

EGU21-7659, updated on 11 Mar 2021 https://doi.org/10.5194/egusphere-egu21-7659 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Ray paths of VLF/LF transmitter radio signals in the seismic Adriatic regions

Mohammed Y. Boudjada¹, Hans Ulrich Eichelberger¹, Pier Francesco Biagi², Konrad Schwingenschuh¹, Giovanni Nico³, Maria Solovieva⁴, Anita Ermini⁵, Iren Adelina Moldovan⁶, Michael E. Contadakis⁷, Aleksandra Nina⁸, Konstantinos Katzis⁹, Mourad Bezzeghoud¹⁰, Helmut Lammer¹, Patrick H.M. Galopeau¹¹, Bruno Besser¹, and Özer Aydogar¹

We analyze the radio wave propagations of VLF/LF transmitter signals along subionospheric paths using two different reception systems localized in the Graz seismo-electromagnetic facility (15.43E,47.06N). Those systems allow the simultaneous detection of more than fifteen transmitter signals emitting in the northern (i.e. France, Germany and United Kingdom) and southern (i.e. Italy and Turkey) parts of Europe. In this work, we investigate the transmitter radio wave propagations associated with two earthquakes (EQs) which occurred, at two occasions, in nearly the same Croatian regions (Geo. Long.=16°E; Geo. Lat.=45°N). The first and second EQs happened, respectively, on March 22 and December 29, 2020, with magnitudes M_w equal to 5.4 and 6.4. The use of two complementary reception systems, i.e. INFREP (Biagi et al., Open Journal of Earthquake Research, 8, 2019) and UltraMSK (Schwingenschuh et al., Nat. Hazards Earth Syst. Sci., 11, 2011), and the proximity to the epicenters lead us to characterize the behavior of the transmitter signal amplitudes particularly above the Croatian seismic regions. We analyze the amplitude variation for a given transmitter frequency starting few weeks before the earthquakes occurrences. We discuss the observed anomalies in the transmitter signals which may be considered as precursors due to the ionospheric disturbances of the transmitter ray paths above the earthquakes preparation zones.

¹Institut für Weltraumforschung, Extraterrestrial Physics, Graz, Austria (mohammed.boudjada@oeaw.ac.at)

²Department of Physics, University of Bari, Bari, Italy

³Institute for Applied Mathematics (IAC), National Research Council of Italy (CNR), Bari, Italy

⁴Institute of the Earth Physics, RAS, Moscow, Russia

⁵Department of Industrial Engineering, University of Tor Vergata, Rome, Italy

⁶National Institute of Earth's Physics, Seismological Department, Bucharest, Romania

⁷Department of Surveying & Geodesy, University of Thessaloniki, Thessaloniki, Greece

⁸Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia

⁹Department of Computer Science and Engineering, European University Cyprus, Nicosia, Cyprus

¹⁰Geophysical Centre of Évora and Physics Department, ECT, University of Évora, Évora, Portugal

¹¹LATMOS-CNRS, Université Versailles Saint-Quentin-en-Yvelines, Guyancourt, France