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Abstract: Stochastic differential equations (SDE) appropriately describe a variety of phenomena
occurring in random environments, such as the growth dynamics of individual animals. Using
appropriate weight transformations and a variant of the Ornstein–Uhlenbeck model, one obtains a
general model for the evolution of cattle weight. The model parameters are α, the average transformed
weight at maturity, β, a growth parameter, and σ, a measure of environmental fluctuations intensity.
We briefly review our previous work on estimation and prediction issues for this model and some
generalizations, considering fixed parameters. In order to incorporate individual characteristics of
the animals, we now consider that the parameters α and β are Gaussian random variables varying
from animal to animal, which results in SDE mixed models. We estimate parameters by maximum
likelihood, but, since a closed-form expression for the likelihood function is usually not possible, we
approximate it using our proposed delta approximation method. Using simulated data, we estimate
the model parameters and compare them with existing methodologies, showing that the proposed
method is a good alternative. It also overcomes the existing methodologies requirement of having all
animals weighed at the same ages; thus, we apply it to real data, where such a requirement fails.

Keywords: delta approximation; maximum likelihood estimation method; mixed models; stochastic
differential equations

1. Introduction

In previous works [1–3], we described the individual growth of animals subject to
random fluctuations in the environment and study estimation, prediction, and optimization
problems with applications to cattle weight data. Considering M animals, we used the
following general SDE model:

dYi(t) = β(α−Yi(t)) dt + σ dWi(t), Yi(ti,0) = yi,0, i = 1, . . . , M, (1)

where Yi(t) = h(Xi(t)) is the modified weight by a transformation function h, a known
monotonous continuously differentiable function of the real weight Xi(t) of the animal i
at age t, and yi,0 = h(xi,0), where xi,0 is the assumed known size of animal i at an initial
age of observation ti,0. The parameter β > 0 is the growth coefficient, and α is the mean
asymptotic modified size towards which the mean modified size converges as t → +∞;
we denote the corresponding real asymptotic size by A = h−1(α). The intensity of the
effect of environmental random fluctuations on growth is measured by the parameter
σ > 0, being Wi(t) (i = 1, . . . , M) independent realizations of the standard Wiener pro-
cess. A transformation of the size leading to more general models was also suggested by
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Reference [4] with applications to tree growth. Adequate choices of the h function lead to
stochastic versions of well-known growth models. For instance, the monomolecular model
corresponds to h(x) = x, the Bertallanfy-Richards model corresponds to h(x) = xc (with
c > 0), the Gompertz model corresponds to h(x) = ln x, and the logistic model corresponds
to h(x) = 1/x, but the theoretical treatment is valid for any monotonous C1 function h.
Here, for comparison purposes, we will illustrate with h(x) = ln x, corresponding to the
stochastic Gompertz model.

It is natural to think that the model parameters may vary from animal to animal,
and so SDE models with fixed parameters as the one presented in (1) may not be suitable
models for these applications. Parameter estimation for models where the parameters
are considered random, known as mixed models or mixed-effects models, is presented in
References [1,5–10]. A review on the asymptotic inference of SDE mixed models can be
found in Reference [11].

For example, in References [1,7], the mixed model considers that different individuals
may have different values of A and, consequently, different values of α = h(A), i.e., the
case where the average asymptotic weight varies randomly from animal to animal has
been considered. In this particular case, in Reference [1], it was considered that α was
a random variable, independent of Wt, with a Gaussian distribution with mean µ and
variance θ2, and the maximum likelihood estimation method was applied to estimate the
model parameters. In this case, the likelihood function can be explicitly obtained, but it
is extremely difficult or impossible to obtain a closed-form expression for the likelihood
function in other cases.

More recently, we considered either α or β random, following a Gaussian distribution,
and, for these cases, we solved the integral that appears in the likelihood function through
approximation methodologies, such as the Laplace and the delta approximation methods
(to appear in a forthcoming paper [12]). In References [8,10], for the general case where
it is not possible to obtain a closed-form expression for the likelihood function, as is
the case of random β, a numerical approximation based on an Hermite expansion was
applied, whereas, in Reference [9], in addition to an Hermite expansion, a Gauss-Hermite
quadrature was also applied, and the parameters of the SDE mixed model were estimated
by the maximum likelihood method. In References [5,6], for mixed-models with linear drift
term, when a closed-form expression for the likelihood function is not possible, a different
approximation technique is used, based on a discretized version of the continuous-time
data likelihood function.

In this work, we consider that both parameters α and β are random variables, and our
main contribution is to extend our delta approximation method to this mixed model with
two random parameters and compare its performance with other previously proposed
estimation methods. The delta approximation method is inspired on the classical statistical
delta method, which is properly adapted to serve a quite different purpose. The delta ap-
proximation method allows us to approximate the parameter estimates, through numerical
maximization of the approximate likelihood function. This approximation methodology,
to the best of our knowledge, is the first method to derive simple closed-form expressions
for the approximated likelihood function when both α and β are random, allowing anyone
to use this method. Notice also that the existing methods for SDE mixed models [5,6,8],
when it comes to their numerical implementations, assume that the age vector of the
observations is the same for all trajectories and, in some cases, even require equidistant
ages of observation. When using real data of cattle weights, these assumptions are not
adequate, since the animals are not weighed at the same time instants (ages), nor even with
the same elapsed times between weighings. Our proposed methodology allows parameter
estimation in scenarios, quite common in applications, where such restrictions on the data
structure are not satisfied.

In order to compare our method with existing ones, particularly with the one provided
by the MsdeParEst R package (see References [5,6,13]), we worked with simulated cattle
weight data with 50, 500, and 5000 animals with the same age vector and with consecutive
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weights taken at equidistant intervals. We also estimated the model parameters with our
method using a real dataset of 16,029 animals with very heterogeneous ages of observations.

This paper is organized as follows. In Section 2, we present the SDE models with fixed
parameters, their main properties, and the respective likelihood function, proceeding to the
extension to mixed stochastic differential equations models. In Section 3, we develop the
delta approximation applied to the likelihood function for the case where both parameters
α and β are independent Gaussian distributed random variables. In Section 4, we present
the application for both simulated and real datasets and, whenever possible, compare the
results with the existing methods. Based on those results, we present practical recommen-
dations on how to deal with real datasets on Section 5 and end with the main conclusions
in Section 6.

