). Suppose that Y1:n,
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Y2:n,⋯, Yn:n are the order statistics generated by n indepen-
dent standard Pareto random variables with CDF FYðyÞ =
1 − 1/y, y ≥ 1. Then, Xi:n = d UðYi:nÞ, 1 ≤ i ≤ n and Yn−i+1:n/
Yn−k:n = d Yk−i+1:n. If k is intermediate, the following distri-
butional representation:

Vik =
d ln U Yn−i+1:nð Þ − ln U Yn−k:nð Þ
=d ln U Yn−k:nYk−i+1:kð Þ − ln U Yn−k:nð Þ,

ð21Þ

holds. Hence, since Ei = ln Yi are independent, identically
exponentially distributed with mean one (see [33]), it follows
that for i = 1, 2,⋯, k,

Vik =d θ ln 1 + Ek−i+1:k
En−k:n

� �
+ B En−k:nð Þ 1 + Ek−i+1:k/En−k:nð Þð Þβ − 1

β
1 + op 1ð Þ� �

:

ð22Þ

Results for Uik can be easily deduced due to the relation
Uik = eVik . Thus, we get

Uik =
d 1 + θ

Ek−i+1:k
En−k:n

+ θ 1 − θð Þ
2

Ek−i+1:k
En−k:n

� �2

� 1 + op 1ð Þ� �
+ Ek−i+1:k

En−k:n
B En−k:nð Þ 1 + op 1ð Þ� �

:

ð23Þ

2.2. Asymptotic Behaviour of the Estimators. The next theo-

rem establishes the limit distribution of bθGGðkÞ.

Theorem 2. For intermediate values of k as in (12), the esti-

mator bθGGðkÞ, in (10), is consistent for the estimation of θ.
More than that, the distributional representation

bθGG
kð Þ=d θ 1 + Pkffiffiffi

k
p + B ln n/kð Þð Þ

θ
−

1
ln n/kð Þ

� �
1 + op 1ð Þ� �	 


ð24Þ

holds, with Pk =
ffiffiffi
k

p ð∑k
i=1Ei/k − 1Þ an asymptotically stan-

dard normal RV.

Proof. Using (22) and the result En−k:n ~ ln ðn/kÞ⟶∞, it is
possible to write

bθGG kð Þ=d θ
1
k
〠
k

i=1
Ek−i+1:k −

1
2k ln n/kð Þ〠

k

i=1
E2
k−i+1:k

 !
1 + op 1ð Þ� �

+ 1
k
〠
k

i=1
Ek−i+1:kB ln n/kð Þð Þ 1 + op 1ð Þ� �

= θ
1
k
〠
k

i=1
Ei −

1
2k ln n/kð Þ〠

k

i=1
E2
i

 !
1 + op 1ð Þ� �

+ 1
k
〠
k

i=1
EiB ln n

k

� �� �
1 + op 1ð Þ� �

:

ð25Þ

Finally, since ð1/kÞ∑k
i=1Ei = 1 + Pk/

ffiffiffi
k

p
and ð1/kÞ∑k

i=1E
α
i

⟶p α, for α = 1, 2, equation (24) and consistency of bθGGð
kÞ follow straightforwardly.

The asymptotic behaviour of the new class of mean-of-
order-p WTC estimators, in (15), is next stated and proven.

Theorem 3. Under the validity of the conditions in (4) and
(16), with k being a sequence of intermediate values, as in
(12), the asymptotic distributional representation

bθp kð Þ=d θ 1 + Pkffiffiffi
k

p + B ln n/kð Þð Þ
θ

−
1

ln n/kð Þ
� �

1 + op 1ð Þ� �	 

ð26Þ

holds for the mean-of-order-p WTC estimator, bθpðkÞ, in
(15), with Pk being the standard normal RV in (24).

Proof. It is just needed to prove equation (26) for p ≠ 0, since
the case p = 0 was already derived in Theorem 2.

