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Abstract: Nowadays, satellite images are used in many applications, and their automatic processing
is vital. Conventional integer grey-scale edge detection algorithms are often used for this. This study
shows that the use of color-based, fractional order edge detection may enhance the results obtained
using conventional techniques in satellite images. It also shows that it is possible to find a fixed set of
parameters, allowing automatic detection while maintaining high performance.

Keywords: satellite images; fractional derivative; automatic detection; color-based detection; grey-
scale detection; fractional processing; aerospace; very-high-resolution satellite
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1. Introduction
1.1. Objective and Contribution

Image processing has always been an essential tool in remote sensing. Processed im-
ages taken by satellites allow extracting relevant information in fields like land monitoring,
routine mapping and surveillance [1].

Edge detection represents an important role in remote sensing. The conventional edge
detectors are based on integer derivatives. With the introduction of fractional calculus, some
new non-integer edge detectors were created and the existent integer ones adapted [2].

The aforementioned detectors were developed for grey-scale images. Since colored
images are often available, a simple solution is to convert them to grey-scale, but this
may compromise the performance of edge detection and discards potentially relevant
information. Thus, color-based edge detection detectors were created [3,4].

Algorithms for edge detection methods often involve first or second order derivatives,
which can be generalised using a fractional order derivative instead [5]. The goal of this
paper is to apply fractional edge detection to satellite images, verifying how appropriate
these algorithms are for the job. To assess this, results obtained with fractional order
algorithms applied to color images are compared with those of conventional integer order
algorithms, for both color and grey-scale images. Another important point to assess
performance is whether or not it is possible to use fixed parameters to treat all the images.
Experiences with medical images, for which optimal parameters have very disparate
values, and are hardly predictable in advance, suggest that this may be an issue [6]. So
the contribution of this paper is to show that fractional derivatives achieve good results in
image treatment of satellite images with parameters automatically set.

1.2. Previous Work on Fractional Image Processing

Fractional derivatives, defined below in Section 2.2, are studied in depth in [7–9]. Their
application to image processing began in 2002 with the CRONE method [10]. Since then,
a few already extant image treatment methods have been adapted to include fractional
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derivatives (instead of usual, integer order derivatives), such as the fractional Roberts
operator [11], the fractional Sobel method [12,13], the fractional Canny method [6], or the
fractional Laplacian of Gaussian method [14]. These methods will be addressed below in
Section 2 and details can be found in [5].

Fractional derivatives can be used in image treatment for purposes other than edge
detection, such as denoising, encription, or compression [2]. One of the most frequent
applications is to medical imaging [15,16], in which difficulties in parameter tuning were
felt [6], as already mentioned.

A state of the art of satellite image processing falls outside the scope of this paper;
reviews covering not only edge detection but also segmentation and classification can be
found in [17,18].

1.3. Satellite Image Data

In this paper, forty-three random images with low nebulosity from ESA’s Sentinel-2
satellite [19] were used. The images retrieved from the website were analysed and a ground
truth was manually taken using GIMP. The satellite images database, as well as the detailed
extended results of this study, are available in an online repository [20].

Due to space reasons, from the forty three figures, four were chosen to illustrate
performance in this paper. The selected images are numbers 12, 18, 27 and 38. These
pictures were selected since they present different levels of global performance due to their
heterogeneity and are shown in Figures 1–4 together with their corresponding ground truth.
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(a) Coast (b) Ground Truth

Figure 3. Figure number 27 to be evaluated with corresponding ground truth.

(a) Coast (b) Ground Truth

Figure 4. Figure number 38 to be evaluated with corresponding ground truth.

1.4. Paper Organisation

This paper is organised as follows. Section 2 explains the theoretical formulations for
the edge detectors tested. Section 3 presents performance metrics and results. Conclusions
are drawn in Section 4.

2. Definitions and Formulations

This section presents and compares the image treatment algorithms.

2.1. Main Algorithm Description

A main script was developed where the different edge detectors were introduced:

• The image to be processed is read.
• A pre-processing step is performed where the figure is scanned for blue color pixels.