2. Stochastic Differential Equations Models

Considering data from M individuals, we will denote the size (some measure of weight,
volume, height, length, etc.) at age t of the ith individual (i = 1, . . . , M) by Xi(t). If the
individual is growing in a randomly fluctuating environment, working with a modified size
Yi(t) = h(Xi(t)), where the transformation h is a monotonous continuously differentiable
function, we can describe the evolution of individual growth through an SDE of the form
(1). This is a variant of the Ornstein–Uhlenbeck model, also called the Vasicek model in the
context of interest rate dynamics [14]. The model solution Yi(t) is a homogeneous diffusion
process with drift coefficient a(y) = β(α− y) and diffusion coefficient b(y) = σ2, given by

Yi(t) = α− (α− yi,0)e−β(t−ti,0) + σe−βt
t∫

ti,0

eβsdWi(s), i = 1, . . . , M, (2)

(see, for instance, Reference [15]).
Let ti,j (i = 1, . . . , M, j = 1, . . . , ni) be the age of the jth observation of individual num-

ber i and let Yi,j = Yi(ti,j) = h(Xi(ti,j)) be the corresponding modified weight according
to model (1). For each individual i (i = 1, . . . , M), denote its age vector of observations
(which may differ from individual to individual) by ti =

(
ti,0, ti,1, . . . , ti,ni

)
, the correspond-

ing vector of modified sizes by Yi =
(
Yi,0, Yi,1, . . . , Yi,ni

)
, and the observed value of Yi by

yi =
(
yi,0, yi,1, . . . , yi,ni

)
. We assume ti,j−1 < ti,j and make Ei,j = e−(ti,j−ti,j−1). We see that,

for Yi,j conditioned on Yi,j−1 = yi,j−1, the transition distribution for animal i is Gaussian:

Yi,j| (Yi,j−1 = yi,j−1) ∼ N
(

α +
(
yi,j−1 − α

)
Eβ

i,j ,
σ2

2β
(1− E2β

i,j )

)
. (3)

In Reference [1], we applied the maximum likelihood estimation method to estimate
the parameter vector p = (α, β, σ). From (3), using the fact that Yi(t) is a Markov process,
we know that, given Yi,0 = yi,0 (assumed known), the Yi joint probability density function
for individual i is given by the product of the transition densities between consecutive
observation times of animal i; thus, it takes the form
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pYi (yi|α, β, σ) =
ni

∏
j=1

exp

(
− 1

2

(
yi,j−α−(yi,j−1−α)Eβ

i,j

)2

σ2
2β (1−E2β

i,j )

)
√

2π σ2

2β (1− E2β
i,j )

=

exp

− 1
2

ni

∑
j=1

(
yi,j − α− (yi,j−1 − α)Eβ

i,j

)2

σ2

2β (1− E2β
i,j )


ni

∏
j=1

√
2π

σ2

2β
(1− E2β

i,j )

, i = 1, . . . , M.

(4)

By independence among individuals, we obtain the likelihood function for the M animals:

L(α, β, σ) =
M

∏
i=1

pYi (yi|α, β, σ). (5)

The maximum likelihood estimate of the parameter vector p is obtained by maximization
of (5) or of the log-likelihood function LLY(α, β, σ) = ln L(α, β, σ).

LLY(α, β, σ) = ln L(α, β, σ) =
M

∑
i=1
− ni

2
ln(2π)

− ni
2

M

∑
i=1

ln
(

σ2

2β

)
−

M

∑
i=1

1
2

ni

∑
j=1

ln
(

1− E2β
i,j

)
(6)

− β

σ2

M

∑
i=1

ni

∑
j=1

(
yi,j − α−

(
yi,j−1 − α

)
Eβ

i,j

)2

1− E2β
i,j

.

The maximum likelihood estimators are asymptotically Gaussian with mean vector p
and variance-covariance matrix V = F−1, where F is the Fisher information matrix with
elements given by Fi,j = −E

[
∂2L(p)/∂pi∂pj

]
. We can estimate V by the inverse of the

empirical information matrix F̂, with elements F̂i,j = −∂2L(p̂)/∂pi∂pj. From these values,
we can obtain the approximate confidence bands for the parameters.

For these type of models, in terms of estimation methods, we also developed and
applied parametric and non-parametric bootstrap methods [1,3]. Since the asymptotic
confidence intervals obtained from the empirical Fisher information matrix may be quite
unreliable for small sample sizes, the bootstrap methods can be used in such cases.

In References [1,16], non-parametric estimation methods were developed in order
to estimate the drift and diffusion coefficients of a stochastic differential equation model
for the case of non-equidistant data. For our application on cattle weight data, we had
been working with models with specific functional forms for the drift and the diffusion
coefficients, for example, in the case of model (1), with a drift coefficient of linear form
a(y) = β(α− y) and a constant diffusion coefficient b(y) = σ2. These non-parametric meth-
ods are useful to assess whether our specific choice of functional forms is appropriate for
our data or whether some alternative functional forms for these coefficients are suggested.

Recently, weighted maximum likelihood estimation methods were studied and adapted
to overcome one very common limitation in the cattle weight data applications, related
to the fact that animals are usually not weighed very frequently, and a scarce number of
weight observations exists for older ages. In the weighted maximum likelihood estimation
method, the weights are built such that the times elapsed between consecutive observations
are considered in the likelihood function [3].
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We described the general SDE model (1) for the complete growth curve of the animals
where the model’s parameters α, β, and σ are assumed common to all individuals. Here,
we consider a different generalization to account for the fact that it is natural to think that
different animals, due to their specific genetics and other characteristics, may have different
values of the parameters. So, in this paper, we will consider the situation where different
individuals may have different randomly assigned parameters.

In References [1,5,6,9,10,17], it has been shown that, to consider at least one of the
two parameters of the drift term, α or β, as random variables, the likelihood function can be
obtained from the transition density function conditioned on the respective random parameter.

We now briefly review how to do it in a more general setting. Let b be the d-
dimensional vector of parameters that vary randomly among animals and assume that the
distribution of b among animals has probability density function (p.d.f.) pB(b|Ψ), where
Ψ is the parameter vector that characterizes this distribution and needs to be estimated.
Assuming independence among the animals, the M parameter vectors bi of the different
animals i (i = 1, . . . , M) are independent identically distributed random variables with
common p.d.f. pB and assume the bi (i = 1, . . . , M) are also independent of the Wiener
processes that characterize the environmental conditions under which the animals are
growing. Let Λ be the vector of the remaining model parameters (the ones not involved
in pB), assumed to be common to all animals. The likelihood function for M trajectories
(animals) is given by

L(Λ, Ψ) =
M
∏
i=1

pYi (yi|Λ, Ψ)

=
M
∏
i=1

∫
Rd

pYi (yi|bi, Λ)pB(bi|Ψ) dbi.
(7)

The case of a single random parameter bi = (αi) has already been studied for when
αi ∼ N(µ, θ2). When we have the special situation of a time vector of observations
ti ≡ t = (t0, t1, . . . , tn), i = 1, . . . , M common to all animals, we can see it in Reference [8]
(for the particular situation of µ = 0 and uniform time spacing tj − tj−1 ≡ δ) and in
References [6,7]. The general situation, with no such restrictions, can be seen in Reference [1].
In this case, it is possible to explicitly compute the integral in the likelihood function,
resulting in a final closed-form expression for this function. This is shown in Reference [1],
where the log-likelihood function for all animals LLY(µ, θ, β, σ) = ln L(µ, θ, β, σ) is given by

LLY(µ, θ, β, σ) =
M

∑
i=1

(
−ni

2
ln(2π)− ni

2
ln
(

σ2

2β

)
− 1

2

ni

∑
j=1

ln
(

1− E2β
i,j

)
− 1

2
ln(Di)

− β

Diσ
2

ni

∑
j=1

(
yi,j − µ−

(
yi,j−1 − µ

)
Eβ

i,j

)2

1− E2β
i,j

+
2β2θ2

Diσ4

 ni

∑
j=1

(
yi,j − yi,j−1Eβ

i,j

)
1 + Eβ

i,j

2

− β(Di−1)
Diσ

2

 ni

∑
j=1

(
yi,j − yi,j−1Eβ

i,j

)2

1− E2β
i,j


,

(8)

with Di =
2βθ2

σ2

ni

∑
j=1

1− Eβ
i,j

1 + Eβ
i,j

+ 1. However, despite the existence of a closed-form expression

for the likelihood function for this particular case, we also applied approximation methods
(Laplace and delta approximations—to appear in a forthcoming paper [12]), showing
that the approximation methods also provide very good results when compared with the
exact method.

