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Abstract 

 

Besides being the key to Earth's climate, global solar radiation at the surface (𝑆𝑊) is one of 

the most valuable renewable resources. This way, an adequate knowledge of the solar resource 

is critical as an assessment for a strategic planning of projects related to the production of solar 

energy. Therefore, the main goals of this thesis is to analyze past changes and variability of 

solar radiation fluxes in Portugal and Iberia Peninsula (IP) using observational available 

measurements, ERA−40 and NCEP/NCAR reanalysis datasets and, predict and characterize the 

solar radiation at the surface over Iberian Peninsula based on numerical weather prediction 

models. 

In a first part, this study is dedicated to the analysis of temporal and spatial variability of 𝑆𝑊 

based on ground-based stations, as well as in ERA−40 and NCEP/NCAR reanalysis. Parametric 

and non-parametric tests are applied to detect trends in both reanalysis and ground-based 

observations. Cloud cover obtained from reanalysis is also used to examine the possible causes 

of the observed long-term changes in 𝑆𝑊. In a second stage, is presented an assessment of the 

𝑆𝑊 𝑊𝑅𝐹  model at high resolution (5 𝑘𝑚 ) against observations and with another 𝑊𝑅𝐹 

configuration. After a bias removal process, a 𝑆𝑊 and cloud cover climatology was obtained 

for IP (1950−2010 period). Finally, the performance of IFS/ECMWF is evaluated to predict 

Direct Normal Irradiance (DNI) over Évora city at very short (1 hour) and short term (1 to 3 

days), for one year period. It is also described a new methodology to compute DNI attenuation 

using in situ observational data in order to estimate the transparency of the atmosphere in the 

absence of cloud cover datasets. To improve IFS/ECMWF outputs is also tested a bias 

correction methodology. 

 

 

Keywords: Iberian Peninsula; Solar Radiation; Reanalysis products; Dimming/brightening 

periods; WRF model 
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Resumo 

 

A Radiação Solar Global e Direta à Superfície na Península Ibérica: Variabilidade, 

Tendências e Previsão 

 

A radiação solar é um dos recursos energéticos renováveis mais valiosos. Na Península Ibérica 

(PI) estão em instalação muitos sistemas comerciais e de investigação para o aproveitamento 

da energia solar. Neste contexto, o conhecimento do fluxo de radiação solar que incide na 

superfície terrestre e da sua evolução torna-se de extrema importância. 

Pretende-se com este trabalho estudar a distribuição espacial, a variabilidade e as tendências da 

radiação solar de pequeno comprimento de onda (𝑆𝑊) à superfície, na PI e em Portugal, a 

partir de dados observacionais e das reanálises ERA−40/NCEP assim como, prever e 

caracterizar a radiação com base em modelos de previsão numérica do tempo. 

Na primeira parte deste estudo, efetua-se uma análise da variabilidade temporal e espacial da 

radiação 𝑆𝑊 recorrendo a estações terrestres, bem como a dados de reanálise ERA−40 e 

NCEP/NCAR. Para o efeito utilizam-se testes paramétricos e não paramétricos a fim de detetar 

tendências nas séries em estudo. A cobertura de nuvens obtida a partir das reanálises é também 

usada para avaliar as possíveis causas da variabilidade da radiação 𝑆𝑊 observada.  

Numa segunda etapa do estudo, obteve-se uma climatologia a 5 𝑘𝑚 de resolução da radiação 

solar à superfície com base em simulações com o modelo regional 𝑊𝑅𝐹 − 𝐴𝑅𝑊, para a PI, e 

para o período 1950−2010. Os resultados das simulações foram validados recorrendo a estações 

de observação e a uma outra simulação 𝑊𝑅𝐹, com outra configuração, previamente validada. 

Na construção da climatologia 𝑆𝑊 e de nuvens foi aplicado um método de pós-processamento 

para remoção do viés. Finalmente, avalia-se o desempenho do modelo IFS, do ECMWF na 

previsão da radiação DNI a curto e médio prazo, sobre a região. Propõe-se uma nova 

metodologia para estimar a transparência da atmosfera e testa-se uma metodologia de correção 

de viés. 

 

Palavras Chave: Península Ibérica; Radiação solar; Produtos de reanálise; Períodos Dimming 

e Brightening; modelo WRF  
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1. 

1.Introduction 

“The world is a dangerous place to live,  

not because of the people who are evil,  

but because of the people who don't do anything about it.” 

Albert Einstein 

1.1. Motivation 

 

The Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC, 

2014), gives us a dramatic picture of the planet Earth as a consequence of climate change, with 

several implications such as: at the level of wildlife – with the extinction of some species; at 

the level of agriculture – farmers without means of economic survival; with rising sea levels – 

coastal cities to be submerged, among others issues. 