A mask is formed attributing value zero to all blue pixels found. This mask is later
used in post-processing (Figure 5), both for the case of grey-scale detection operators,
and the case of color detection operators.

Figure 3. Image number 27 to be evaluated with corresponding ground truth.
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1.4. Paper Organisation

This paper is organised as follows. Section 2 explains the theoretical formulations for
the edge detectors tested. Section 3 presents performance metrics and results. Conclusions
are drawn in Section 4.

2. Definitions and Formulations

This section presents and compares the image treatment algorithms.

2.1. Main Algorithm Description

A main script was developed where the different edge detectors were introduced:

• The image to be processed is read.
• A pre-processing step is performed where the figure is scanned for blue color pixels.

A mask is formed attributing value zero to all blue pixels found. This mask is later
used in post-processing (Figure 5), both for the case of grey-scale detection operators,
and the case of color detection operators.
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(a) Coast (b) Blue Mask

Figure 5. Original image and Blue Mask of Coast_D(23).jpg.

• One of the edge detection operators described in the next subsection is applied to
the image. If the operator is to be applied to a grey-scale image, it must be con-
verted first; Figure 6 shows the case when the image is converted to grey-scale for
comparison purposes.

(a) Edge detection result (b) Detail

Figure 6. Output of an edge detection operation.

• After contour detection it is necessary to close the contours, so that in the end segmen-
tation of land and water is evident. For that, several closing morphological operations
are performed.

• Firstly, using lines in 0◦, 45◦, 90◦ and 135◦ directions a closing operation is carried out
in order to close pixel gaps between nearby edges that the detector did not encounter.

• Next, in order to fill the parts of land that were not yet detected by the operator and
the closing operations, a MATLAB built-in function is used (imfill) .

• The blue mask obtained in the pre-processing is then applied to the result of the
previous operations. As one can see in Figure 6, after the edge detection there is still a
lot of noise in the water. The blue mask serves as a filter that eliminates this noise and
guarantees better performance in segmentation.

• One last closing operation is performed. This is due to the fact that sometimes the color
filter identifies small areas of land as blue. Using this closing operation, these small
areas are set to white and are correctly identified. This step finalizes the processing
part of the algorithm. An example of a processed image is shown in Figure 7.

Figure 5. Original image and Blue Mask of Coast_D(23).jpg.

• One of the edge detection operators described in the next subsection is applied to
the image. If the operator is to be applied to a grey-scale image, it must be con-
verted first; Figure 6 shows the case when the image is converted to grey-scale for
comparison purposes.
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• After contour detection it is necessary to close the contours, so that in the end segmen-
tation of land and water is evident. For that, several closing morphological operations
are performed.

• Firstly, using lines in 0◦, 45◦, 90◦ and 135◦ directions a closing operation is carried out
in order to close pixel gaps between nearby edges that the detector did not encounter.

• Next, in order to fill the parts of land that were not yet detected by the operator and
the closing operations, a MATLAB built-in function is used (imfill).

• The blue mask obtained in the pre-processing is then applied to the result of the
previous operations. As one can see in Figure 6, after the edge detection there is still a
lot of noise in the water. The blue mask serves as a filter that eliminates this noise and
guarantees better performance in segmentation.

• One last closing operation is performed. This is due to the fact that sometimes the color
filter identifies small areas of land as blue. Using this closing operation, these small
areas are set to white and are correctly identified. This step finalizes the processing
part of the algorithm. An example of a processed image is shown in Figure 7.
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Figure 7. Totally Processed Image

• After post-processing, performance analysis is done. For this, the ground truth
jpg image is read and converted to a logical array. Then, by comparison between
the resultant processed image and the ground truth, four metrics of performance are
computed. The results of this analysis are stored in an array and are ready for analysis.

2.2. Edge Detection Operators

All the edge detection operators used in the algorithm above make use of the Grünwald-
Letnikoff definition of fractional derivative:
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The operators employed were the following. They are further detailed in [5].

• Canny Edge Detector. In this popular edge detection algorithm [22], the image is
first convolved with a Gaussian Filter, and then a derivative operator is applied to
the smoothed image to compute gradients. This is done determining the first partial
derivatives of the smoothed image in both the x and y directions for each color channel,
defining the following Jacobian [3]:
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Bx By


 =

(
Cx, Cy

)
(3)

Figure 7. Totally Processed Image.