By using (23) and the result En−k:n ~ ln ðn/kÞ⟶∞, we
obtain the following distributional representation:

Up
ik =

d 1 + pθ ln Ek−i+1:k
ln n/kð Þ 1 + pθ pθ − 1ð Þ ln Ek−i+1:k

2 ln n/kð Þ 1 + op 1ð Þ� �	
+ B ln n/kð Þð Þ

θ

� �
1 + op 1ð Þ� �


,  p ≠ 0:

ð27Þ

Consequently, under the validity of (12) and using (22)
and the same results used in the proof of Theorem 2, it is
possible to write

1
k
〠
k

i=1
Up

ik =
d 1 + pθ

ln n/kð Þ 1 + Pkffiffiffi
k

p + pθ − 1
ln n/kð Þ +

B ln n/kð Þð Þ
θ

� �
1 + op 1ð Þ� �	 


, p ≠ 0:

ð28Þ

Then,

1
k
〠
k

i=1
Up

ik

 !−1

=d 1 − pθ
ln n/kð Þ 1 + Pkffiffiffi

k
p

	
+ −1

ln n/kð Þ + B ln n/kð Þð Þ
θ

� �
1 + op 1ð Þ� �


, p ≠ 0,

ð29Þ

and from the definition of HpðkÞ in (14), it follows that

Hp kð Þ =
1 − 1/kð Þ∑k

i=1U
p
ik

� �−1
p

=d θ

ln n/kð Þ 1 + Pkffiffiffi
k

p
	

+ −1
ln n/kð Þ + B ln n/kð Þð Þ

θ

� �
1 + op 1ð Þ� �


, p ≠ 0:

ð30Þ
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The result in (26) follows straightforward from the defi-

nition of bθpðkÞ = ln ðn/kÞHpðkÞ, in (14).

Remark 4. Under the conditions of Theorem 3, the asymp-
totic distributional representation of the WTC estimators
in (10) and (15) is the same. The independence on the
real tuning parameter p, in (26), associated with the
mean-of-order-p prevents the determination of the optimal
p value, i.e., the value of p that cancels the asymptotic bias,
or minimizes the RMSE of the mean-of-order-p WTC esti-

mator. However, dependence on p can appear if higher-
order terms are considered in the expansion of the tail
quantile function.

Corollary 5. Under the conditions of Theorem 3 and further
assuming that

ffiffiffi
k

p
Bðln ðn/kÞÞ⟶ λ ∈ℝ and

ffiffiffi
k

p
/ln ðn/kÞ

⟶ 0, with bθpðkÞ denoting the estimators in (15), then

ffiffiffi
k

p bθp kð Þ − θ
� �

⟶
d

N λ, θ2
� �

: ð31Þ
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Figure 2: Simulated mean values (a) and RMSEs (b) of the WTC estimators under study from samples of size n = 1000 from a Γ (0.75,1)
parent (θ = 1).
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Figure 1: Simulated mean values (a) and RMSEs (b) of the WTC estimators under study from samples of size n = 1000 from a exp ð1Þ
parent (θ = 1).
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Proof. From the distributional representations in (24) and
(26), it is possible to write

ffiffiffi
k

p bθp kð Þ − θ
� �

=d θPk +
ffiffiffi
k

p
B ln n

k

� �� �
−

θ
ffiffiffi
k

p

ln n/kð Þ 1 + op 1ð Þ� �
:

ð32Þ

Assuming that
ffiffiffi
k

p
Bðln ðn/kÞÞ⟶ λ ∈ℝ and

ffiffiffi
k

p
/ln ðn/k

Þ⟶ 0 (see [16], Proposition 2.1), with Pk being the standard
normal RV in (24), denoted by N ð0, 1Þ, the result follows.

Next, we state the asymptotic behaviour of the WTC
estimators in (8) and (9).

Proposition 6. Under the same conditions as in Theorem 3,
with k being an intermediate sequence satisfying

ffiffiffi
k

p
Bðln ðn/

kÞÞ⟶ λ ∈ℝ and
ffiffiffi
k

p
/ln ðn/kÞ⟶ 0,

ffiffiffi
k

p bθ• kð Þ − θ
� �

⟶
d

N λ, θ2
� �

, ð33Þ
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Figure 4: Simulated mean values (a) and RMSEs (b) of the WTC estimators under study from samples of size n = 1000 from a half-normal
parent (θ = 0:5).
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Figure 3: Simulated mean values (a) and RMSEs (b) of the WTC estimators under study from samples of size n = 1000 from a W (2,1)
parent (θ = 0:5).
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with bθ•ðkÞ generally denoting the estimators bθBðkÞ and bθGð
kÞ in (8) and (10), with • = B or • =G.