The main contributor of climate change seems to be identified for a long time – human activity. 

According to the above-mentioned report, “Anthropogenic greenhouse gas emissions have 

increased since the pre-industrial era, driven largely by economic and population growth, and 

are now higher than ever. This has led to atmospheric concentrations of carbon dioxide, 

methane and nitrous oxide that are unprecedented in at least the last 800 000 years. Their 

effects, together with those of other anthropogenic drivers, have been detected throughout the 

climate system and are extremely likely to have been the dominant cause of the observed 

warming since the mid-20th century.” (IPCC, 2014) 

The theme of climate change has led organizations such as the United Nations or the European 

Union (EU) to pressure the global community through concerted and planned policy measures 

(eg, Kyoto protocol) as well as in energy and technology adaptations. In the AR5, we can read 
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the following: “Effective implementation depends on policies and cooperation at all scales and 

can be enhanced through integrated responses that link mitigation and adaptation with other 

societal objectives.” In this way, renewable energy sources are part of the solution for the near 

future, specially the solar energy whose demand is increasing and becoming a reliable and 

competitive source of energy and simultaneously contributing to the decarbonization.  

In 2019, from data obtained in the International Renewable Energy Agency (IRENA), China 

comes as the first country with the largest installed solar capacity (photovoltaic and thermal), 

with an annual production of ~205 𝑇𝑊ℎ , followed by the United States of America 

(~66 𝑇𝑊ℎ) and Japan (~62 𝑇𝑊ℎ). Concerning to European countries, Germany arises in 

fourth place with ~49 𝑇𝑊ℎ, as can be seen in Figure 1.1. 

 

 

Figure 1.1. Ranking of the ten countries with the largest installed solar capacity. 

Figure obtained from the website of International Renewable Energy Agency. 

 

According with the latest statistics report from Statistical office of the European Union 

(EUROSTAT), and relative to the countries of the EU, in 2016, the greenhouse gas emissions 

were reduced by more than 20%  compared with the beginning of the nineties of the last 

century. For instance, in Portugal, in 2018, electricity production from renewable sources was 

29 877 𝐺𝑊ℎ (corresponding to 52.6% of total electricity production), contributing to a saving 

of 189 million euros in 𝐶𝑂2 allowances. These values allowed a reduction of 12 megatonnes 

of 𝐶𝑂2 emissions (APREN, 2019).  
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Regarding data from IRENA, for Portugal, and for the last two decades, it’s evident the grow 

of solar energy (above 20%), making it at as a practical and sustainable alternative source in 

the production of electric energy (see Figure 1.2). In this way, it is imperative to analyze the 

economic and operational viability of future systems that use solar energy in a specific region. 

For example, for Portugal, and in what concerns to the impact of renewable energy study in 

gross domestic product, according with the study developed by Deloitte and Portuguese 

Renewable Energy Association (APREN), in 2030, it is expected that the contribution of 

electricity generation from renewable energies will be around 11 billion euros (APREN, 2019). 

On the other hand, there is an implicit need to quantify the solar potential and its evolution on 

a scale of several years or decades (in the past and future), as well as obtaining reliable forecast 

in a very short period, short (48 to 72 hours) and in the medium term (up to 10 days). 

a) 

 
b) 

 
 

 

Figure 1.2. Percentage of the installed capacity in Portugal for renewable energy sources between 2000 (Figure 

1.2a) and 2019 (Figure 1.2b). 

Figures obtained from the website of IRENA. 

Studies on the variability of solar radiation are limited due to low availability of global radiation 

data in certain regions of the globe such as Africa, South America and the Maritime Continent 
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(i.e., Southeast Asia countries), and particularly the entire ocean areas (Wild, 2016). On the 

other hand, the regions where solar radiation data exist, have other problems, such as the size 

of the series and the fact that many of them are incomplete, or even some of the measurements 

obtained may be dubious, due to the lack of calibration of the measuring instruments (see for 

instance, García et al., 2014). 

In recent decades, methods and models were developed in order to overcome some of these 

constraints, such as using climate data like sunshine duration (SD) or the diurnal temperature 

range (DTR) as proxies for solar radiation analyses (e.g., He et al., 2018; Rahimzadeh et al., 

2015, Sanchez-Lorenzo et al., 2007, among others); application of reanalysis products such as 

ERA−40 (European Center for Medium Time Weather Forecasting reanalysis data set for 

1957−2001 period), MERRA (Modern-Era Retrospective analysis for Research and 

Applications) or NCEP/NCAR (Centers for Environmental Prediction/National Center for 

Atmospheric Research) (Zhao et al., 2013; Wild and Schmucki, 2011; Träger-Chatterjee et al., 

2010); application of numerical weather prediction models (NWP) (Magarreiro et al., 2014; 

Jimenez et al., 2016;); analyses from images/data from satellite observations (e.g. Ayeta and 

Tandeo, 2018; Pfeifroth et al., 2018a); application of statistical/physical methods (Angstrom, 

1924; Chineke, 2008; Noorian, et al., 2008) or artificial neural networks (Dorvlo et al., 2002; 

Reikard, 2009; Mellit and Pavan, 2010; Qazi et al., 2015). 

