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1. Introduction

In this paper, we consider Markov discrete dynamical systems arising from the itera-
tion of interval maps, belonging to a particular class denoted by M (I) (Definition 2.1). 
This class of maps formalize and establish certain conditions which are common in dis-
crete dynamical systems in order to provide several basic results and to settle a clear 
context in the interplay between iterated maps of the interval, symbolic dynamics and C*-
algebras. Weakening some of those conditions will lead to non-trivial generalizations of 
our previous work on these subjects, see [3] or [4] and the references therein. If f ∈ M (I)
then dom(f) =

⋃n
j=1 Ij ⊂ I, being I1, ..., In a Markov partition for f , for some natural 

n and im(f) = I. The maximal invariant set, contained in I, is typically a Cantor set 
denoted by Ωf . Thus, the discrete dynamical system can be properly defined by the 
pair (Ωf , f). The states of this system are identified with the intervals which constitute 
the Markov partition for f and there is a 0 − 1 matrix, Af , canonically determined by 
the action of f on its Markov partition. Therefore, it is natural to consider the subshift 
of finite type 

(
ΣAf

, σ
)

to codify the orbit structure of (Ωf , f), in fact the systems are 
topologically conjugated. Consider now a collection of closed subintervals Ji, i = 1, ..., m
so that J = ∪m

i=1Ji ⊂ I. Let [J ] be the minimal interval satisfying J ⊂ [J ]. One of the 
main objective on our paper is to determine the conditions for which the map g := f|J
belongs to M ([J ]). This problem is related with the study of the invariant Cantor sets 
for f ∈ M (I) and the classification of the Markov subsystems (Ωg, g) of (Ωf , f), with 
Ωg ⊂ Ωf , g := f|J . In fact, if J ⊂ I satisfies certain conditions so that g := f|J be-
longs to M ([J ]) then the maximal invariant Cantor set for g, Ωg, is an invariant Cantor 
set for f , that is, Ωg ⊂ Ωf and f (Ωg) = Ωf . Moreover, in this case, ΣAg

⊂ ΣAg
and 

σ
(
ΣAg

)
= ΣAg

.
The method we use, to solve the problem, is to transform a refined Markov partition 

for the given map f , removing appropriate intervals, and use it to support a newly 
defined interval map g, on J , in the spirit of our previous works and [4] [5]. The main 
problem to solve is to guarantee the primitivity of the matrix Ag, associated with g.

The change of Markov partitions and its impact on the underlying dynamics is an 
important issue in dynamical systems and its applications, see for example [13] or [1]. In 
[11], Raith study the influence of small changes, imposed in the partition of expanding 
piecewise monotone interval maps, on the Hausdorff dimension of invariant sets. In par-
ticular, he shows that, given t ∈ [0, 1], there is an invariant set for the interval map with 
Hausdorff dimension equal to t. Following the same perspective, in [12], Raith studies 
restrictions of an interval map f with given positive topological entropy, less than the 
topological entropy of f . A similar result was presented earlier, by Krieger for subshifts 
of finite type. He proves, in [7], that given a subshift of finite type, ΣA, with A primitive 
and a minimal expansive homeomorphism on a Cantor set with lesser topological entropy 
than the topological entropy of ΣA then the referred homeomorphism is topologically 
conjugated to a subsystem of ΣA. The minimality condition can be replaced by a certain 
condition on low period orbits of the homeomorphism ([7]). As a consequence, if there is 
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a subshift of finite type ΣÃ so that the topological entropy of ΣÃ is less than the topo-
logical entropy of ΣA then we expect to find subsystems of ΣA topologically conjugated 
to ΣÃ.

Here, we go further with respect to Markov systems since we are able to enumer-
ate certain Markov subsystems of a given one. This is accomplished identifying the 
rows/columns which may be removed from a given primitive matrix still getting a prim-
itive matrix. The removal of such rows/columns of a transition matrix, Af , corresponds 
to the removal of intervals from the Markov partition of f , getting a restriction of f
which belongs to M. Note that each row/column of Af is associated to a Markov state 
and to an interval in the Markov partition of f .

The singular points of f ∈ M (I) are the boundary points of its Markov partition. The 
refinements of the Markov partition of f using points in the orbits of the singular points 
of f does not affect the dynamical system (Ωf , f), since the refinement of the Markov 
partition for these points corresponds to state splitting operations on the corresponding 
transition matrix, see [4]. If the refinement is made removing other type of orbits, or 
intervals, then the obtained dynamical system is usually not topologically equivalent to 
the original, see [13] and [5].

In [5] we have considered the dynamics of interval maps whose maximal invariant 
set is a non trivial Cantor set, that is, a cookie-cutter set with non-integer Hausdorff 
dimension, [6]. In this case, the map f must possess a nontrivial escape set. Removing 
appropriate intervals from refined Markov partitions of a map f , as referred above, give 
us restrictions of the map f with nontrivial escape sets - at least the removed intervals 
are contained in the escape set. When this removal does not affect the Markov property, 
neither the primitivity of the new transition matrix, the obtained restrictions belong to 
the class M, fulfilling our objective. Therefore, we aim to determine which conditions 
guarantee the Markov and primitivity properties of the referred restrictions.

The paper is organized as follows. In the section 2.1 we introduce all the preliminary 
notions, definitions and auxiliary results. In particular, we explain in detail the refine-
ments of the Markov partitions and the use of the state splitting transformation, in the 
context of the subshift of finite type and in the context of interval maps.

We establish some conditions for g to be Markov. In particular, if the domain of g is 
a refinement of the Markov partition of f , using pre-images of the singular points of f , 
then the Markov partition of g is obtained through finite unions of f -cylinders. This is 
accomplished in the section 3, in the Lemma 3.2. Next, the main problem to deal with 
is to determine which conditions guarantee that the transition matrix Ag associated 
with the partition of the domain of g will be primitive, which ensures, together with 
the conditions of the Lemma 3.2, that g ∈ M ([J ]). This problem is considered in the 
section 4, where the main result, Theorem 4.10, is stated and proven.

Finally, we indicate a method which allows, given a particular map f ∈ M (I), to find 
domains J ⊂ I for which g := f|J ∈ M ([J ]) and this can be performed in a systematic 
way, using the concept of removable state (Definition 4.6). In the Theorem 4.10, a nec-
essary and sufficient condition is given for a state to be removable. The candidates for J
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are built removing intervals which are Markov for the refined partitions and which are 
associated with the removable states.

Using the concept of degree of a partition - basically it measures the degree of the 
refinement of a Markov partition (Definition 3.1) - we describe a method which allows 
to enumerate the Markov subsystems of a given Markov system as consequence of the 
Theorem 4.10. This method can be performed in the abstract context of subshifts of 
finite type or in the context of Markov interval maps. Moreover, these subsystems, with 
fixed degree, can be arranged in a partially ordered set. In the section 5, we apply our 
results for the family of β-shifts, considering the cases β = 2, β = 1+

√
5

2 for the degrees, 
r = 1, r = 2 and r = 3. This is a topic which we plan to address our attention in a future 
work, for a complete classification.