Proof. For the proof of the first limit result, we refer to The-
orem 3.2. of Beirlant et al. [10] with some trivial modifica-
tions. The second limit result is a particular case of
Theorem 1 in Gardes and Girard [15].

Remark 7. Although Corollary 5 and Proposition 6 provide
similar asymptotic distributions for the WTC estimators
considered in this work, the same cannot be guaranteed
about their finite sample performance. It is known that
asymptotic equivalent estimators of the WTC can provide
a different behaviour for small sample sizes (see Goegebeur
et al. [16], p. 3697). Indeed, a similar comment applies to
estimators of any parameter of rare events.

3. Monte Carlo Simulation Study

In this section, the finite sample performance of the class of

estimators bθpðkÞ is evaluated through a Monte Carlo simula-

tion study. For comparative purposes, the WTC estimatorsbθBðkÞ and bθGðkÞ in (8) and (9), respectively, were also included
in the study. The values for the parameter p were selected from
a preliminary simulation study. The value p = 0 was always
used, since it provides the estimator in (10). The value p = 1
was also used to illustrate the effect of a positive value parame-
ter. The following Weibull-type models were considered:

(1) Exponential distribution, exp ð1Þ, with CDF

F xð Þ = 1 − exp −xð Þ, x > 0: ð34Þ

The WTC is θ = 1.

(2) Gamma distribution, Γða, sÞ, a, s > 0, with density

f xð Þ = 1
saΓ að Þ x

a−1 exp −x/sð Þ, x > 0, ð35Þ

for which θ = 1. Illustration is provided for ða, sÞ = ð0:75,1Þ.

Table 1: Simulated optimal sample fraction (OSF), k̂0/n, mean value, and RMSE (both computed at the optimal level) of bθpðkÞ for p = −18,
−10, −5, 0, and 1, bθBðkÞ, and bθGðkÞ from exp ð1Þ underlying parents (θ = 1).

100 200 500 1000 2000 5000

OSF

p = −18 0.4400 0.3100 0.3180 0.4010 0.3770 0.3640

p = −10 0.4500 0.4100 0.3760 0.4190 0.3545 0.1760

p = −5 0.4500 0.3800 0.2780 0.1720 0.1060 0.0560

p = 0 0.1100 0.0900 0.0460 0.0320 0.0240 0.0128

p = 1 0.0900 0.0600 0.0360 0.0240 0.0180 0.0092

B 0.5100 0.5200 0.5380 0.4950 0.4910 0.5282

G 0.6800 0.7300 0.6600 0.6970 0.6885 0.7168

E

p = −18 1.4161 1.1002 0.9992 0.9725 0.9595 0.9534

p = −10 1.0909 0.9881 0.9409 0.9243 0.9185 0.9210

p = −5 0.9178 0.8809 0.8668 0.8749 0.8805 0.8883

p = 0 0.7569 0.7641 0.7967 0.8111 0.8198 0.8386

p = 1 0.7064 0.7369 0.7684 0.7893 0.8011 0.8252

B 1.0293 1.0146 1.0060 1.0030 1.0013 1.0005

G 1.0134 1.0074 1.0026 1.0011 1.0002 1.0001

RMSE

p = −18 1.7097 0.5313 0.2484 0.1653 0.1178 0.0831

p = −10 0.5842 0.3074 0.1815 0.1390 0.1151 0.0981

p = −5 0.3113 0.2258 0.1797 0.1587 0.1446 0.1295

p = 0 0.3124 0.2817 0.2488 0.2262 0.2076 0.1860

p = 1 0.3421 0.3100 0.2725 0.2474 0.2267 0.2023

B 0.2130 0.1464 0.0908 0.0643 0.0454 0.0286

G 0.1231 0.0860 0.0541 0.0382 0.0270 0.0170
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(3) Weibull distribution W ðλ, kÞ, λ, k > 0, with density

f xð Þ = k
λ

x
λ

� �k−1
exp − x/λð Þk

� �
, x ≥ 0: ð36Þ

Illustration is provided for ðλ, kÞ = ð2, 1Þ. The WTC is
θ = 1/λ.