Unfortunately, the integral in (7) does not always have a closed-form expression,
for example, when the random parameter is β, corresponding to bi = (βi), and, in such
cases, the approximation methods are good alternatives. In the forthcoming paper [12]), we
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used the Laplace and delta approximations to obtain closed-form approximate expressions
of the likelihood function for this case, also with very good results.

In the following section, we present the study of the case where both α and β are
considered random variables and propose the application of the delta approximation
method to the integral in (7).

3. Mixed Model for Two Random Effects

The mixed model where both α and β are random variables can be written as

dYi(t) = βi(αi −Yi(t)) dt + σ dWi(t), Yi(ti,0) = yi,0, i = 1, . . . , M, (9)

where we assume that the 2M random variables αi ∼ N (µ, θ2) (i = 1, . . . , M) and βi ∼
N (λ, ω2) (i = 1, . . . , M) are independent. Now, the random parameter vector is the 2-
dimensional vector bi = (αi, βi), the fixed effects parameter vector becomes the 1× 1 vector
Λ = (σ), the random effects parameter vector is Ψ = (µ, λ, θ, ω), and the p.d.f. of the
random effects pB is a bivariate Gaussian distribution.

To obtain the likelihood function in (7) for this situation of two random parameters,
notice that, due to the assumed independence structure,

pYi (yi|Λ, Ψ) =
∫
R2

pYi (yi|bi, Λ)pB(bi|Ψ) dbi

=
+∞∫
−∞

+∞∫
−∞

pYi (yi|αi, βi, Λ)p(αi|µ, θ)p(βi|λ, ω) dαi dβi,
(10)

with

p(αi|µ, θ) =
1√

2πθ2
exp

(
− (αi − µ)2

2θ2

)
, (11)

p(βi|λ, ω) =
1√

2πω2
exp

(
− (βi − λ)2

2ω2

)
. (12)

To determine pYi (yi|αi, βi, Λ) in (10), notice that, due to the Markov property of each
individual trajectory i when conditioned on αi and βi, we have

pYi (yi|αi, βi, Λ) =
ni

∏
j=1

pYi (yi,j, ti, ti−1|yi,j−1, αi, βi, Λ), (13)

with the transition densities between consecutive observation ages of the animal i trajectory
given by

pYi (yi,j, ti, ti−1|yi,j−1, αi, βi, Λ) =

exp

(
− 1

2

(
yi,j−αi−(yi,j−1−αi)E

βi
i,j

)2

σ2
2βi

(1−E
2βi
i,j )

)
√

2π σ2

2βi
(1− E2βi

i,j )
. (14)

We will apply the delta approximation to the integral in (7), which, in this case, is given
by (10) and does not have an explicit solution. This approximation method allows us to
obtain simpler and closed-form expressions for the likelihood function. The method is also
adapted to general age vectors of observations, allowing for estimation of the parameters
of the models even when the different animals have their weights observed at different
ages, and those ages may be non-equidistant, which, as far as we are aware, is theoretically
possible but is not currently available in the numerical implementations of other existing
approximation methods.
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Let us denote expression (14) by ui(αi, βi) = exp(gi(αi, βi)), where

gi(αi, βi) =
ni
∑

j=1

(
− 1

2

(
yi,j−αi−(yi,j−1−αi)E

βi
i,j

)2

σ2
2βi

(1−E
2βi
i,j )

− 1
2 ln
(

2π σ2

2βi
(1− E2βi

i,j )
))

.

(15)

Taking into account the previous expressions, the likelihood function (7) can be writen
as an expectation w.r.t. the bivariate Gaussian distribution with density pB:

L(µ, θ, λ, ω, σ) =
M
∏
i=1

(
+∞∫
−∞

+∞∫
−∞

ui(αi, βi)pB(αi, βi|µ, λ, θ, ω) dαi dβi

)
=

M
∏
i=1

E[ui(αi, βi)].
(16)

The mathematical expectation of ui(αi, βi) in (16) can be approximately obtained by ap-
plying the delta approximation, obtained by adapting the delta method. The delta approxi-
mation consists of using the second-order Taylor series expansion about the point (µ, λ)

ui(αi, βi) ≈ ui(µ, λ) +

[
∂ui
∂αi

(µ, λ)
∂ui
∂βi

(µ, λ)

][
αi − µ
βi − λ

]

+
1
2
[
αi − µ βi − λ

]


∂2ui

∂α2
i
(µ, λ)

∂2ui
∂αiβi

(µ, λ)

∂2ui
∂βiαi

(µ, λ)
∂2ui

∂β2
i
(µ, λ)


[

αi − µ
βi − λ

]
.

(17)

We now apply mathematical expectations to this expression. Noticing that

E[αi − µ] = µ− µ = 0,E[βi − λ] = λ− λ = 0,E[(αi − µ)2] = θ2,E[(βi − λ)2] = ω2,

and, due to independence between αi and βi, E[(αi − µ)(βi − λ)] = 0, we obtain

E[ui(αi, βi)] ≈ ui(µ, λ) +
θ2

2
∂2ui

∂α2
i
(µ, λ) +

ω2

2
∂2ui

∂β2
i
(µ, λ). (18)

Finally, the log-likelihood function, LLY(µ, θ, λ, ω, σ) = ln L(µ, θ, λ, ω, σ), can be ob-
tained as

LLY(µ, θ, λ, ω, σ) ≈
M

∑
i=1

ln

{
ui(µ, λ) +

θ2

2
∂2ui

∂α2
i
(µ, λ) +

ω2

2
∂2ui

∂β2
i
(µ, λ)

}
. (19)

By the chain rule, the second-order derivative of ui(αi, βi) with respect to αi is

∂2ui(αi, βi)

∂α2
i

= ui(αi, βi)

(
∂2gi(αi, βi)

∂α2
i

+

(
∂gi(αi, βi)

∂αi

)2
)

, (20)

where the first and second-order derivatives with respect to αi are given by

∂gi(αi, βi)

∂αi
=

ni
∑

j=1

(
−

2βi(−1+E
βi
i,j )
(

yi,j−αi−(yi,j−1−αi)E
βi
i,j

)
(1−E

2βi
i,j )σ2

)
∂2gi(αi, βi)

∂α2
i

=
ni
∑

j=1

(
−

2βi(−1+E
βi
i,j )

2

(1−E
2βi
i,j )σ2

)
.