2. Preliminaries

2.1. Markov maps and escape sets

We consider the class of interval maps whose domain is based on partitions of an 
interval I, as in [5].

Definition 2.1. Let I ⊂ R be an interval. A map f is in the class M(I) if it satisfies the 
properties (P1), (P2), (P3), (P4), presented below:

(P1) [Existence of a finite partition in the domain of f ] There is a partition C =
{I1, ..., In} of closed intervals with # (Ii ∩ Ij) ≤ 1 for i �= j, dom(f) =

⋃n
j=1 Ij ⊂ I

and im(f) = I.
(P2) [Markov property] For every i = 1, ..., n the set f(Ii) ∩

(⋃n
j=1 Ij

)
is a non-empty 

union of intervals from C.
(P3) [Expansive map] f|Ij ∈ C1(Ij), monotone and |f ′

|Ij (x)| > b > 1, for every x ∈
Ij , j = 1, ..., n, and some b.

(P4) [Aperiodicity] For every interval J ∈ C there is a natural number qJ such that 
dom(f) ⊂ fqJ (J).

The minimal partition C satisfying the Definition 2.1 is denoted by Cf . We remark 
that the Markov property (P2) allows us to encode the transitions between the intervals 
in the so-called (Markov) transition n × n matrix Af = (aij), defined as follows:

aij =
{

1 if f(I̊i) ⊃ I̊j ,

0 otherwise
(1)

where J̊ denotes the interior of a set J .
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Let Γ be an ordered set

Γ = {c−0 , c+0 , c−1 , c+1 , ..., c−n−1, c
+
n−1, c

−
n , c

+
n }, (2)

of real numbers, with n ∈ N, such that

c−0 ≤ c+0 < c−1 ≤ c+1 < c−2 ≤ ... < c−n−1 ≤ c+n−1 < c−n ≤ c+n . (3)

The boundary points of a partition C arising from a map f ∈ M(I), as in (P1), 
constitute naturally a set Γ as in (2) satisfying (3). In fact, considering Γ as in (2), the 
related partition C = {I1, ..., In}, is given by

I1 =
[
c+0 , c

−
1
]
, ..., Ij =

[
c+j−1, c

−
j

]
, ..., In =

[
c+n−1, c

−
n

]
. (4)

We consider also the collection of open intervals {E1, ..., En−1}, with

E0 =
]
c−0 , c

+
0
[
, E1 =

]
c−1 , c

+
1
[
, ..., En−1 =

]
c−n−1, c

+
n−1

[
, En =

]
c−n , c

+
n

[
, (5)

so that

I := [c−0 , c+n ] =
(
∪n
j=1Ij

)⋃(
∪n−1
j=1Ej

)
. (6)

In this case, the set Γ is called set of the singular points of f and, from the Markov 
property, Γ satisfies f (Γ) ⊂ Γ.

A map f ∈ M(I) uniquely determines (together with the minimal partition Cf =
{I1, ..., In}):

(i) The f -invariant set

Ωf := {x ∈ I : fk(x) ∈ dom(f) for all k = 0, 1, ...}.

(ii) The collection of open intervals {E0, E1, ..., En−1, En}, such that

I \
n⋃

j=1
Ij =

n−1⋃
j=1

Ej .

(iii) The transition matrix Af = (aij)i,j=1,..,n.
The intervals I1, ..., In are called the Markov intervals of f whereas E1, . . . , En−1, are 

called the escape intervals (possibly empty) of f .
Note that Ωf , a Cantor set, is the set of points that remain in dom(f) under iteration 

of f and the open set

Ef := I \ Ωf =
∞⋃

f−k

⎛⎝n−1⋃
j=1

Ej

⎞⎠ (7)

k=0
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is usually called the escape set. Every point in Ef will eventually fall, under iteration of 
f , into the interior of some interval Ej (where f is not defined) and the iteration process 
ends. We may say that x is in the escape set Ef of f if and only if there is k ∈ N such 
that fk (x) /∈ dom(f). If c−j = c+j , for some j, then Ej = ∅ and cj is a singular point, 
either a critical point or a discontinuity point of f . Note that if c−j = c+j , the notation 
c−j , c

+
j represents the side limits of the point cj , that is,

c±j = lim
ε→0±

cj + ε.

However, if c−j < c+j , that is, Ej �= ∅, we use the notation c−,−
j , c−,+

j , c+,−
j , c+,+

j to 
denote the corresponding side limits, that is,

c±,±
j = lim

ε→0±
c±j + ε.

The orbit of a point x ∈ Ωf is the set orbf (x) :=
{
fk (x) : k ∈ N

}
. We will consider 

the equivalence relation Rf , on Ωf , defined by

Rf := {(x, y) : fn(x) = fm(y) for some n,m ∈ N0}. (8)

The relation Rf is a countable equivalence relation in the sense that the equivalence 
class Rf (x) of x ∈ I, is a countable set. We denote x ∼ y whenever (x, y) ∈ Rf , and 
Rf (x) is called the generalized orbit of x ∈ I.

2.2. Symbolic dynamics for Markov maps and escape sets

In the following we encode the orbit (under f) of a point via symbolic dynamics.

Definition 2.2. The address map ad :
⋃n

j=1 I̊j → {1, 2, ..., n} is defined as follows: 
ad(x)=i if x ∈ I̊i, where I̊j denotes the interior of Ij . The itinerary map itf :

⋃n
j=1 I̊j →

{1, 2, ..., n}N0 is defined as itf (x)=(ad(fn(x))n=0,1,....

Let ΣAf
be the subspace of {1, 2, . . . , n}N given by itf (∪n

j=1Ij), which is invariant 
under the shift map defined as

σ : {1, 2, . . . , n}N → {1, 2, . . . , n}N
σ(i1i2 . . .) = (i2i3 . . .).

(9)

We will use just σ instead of σ|ΣAf
. Naturally,

ΣAf
=

{
i1i2 . . . : aikik+1 = 1, k ∈ N

}
and itf ◦ f = σ ◦ itf . The pair 

(
ΣAf

, σ
)

is a subshift of finite type, characterized by the 
matrix Af . Since f is expansive the dynamical system (Ωf , f) is topologically conjugated 
to 

(
ΣAf

, σ
)

via the itinerary map itf .
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A sequence in {1, 2, . . . , n}N is called admissible, with respect to f , or f -admissible, if 
it occurs as an itinerary of some point x in Ωf , i.e., if it belongs to ΣAf

. An admissible 
word is a finite subsequence of some admissible sequence. The set of admissible words 
of size k is denoted by Wk, or by WAf ,k, depending on the context. The words of size 
1 coincide with the symbols in the alphabet {1, 2, ..., n}. Each symbol correspond to a 
state of the system 

(
ΣAf

, σ
)

and also of the system (Ωf , f), at some time instant.
A periodic sequence, or a cycle, in ΣAf

is an admissible sequence which is the repetition 
ad infinitum of a certain admissible word

γ = γ1...γlγ1...γl... = (γ1...γl)∞ .