(4) Half-normal distribution is the absolute value of a stan-
dard normal RV. For this model, the WTC is θ = 0:5.

For each model, 20000 samples of size n = 100, 200, 500,
1000, 2000, and 5000 were simulated. Next, for each model

and sample size, n, the simulated values of bθ iðkÞ, k = 1, 2,
⋯, n − 1, i = 1, 2,⋯, 20000, provided by the i-th simulated
sample were computed. Next, the Monte Carlo estimates of
the mean value (E) and RMSE,

E bθ kð Þ
h i

= 〠
20000

i=1

bθ i kð Þ
20000 , RMSE bθ kð Þ

h i

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
20000

i=1

bθ i kð Þ − θ
� �2

20000

vuuut , 1 ≤ k ≤ n − 1,

ð37Þ

were obtained. In addition, the simulated optimum levels,

k̂0 = arg min
k

RMSE bθ kð Þ
h i

, E bθ k̂0
� �h i

, RMSE bθ k̂0
� �h i

,

ð38Þ

were computed.
Figures 1–4 are related to the behaviour of the aforemen-

tioned class of WTC estimators bθpðkÞ, as a function of k. At
the left, the simulated values of the mean value are pre-
sented, and, at the right, the corresponding estimates of the

Table 2: Simulated optimal sample fraction (OSF), k̂0/n, mean value, and RMSE (both computed at the optimal level) of bθpðkÞ for p = −3,
−2, −1, 0, and 1, bθBðkÞ, and bθGðkÞ from Γ (0.75,1) underlying parents (θ = 1).

100 200 500 1000 2000 5000

OSF

p = −3 0.4000 0.4350 0.3580 0.3600 0.3425 0.1930

p = −2 0.4000 0.3700 0.2340 0.1760 0.1145 0.0668

p = −1 0.2800 0.2050 0.1320 0.0810 0.0640 0.0388

p = 0 0.1700 0.1150 0.0780 0.0540 0.0390 0.0218

p = 1 0.1000 0.0700 0.0480 0.0340 0.0250 0.0140

B 0.2700 0.2250 0.1460 0.1030 0.0660 0.0432

G 0.4700 0.3750 0.2160 0.1620 0.1105 0.0582

E

p = −3 1.0072 0.9723 0.9547 0.9478 0.9449 0.9485

p = −2 0.9245 0.9052 0.9101 0.9142 0.9227 0.9319

p = −1 0.8550 0.8648 0.8793 0.8968 0.9013 0.9138

p = 0 0.8102 0.8333 0.8530 0.8696 0.8807 0.8972

p = 1 0.7691 0.7981 0.8247 0.8438 0.8567 0.8776

B 1.2615 1.2231 1.1827 1.1629 1.1439 1.1307

G 1.1902 1.1715 1.1464 1.1353 1.1250 1.1119

RMSE

p = −3 0.2808 0.1868 0.1206 0.0942 0.0781 0.0653

p = −2 0.2311 0.1768 0.1369 0.1173 0.1023 0.0867

p = −1 0.2302 0.1948 0.1619 0.1413 0.1248 0.1068

p = 0 0.2547 0.2242 0.1880 0.1651 0.1478 0.1273

p = 1 0.2910 0.2573 0.2180 0.1936 0.1738 0.1494

B 0.4048 0.3135 0.2416 0.2069 0.1798 0.1547

G 0.2492 0.2104 0.1748 0.1559 0.1409 0.1254
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RMSE are provided. The horizontal solid line, at the left plot,
indicates the true WTC value. A good performance is deter-
mined by the flatness of the mean value curve close to the
true value of θ and by a small RMSE in such flatness region.