(21)



Mathematics 2022, 10, 385 8 of 20

Similarly, the second-order derivative of ui(αi, βi) with respect to βi is given by

∂2ui(αi, βi)

∂β2
i

= ui(αi, βi)

(
∂2gi(αi, βi)

∂β2
i

+

(
∂gi(αi, βi)

∂βi

)2
)

, (22)

where the first two derivatives of gi(αi, βi) with respect to βi are given by

∂gi(αi, βi)

∂βi
=

ni

∑
j=1

 1
2βi

+
2βiE

2βi
i,j (ti,j − ti,j−1)

(
yi,j − αi − (yi,j−1 − αi)Eβi

i,j

)2

(
1− E2βi

i,j

)2
σ2

−
E2βi

i,j (ti,j − ti,j−1)(
1− E2βi

i,j

) −

(
yi,j − αi − (yi,j−1 − αi)Eβi

i,j

)2(
1− E2βi

i,j

)
σ2

−
2βiE

βi
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and

∂2gi(αi, βi)

∂β2
i

=
ni

∑
j=1

−4βiE
2βi
i,j (ti,j − ti,j−1)

2
(

yi,j − αi − (yi,j−1 − αi)Eβi
i,j

)2

(
1− E2βi

i,j

)2
σ2

− 1
2β2

i
−

4Eβi
i,j(ti,j − ti,j−1)(yi,j−1 − αi)

(
yi,j − αi − (yi,j−1 − αi)Eβi

i,j

)
(

1− E2βi
i,j

)
σ2

+
2E2βi

i,j (ti,j − ti,j−1)
2(

1− E2βi
i,j

) +
2βiE

βi
i,j(ti,j − ti,j−1)

2(yi,j−1 − αi)
(

yi,j − αi − (yi,j−1 − αi)Eβi
i,j

)
(

1− E2βi
i,j

)
σ2

+
2E4βi

i,j (ti,j − ti,j−1)
2(

1− E2βi
i,j

)2 +
8βiE

3βi
i,j (ti,j − ti,j−1)

2(yi,j−1 − αi)
(

yi,j − αi − (yi,j−1 − αi)Eβi
i,j

)
(

1− E2βi
i,j

)2
σ2

+
4E2βi

i,j (ti,j − ti,j−1)
(

yi,j − αi − (yi,j−1 − αi)Eβi
i,j

)2

(
1− E2βi

i,j

)2
σ2

−
8βiE

4βi
i,j (ti,j − ti,j−1)

2
(

yi,j − αi − (yi,j−1 − αi)Eβi
i,j

)2

(
1− E2βi

i,j

)3
σ2

−
2βiE

2βi
i,j (ti,j − ti,j−1)

2(yi,j−1 − αi)
2(

1− E2βi
i,j

)
σ2

.

(24)

Replacing these derivatives in the expression (19), we obtain an approximate expres-
sion for the log-likelihood function LLY(µ, θ, λ, ω, σ, ρ) = ln L(µ, θ, λ, ω, σ, ρ) for the case of
two random Gaussian parameters. Using it, in the next section, we are going to apply this
approach to obtain approximate maximum likelihood parameter estimates for the mixed
stochastic Gompertz model with two random parameters using cattle weight data.

4. Results

The main interest with the methodology proposed in the previous sections is to have
a reliable estimation method that can be applied to real animal weight data, where the
animals’ weights are often not taken at the same age instants.
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In our application, we worked with real cattle weight data provided by the Associação
de Criadores de Bovinos Mertolengos (ACBM), which performs the growing and finishing
phases of young Mertolengo males, and by associated breeders, from the Alentejo region
in Portugal. The available dataset contains a total of 96,204 observations of the weight (in
kg) of 16,029 Mertolengo cattle males, where each animal has several observations with a
minimum of 3 and a maximum of 33 weights at ages varying from birth until a maximum
age that ranges between 0.2 and 16 years old. This is a case where, indeed, each animal
has its weight measurements taken at different (and even non-equidistant) age instants,
varying from animal to animal.

We obtained the estimation results implementing the proposed delta approximation
method (DA) in the software R project [18]. However, since it is a new method, we first
will compare the results obtained with this DA method with the estimation methods
available in the R package MsdeParEst described in Reference [13], which we will call
MPE methods. The package includes, when closed-form likelihood function expressions
are not possible, techniques based on a discretized version of the continuous-time data
maximum likelihood developed in References [5,6]. The main drawback of this package
(and, to the best of our knowledge, of other similar available R packages [19,20]) is that all
observations must be measured at the same age instants for all animals, and, in some cases,
the age instants are even required to be equidistant. Therefore, in order to compare the
performance of the proposed approximation method DA with the methods available in the
literature (in particular, the MPE method used here), we would also need datasets where
weights are observed at the same equidistant age instants for all the animals. Whenever
possible, we will also compare the DA and MPE methods, which consider approximations
for the likelihood function, with existing estimation methods that use exact closed-form
expressions for the likelihood function, in particular, when the likelihood function assumes
both parameters fixed or Non-Mixed (which we will call the NMSDE method, presented in
Reference [1]) or, if appropriate, when the likelihood function assumes just the parameter α
as random (which we will call the Exact(α) method, presented in Reference [1]).

For this purpose, we worked with simulated datasets of equidistant monthly weights
for M animals, since birth until four years of age, totaling M*49 observations.

The animal’s weights were simulated based on the stochastic Gompertz model (Y(t) =
h(X(t)) = ln(X(t))). We simulated four datasets:

• DM(α, β): Mixed SDE model with random independent αi and βi, where αi ∼ N (µ, θ2)

and βi ∼ N (λ, ω2) with µ = 6.45 (h−1(µ) = 632.70 kg), θ = 0.15, λ = 1.43 year−1,
ω = 0.30 year−1, and with fixed parameter σ = 0.33 year−1/2;

• DM(α): Mixed SDE model with random αi ∼ N (µ, θ2) with µ = 6.45 (h−1(µ) =

632.70 kg) and θ = 0.15, and with fixed parameters β = 1.43 year−1 and σ = 0.33 year−1/2;
• DM(β): Mixed SDE model with random β ∼ N (λ, ω2) with λ = 1.43 year−1 and

ω = 0.30 year−1, and with fixed parameters α = 6.45 (h−1(α) = 632.70 kg) and
σ = 0.33 year−1/2;

• DM: Non-mixed SDE model (1) with fixed parameters α = 6.45 (h−1(α) = 632.70 kg),
β = 1.43 year−1 and σ = 0.33 year−1/2.

Each of the simulated datasets based on a Mixed SDE model were obtained in the
following way. First, the M random parameter values bi (i = 1, . . . , M) of the M animals
were simulated based on the Gaussian distribution pB; then, for each animal i (i = 1, . . . , M),
the simulated values were incorporated in the transition density (3) as the true values of αi
and/or βi for that animal. Then, we simulated the weights of each animal based on the
Markov property and the use of the transition densities between consecutive observation
ages. For the non-mixed or fixed parameters model, the simulation of the dataset is obtained
without simulating the parameter values of αi and βi since they are fixed.

The advantage of using simulated data, besides the possibility of comparing the
different methods due to its common age vector of observations, is the knowledge of
the true parameter values, which allows us to compare the performances of the different



Mathematics 2022, 10, 385 10 of 20

methods when they can be applied. We first consider simulated datasets for weights of
M = 5000 animals to evaluate the behavior of the methods for a large number of trajectories
close to an asymptotic regimen. However, in applications, we usually do not have datasets
with so many animals available, and it is important to evaluate the performance of the
different methods for smaller datasets. For this reason, we also present a comparison of the
main methods, considering datasets with M = 500 and M = 50 animals. To distinguish
them, we index the simulated datasets by the number of animals M.

Tables 1–4 presents the results for each of the datasets, D5000(α, β), D5000(α), D5000(β),
and D5000, simulated under the four stochastic Gompertz mixed and fixed models. In each
table, we present the results obtained using the different DA methods, DA(α, β) (the one
that assumes both parameters α and β random and is described in Section 3), and DA(α) and
DA(β) (the ones that assume just α random or just β random as described in Reference [12]),
as well as the estimates obtained by the different MPE methods, MPE(α, β), MPE(α), and
MPE(β) (again, when we consider random both or just one of the parameters). We also
present, for comparison purposes, the results obtained when using the NMSDE estimation
method (which assumes both parameters to be fixed).