The set of cycles is denoted by Σper
Af

. The size of the cycle γ is the minimal natural 
number l so that γ = (γ1...γl)∞ and the word γ1...γl is called representative of the cycle. 
Note that any of the words γ2...γlγ1, . . ., γlγ1...γl−1 are representative of the same cycle. 
A word is called simple if every symbol in the word is distinct, with the same meaning 
we use the notion simple cycle. A cycle γ is simple if its representative words cannot be 
decomposed as concatenation or juxtaposition of representative words of smaller cycles.

To each admissible word ξ ∈ Wk, k > 0, corresponds a special type of interval denoted 
by Iξ and called an f -cylinder. If ξ = ξ1...ξk then the interval Iξ is defined

Iξ = Iξ1...ξk :=
{
x ∈ Iξ1 : f (x) ∈ Iξ2 , f

2 (x) ∈ Iξ3 , ..., f
k−1 (x) ∈ Iξk

}
.

Note that if k > 1 then f (Iξ1...ξk) = Iξ2...ξk . Moreover, the f -cylinders are obtained as 
pre-images of the intervals partition

Iξ1...ξk = Iξ1 ∩ f−1 (Iξ2...ξk) ,

see the Proposition 2 in [3].
Associated to each map f ∈ M (I) with transition matrix Af = (aij) we define a 

digraph GAf
with vertex set Cf and edge set{

(Ii, Ij) ∈ C2
f : aij = 1

}
.

From this definition, the adjacency matrix of GAf
is precisely the transition matrix 

Af . Therefore, we have a natural correspondence between the orbits of f , the sequences 
in ΣAf

and the paths on GAf
. The cycles of ΣAf

and therefore the periodic orbits of f , 
correspond to closed paths on GAf

.
The follower of a state i is any state j so that aij = 1. The predecessor of a state j

is any state i so that aij = 1. We then define the set of followers by

fol(i) := {j : aij = 1}

and the set of predecessors
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pre(j) := {i : aij = 1}.

The state splitting applied to a certain state s ∈ {1, 2, ..., s, ..., n} is an operation which 
gives us a new alphabet

{1, 2, ..., s− 1, s + 1, ..., n} ∪ {(sj) : asj = 1},

in which the state s is divided (splitted) in the states represented by (sj), for every j so 
that asj = 1, that is, the state s with its followers j. The transitions in the new alphabet 
are codified in a matrix denoted by Φs (A) = (bij), indexed by

{1, 2, ..., s− 1, s + 1, ..., n} ∪ {(sj) : asj = 1}

and defined by ⎧⎪⎪⎪⎨⎪⎪⎪⎩
bij = aij
b(si)j = δij
bi(sj) = ais
b(si)(sj) = δis.

(10)

This is an adaptation of the state splitting definition found in [8] or [9]. The state 
splitting of A, on s, Φs (A) has a corresponding transformation, with respect to f , in 
writing a f -cylinder associated with s as the union of smaller cylinders, in this case

Is =
⋃

j∈fol(s)

Isj .

Moreover, the subshift ΣΦs(A) is topologically conjugated to ΣA, see [8].
Matrices A for which there exists a positive integer m such that all the entries of 

Am are non-zero are called primitive. We note that the matrix Af is primitive (thus 
irreducible) whenever f ∈ M(I) (Definition 2.1, property P4).

Remark 1. The inverse operation of the state splitting is the amalgamation of a set of 
states. The states which can be amalgamated are those which have disjoint follower sets 
and identical predecessor sets. A matrix is in total amalgamation form if there are no 
states satisfying these conditions, see [8].

Example 2.3. Let

A =

⎛⎜⎝ 0 1 0
0 0 1
1 1 1

⎞⎟⎠ ,
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with respect to the alphabet {1, 2, 3}. The state splitting applied to the state 1 gives us 
the matrix

Φ1 (A) =

⎛⎜⎝ 0 1 0
0 0 1
1 1 1

⎞⎟⎠ with alphabet {(12) , 2, 3} .

On the other hand, the state splitting applied to the state 3 gives us the matrix

Φ3 (A) =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎠ with alphabet {1, 2, (31) , (32) , (33)} .

2.3. Non minimal Markov partitions for f

Let f ∈ M (I), with domain ∪n
j=1Ij ⊂ I, transition matrix Af and invariant set Ωf . 

Consider the set Wk of f -admissible words of size k ≥ 1. Let k ≥ 1 and consider fk

obtained iterating k times the map f . The map fk belongs also to M (I). In fact, the 
domain of fk is contained in the domain of f , which itself is contained in the interval I. 
The invariant Cantor set is Ωfk = Ωf and the minimal Markov partition for fk is given 
by

Cfk = {Iξ : ξ ∈ Wk} ,

which is a refinement of Cf = {I1, ..., In}, since Ii = ∪iη∈Wk
Iiη. The Markov property 

for fk arise from

f (Iξ1...ξr) = Iξ2...ξr = ∪j∈fol(ξr)Iξ2...ξrj . (11)

The collection Cfk , with natural k ≥ 1, is also a Markov partition for f , nevertheless is 
not minimal with respect to f . When used with this perspective, with the intervals in 
Cfk enumerated by the f -admissible words of size k, we denote it by C(k)

f := Cfk . In 

particular, C(1)
f = Cf .

Example 2.4. Consider the α, β-family of maps studied in [10], f (x) = βx + α mod 1. 
If β is the maximal solution of β3 − β2 − β − 1 = 0 and α = β−3, β = 1.83929 . . ., 
α = 0.160713 . . ., then f ∈ M ([0, 1]) and Cf = {I1, I2, I3}, with I1 = [0, α] , I2 =
[α, αβ + α] , I3 = [αβ + α, 1]. The previous equation, on β, arises from the eigenvalue
equation det (Af − Iβ) = 0, with the transition matrix given by
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Af =

⎛⎜⎝ 0 1 0
0 0 1
1 1 1

⎞⎟⎠ .

The value of α can be determined through the Perron right eigenvector of Af , see 
[10], or more directly from the periodicity condition of the orbit of 0+, orbf (0+) =
{0+, α, αβ + α}, that is,

f (αβ + α) = 0+ ⇔ α
(
β2 + β + 1

)
− 1 = 0 ⇔ α = 1

β2 + β + 1 = β−3.