Although the simulation is limited to this selected Wei-
bull tail models, the following comments can be drawn.

(i) The estimator bθGGðkÞ in (10) (p = 0 in (15)) has
always a negative bias. The bias makes the estimator
very sensitive to the choice of the threshold k;

(ii) It appears that, in all the simulated cases, it was
always possible to find a negative value of p that
drastically reduces the absolute bias and the RMSE.
This is the opposite to what typically happens with
the mean-of-order-p EVI estimator, where there is
a reduction of bias as well as of RMSE, for positive

values of p. And for such a value of p, bθpðkÞ strongly
beats the estimator bθGGðkÞ considered by Gardes
and Girard [17];

(iii) The estimators bθBðkÞ and bθGðkÞ, in (8) and (9), beat
the class of mean-of-order-p WTC estimators in
terms of bias and RMSE for the exponential andWei-
bull parents under study. For these two parents, the
best estimator was the one proposed by Girard [14];

(iv) For the gamma and half-normal parents, here con-
sidered, it is always possible to find a value of p such
that the estimator bθpðkÞ outperforms in bias and in

RMSE both the estimators bθBðkÞ and bθGðkÞ;
(v) Algorithmic details on the choice of tuning param-

eters p and k are still under development but can
be easily devised, similarly to what is done in Caeiro
and Gomes [34] or Gomes et al. [35].

In Tables 1–4, the simulated values of the optimal sam-
ple fraction (OSF, the optimal level divided by the sample
size) of the mean value (E) and of the RMSE of the estima-
tors under study are presented. For each model, the mean
value closest to the target value θ and the smallest RMSE

Table 3: Simulated optimal sample fraction (OSF), k̂0/n, mean value, and RMSE (both computed at the optimal level) of bθpðkÞ for p = −20,
−12, −5, 0, and 1, bθBðkÞ, and bθGðkÞ from W (2,1) underlying parents (θ = 0:5).

100 200 500 1000 2000 5000

OSF

p = −20 0.4500 0.4100 0.3760 0.4190 0.3545 0.1760

p = −12 0.4500 0.4100 0.3480 0.2110 0.1430 0.0754

p = −5 0.3000 0.2000 0.1040 0.0680 0.0455 0.0306

p = 0 0.1100 0.0900 0.0460 0.0320 0.0240 0.0128

p = 1 0.1000 0.0700 0.0440 0.0300 0.0190 0.0106

B 0.2400 0.1650 0.1040 0.0680 0.0550 0.0312

G 0.6800 0.7300 0.6600 0.6970 0.6885 0.7168

E

p = −20 0.5454 0.4941 0.4704 0.4622 0.4592 0.4605

p = −12 0.4786 0.4534 0.4413 0.4429 0.4446 0.4476

p = −5 0.4098 0.4116 0.4207 0.4249 0.4288 0.4322

p = 0 0.3785 0.3820 0.3984 0.4055 0.4099 0.4193

p = 1 0.3664 0.3774 0.3896 0.3987 0.4072 0.4164

B 0.4103 0.4203 0.4304 0.4379 0.4405 0.4480

G 0.5067 0.5037 0.5013 0.5006 0.5001 0.5000

RMSE

p = −20 0.2921 0.1537 0.0908 0.0695 0.0576 0.0491

p = −12 0.1750 0.1168 0.0867 0.0756 0.0678 0.0608

p = −5 0.1370 0.1198 0.1028 0.0935 0.0856 0.0770

p = 0 0.1562 0.1409 0.1244 0.1131 0.1038 0.0930

p = 1 0.1627 0.1475 0.1300 0.1182 0.1083 0.0970

B 0.1235 0.1071 0.0900 0.0800 0.0715 0.0623

G 0.0615 0.0430 0.0271 0.0191 0.0135 0.0085
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are written in bold. Observe that to reach the smallest abso-
lute bias or the smallest RMSE, it is necessary to use a larger