In this way, we can assess what happens when an appropriate estimation method is
applied (for instance, when applied to the D5000(α) dataset, the estimation method MPE(α)
and the estimation method DA(α, β) are appropriate) and when an inappropriate estimation
method is applied (for instance, when applied to the D5000(α, β) dataset, the MPE(α) method
is inappropriate since it cannot estimate the parameters involved in the random β); this
may be important since, in real non-simulated data, we may not know which parameters
are random or not. Of course, DA(α, β) and MPE(α, β) are appropriate for all datasets,
but, when the data has one or both parameters as non-random, they are overparametrized
and, therefore, may not be as accurate as non-overparametrized methods.

In Tables 1–4, we have also underlined the headings of the estimation methods that
are appropriate to analyze the corresponding dataset, in the sense of being able to estimate
all the parameters of the model used to simulate the dataset. Appropriate methods include
the ones that use, in the likelihood function or its approximation, the same random pa-
rameters that were used in the dataset generation (these would be the most appropriate
methods when we know beforehand which parameters are random) but include, as well,
overparametrized methods that also use additional random parameters in the likelihood
function or its approximation.

The maximum likelihood estimates and the approximate 95% confidence bands based on
the inverse of the empirical Fisher information matrix are presented only for the DA methods
and the NMSDE method but not for the MPE methods since the confidence intervals of the
estimates are not provided by the R package MsdeParEst. Instead of presenting the results for
the overall mean of the modified asymptotic weight µ (which is =α when α is a fixed parameter),
we present them in terms of the corresponding actual weight value h−1(µ).

The tables also display the log-likelihood function values computed at the estimated
parameter values. We display the log-likelihood values LLX in terms of the actual weights
X, which can be easily obtained by a simple conversion using the function h from the
corresponding log-likelihood values LLY (expressed in terms of the modified weights Y
we have been working with so far in all computations). However, although the displayed
log-likelihood values use the exact log-likelihood known expressions for the NMSDE
and the Exact(α) methods, for the DA methods, they use the approximate log-likelihood
expressions of those methods, and the same is possibly happening with the values delivered
by the MsdeParEst Package for the MPE methods. Since these approximations involve some
incomparable errors, the displayed log-likelihood values LLX should, with rare exceptions,
not be used for comparisons in which an approximate method is involved.

When considering, in Table 1, the D5000(α, β) dataset, the appropriate estimation
methods are the ones assuming α and β random, the DA(α, β) method we have proposed,
and the MPE(α, β) method. We can observe that the DA(α, β) method provides a lower
bias for all parameters than the MPE(α, β) method, noticing that, in the MPE(α, β) method,
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the estimate of ω is extremely biased, close to zero. The use of an inappropriate method
should obviously be avoided, but, when using real data, we often do not know beforehand
exactly which are the random parameters and may make a wrong assumption, leading
to the use of an inappropriate estimation method. These simulated datasets, in which
we know exactly which parameters are random, give us the opportunity to assess the
consequences of a wrong assumption on the random parameters when dealing with real
data. Let us look at this issue, beyond the obvious fact that an inappropriate method cannot
estimate some of the parameters. When comparing the appropriate DA(α, β) method
with the inappropriate (for this dataset) NMSDE method, the former method leads to less
biased estimates. When comparing the appropriate DA(α, β) with the inappropriate (for
this dataset) DA(α) and DA(β) methods, the inappropriate methods estimate the standard
deviation of their own random parameter (respectively, the standard deviation θ of the
random α and the standard deviation ω of the random β) better than the appropriate
method, which underestimates both standard deviations. On the estimation of the noise
intensity parameter σ, the appropriate DA(α, β) method shows the better performance, and
it also outperforms the inappropriate DA(β) method on the estimation of the means h−1(µ)
and λ, but these means are curiously better estimated by the inappropriate DA(α) method.
As for the inappropriate MPE(α) and MPE(β) methods, besides the obvious impossibility of
estimating one parameter, they have a behavior that is not too different from the MPE(α, β)
appropriate method.

Table 1. Results for the simulated dataset of 5000 animals when both α and β are random-D5000(α, β).
Besides the true parameter values used in the simulations, the table shows their maximum likelihood
estimates and, when available, approximate 95% confidence bands for the different estimation
methods: delta approximation methods, DA(α, β), DA(α), and DA(β); NMSDE method (which
wrongly assumes α and β fixed and works with the corresponding exact likelihood); and MPE
methods, MPE(α, β), MPE(α), and MPE(β). For each method, the indicated parameters are the ones
taken as random in its likelihoods or approximate likelihoods. Appropriate methods (i.e., those that
allow the estimation of all the dataset parameters) are underlined. Notice that the LLX values of
approximate methods may differ from the true values of the log-likelihood function at the parameter
estimated values.

True DA(α, β) DA(α) DA(β)

h−1(µ) 632.70 640.87± 3.17 629.77± 3.16 651.31± 2.83
θ 0.15 0.1011± 0.0040 0.1397± 0.0024 −
λ 1.43 1.3316± 0.0067 1.3548± 0.0060 1.3036± 0.0065
ω 0.30 0.1786± 0.0042 − 0.2002± 0.0029
σ 0.33 0.3399± 0.0010 0.3414± 0.0010 0.3405± 0.0001

LLX −1,191,084 −1,192,146 −1,191,418

NMSDE MPE(α, β) MPE(α) MPE(β)

h−1(µ) 646.29± 2.92 623.77 624.34 622.40
θ − 0.2158 0.2127 −
λ 1.3208± 0.0061 1.3272 1.3249 1.3182
ω − 0.0001 − 0.0444
σ 0.3452± 0.0010 0.2983 0.3140 0.3155

LLX −1,194,145 −1,209,481 −1,208,249 −1,208,631

Table 2 shows the results for the D5000(α) dataset. For this case, we included the
Exact(α) method, where the maximum likelihood is obtained exactly by the closed-form
expression (8), and that is certainly the best choice method for this dataset. The methods
DA(α, β) and DA(α) are both appropriate for this dataset, but the first is overparametrized,
while the latter is the most appropriate of the two, and we expect it to be more accurate.
Still, it is interesting to notice that these two methods provide exactly the same parameter
estimates, except, naturally, for ω = 0 (“parameter” obviously out of the DA(α) method).
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Comparing the MPE(α, β) with the MPE(α) methods, they do not give exactly the same
parameter estimates, but their estimates are very close. As expected, the most appropriate
method for this dataset, the Exact(α) method, provides slightly better estimates than the
DA(α) and the DA(α, β) methods, and than the MPE(α) and the MPE(α, β) methods. The es-
timates for h−1(µ) and θ are better when using the appropriate MPE methods than the ones
obtained with the corresponding DA methods, but the reverse happens for the estimates of
the mean λ and the standard deviations ω = 0 of parameter β. The inappropriate methods
DA(β) and MPE(β) give worse estimates than the appropriate methods of the same type.
The use of the inappropriate (for this data) NMSDE method performs quite badly in the
estimation of h−1(µ). Notice that the dataset was simulated for fixed β, i.e, ω = 0, and this
is better captured by the DA method.