The map f2 belongs also to M ([0, 1]) and its minimal Markov partition can be written 
in terms of the f -cylinders associated with f -admissible words of size 2, that is, Cf2 =
{I12, I23, I31, I32, I33}. Each Iξ1ξ2 is the interval of points x which belong to Iξ1 so that 
f (x) ∈ Iξ2 . For this particular case, I12 = [0, α], I23 = [α, αβ + α], I31 =

[
αβ + α, β−1], 

I32 =
[
β−1, β−1 (1 + αβ)

]
, I33 =

[
β−1 (1 + αβ) , 1

]
. Moreover, note that I1 = I12, I2 =

I23 (there are only one word of size 2 beginning with symbol 1 or 2) and I3 = I31∪I32∪I33. 
The map f2 is given explicitly by

f2 (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

β2 if x ∈ I12
β2x + α if x ∈ I23
β2x + αβ if x ∈ I31
β2x + αβ if x ∈ I32
β2x + αβ + α if x ∈ I33.

The transition matrix associated to f , with respect to the partition C(k)
f , is defined 

by

A
(k)
f := (aξ,η)ξ,η∈Wk

, where aξ,η :=
{

1 if f(I̊ξ) ⊃ I̊η,

0 otherwise.

If k = 1, then A(k)
f is the Markov transition matrix defined in eq. (1). Thanks to (11) we 

have

aξ,η =
{

1 if ξ2...ξk = η1...ηk−1
0 if ξ2...ξk �= η1...ηk−1,

where ξ = ξ1...ξk, η = η1...ηk ∈ Wk.

The matrix A(k)
f may also be obtained through systematic state splitting applied to 

every state i ∈ Wk, see [4].

Example 2.5. Consider the α, β-family of maps, f (x) = βx + α mod 1, referred in the 
Example 2.4 above, with β being the maximal solution of β3 − β2 − β − 1 = 0 and 



278 C. Correia Ramos et al. / Linear Algebra and its Applications 620 (2021) 268–296
α = β−3, β = 1.83929 . . ., α = 0.160713 . . . with Cf = {I1, I2, I3}, with I1 = [0, α] , I2 =
[α, αβ + α] , I3 = [αβ + α, 1]. The map f , considered on the refined partitions

C
(2)
f = {I12, I23, I31, I32, I33},

C
(3)
f = {I123, I231, I232, I233, I312, I323, I331, I332, I333},

gives the following transition matrices

A
(2)
f =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎠ , A
(3)
f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which are obtained by the state splitting on 1, 2, 3, in the case Af → A
(2)
f and by the 

state splitting on the states 12, 23, 31, 32, 33, in the case A(2)
f → A

(3)
f . In other words,

A
(2)
f = Φ3 ◦ Φ2 ◦ Φ1 (Af ) ,

A
(3)
f = Φ33 ◦ Φ32 ◦ Φ31 ◦ Φ23 ◦ Φ12

(
A

(2)
f

)
.

Note that, since the follower set of 1 and 2 are singular we have, in fact, A(2)
f = Φ3 (Af ), 

since Φ1 and Φ2 does not affect the form of the splitted matrix. The same reasoning lead 
us to

A
(3)
f = Φ33 ◦ Φ23

(
A

(2)
f

)
.

3. Conditions for Markov invariant dynamics

Given a closed set J ⊂ I ⊂ R, we denote [J ] = [min J,max J ]. Here, we search for 
conditions, given J ⊂ I, to have g := f|J ∈ M ([J ]).

Let

Γ̃ = {d−0 , d+
0 , d

−
1 , d

+
1 , ..., d

−
m−1, d

+
m−1, d

−
m, d+

m}

be an ordered set of real numbers so that [d0, dm] ⊂ I and

d−0 ≤ d+
0 < d−1 ≤ d+

1 < d−2 ≤ ... < d−m−1 ≤ d+
m−1 < dm ≤ d+

m. (12)
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Given Γ̃ as above, we define the collection of closed intervals CΓ̃ = {J1, ..., Jm}, with

J1 =
[
d+
0 , d

−
1
]
, ..., Ji =

[
d+
i−1, d

−
i

]
, ..., Jm =

[
d+
m−1, d

−
m

]
. (13)

Next, let J = ∪m
i=1Ji and we consider the collection of open intervals

{E0, E1, ..., Em},

corresponding to eventual escape intervals for g := f|J , each one defined by

E0 =
]
d−0 , d

+
0
[
, E1 =

]
d−1 , d

+
1
[
, ..., Em =

]
d−m, d+

m

[
, (14)

in such a way that [J ] = [d0, dm] = (∪m
i=1Ji)

⋃(
∪m−1
i=1 Ei

)
. In this case dom (g) = J .

Let us analyze the conditions, on Γ̃, for g ∈ M ([J ]). First, assume that the orbits of 
the points in Γ̃ are contained in the set J , that is,

fk
(
Γ̃
)
⊂ J , for every k > 0, (15)

and for every i ∈ {0, 1, ...,m− 1}, there must exist ji ∈ {0, 1, ..., n− 1} so that

c+ji < d+
i < d−i+1 < c−ji+1, (16)

assuming d0 = d+
0 and dm = d−m, for enumeration purposes (to facilitate the notation we 

further assume d0 = d+
0 = d−0 , dm = d−m = d+

m).
From the conditions (12), (15) and (16) we have that f|Ji

, i = 1, ..., m is continuous, 
monotone and its image is contained in [J ]. In fact, using the notation from (16) we have 
f|Ji

= fji+1 , the branch of the function f on Iji+1 ⊃ Ji.
We further consider an additional condition that each point d±i , i = 0, 1, ..., m, belongs 

to the generalized orbits of the singular points of f , that is,

d±i ∈ Rf (Γ) , i = 0, 1, ...,m, (17)

where Γ is constituted by the boundary points of the partition Cf , satisfying (3).
The condition (17) implies that each interval Ji is a finite union of f -cylinders, con-

tained in a unique larger f -cylinder, which is a consequence of (16).
Since f ∈ M (I), satisfies the Markov property (P2), then every point in Γ is periodic 

(or pre-periodic) and this fact can be expressed by the following statement: there is a 
natural number s ≥ 0 so that fs+1 (Γ) = fs (Γ). Recall that the boundary points of the 
intervals in C(r)

f are the points in f−r (Γ), for some natural r ≥ 1.

Definition 3.1. Let r ∈ N. An element in f−r (Γ) is called a pre-image of degree r. The 
degree of Γ̃, with respect to Γ, is the maximal degree of the elements in Γ̃, which are 
pre-images of Γ, under f .
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Note that this definition makes sense since we impose (17).
The following result give necessary conditions for restriction g := f|J belong to 

M ([J ]).

Lemma 3.2. Consider the set J = ∪m
i=1Ji, arising from Γ̃ through (12) and (13). Let 

g := f|J . If Γ̃ satisfies (15), (16) and (17) then g satisfy the properties (P1), (P2) and 
(P3), from the definition (2.1). Moreover, there is a Markov partition for g constituted 
by intervals in C(r)

f which are contained in ∪m
i=1Ji, where r is the degree of Γ̃.

Proof. From conditions (12), (15), and (16), it is possible to define the map g := f|∪m
i=1Ji

, 
f restricted to ∪m

i=1Ji, so that each branch f|Ji
, i = 1, ..., m is continuous, monotone. 