• After post-processing, performance analysis is done. For this, the ground truth
jpg image is read and converted to a logical array. Then, by comparison between
the resultant processed image and the ground truth, four metrics of performance are
computed. The results of this analysis are stored in an array and are ready for analysis.

2.2. Edge Detection Operators

All the edge detection operators used in the algorithm above make use of the Grünwald-
Letnikoff definition of fractional derivative:

cDα
t f (t) = lim

h→0
h−α

N

∑
k=0

(−1)k
(

α
k

)
f (t− kh), N =

⌊
t− c

h

⌋
, t > c (1)

where combinations of a things, b at a time, are given by [21]

(
a
b

)
=





Γ(a + 1)
Γ(b + 1)Γ(a− b + 1)

, if a, b, a-b /∈ Z−

(−1)bΓ(b− a)
Γ(b + 1)Γ(−a)

, if a ∈ Z− ∧ b ∈ Z+
0

0, if
[(

b ∈ Z− ∨ b− a ∈ N
)
∧ a /∈ Z−

]
∨

(a, b ∈ Z− ∧ |a| > |b|)

(2)

The operators employed were the following. They are further detailed in [5].

• Canny Edge Detector. In this popular edge detection algorithm [22], the image is
first convolved with a Gaussian Filter, and then a derivative operator is applied to
the smoothed image to compute gradients. This is done determining the first partial
derivatives of the smoothed image in both the x and y directions for each color channel,
defining the following Jacobian [3]:

J =




Rx Ry
Gx Gy
Bx By


 =

(
Cx, Cy

)
(3)
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The direction in the image along which the largest variation in the chromatic image
function occurs is represented by the eigenvector of JT J corresponding to the largest
eigenvalue.

JTJ =

(
Jx Jxy
Jyx Jy

)
(4)

λ =
Jy + Jx ±

√
(Jy + Jx)2 − 4(Jx Jy − J2

xy)

2
(5)

• Sobel Edge Detector. The integer Sobel operator performs a derivative operation
on an image and so it highlights regions where there are sudden increases of pixel
intensity which correspond to edges, and consists of the two masks [23]



−1 0 1
−2 0 2
−1 0 1







1 2 1
0 0 0
−1 −2 −1


 (6)

The fractional Sobel operator given in [13] has the mask



α(−α+1)(−α+2)
12

α(−α+1)(−α+2)
6

α(−α+1)(−α+2)
12

α(−α+1)
4

α(−α+1)
2

α(−α+1)
4

α
2 −

α(−α+1)(−α+2)
12 α− α(−α+1)(−α+2)

6
α
2 −

α(−α+1)(−α+2)
12

− 1
2 −

α(−α+1)
4 −1− α(−α+1)

2 − 1
2 −

α(−α+1)
4

− α
2 −α α

2
1
2 1 1

2




(7)

A novel color-based fractional Sobel was implemented by applying the same algorithm
of the Canny deterctor, with the mask in (7).

• Roberts Edge Detector. The integer Roberts operator [24] consists of a pair of 2× 2
masks [23]: [

1 0
0 −1

] [
0 1
−1 0

]
(8)

The fractional Roberts detector presented in [11] and based on the truncated coeffi-
cients of the GL definition applies derivatives of arbitrary order α:




α2−α+2
2

α2−α+2
2

α2−α+2
2

α2−α+2
2 −8α α2−α+2

2
α2−α+2

2
α2−α+2

2
α2−α+2

2


 (9)

This mask is applied after the convolution of an image with the conventional integer
Sobel. A color-based version of this detector was developed using the same approach
as the Sobel algorithm. Since the fractional operator requires two convolutions, the
color-based computations were applied only to the first one with the integer mask.
After this, the result is convolved with (9).