Table 2. Results for the simulated dataset of 5000 animals when α is random, but β is fixed (ω = 0) –
D5000(α). Besides the true parameter values used in the simulations, the table shows their maximum
likelihood estimates and, when available, approximate 95% confidence bands, for the different
estimation methods: DA(α, β), DA(α), DA(β), NMSDE, MPE(α, β), MPE(α), MPE(β), and Exact(α) (the
most appropriate since it uses the exact log-likelihood function when only α is random). Appropriate
methods are underlined. Notice that the LLX values of approximate methods may differ from the
true values of the log-likelihood function at the parameter estimated values.

True DA(α, β) DA(α) DA(β)

h−1(µ) 632.70 637.79± 3.01 637.79± 3.01 648.73± 2.70
θ 0.15 0.1180± 0.0027 0.1180± 0.0027 −
λ 1.43 1.4158± 0.0060 1.4158± 0.0060 1.3838± 0.0069
ω 0 <0.0001 − 0.1190± 0.0059
σ 0.33 0.3328± 0.0009 0.3328± 0.0009 0.3343± 0.0010

LLX −1,191,370 −1,191,370 −1,192,336

NMSDE MPE(α, β) MPE(α) MPE(β)

h−1(µ) 644.13± 2.66 632.81 633.34 630.96
θ − 0.1439 0.1532 −
λ 1.3906± 0.0060 1.3517 1.3515 1.3494
ω − 0.0124 − 0.0042
σ 0.3359± 0.0010 0.3074 0.3085 0.3075

LLX −1,192,590 −1,207,378 −1,207,350 −1,202,663

Exact(α)

h−1(µ) 633.53± 3.66
θ 0.1523± 0.0047
λ 1.4332± 0.0061
ω −
σ 0.3307± 0.0009

LLX −1,190,931

Since the LLX values for the approximate methods are only approximations, we cannot
perform a likelihood ratio test for the randomness of the β parameter (null hypothesis
ω = 0 corresponding to a non-random β). However, if one knows (or assumes) that β
is fixed, one can perform a likelihood-ratio test on whether α is fixed or random (null
hypothesis θ = 0 corresponding to a fixed α) by using the log-likelihood LLX values of the
NMSDE method and the Exact(α) method, which are exact values; the result is the rejection
of the null hypothesis at the usual significance levels (p-value < 0.001).

For the case of the D5000(β) dataset, Table 3 shows that, again, the appropriate (for this
dataset) DA(α, β) (which is overparametrized) and DA(β) methods provide very similar
parameter estimates. Curiously, the inappropriate NMSDE model performs surprisingly
well. In this case, the MPE methods, both appropriate and inappropriate ones, present
very poor estimates. We also highlight that the estimates of the standard deviations θ = 0
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and ω = 0.30 using the appropriate MPE methods severely fail, suggesting even that α
is random and β is not when the reverse is the true situation, while the DA(α, β) method
very well captures the non-random nature of parameter α, and both DA(α, β) and DA(β)
methods capture the random nature of β, although somewhat underestimating its standard
deviation ω.

Table 3. Results for the simulated dataset of 5000 animals when β is random, but α is fixed (θ = 0) –
D5000(β). Besides the true parameter values used in the simulations, the table shows their maximum
likelihood estimates and, when available, approximate 95% confidence bands, for the different
estimation methods: DA(α, β), DA(α), DA(β), NMSDE, MPE(α, β), MPE(α), and MPE(β). Appropriate
methods are underlined. Notice that the LLX values of approximate methods may differ from the
true values of the log-likelihood function at the parameter estimated values.

True DA(α, β) DA(α) DA(β)

h−1(µ) 632.70 630.64± 2.60 611.04± 3.3176 630.70± 2.60
θ 0 <0.0001 0.1105± 0.0035 −
λ 1.43 1.3559± 0.0068 1.3852± 0.0061 1.3482± 0.0068
ω 0.30 0.1977± 0.0033 − 0.1972± 0.0031
σ 0.33 0.3362± 0.0010 0.3379± 0.0010 0.3360± 0.0009

LLX −1,186,396 −1,187,992 −1,186,334

NMSDE MPE(α, β) MPE(α) MPE(β)

h−1(µ) 630.12± 2.7063 620.22 619.63 620.66
θ − 0.1413 0.1458 −
λ 1.3624± 0.0061 1.3229 1.3252 1.3155
ω − 0.0001 − 0.0275
σ 0.3403± 0.0010 0.3271 0.3138 0.3153

LLX −1,188,686 −1,203,829 −1,203,643 −1,203,829

In Table 4, the estimates using the D5000 dataset, with both parameters α and β fixed,
i.e., with θ = 0 and ω = 0, are presented. Now, all the methods are appropriate. However,
with the exception of the NMSDE method, which, in this case, is the most appropriate one,
they are overparametrized. It is quite interesting to note that the different DA methods give
practically coincidental parameter estimates among them and are practically coincidental
with the parameter estimates of the NMSDE model. This reveals robustness of the proposed
DA method, which also captures the non-random character of α and β very well. The MPE
methods give reasonable results, but they are not so good.

In this case, not only the NMSDE method and the DA methods give almost coincidental
parameter estimates, but the LLX value of the the NMSDE method (which is the exact
maximum of the exact log-likelihood function) is also almost coincidental with the LLX
values for the DA methods; so, these LLX DA values, which are approximations, are likely
to be good approximations. If these values were exact instead of just approximations,
a likelihood ratio test for θ = 0 (i.e, for the randomness of α) and/or the significance of
ω = 0 (i.e., for the randomness of β) would obtain non-significant results.
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Table 4. Results for the simulated dataset of 5000 animals when α and β are both fixed (θ = ω = 0) –
D5000. Besides the true parameter values used in the simulations, the table shows their maximum
likelihood estimates and, when available, approximate 95% confidence bands, for the different
estimation methods: DA(α, β), DA(α), DA(β), NMSDE, MPE(α, β), MPE(α), and MPE(β). Appropriate
methods are underlined. Notice that the LLX values of approximate methods may differ from the
true values of the log-likelihood function at the parameter estimated values.

True DA(α, β) DA(α) DA(β)

h−1(µ) 632.70 631.17± 2.49 631.16± 2.49 631.19± 2.47
θ 0 0.0067± 0.0407 0.0070± 0.0375 −
λ 1.43 1.4310± 0.0061 1.4310± 0.0061 1.4309± 0.0060
ω 0 0.0047± 0.1298 − 0.0074± 0.0796
σ 0.33 0.3295± 0.0009 0.3295± 0.0009 0.3295± 0.0009

LLX −1,186,643 −1,186,643 −1,186,643

NMSDE MPE(α, β) MPE(α) MPE(β)

h−1(µ) 631.19± 2.4747 630.31 631.07 630.96
θ − 0.0262 0.0186 −
λ 1.4309± 0.0060 1.3518 1.3493 1.3494
ω − 0.0071 − 0.0042
σ 0.3295± 0.0009 0.2920 0.3075 0.3075

LLX −1,186,643 −1,202,431 −1,201,744 −1,201,744

Since the typical situation when dealing with real data is not knowing beforehand
whether α and/or β are random or fixed, and, since we have seen that, among the ap-
proximate methods DA, the method DA(α, β) performs as well or almost as well as other
appropriate DA methods (in what concerns the estimation of the common parameters),
even when it is overparametrized with respect to the dataset, we will consider from now
on, among the three delta approximation methods, only the DA(α, β) method. For similar
reasons, among the MPE methods, we will consider from now on just the MPE(α, β) method.
For comparison purposes, we also consider the usual NMSDE method, which is the most
appropriate method for the fixed-effects model considered in most applications, but it is, of
course, inappropriate when our datasets have α random and/or β random.