Consider i with 1 ≤ i ≤ m. If (17) is verified then Ji is an interval which is a union 
of f -cylinder sets. Its boundary points ∂Ji = {min (Ji) ,max (Ji)} , i = 1, ..., m, which 
are pre-images of the singular points of f , Γ, constitute Γ̃. Let r be the maximal degree 
of these pre-images, that is, the maximal exponent r so that ∂Ji ⊂ f−r (Γ), for every 
i = 1, ..., m. Since f is Markov, there is some natural number s ≥ 0 so that fs+1 (Γ) =
fs (Γ). Therefore, the boundary points in Γ̃ = ∂ ∪m

i=1 Ji satisfy fr+s+1 (∂ ∪m
i=1 Ji) =

fr+s (∂ ∪m
i=1 Ji) and are contained in ∪m

i=1Ji = dom (g), by (15). Therefore g is Markov 
and the partition of J = ∪m

i=1Ji into a union of intervals from C(r)
f constitute a Markov 

partition for g. �
Note that the partition obtained from Lemma 3.2 is not necessarily minimal. Nev-

ertheless, it has the property that is constituted by f -cylinder sets of the same degree, 
that is, those which are indexed by f -admissible words of the same size r. This means 
that this r is a number depending exclusively on Γ̃.

The transition matrix, associated with g through this process, is denoted by Bg. It 
may be not in totally amalgamated form (which in that case the partition would be 
minimal) and may not be primitive. We consider this problem in the next section.

Example 3.3. Recall f = βx + α mod 1, with β3 − β2 − β − 1 = 0 and α = β−3, from 
the Example 2.5:

Γ = {c−0 , c+0 , c−1 , c+1 , c−2 , c+2 , c−3 , c+3 },

with c±0 = 0, c±1 = α, c±2 = αβ + α, c±3 = 1. Now, consider the refined partition

C
(3)
f = {I123, I231, I232, I233, I312, I323, I331, I332, I333}.

Let us consider the set J = ∪6
i=1Ji with J1 = I123, J2 = I231, E2 =

◦
(I232 ∪ I233), 

J3 = I312, J4 = I323, E4 =
◦

I331, J5 = I332, J6 = I333. Note that E0 = E1 = E3 = E5 =
E6 = ∅, following the definition (14). In this case Γ̃ = ∂

(
∪6
i=1Ji

)
and its degree is 3. The 

set Γ̃ can be written explicitly through
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Γ̃ = {d−0 , d+
0 , d

−
1 , d

+
1 , d

−
2 , d

+
2 , d

−
3 , d

+
3 , d

−
4 , d

+
4 , d

−
5 , d

+
5 , d

−
6 , d

+
6 },

with d−0 = d+
0 , d−1 = d+

1 , d−3 = d+
3 , d−5 = d+

5 , d−6 = d+
6 , so that

J1 =
[
d+
0 , d

−
1
]
, J2 =

[
d+
1 , d

−
2
]
, E2 =

]
d−2 , d

+
2
[
, J3 =

[
d+
2 , d

−
3
]
,

J4 =
[
d+
3 , d

−
4
]
, E4 =

]
d−4 , d

+
4
[
, J5 =

[
d+
4 , d

−
5
]
, J6 =

[
d+
5 , d

−
6
]
.

Now, from the construction of the partition C(3)
f , we have

f (J1) = f (I123) = I23, f (J1) ∩ J = J2,

f (J2) = f (I231) = I31, f (J2) ∩ J = J3,

f (J3) = f (I312) = I12, f (J3) ∩ J = J1,

f (J4) = f (I323) = I23, f (J1) ∩ J = J2,

f (J5) = f (I332) = I32, f (J1) ∩ J = J4,

f (J6) = f (I333) = I33, f (J1) ∩ J = J5 ∪ J6.

The above equalities, written in terms of the boundary points, are

f
(
d+
0
)

= d+
1 ∈ J2,

f
(
d−1

)
= d+,−

2 = d+
2 ∈ J3,

f
(
d+
1
)

= d+
2 ∈ J3,

f
(
d−2

)
= d−3 ∈ J3,

f
(
d+
2
)

= d+
0 ∈ J1,

f
(
d−3

)
= d−1 ∈ J1,

f
(
d+
3
)

= d+
1 ∈ J2,

f
(
d−4

)
= d+,−

2 ∈ J3,

f
(
d+
4
)

= d+
3 ∈ J4,

f
(
d−5

)
= d−,−

4 = d−4 ∈ J4,

f
(
d+
5
)

= d−,+
4 = d−4 ∈ J4,

f
(
d−6

)
= d−6 ∈ J6.

Note that f
(
d−1

)
= d+,−

2 means that f
(
d−1 − ε

)
∈ E2 (escape) for arbitrary small ε > 0. 

In this case

f
(
Γ̃
)

=
{
d+
0 , d1, d

+
2 , d3, d

−
4 , d

−
6
}
,

f2
(
Γ̃
)

=
{
d+
0 , d1, d

+
2 , d3, d

−
4 , d

−
6
}
,

that is, f2
(
Γ̃
)

= f
(
Γ̃
)
. The set Γ̃ satisfies the conditions (15), (16) and (17), and 

g = f|J is Markov. The matrix associated with g = f|J is

Bg =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

which is reducible. Therefore, although g is Markov, the matrix Bg is not primitive, (P4) 
fails, and g /∈ M ([J ]). See the graph of f in the Fig. 1, with the partition C(3)

f indicated, 
and the removed intervals.
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Fig. 1. Graph of f , from the Example 3.3, with the partition C(3)
f indicated. Note that J = ∪6

i=1Ji, with 
J1 = I123, J2 = I231, E2 =

◦
(I232 ∪ I233), J3 = I312, J4 = I323, E4 =

◦
I331, J5 = I332, J6 = I333, and 

g = f|J .

Example 3.4. Again, from the Example 2.5, let f = βx +α mod 1, with β3−β2−β−1 = 0
and α = β−3. Consider the partition

C
(3)
f = {I123, I231, I232, I233, I312, I323, I331, I332, I333}.