• Laplacian of Gaussian (LoG) Detector. Three possible Laplacian operators are




0 1 0
1 −4 1
0 1 0







1 1 1
1 −8 1
1 1 1






−1 2 −1
2 −4 2
−1 2 −1


 (10)

To tackle the sensitivity of second order derivatives to noise, in the LoG the image
is Gaussian smoothed before applying the Laplacian filter reducing high frequency
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noise. The smoothing filter can also be convolved first with the Laplacian kernel and
only then is the result convolved with the input image. In the fractional case [14],




0 . . . 0 (−1)κCα
K−1 0

...
...

...
...

...
0 . . . 0

(
α− α2)/2 0

(−1)κCα
K−1 . . .

(
α− α2)/2 2α −1

0 . . . 0 −1 0




(11)

For color images [25], a pixel is considered as part of an edge if zero-crossings are
found in any of the color channels. Using this definition, an algorithm that detects
edges in color images was developed. The algorithm convolves each channel of
the input color image with the LoG mask in (11). Then, a search for zero-crossings
in the results for each channel is performed. If any zero-crossings are found, the
corresponding pixels are flagged as part of an edge.

• CRONE. The CRONE operator [10] uses the coefficients of (1):

ak = (−1)k
(

n
k

)
= (−1)k n(n− 1) · · · (n− k + 1)

k!
(12)

In order to detect edges on images, the formulated detector can be used in two
dimensions with mask

[
+am · · · +a1 0 −a1 · · · am

]
(13)

and its transpose. Color is handled as for the Canny operator.
• Fractional Derivative Operator. Fractional mask (9) from the Roberts operator was

used in this paper by itself as a fractional edge detector. For color images, the Jacobian
is reduced to a vector

J =




R
G
B


 (14)

and the magnitude of the gradients is given by

‖∇ f ‖ =
√

R2 + G2 + B2 (15)

3. Results

In this section, the overall relevant results of the iterations with different parameters
will be presented, and illustrated with the four images shown in Section 1.3. Again, the
results for all the forty-three images in the database are available in repository [20].

3.1. Performance Assessment

In order to check performance, quantification has to be made. For that, the ground
truth is compared to the output of the algorithm by scanning all pixels within the im-
age. Four instances may occur: True Positives, False Positives, True Negatives and False
Negatives (Table 1).

Table 1. Performance Instances.

Processed Image

0 1

Ground Truth
0 TN FP

1 FN TP
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Using the number of occurrences of each instance the following metrics were computed:

J(A, B) =
TP

FP + TP + FN
(16)

DSC =
2× TP

2× TP + FP + FN
(17)

Sensitivity =
TP

TP + FN
(18)

Specificity =
TN

FP + TN
(19)

During the study it was concluded that the Jaccard coefficient (J) is a good overall
performance metric since the results with the highest J corresponded to the ones with
maximum mean performance regarding the four metrics. Thus, the Jaccard coefficient is
used as overall performance indicator.

3.2. Performance Analysis of Fractional vs. Integer Edge Detection

The first step of performance analysis is to understand, in each edge detection algo-
rithm, if its fractional order based adaptation outperforms the conventional integer version.
Therefore, all the algorithms formulated in Section 2 were tested. The performance was
evaluated for all 43 images in the database, converted for simplicity purposes to grey-scale,
and using the metrics introduced in Section 3.1. The best performances of the different
detectors for the selected images are presented in Figures 8–23 and Tables 2–5.
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Fractional Canny 1.4 - 2.2 0.8885 0.9410 0.9945 0.9804
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Figure 14. Best results for Figure 18 processed using Roberts algorithms.
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Figure 15. Best results for Figure 18 processed using LoG algorithms.

Table 3. Table with best performance results using Grey-Scale detectors on image 18.

Método σ Threshold α J D Sensitivity Specificity

Integer Canny 1.6 - - 0.6598 0.7950 0.6767 0.9914
Fractional Canny 1.8 - −0.1 0.6600 0.7952 0.6741 0.9928

Integer Sobel - 0.1 - 0.1419 0.2486 0.1445 0.9940
Fractional Sobel - 0.9 0.6 0.6600 0.7952 0.6741 0.9928
Integer Roberts - 0.1 - 0.1589 0.2742 0.1619 0.9934

Fractional Roberts - 0.1 −0.3 0.6588 0.7943 0.6771 0.9907
Integer LoG - 0.01 - 0.1051 0.1902 0.1065 0.9957

Fractional LoG - 0.3 3.0 0.6594 0.7948 0.6771 0.9910

(a) Original Integer Canny (σ =
2)

(b) Fract. Canny (σ = 1.4 and
α = 2.2)

Figure 16. Best results for Figure 27 processed using Canny algorithms.