With the purpose of analyzing the influence of smaller sample sizes on the estimates,
Tables 5–8 present the results for the four mixed- and fixed-effects stochastic Gompertz
models for the datasets with smaller samples sizes, 50 and 500 animals. We will use the
DA(α, β), the MPE(α, β), and the NMSDE estimation methods. For comparison purposes,
for the datasets D50(α) and D500(α), we also present the results of the Exact(α) method.

We can conclude that the same main characteristic features observed in the estimates
for the large datasets with 5000 animals still hold. The DA(α, β) method is able to accurately
identify the fixed and the random effects, while the MPE(α, β) method usually fails (except,
and not clearly, when both effects are fixed).

As expected, when comparing the confidence intervals of the parameter estimates for
different number of animals in the datasets (see Tables 5–8 for 50 and 500 animals, and
Tables 1–4 for 5000 animals), their amplitudes decrease as the number of animals in the
dataset increases. In general, the MPE(α, β) method have worst estimates than the DA(α, β)
method, both for small and large samples, except in estimating the standard deviation θ of
the parameter α when this parameter is random.

For the datasets D50(α) and D500(α), the results obtained with the DA(α, β) method
are not exactly the same as the ones obtained by the Exact(α) method, but they are quite
close, even very close for the 500 animals dataset D500(α).

For the fixed-effects datasets D50 and D500, the estimates of the DA(α, β) method
replicate the same results as the NMSDE method, which, for these datasets, is the most
appropriate method. The LLX values of the NMSDE method are exact maximum log-
likelihood values, and they are again practically equal to the LLX approximate values
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of the DA(α, β) method, again suggesting that, for fixed-effects datasets, these are good
approximations, in which case a likelihood ratio test of θ = ω = 0 would accept this
null hypothesis.

Table 5. Results for the simulated datasets of 50 and 500 animals when both α and β are random-
D50(α, β) and D500(α, β). Besides the true parameter values used in the simulations, the table shows
their maximum likelihood estimates and, when available, approximate 95% confidence bands, for the
appropriate estimation methods DA(α, β) and MPE(α, β) and the inappropriate estimation method
NMSDE. Notice that the LLX values of approximate methods may differ from the true values of the
log-likelihood function at the parameter estimated values.

True DA(α, β) MPE(α, β) NMSDE

50 animals

h−1(µ) 632.70 648.87± 33.04 612.27 646.62± 32.22
θ 0.15 0.0392± 0.1214 0.2594 −
λ 1.43 1.2265± 0.0600 1.2703 1.2259± 0.0599
ω 0.30 0.2164± 0.0297 <0.0001 −
σ 0.33 0.3418± 0.0096 0.3059 0.3474± 0.0099
LLX −11,819.3 −11,713.8 −11,868.8

500 animals

h−1(µ) 632.70 651.52± 10.06 634.72 655.81± 9.52
θ 0.15 0.0944± 0.0130 0.2087 −
λ 1.43 1.3216± 0.0209 1.3061 1.3056± 0.0191
ω 0.30 0.1809± 0.0124 0.0002 −
σ 0.33 0.3407± 0.0030 0.3114 0.3458± 0.0031
LLX −119,331.8 −120,800.7 −119,620.8

Table 6. Results for the simulated dataset of 50 and 500 animals when α is random, but β is fixed
(ω = 0) – D50(α) and D500(α). Besides the true parameter values used in the simulations, the table
shows their maximum likelihood estimates and, when available, approximate 95% confidence bands,
for the appropriate estimation methods DA(α, β), MPE(α, β) and Exact(α) and the inappropriate
estimation method NMSDE. Notice that the LLX values of approximate methods may differ from the
true values of the log-likelihood function at the parameter estimated values.

True DA(α, β) MPE(α, β) NMSDE Exact(α)

50 animals

h−1(µ) 632.70 641.87± 30.74 639.16 648.94± 26.51 640.20± 36.01
θ 0.15 0.1152± 0.0284 0.1446 − 0.1437± 0.0464
λ 1.43 1.4173± 0.0627 1.3501 1.3939± 0.0596 1.4385± 0.0608
ω 0 0.0637± 0.1213 <0.0001 − −
σ 0.33 0.3284± 0.0093 0.3051 0.3318± 0.0094 0.3268± 0.0095
LLX −11,892.8 −11,767.1 −11,905.6 −11,659.9

500 animals

h−1(µ) 632.70 635.46± 9.56 635.62 636.59± 8.35 644.44± 37.87
θ 0.15 0.1197± 0.0085 0.1537 − 0.1493± 0.0484

λ 1.43 1.4037± 0.0188 1.3417 1.3781±
0.0.0189 1.3957± 0.0610

ω 0 <0.0001 0.0064 − −
σ 0.33 0.3312± 0.0030 0.3067 0.3343± 0.0030 0.3308± 0.0096
LLX −118,752.5 −120,099.7 −118,878.5 −11,667.9
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Table 7. Results for the simulated datasets of 50 and 500 animals when β is random, but α is fixed
(θ = 0) – D50(β) and D500(β). Besides the true parameter values used in the simulations, the table
shows their maximum likelihood estimates and, when available, approximate 95% confidence bands,
for the appropriate estimation methods DA(α, β) and MPE(α, β) and the inappropriate estimation
method NMSDE. Notice that the LLX values of approximate methods may differ from the true values
of the log-likelihood function at the parameter estimated values.

True DA(α, β) MPE(α, β) NMSDE

50 animals

h−1(µ) 632.70 619.32± 23.98 613.94 618.43± 24.13
θ 0 0.0260± 0.1038 0.1026 −
λ 1.43 1.4725± 0.0730 1.3944 1.4591± 0.0618
ω 0.30 0.2043± 0.0359 0.0002 −
σ 0.33 0.3323± 0.0094 0.3036 0.3365± 0.0096
LLX −11,881.2 −11,765.4 −11,902.1

500 animals

h−1(µ) 632.70 640.71± 8.45 626.32 639.20± 8.77
θ 0 <0.0001 0.1602 −
λ 1.43 1.3451± 0.0215 1.3213 1.3497± 0.0191
ω 0.30 0.1923± 0.01051 <0.0001 −
σ 0.33 0.3360± 0.0030 0.2947 0.3399± 0.0031
LLX −118,814.8 −120,401.4 −119,038.4

Table 8. Results for the simulated datasets of 50 and 500 animals when α and β are both fixed
(θ = ω = 0) – D50 and D500. Besides the true parameter values used in the simulations, the table
shows their maximum likelihood estimates and, when available, approximate 95% confidence bands,
for the appropriate estimation methods DA(α, β) and MPE(α, β) and the estimation method NMSDE,
which is the most appropriate for this dataset. Notice that the LLX values of approximate methods
may differ from the true values of the log-likelihood function at the parameter estimated values.