Let us consider the set J = ∪5
i=1Ji with J1 = I232, J2 = I233, E2 =

◦
I312, J3 = I323, 

E3 =
◦

I331, J4 = I332, J5 = I333. Let Γ̃ = ∂
(
∪5
i=1Ji

)
, its degree is 3. The set Γ̃ can be 

written explicitly through

Γ̃ = {d−0 , d+
0 , d

−
1 , d

+
1 , d

−
2 , d

+
2 , d

−
3 , d

+
3 , d

−
4 , d

+
4 , d

−
5 , d

+
5 },

with d−0 = d+
0 , d−1 = d+

1 , d−3 = d+
3 , d−4 = d+

4 , d−5 = d+
5 , so that

J1 =
[
d+
0 , d

−
1
]
, J2 =

[
d+
1 , d

−,−
2

]
, E2 =

]
d−,+
2 , d+

2
[
, J3 =

[
d+
2 , d

−,−
3

]
,

E3 =
]
d−,+
3 , d+

3
[
, J4 =

[
d+
3 , d

−
4
]
, J5 =

[
d+
4 , d

−
5
]
.
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The above equalities, written in terms of the boundary points, are

f
(
d+
0
)

= d+
2 ∈ J3

f
(
d−1

)
= d−,−

3 = d−3 ∈ J3

f
(
d+
1
)

= d+
3 ∈ J4

f
(
d−,−
2

)
= d−5 ∈ J5

,
f
(
d+
2
)

= d+
0 ∈ J1

f
(
d−3

)
= d−,−

2 = d−2 ∈ J2
,

f
(
d+
3
)

= d+
2 ∈ J3

f
(
d−4

)
= d−,−

3 = d−3 ∈ J3
,
f
(
d+
4
)

= d+
3 ∈ J4

f
(
d−5

)
= d−5 ∈ J5

In this case

f
(
Γ̃
)

=
{
d+
0 , d

−
2 , d

+
2 , d

−
3 , d

+
3 , d

−
5
}
, f2

(
Γ̃
)

=
{
d+
0 , d

−
2 , d

+
2 , d

−
5
}
,

f3
(
Γ̃
)

=
{
d+
0 , d

+
2 , d

−
5
}
, f4

(
Γ̃
)

=
{
d+
0 , d

+
2 , d

−
5
}
,

that is, f4
(
Γ̃
)

= f3
(
Γ̃
)
. The set Γ̃ satisfies the conditions (15), (16) and (17), and 

g = f|J is Markov. The matrix associated with g = f|J is

Bg =

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0 0
0 0 0 1 1
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎠ ,

which is primitive. Therefore, in this case g ∈ M ([J ]). The partition for Bg is not 
minimal. The minimal Markov partition is

J1 = I123, J2 ∪ J3 = I23, J4 = I312, J5 = I331

with transition matrix

Ag =

⎛⎜⎜⎜⎝
0 1 0 0
0 0 1 1
1 0 0 0
0 0 1 0

⎞⎟⎟⎟⎠ .

See the graph of f in the Fig. 2, with the partition C(3)
f indicated, and the removed 

intervals.

4. Sufficient conditions for primitivity

The main problem to overcome, at this point, is the primitivity of the transition 
matrix obtained from the restriction g = f|J . To deal with this problem let us introduce 
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Fig. 2. Graph of f , from the Example 3.4, with the partition C(3)
f indicated. Note that J = ∪5

i=1Ji with 
J1 = I232, J2 = I233, E2 =

◦
I312, J3 = I323, E3 =

◦
I331, J4 = I332, J5 = I333, and g = f|J .

additional notation regarding cycles in subshifts of finite type and use simultaneously 
the notions related to the digraph GAf

arising from Af . In what follows we use the 
term state and vertex indistinctly and any path in the digraph GAf

is associated with 
an admissible word in ΣAf

. Moreover, a cycle or periodic orbit for f is identified with 
a cycle or periodic admissible word for ΣAf

and identified with a cycle or a closed path 
for GAf

.
The size of a path ξ1...ξr is the number of edges which compose it and it is also equal 

to the number of transitions between states or symbols in the associated word, in this 
case, r − 1. Note that the size of the corresponding word is r and for a cycle the two 
notions, the size of a closed path and the size of corresponding word, coincide.

Definition 4.1. (i) The distance, dij , between two states i, j, is the minimum number of 
edges (state transitions) necessary to pass from i to j through a path in the digraph GAf

. 
In other words, is the minimal number, d ∈ N, for which there is a word ξ1...ξd−1 ∈ Wd−1

(eventually the empty word with d = 1) so that iξ1...ξd−1j ∈ Wd+1.
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(ii) The diameter dA of A (of the digraph GA) is the largest distance between pairs 
of states with respect to A.

Note that with this definition if aij = 1 then dij = 1 and we set dii = 0 by default. If 
a matrix A is reducible then there are pairs of states which are not connected therefore 
their distance can be seen as infinite. If A is irreducible and not primitive there are pairs 
of states which are connected by paths with certain type of sizes. If A is primitive then 
there is a certain natural number q so that for every pair i, j and for every k > q there is 
a path of size k between i and j. Or, what is equivalent, for every k > q there is a word 
of size k − 1, ξ1...ξk−1 ∈ Wk−1, with iξ1...ξk−1j ∈ Wk+1. That is, for a primitive matrix 
there are paths of any size greater than q, connecting any pair of vertices of GAf

.
A cycle for Af containing every symbol in {1, 2, 3, ..., n} is called a complete cycle. 

A cycle for Af containing every symbol in {1, 2, 3, ..., n} except one is called an almost 
complete cycle.

Lemma 4.2. Let A be a 0 − 1 matrix. The matrix A is irreducible if and only if there is 
a complete cycle.

Proof. Straightforward. �
Remark 2. The above means that if f is a Markov map with irreducible transition matrix 
Af then there is a periodic orbit visiting each Markov interval of the partition Cf .

We say that two cycles are relatively prime if its sizes are relatively prime numbers.

Lemma 4.3. Let A be a 0 − 1 matrix. The matrix A is primitive if and only if there is a 
complete cycle γ, not necessarily simple, and there is at least another cycle η relatively 
prime to γ.

Proof. If A is primitive then there is a certain natural q so that every pair of states are 
connected through a path of arbitrary size greater than q. Now, consider that there is a
cycle γ of size a containing every symbol and there is another cycle η of size b so that 
gcd (a, b) = 1. Consider a pair of states i �= j. Some of the paths between i and j can be 
written as follows: assume the cycle γ is starting in i (the cycle contains every symbol, 
in particular it contains i and j at least once), that is, γ1 = i, γt+1 = j, for some t ≥ dij . 
Recall, from the Definition 4.1, that dij is the distance between the two states i and j
and there can be another shorter path between i, j. If not we have t = dij . We can then 
write γ = (iγ2γ3...γtjγt+2...γa)∞. Let η = (η1...ηb)∞. Knowing that every symbol in η
is contained in γ there is a state s so that γs = η1. Therefore, a path from i to j can be 
written as

γm1iγ2...γs−1η
m2γsγs+1..γa i γ2γ3...γt−1j,
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for some natural numbers m1, m2 ∈ N, since ηbη1 is admissible and η1 = γs, allowing 
the transition between the cycle γ to η and from the cycle η to γ. The size of the word 
is

m1a + s− 1 + m2b + (a− s) + 1 + t = (m1 + 1) a + m2b + t + 1,

and therefore the size of the path, from i to j, is

(m1 + 1) a + m2b + t.