Figure 14. Best results for image 18 processed using Roberts algorithms.



Appl. Sci. 2021, 11, 5288 11 of 19

Appl. Sci. 2021, 1, 1 11 of 20

(a) Original Integer Roberts (th =
0.1)

(b) Fract. Roberts(th = 0.1 and
α = 0.8)

Figure 14. Best results for Figure 18 processed using Roberts algorithms.

(a) Original Integer LoG (th =
0.01)

(b) Fract. LoG (th = 0.3 and α =
−2)

Figure 15. Best results for Figure 18 processed using LoG algorithms.

Table 3. Table with best performance results using Grey-Scale detectors on image 18.

Método σ Threshold α J D Sensitivity Specificity

Integer Canny 1.6 - - 0.6598 0.7950 0.6767 0.9914
Fractional Canny 1.8 - −0.1 0.6600 0.7952 0.6741 0.9928

Integer Sobel - 0.1 - 0.1419 0.2486 0.1445 0.9940
Fractional Sobel - 0.9 0.6 0.6600 0.7952 0.6741 0.9928
Integer Roberts - 0.1 - 0.1589 0.2742 0.1619 0.9934

Fractional Roberts - 0.1 −0.3 0.6588 0.7943 0.6771 0.9907
Integer LoG - 0.01 - 0.1051 0.1902 0.1065 0.9957

Fractional LoG - 0.3 3.0 0.6594 0.7948 0.6771 0.9910

(a) Original Integer Canny (σ =
2)

(b) Fract. Canny (σ = 1.4 and
α = 2.2)

Figure 16. Best results for Figure 27 processed using Canny algorithms.

Figure 15. Best results for image 18 processed using LoG algorithms.

Table 3. Best performance results using Grey-Scale detectors on image 18.

Método σ Threshold α J D Sensitivity Specificity

Integer Canny 1.6 - - 0.6598 0.7950 0.6767 0.9914
Fractional Canny 1.8 - −0.1 0.6600 0.7952 0.6741 0.9928

Integer Sobel - 0.1 - 0.1419 0.2486 0.1445 0.9940
Fractional Sobel - 0.9 0.6 0.6600 0.7952 0.6741 0.9928
Integer Roberts - 0.1 - 0.1589 0.2742 0.1619 0.9934

Fractional Roberts - 0.1 −0.3 0.6588 0.7943 0.6771 0.9907
Integer LoG - 0.01 - 0.1051 0.1902 0.1065 0.9957

Fractional LoG - 0.3 3.0 0.6594 0.7948 0.6771 0.9910

Appl. Sci. 2021, 1, 1 11 of 20

(a) Original Integer Roberts (th =
0.1)

(b) Fract. Roberts(th = 0.1 and
α = 0.8)

Figure 14. Best results for Figure 18 processed using Roberts algorithms.

(a) Original Integer LoG (th =
0.01)

(b) Fract. LoG (th = 0.3 and α =
−2)

Figure 15. Best results for Figure 18 processed using LoG algorithms.

Table 3. Table with best performance results using Grey-Scale detectors on image 18.

Método σ Threshold α J D Sensitivity Specificity

Integer Canny 1.6 - - 0.6598 0.7950 0.6767 0.9914
Fractional Canny 1.8 - −0.1 0.6600 0.7952 0.6741 0.9928

Integer Sobel - 0.1 - 0.1419 0.2486 0.1445 0.9940
Fractional Sobel - 0.9 0.6 0.6600 0.7952 0.6741 0.9928
Integer Roberts - 0.1 - 0.1589 0.2742 0.1619 0.9934

Fractional Roberts - 0.1 −0.3 0.6588 0.7943 0.6771 0.9907
Integer LoG - 0.01 - 0.1051 0.1902 0.1065 0.9957

Fractional LoG - 0.3 3.0 0.6594 0.7948 0.6771 0.9910

(a) Original Integer Canny (σ =
2)

(b) Fract. Canny (σ = 1.4 and
α = 2.2)

Figure 16. Best results for Figure 27 processed using Canny algorithms.Figure 16. Best results for image 27 processed using Canny algorithms.