True DA(α, β) MPE(α, β) NMSDE

50 animals

h−1(µ) 632.70 624.23± 24.67 624.32 624.23± 24.13
θ 0 <0.001 0.0013 −
λ 1.43 1.4465± 0.0616 1.3623 1.4465± 0.0616
ω 0.30 <0.001 <0.0001 −
σ 0.33 0.3362± 0.0096 0.3136 0.3362± 0.0096
LLX −11,901.2 −11,762.8 −11,901.0

500 animals

h−1(µ) 632.70 628.22± 7.81 628.15 628.21± 7.81
θ 0 <0.0001 0.0196 −
λ 1.43 1.4331± 0.0193 1.3511 1.4330± 0.0191
ω 0 0.0135± 0.1381 <0.0001 −
σ 0.33 0.3309± 0.0030 0.2996 0.3309± 0.0030
LLX −118,686.3 −119,963.8 −118,686.3

Finally, in Table 9, we used the real cattle weight dataset of 16,029 Mertolengo cattle
males (totaling 96,204 observations) and present the estimates obtained by the DA(α, β)
method and by the NMSDE method. The true parameter values are not known, and we
cannot use the R package MsdeParEst since the real weight data from the 16,029 animals
presents a different age vector of observations for each animal. Analyzing the results of
Table 9, we can conclude that, despite the database being large and heterogeneous, the two
estimation methods provide very similar estimates. According to our findings obtained
above, it is interesting to note that the DA(α, β) method presents clear evidence of random
effects on the α parameter and of strong random effects on the β parameter. Although we
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cannot perform a likelihood ratio test to reject the null hypothesis θ = ω = 0 because the
displayed LLX value for the DA(α, β) method is an approximation, the difference of LLX
values between this method and the NMSDE method (which displays an exact LLX value)
is striking enough to leave doubts about the random nature of α and β.

Table 9. Results for the real cattle weight dataset. The maximum likelihood estimates and approxi-
mate 95% confidence bands are shown when assuming a mixed model with both α and β random
and using the DA(α, β) estimation method and when assuming a non-mixed model (α and β fixed)
and using the NMSDE method (which is the classical exact maximum likelihood method under that
assumption). Notice that the LLX values of the approximate method DA(α, β) method may differ
from the true value of the log-likelihood function at the parameter estimated values.

DA(α, β) NMSDE

h−1(µ) 629.70± 6.30 631.27± 6.38
θ 0.0909± 0.0083 −
λ 1.4261± 0.0122 1.4198± 0.0116
ω 0.1998± 0.0050 −
σ 0.3273± 0.0016 0.3398± 0.0017
LLX −368,732.10 −369,753.20

5. Recommendations

Taking into account all the analyzed scenarios, it makes sense to present a summary of
the advantages and disadvantages of each method and recommendations for its use with
a real dataset depending on the number of animals. If one has no information or strong
reasons to consider a given parameter as random, one should apply the DA(α, β) method,
which, for all datasets considered here, was able to correctly identify which parameters are
fixed and which are random.

If one concludes from this preliminary analysis that none of the parameters are
fixed (by not having small estimates of their standard deviations θ and ω, complemented
by the information given by the approximate confidence intervals of these parameters),
the DA(α, β) method is recommended to estimate the mean and standard deviation of
the random β, whereas the MPE(α, β) method is recommended to estimate the mean and
standard deviation of the random α, either for small and large samples. However, a good
compromise will be achieved if one just uses the DA(α, β) method.

In the case the preliminary analysis indicates that ω = 0 (by having a very small
estimate of this parameter), we should then apply the Exact(α) method [1], which is de-
signed for the case of α being the only random parameter and uses the exact log-likelihood
function (8), to get better estimates of all parameters.

If the preliminary analysis indicates θ = 0 (by having a very small estimate of this
parameter), we better remain with the DA(α, β) method (since its estimates are very similar
with those obtained under the DA(β) method) and provides better estimates of the mean
and standard deviation for the β random effect and also of the fixed effect α than the MPE
method or the NMSDE method.

Finally, in the case where the preliminary analysis indicates ω = 0 and θ = 0 (i.e.,
the dataset only has fixed parameters), we can apply either the most appropriate and
classical NMSDE method [1], designed for the fixed-effects model and using the exact log-
likelihood function (6), or the DA(α, β) method (which gives basically the same estimates).

Furthermore, the DA method has the big advantage of being usable for all real datasets,
with or without equidistant observations and whether or not the animal’s sizes have been
obtained at the same age instants for all animals.

6. Conclusions

To describe the individual growth of animals in a randomly varying environment,
a general stochastic differential equation (SDE) model was used, and, in order to take into
account that the model parameters may vary from animal to animal, which, for instance,
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occurs due to different individual genetics and other characteristics of the animals, we
considered SDE mixed models. Here, we studied the SDE mixed model where both
parameters included in the drift term, the parameter α (asymptotic modified weight) and
the growth parameter β, were assumed to be Gaussian distributed.

We applied the maximum likelihood estimation method to obtain the estimates for
the parameters of the SDE mixed models. In most cases, for this type of model, it is
difficult or impossible to obtain a closed-form expression for the likelihood function and
approximation methods are used to cope with this issue. In this paper, we propose to use the
delta approximation method (DA method) with both α and β random, in which we adapted
the delta method, a classic in Statistics, to obtain approximate closed-form expressions
for the likelihood function when both parameters α and β are random. Of course, the DA
method can also be applied when only one of the two parameters is assumed random.

To evaluate the performance of the proposed method on parameter estimation, we
used simulated datasets from different mixed-effects models (with only α random, with only
β random, and with both parameters random) and from a fixed-effects model (both α and
β fixed), with different numbers of animals (5000, 500, and 50), datasets in which all
animals were weighed at the same ages so that we could use all the estimation methods
considered here and compare them. Since, in real life, we usually do not know which
are the random parameters, wrong assumptions may be made on that issue. In order to
evaluate the consequences of wrong assumptions on what parameters are random, we
included in the comparisons also the methods designed under such assumptions. We
compared the DA method (in its variants of assuming both or just one parameter random)
with an existing method specifically designed for mixed-effects models (also with the
same variants), referred to here as the MPE method, which is provided by the R package
MsdeParEst. We also included in the comparisons the estimation methods for which log-
likelihood expressions in closed-form are available, namely the NMSDE method and,
in some cases, the Exact(α) method, which are designed, respectively, for the fixed-effects
model and the mixed-effects model with only α random.

The results of these comparisons show a very good performance of the proposed DA
method with both α and β random, being globally the best method for all the simulated
scenarios. This method, unlike the MPE methods, was able to correctly identify, in each
of the settings, the fixed and the random parameters. It gives generally better parameter
estimates than the MPE method and the estimates are quite close to the true parameter
values, with the exception of the standard deviations of random effects, which were
somewhat underestimated. The performance of the proposed DA method was confirmed
when using a simulated dataset with both parameters fixed, since it provided the same
results as the ones obtained when using the exact NMSDE method.

For this type of SDE mixed models, it is usual to find in the literature estimation
methods developed under the assumption of having a unique (often also evenly spaced)
age vector of observations common to all individuals, and this is also required when using
available R packages, such as the MsdeParEst package used in the MPE method. The delta
approximation (DA) method has the advantage of not requiring such restrictions, so it can
be used in real situations where such restrictions usually do not hold. In our real data
application, we are precisely in this situation, and we applied the estimation methods to real
weights of Mertolengo cattle males from a large and heterogeneous dataset, reaching the
conclusion that the proposed DA method identifies both parameters α and (more strikingly)
β as being random.

This approach revealed to be a very interesting alternative to the available estimation
methods for SDE mixed models.

As future work, we are undergoing the study of the case where we will incorporate the
genetic factors of the animals into the model to explain part of the variation in the random
parameters, and we intend to implement the current methods in an R package.
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