sample fraction than the one required by bθGGðkÞ (p = 0). The
smallest absolute bias and RMSE are always achieved by bθpðkÞ
with p < 0, for the gamma and half-normal models. Also, the
optimal p decreases, as the sample size n increases. For large
sample sizes, the choices p = −10, −3, −20, and −1:5 seem to
provide an overall good performance for the exponential,
gamma, Weibull, and half-normal models, respectively. For
the exponential andWeibull models, the smallest absolute bias

and RMSE are always achieved by bθGðkÞ.
4. Conclusions

In this paper, the estimation of the WTC, a parameter of
high interest when working with Weibull-type models, is
the main topic under discussion. Due to the similarity
between the WTC estimation and the EVI estimation and
the good performance of the EVI estimators based on
GMs, a new class of WTC estimators was introduced based

on the power mean-of-order-p. The consistency and asymp-
totic normality of the new class of estimators were obtained
under adequate conditions. The finite sample behaviour of
the estimators was evaluated through a Monte Carlo simula-
tion study applied to some selected Weibull-type models.
The dependence on the tuning parameter p makes the new
class highly flexible when compared to the classical WTC

estimators bθBðkÞ, bθGðkÞ, and bθGGðkÞ available in the litera-
ture. For the new class of WTC estimators, it is always pos-
sible to find a negative value of the tuning parameter p that
enables a sharp bias and RMSE reduction for the gamma
and half-normal models. For the exponential and Weibull

models, the WTC estimators bθBðkÞ and bθGðkÞ outperform
the new class of WTC estimators proposed in this paper,

with the estimator bθGðkÞ being the one providing the smal-

lest bias and RMSE. A possible improvement to bθGðkÞ could
be achieved if we replace HðkÞ in (10) by HpðkÞ in (14). This
topic should be addressed in a future work. Anyway and
looking at the simulated values, it is possible that a choice
of p different from the ones considered in the Monte Carlo

Table 4: Simulated optimal sample fraction (OSF), k̂0/n, mean value, and RMSE (both computed at the optimal level) of bθpðkÞ for p = −2,
−1:5, −1, 0, and 1, bθBðkÞ, and bθGðkÞ from half-normal underlying parents (θ = 0:5).

100 200 500 1000 2000 5000

OSF

p = −2 0.4500 0.4500 0.4640 0.5260 0.5645 0.6842

p = −1:5 0.5300 0.4650 0.4640 0.4480 0.3920 0.3692

p = −1 0.4600 0.3800 0.3400 0.2810 0.2460 0.2200

p = 0 0.2900 0.2300 0.1900 0.1440 0.1160 0.0922

p = 1 0.1900 0.1550 0.1100 0.0920 0.0750 0.0532

B 0.3400 0.2650 0.1940 0.1250 0.0900 0.0460

G 0.2100 0.1600 0.0960 0.0550 0.0435 0.0210

E

p = −2 0.5367 0.5262 0.5202 0.5164 0.5144 0.5103

p = −1:5 0.5029 0.4991 0.4946 0.4943 0.4975 0.4986

p = −1 0.4778 0.4818 0.4840 0.4891 0.4922 0.4945

p = 0 0.4571 0.4659 0.4714 0.4803 0.4854 0.4901

p = 1 0.4420 0.4513 0.4643 0.4699 0.4752 0.4830

B 0.6212 0.6081 0.5976 0.5897 0.5847 0.5772

G 0.7079 0.6888 0.6657 0.6492 0.6401 0.6260

RMSE

p = −2 0.1191 0.0814 0.0512 0.0377 0.0280 0.0195

p = −1:5 0.0985 0.0678 0.0419 0.0300 0.0215 0.0137

p = −1 0.0878 0.0637 0.0430 0.0320 0.0237 0.0157

p = 0 0.0873 0.0694 0.0507 0.0398 0.0311 0.0220

p = 1 0.0961 0.0792 0.0605 0.0489 0.0396 0.0295

B 0.1732 0.1410 0.1160 0.1041 0.0948 0.0856

G 0.2478 0.2165 0.1852 0.1670 0.1521 0.1368
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simulations would provide the smallest bias in most situa-
tions. Algorithms for the choice of the tuning parameters p
and k are under development and out of the scope of this
paper.
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