Appl. Sci. 2021, 11, 5288 12 of 19
Appl. Sci. 2021, 1, 1 12 of 20

(a) Original Integer Sobel (th =
0.1)

(b) Fract. Sobel (th = 0.9 and
α = 0.7)

Figure 17. Best results for Figure 27 processed using Sobel algorithms.Figure 17. Best results for image 27 processed using Sobel algorithms.

Appl. Sci. 2021, 1, 1 13 of 20

(a) Original Integer Roberts (th =
0.1)

(b) Fract. Roberts(th = 0.1 and
α = 0.8)

Figure 18. Best results for Figure 27 processed using Roberts algorithms.
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Table 4. Table with best performance results using Grey-Scale detectors on image 27.

Método σ Threshold α J D Sensitivity Specificity

Integer Canny 0.8 - - 0.9952 0.9976 0.9986 0.9932
Fractional Canny 0.6 - 2.6 0.9956 0.9978 0.9984 0.9943

Integer Sobel - 0.8 - 0.9952 0.9976 0.9986 0.9932
Fractional Sobel - 0.9 1.4 0.9948 0.9974 0.9987 0.9919
Integer Roberts - 0.1 - 0.8614 0.9255 0.8618 0.9990

Fractional Roberts - 0.1 2.4 0.9952 0.9976 0.9981 0.9940
Integer LoG - 0.01 - 0.8321 0.9084 0.8326 0.9988

Fractional LoG - 0.1 −1.2 0.9957 0.9978 0.9982 0.9950

Figure 18. Best results for image 27 processed using Roberts algorithms.
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Figure 19. Best results for image 27 processed using LoG algorithms.
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Table 4. Best performance results using Grey-Scale detectors on image 27.
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Appl. Sci. 2021, 11, 5288 14 of 19

Appl. Sci. 2021, 1, 1 14 of 20

(a) Original Integer Canny: (σ =
0.2)

(b) Fract. Canny: (σ = 0.6 and
α = 2.4)

Figure 20. Best results for Figure 38 processed using Canny algorithms.

(a) Original Integer Sobel: (th =
0.1)

(b) Fract. Sobel: (th = 0.9 and
α = 0.5)

Figure 21. Best results for Figure 38 processed using Sobel algorithms.

(a) Original Integer Roberts:
(th = 0.1)

(b) Fract. Roberts: (th = 0.1 and
α = −1.7)

Figure 22. Best results for Figure 38 processed using Roberts algorithms.Figure 22. Best results for image 38 processed using Roberts algorithms.

Appl. Sci. 2021, 1, 1 15 of 20

(a) Original Integer LoG: (th =
0.01)

(b) Fract. LoG: (th = 0.1 and α =
1.8)

Figure 23. Best results for Figure 38 processed using LoG algorithms.

Table 5. Table with best performance results using Grey-Scale detectors on image 38.

Method k σ Threshold α J D Sensitivity Specificity

Integer Canny - 0.2 - - 0.5180 0.6825 0.5365 0.7167
Fractional Canny - 0.6 - 2.4 0.7356 0.8477 0.7600 0.7359

Integer Sobel - - 0.1 - 0.0768 0.1427 0.0775 0.9271
Fractional Sobel - - 0.9 0.5 0.9600 0.9796 0.9997 0.6710
Integer Roberts - - 0.1 - 0.0618 0.1163 0.0622 0.9451

Fractional Roberts - - 0.1 −1.7 0.9613 0.9803 0.9990 0.6877
Integer LoG - - 0.01 - 0.0887 0.1630 0.0898 0.9076

Fractional LoG - - 0.1 1.8 0.9637 0.9815 0.9994 0.7046
CRONE 2 - - 3 0.9612 0.9802 0.9995 0.6818