Since gcd (a, b) = 1 the set {m1a + m2b : m1,m2 ∈ N} is a numerical semigroup with 
Frobenius number given by F (a, b) = ab − a − b, see [2]. The Frobenius number of a 
numerical semigroup is the greatest natural number not belonging to the semigroup. 
This means that every natural number greater than F (a, b) belongs to the numerical 
semigroup and is written as m1a + m2b for certain m1, m2 ∈ N. Since

m1a + m2b + t ≥ m1a + m2b + dij ,

we have paths connecting i,j of any size larger than F (a, b) + dij . Considering the sizes 
of the paths linking an arbitrary pair i,j we have surely paths of size F (a, b)+dA, where 
dA is the diameter of A, see the Definition 4.1. Therefore, A is primitive.

Now, assume that A is irreducible and suppose that the existing cycles (which are 
more than one from irreducibility) all have a common divisor q > 1. Let again γ be the 
cycle containing every symbol, with size a. Since any path from i to j can be written as

γm1iγ2...γs−1η
m2γsγs+1..γa i γ2γ3...γt−1j,

for any other cycle η and for some natural numbers m1, m2 ∈ N, the size of this path, 
from i to j, is given by

(m1 + 1) a + m2b + t = m3q + dij .

The sizes of the paths between i,j have fixed remainder mod q, therefore A is irre-
ducible periodic of period q and not primitive. �
Definition 4.4. Given a transition matrix A, a state i for which #fol (i) = 1 is called 
contractive singular state. A state i for which #pre(i) = 1 is called expansive singular 
states. Those states which satisfy both #fol (i) = 1, #pre (i) = 1 are called neutral 
singular states. In short cs-state, ns-state, es-state. Two distinct states are called related
if there is a transition between them, either in one direction or in the other.

The follower of a contractive singular state and the predecessor of a expansive singular 
state constitute also important types of states to consider. The set of related states of i
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is the union of the set of followers and predecessors of i, excluding the self followers and 
the self predecessors, that is,

rel(i) = (fol(i) ∪ pre(i)) \ (fol(i) ∩ pre(i)) .

Let A be a transition matrix. We denote (A)s the submatrix of A obtained removing 
the row and the column corresponding to the state s.

Proposition 4.5. Let A be a 0 − 1 primitive matrix. If s is a follower of a contractive 
singular state or a predecessor of an expansive singular state then (A)s is not irreducible, 
in particular, is not primitive.

Proof. If we remove s, a follower of a cs-state, this state with respect to (A)s is a sink 
(state without exit). If we remove s, a predecessor of a es-state, this state with respect to 
(A)s is a source (state for which there is no return). In either cases (A)s is not irreducible 
and thus not primitive. �
Definition 4.6. We call s a removable state of a primitive matrix A if (A)s is primitive. 
If, given A, there is a removable state then A is called strongly primitive.

Proposition 4.7. Let A be a 0 − 1 primitive matrix. If there are only two cycles in the 
conditions of the Lemma 4.3 then A is not strongly primitive.

Proof. If there are only two cycles if we remove a state s then one of the cycles is broken. 
Therefore, (A)s is not primitive. �
Proposition 4.8. Let A be a 0 − 1 irreducible matrix. There is a cycle almost complete 
for A, that is, it contains every state except one, s, if and only if (A)s is irreducible.

Proof. If there is a cycle containing every states except s, then the same cycle exists in 
(A)s and contains every state for (A)s, therefore from the Lemma 4.2 (A)s is irreducible. 
On the other hand, if (A)s is irreducible for a certain s then the complete cycle for (A)s
is an almost complete cycle for A. �
Lemma 4.9. Let A be a 0 − 1 primitive matrix. If there is a state s and two relatively 
prime cycles not containing s, one of the cycles is almost complete for A, then (A)s is 
primitive. In other words, s is removable and A is strongly primitive. The reverse is also 
true.

Proof. If we remove the state s the almost complete cycle turns a complete cycle of size 
a for (A)s, the cycle of size b not contains s so is not affected in (A)s, therefore (A)s
is in the conditions of Lemma 4.3 and thus (A)s is primitive. On the other hand, let 
A be strongly primitive with a removable state s. Therefore (A)s is primitive and there 
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must be at least two relatively prime cycles, if not (A)s would be irreducible and non 
primitive. �
Theorem 4.10. Let r > 1 and consider A(r)

f the transition matrix associated with f with 

respect to the partition C(r)
f . Let Jγ = I\Iγ with γ ∈ Wr (Af ), then:

(a) g = f|Jγ
∈ M ([Jγ ]) if and only if γ is removable regarding A(r)

f .
(b) γ is removable if and only if there are two cycles relatively prime not containing γ, 
one of each is almost complete for A(r)

f .

Proof. First observe that the matrix Ag is obtained from A(r)
f deleting the row and the 

column corresponding to the word γ, followed by an eventual amalgamation if possible. 
The matrix A(r)

f is indexed by the words ξ ∈ Wr (Af ) and by hypothesis is primitive. 
Let B be the matrix B =

(
A

(r)
f

)
γ

obtained from A(r)
f deleting the row and the column 

corresponding to the word γ. The matrix B is primitive if and only if γ is removable. Since 
Jγ satisfies the conditions for Lemma 3.2, (a) follows, and Ag is the total amalgamated 
matrix topologically equivalent to B. On the other hand the existence of two cycles not 
containing γ, being one cycle almost complete for A(r)

f , of size a, and the other cycle of 
size b so that gcd (a, b) = 1, is equivalent, from the Lemma 4.9, to the fact that the state 
γ is removable. �
Example 4.11. Consider f (x) = βx + α mod 1, with β5 − β − 1 = 0 and α =(
1 + β + β2 + β3 + β4)−1. The alphabet associated with the partition is {1, 2, 3, 4, 5}. 

There are exactly two simple cycles: (12345)∞, which is complete, and (2345)∞ which 
is almost complete. It is not possible to remove any state. See the Fig. 3. Therefore Af

is not strongly primitive.

Af =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 0 0 0

⎞⎟⎟⎟⎟⎟⎠ .

Moreover, there is no r > 1 so that A(r) is strongly primitive.

Example 4.12. Recall from the Example 2.5, f (x) = βx +α mod 1, with β3−β2−β−1 = 0
and α = β−3 (Fig. 4). Let r = 3. The corresponding partition

C
(3)
f = {I123, I231, I232, I233, I312, I323, I331, I332, I333}.
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Fig. 3. Digraph of the Example 4.11, associated with Af , with two simple cycles (12345)∞ and (1234)∞.

Fig. 4. Digraph of the Example 4.12, associated with A
(3)
f .

Let us consider γ = 232. There is an almost complete cycle, not containing γ, for 
example

[(123) (233) (332) (323) (233) (333) (331) (312) (123) (231) (312)]∞

of size 11. Consider also the cycle [(123) (231) (312)]∞, not containing γ, of size 3. There-
fore, γ is removable, we are in the conditions of the Theorem 4.10 and consequently 
g = f|J232 ∈ M ([0, 1]), since [J232] = [0, 1]. In fact, let
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Bg =
(
A

(3)
f

)
232

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The transition matrix of g, on the Markov minimal partition, Ag, obtained through 
amalgamation from Bg, is given by

Ag =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and is primitive.