Fract. Deriv. Mask - - 0.9 2.3 0.9625 0.9809 0.9995 0.6936

3.3. Grey-Scale Edge Detectors vs. Color Based Edge Detectors

As explained before, color edge detection algorithms were implemented and tested
with the whole data set due to their good results in other applications. All the six methods
were adapted and applied in the main algorithm in order to perform color-based edge de-
tection. The best results of the performance assessment for these versions of the algorithms
are presented above and are compared with the corresponding best grey-scale result, using
index ∆J:

∆J = JColor − JGrey-scale (20)

The results of this comparison are presented under the form of histograms (in semilog-
arithmic plots) for each detector in Figure 24.

Figure 23. Best results for image 38 processed using LoG algorithms.

Table 5. Best performance results using Grey-Scale detectors on image 38.

Method k σ Threshold α J D Sensitivity Specificity

Integer Canny - 0.2 - - 0.5180 0.6825 0.5365 0.7167
Fractional Canny - 0.6 - 2.4 0.7356 0.8477 0.7600 0.7359

Integer Sobel - - 0.1 - 0.0768 0.1427 0.0775 0.9271
Fractional Sobel - - 0.9 0.5 0.9600 0.9796 0.9997 0.6710
Integer Roberts - - 0.1 - 0.0618 0.1163 0.0622 0.9451

Fractional Roberts - - 0.1 −1.7 0.9613 0.9803 0.9990 0.6877
Integer LoG - - 0.01 - 0.0887 0.1630 0.0898 0.9076

Fractional LoG - - 0.1 1.8 0.9637 0.9815 0.9994 0.7046
CRONE 2 - - 3 0.9612 0.9802 0.9995 0.6818

Fract. Deriv. Mask - - 0.9 2.3 0.9625 0.9809 0.9995 0.6936

3.3. Grey-Scale Edge Detectors vs. Color Based Edge Detectors

As explained before, color edge detection algorithms were implemented and tested
with the whole data set due to their good results in other applications. All the six methods
were adapted and applied in the main algorithm in order to perform color-based edge de-
tection. The best results of the performance assessment for these versions of the algorithms
are presented above and are compared with the corresponding best grey-scale result, using
index ∆J:

∆J = JColor − JGrey-scale (20)

The results of this comparison are presented under the form of histograms (in semilog-
arithmic plots) for each detector in Figure 24.
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Figure 24. Analysis of performance comparison between grey-scale and color based detectors.

3.4. Overall Performance with Varying Parameters

To analyse the overall performance of detectors, the mean Jaccard of the best results
for each edge detection operator (for all images in the data set) was computed. The results
are shown in Table 6 and Figure 25 .

Figure 24. Analysis of performance comparison between grey-scale and color based detectors.

3.4. Overall Performance with Varying Parameters

To analyse the overall performance of detectors, the mean Jaccard of the best results
for each edge detection operator (for all images in the data set) was computed. The results
are shown in Table 6 and Figure 25 .
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Table 6. Ranking of the best results average for all images.

Detector J

Fractional Derivative Op. 0.9623
Color Fractional Derivative Op. 0.9596
Color Laplacian of Gaussian 0.9554
Color Roberts 0.9537
Laplacian of Gaussian 0.9531
Color Sobel 0.9478
Roberts 0.9474
Color CRONE 0.9461
Color Canny 0.9448
CRONE 0.9447
Canny 0.9342
Sobel 0.9282
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Figure 25. Bar chart with best results average for all images (Varying parameters)

3.5. Overall Performance with Fixed Parameters

One crucial objective of this work is to assess if it is possible to find and easily tune
parameters, in an automatic way, without loosing performance. A search for optimal fixed
parameters was conducted sorting performance results using fixed parameters for all the
images in the data set. Table 7 and Figure 26 present the best fixed parameters results for
each detector; they are discussed in the next section.

Figure 25. Bar chart with best results average for all images (Varying parameters).

3.5. Overall Performance with Fixed Parameters

One crucial objective of this work is to assess if it is possible to find and easily tune
parameters, in an automatic way, without loosing performance. A search for optimal fixed
parameters was conducted sorting performance results using fixed parameters for all the
images in the data set. Table 7 and Figure 26 present the best fixed parameters results for
each detector; they are discussed in the next section.
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Table 7. Full volume analysis of best results with fixed parameters for all detectors.

Detector Threshold k σ α J

Color Fractional Derivative Op. 0.9 - - 0.8 0.9436
Fractional Derivative Op. 0.7 - - 0.8 0.9428
Color CRONE - 5 - 0.9 0.9328
CRONE - 5 - 1.1 0.9261
Color Canny - - 0.7 1.7 0.9193
Color Roberts 0.1 - - 1.4 0.9174
Color Sobel 0.3 - - −0.2 0.9153
Sobel 0.9 - - 0.2 0.9111
Color Laplacian of Gaussian 0.1 - - −0.9 0.9108
Roberts 0.1 - - −1.3 0.9076
Laplacian of Gaussian 0.1 - - −1.4 0.9028
Canny - - 0.6 0 0.9011
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4. Discussion and Conclusions

In this paper, an automatic coasts edge detection tool using five state-of-the-art edge
detection versions and seven novel detector versions was presented. The conventional
integer versions of the algorithms were also tested and compared to fractional solutions.

Forty-three high definition (10,980p × 10,980p) satellite images were tested using the
different versions of the operators in a wide range of parameters.

The grey-scale Fractional Derivatives operator was the detector that provided the best
average scores regarding all figures, with varying parameters. The mean Jaccard coefficient
for this operator was 0.9623, i.e. the algorithm identified correctly in average 96.23% of the
pixels in the input images.

In remote sensing, it is important not only that the algorithm can reach high efficiency
but also that the parameters required are possible to implement for an automatic solution.
Despite the exceptional performance achieved with varying parameters, this Jaccard coeffi-
cient is only possible using a great spread of parameters impossible to reach in automatic
solutions. Thus, the search for a solution with fixed parameters was conducted. In this
case, the color-based Fractional Derivatives operator was the method that provided the
best average scores regarding all figures in the data set, with a Jaccard metric of 0.9436. The
result obtained sets a fixed-parameter solution that allows automatic detection of coasts
with a decrease in performance compared to the aforementioned varying-parameters of
less than 2%.
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detection versions and seven novel detector versions was presented. The conventional
integer versions of the algorithms were also tested and compared to fractional solutions.
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different versions of the operators in a wide range of parameters.

The grey-scale Fractional Derivatives operator was the detector that provided the best
average scores regarding all figures, with varying parameters. The mean Jaccard coefficient
for this operator was 0.9623, i.e. the algorithm identified correctly in average 96.23% of the
pixels in the input images.

In remote sensing, it is important not only that the algorithm can reach high efficiency
but also that the parameters required are possible to implement for an automatic solution.
Despite the exceptional performance achieved with varying parameters, this Jaccard coeffi-
cient is only possible using a great spread of parameters impossible to reach in automatic
solutions. Thus, the search for a solution with fixed parameters was conducted. In this
case, the color-based Fractional Derivatives operator was the method that provided the
best average scores regarding all figures in the data set, with a Jaccard metric of 0.9436. The
result obtained sets a fixed-parameter solution that allows automatic detection of coasts
with a decrease in performance compared to the aforementioned varying-parameters of
less than 2%.
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Further analyzing overall performance Tables 6 and 7, as well as the performance data
in [20], one may draw a few more conclusions. The usage of fractional derivatives in edge
detection for this application matched or improved, in most cases, the performance of the
conventional integer methods, which is not surprising since more information is available
to be used. The color based algorithms allowed to equal or improve the performance of
grey-scale methods in most cases. However, often the increase in performance is low in
percentage. Nevertheless, and since we are dealing with images that are composed of more
than 120 million pixels, a percentage of 1% increase corresponds to more than 1 million
pixels correctly identified.

To summarize, in this study a successful automatic tool was developed that identifies
and segments coasts in satellite images using both grey-scale and novel color-based frac-
tional edge detectors. Subsequent parameters that allow the automation of this tool were
also found.
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