Remark 3. In the paper [5] we have introduced the escape matrix Â which codifies the 
transitions for the escape set. These are essentially matrices with 0 rows associated to the 
intervals which are escape intervals, E1, ..., Em as in (5). When we eliminate a removable 
state, as above, associated with a word γ, we may see this process as a transformation 
of the interval Iγ into an escape interval.

Using the previous results, we propose a method to enumerate the Markov subsystems 
of a given one (Ωf , f), whose Markov intervals are obtained as finite unions of f -cylinders. 
The method follows:

First, fix a natural r and identify the removable states, γ, of A(r)
f . Obtain Bγ =(

A
(r)
f

)
γ
, removing from A(r)

f the removable state γ. Next, identify the removable states 
for Bγ and repeat the process, using r + 1 as the degree.

For each fixed natural number r ∈ N the process ends at some point since the set of 
the removable states is finite.

Naturally, we obtain a poset of invariant subshifts of the given subshift, for each fixed 
degree r. In this way, we obtain also the interval maps g ∈ M ([J ]), which are restrictions 
of a given map f ∈ M (I), with J ⊂ I. We illustrate the procedure in the next section, 
with several examples using the family f (x) = βx mod 1.
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5. Family f (x) = βx mod 1

5.1. β-shift for β = 2

Let f (x) = 2x mod 1 in M ([0, 1]). Let us analyze the possible subdynamics, up to 
r = 3. The transition matrix for f , with respect to the partition Cf = {I1, I2}, is

Af =
(

1 1
1 1

)
.

Let r = 2. Then

A
(2)
f =

⎛⎜⎜⎜⎝
1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

⎞⎟⎟⎟⎠ ,

and C(2)
f = {I11, I12, I21, I22}. The singular states are 11 and 22. The followers and the 

predecessors of 11 and 22 cannot be removed, these are the states 12, 21. On the other 
hand the simple cycles are

[(12)(21)]∞ , [(11)(12)(21)]∞ ,

[(12)(22)(21)]∞ , [(11)(12)(22)(21)]∞ .

Therefore, the removable states are precisely 11 and 22. Let us observe which primitive 
matrices we obtain:

B11 =
(
A

(2)
f

)
11

=

⎛⎜⎝ 0 1 1
1 0 0
0 1 1

⎞⎟⎠ , B22 =
(
A

(2)
f

)
22

=

⎛⎜⎝ 1 1 0
0 0 1
1 1 0

⎞⎟⎠ .

In this case, ΣB11 is topologically conjugated to ΣB22 . When removing one removable 
state the remaining state is no longer removable. If we remove both states we obtain a 
permutation matrix

(
A

(3)
f

)
11,22

=
(

0 1
1 0

)
.
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Now, let r = 3 and consider the transition matrix

A
(3)
f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with C(3)
f = {I111, I112, I121, I122, I211, I212, I221, I222}. The singular states are 111 and 

222. Therefore, the followers and the predecessors of 111 and 222 cannot be removed, 
which are the states 122, 221, 211, 112. Moreover, the smallest simple cycles are

[(121)(212)]∞ , [(111)(121)(212)]∞ , [(222)(212)(121)]∞ ,

[(111)(112)(121)(211)]∞ , [(222)(221)(212)(122)]∞ , . . .

and the removable states are 111, 121, 212, 222. The matrices which we obtain, elimi-
nating each removable state, are:

(
A

(3)
f

)
111

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
(
A

(3)
f

)
121

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 1
1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(
A

(3)
f

)
212

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1
1 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
(
A

(3)
f

)
222

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The subshifts obtained are invariant subshifts of finite type of the original one, that 
is, ΣBγ

⊂ Σ
A

(3)
f

. Moreover, if we proceed, fixing r = 3, we obtain the partial ordered 

set, with inclusion, of the invariant subshifts of the original subshift Σ
A

(3)
f

, which is 
topologically conjugated to ΣAf

, see the Fig. 5.
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Fig. 5. The poset organized by invariant subspaces based on A(3)
f , removing appropriate states γ ∈ W3. 

From the β-shift with β = 2.

Note, for example, if we remove 112 the obtained matrix is not primitive

B112 =
(
A

(3)
f

)
112

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If we remove three removable states, the remaining state is no longer removable. If we 
remove it, we obtain a permutation matrix

B111,121,212,222 =
(
A

(3)
f

)
111,121,212,222

=

⎛⎜⎜⎜⎝
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎞⎟⎟⎟⎠
which codifies the transitions between the remaining states, according to

(112) → (122) → (221) → (211) → (112) .

In the Fig. 6, as an example, we present the graph of f and of g = f|J121 .

5.2. β-shift for β = 1+
√

5
2

Let f (x) = βx mod 1 in M ([0, 1]), with β = 1+
√

5
2 , the golden number. Its transition 

matrix, with respect to the Cf = {I1, I2}, is
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Fig. 6. Graphs of f and g = f|J121 in the case J121 = I\I121.

Af =
(

1 1
1 0

)
.

Let r = 2. Then

A
(2)
f =

⎛⎜⎝ 1 1 0
0 0 1
1 1 0

⎞⎟⎠ ,

and C(2)
f = {I11, I12, I21}. The state 11 is singular neutral. The followers and the pre-

decessors of 11 are the states 12 and 21 which cannot be removed. Since the cycles 
are

[(11)(12)(21)]∞ , [(12)(21)]∞ ,

the state 11 is not removable. In fact

B11 =
(
A

(2)
f

)
11

=
(

0 1
1 0

)
,

is not primitive.
Let r = 3. Then

A
(3)
f =

⎛⎜⎜⎜⎜⎜⎝
1 1 0 0 0
0 0 1 0 0
0 0 0 1 1
1 1 0 0 0
0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎠ ,
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Fig. 7. The poset organized by invariant subspaces based on A(3)
f , removing appropriate states γ ∈ W3. 

From the β-shift with β = 1+
√

5
2 .

and C(3)
f = {I111, I112, I121, I211, I212}. The states 111, 212 are singular neutral states, the 

state 211 is singular expansive and 122 is singular contractive. Therefore, the followers 
and the predecessors of 111, the followers of 112 and the predecessors of 211 cannot be 
removed, which are the states 211, 112, 121. Moreover, the simple cycles are

[(121)(212)]∞ , [(112)(121)(211)]∞ , [(111)(112)(121)(211)]∞ .

The removable states are then 111, 212. The obtained matrices (all primitive) are the 
following (Fig. 7)

B111 =
(
A

(3)
f

)
111

=

⎛⎜⎜⎜⎝
0 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎠ ,

B212 =
(
A

(3)
f

)
212

=

⎛⎜⎜⎜⎝
1 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

⎞⎟⎟⎟⎠ .

When removing one state the remaining state is no longer removable, since there are 
no extra cycles left. If we remove both states we obtain a permutation matrix

(
A

(3)
f

)
111,212

=

⎛⎜⎝ 0 1 0
0 0 1
1 0 0

⎞⎟⎠ .
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