IPCC in its 2014 report stated that Climate models have improved since the fourth Assessment 

Report (AR4) and summarizes some of the accomplishments made, such as changes in upper-

ocean heat content, continental-scale patterns of precipitation, global mean surface temperature, 

climate phenomena (such as monsoons or El Niño-Southern Oscillation, …). According with 

AR5 these improvements were achieved because recent models integrate better cloud and 

aerosol parametrizations, carbon cycle, among other schemes.  

As seen previously, the knowledge of incoming solar radiation is an important factor in our 

society in an economic, social (health, employability, ...) and meteorological perspective. On 

the other hand, the study of variations and trends in climatic series (radiation and clouds, among 

others climatic variables) allows us to study the trends in the past and helps us to predict the 

possible scenarios in the near future. In this context, the major reasons and motivation for this 

study are: 

(1) The lack of direct measurements, or very short time series of global solar radiation and 

clouds in Portugal; 
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(2) The absence of solar radiation studies to assess and quantify the errors associated to the 

European Center for Medium Time Weather Forecasting (ECMWF) and National Centers for 

Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) 

reanalysis in order to reproduce radiative fluxes and clouds in Portugal and Spain; 

(3) The number of studies with reference to solar radiation climatology with good resolution 

over Iberian Peninsula, and in particular, over the Portuguese territory, are limited; 

(4) Few studies to assess to the capacity of Advanced Research – Weather Research and 

Forecast (𝑊𝑅𝐹 − 𝐴𝑅𝑊) regional model to predict solar radiation in IP for a long period. Some 

studies using this model are restricted to some Spain areas; 

(5) The number of ongoing projects for the construction of Concentrated Solar Power Plants 

(CSP) over IP (and in the Évora region). 
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1.2. Objectives and structure of the thesis 

 

The present work aims to contribute to the evaluation of the solar resource in two specific 

domains: analysis of the trends of global solar radiation at the surface in particular for Portugal 

and in the Iberian Peninsula, in the context of ongoing climate change; and in the prediction of 

solar radiation (global and direct) on the Earth's surface based on the results of numerical 

weather forecasting models and models of radiative transference in the atmosphere. 

The specific objectives are: 

(1) To study global solar radiation at the Earth's surface in Portugal, using data from ground-

based stations, as well as the reanalysis products of ECMWF and NCEP/NCAR. The cloud 

cover obtained from the ECMWF is also considered in order to assess the possible causes of 

the changes observed (in the past) on solar radiation. 

(2) To characterize the solar resource in the IP using the Weather Research and Forecasting 

(𝑊𝑅𝐹) model to predict the downward global solar irradiance at the Earth's surface. 

(3) To evaluate the quality of the Integrated Forecasting System of the European Center for 

Medium-Range Weather Forecast (IFS/ECMWF) model to forecast the direct normal irradiance 

at the Earth's surface, in Évora, for different time horizons of weather forecasting. 

In order to achieve the specific objectives, the main body of this thesis comprises three 

publications, presented as individual chapters. 

In chapter two, from ERA−40 and NCEP/NCAR reanalysis, the evolution of the downward 

global solar irradiance at the Earth's surface and of the cloud cover in the atmosphere over 

Iberian Peninsula and specially Portugal for the past 50 years is investigated. A monthly and 

annual analysis of the solar radiation variability was carried out and the trends of the the global 

solar irradiance reaching the Earth's surface were studied from parametric and non-parametric 

methods. The reanalysis data were validated and compared with time series obtained for solar 

radiation at the surface, measured at observation stations on the Iberian Peninsula. A 

climatology of downward global solar irradiation at the Earth's surface and of the cloud cover 

is obtained using ERA−40 reanalysis. (article 1: Perdigão, J. C., Salgado, R., Costa, M. J., 

Dasari, H. P., Sanchez-Lorenzo, A., 2016. Variability and trends of downward surface global 

solar radiation over the Iberian Peninsula based on ERA−40 reanalysis. Int. J. Climatol., 36, 

3917–3933. doi:10.1002/joc.4603) 
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In chapter three, a set of numerical experiments was performed with the 𝑊𝑅𝐹 − 𝐴𝑅𝑊 

atmospheric model with a horizontal resolution of 5 𝑘𝑚 , covering 60  continuous years 

(1950−2010), using NCEP reanalysis as initial and boundary conditions. The model grid 

includes the Iberian Peninsula and adjacent areas to adequately represent coastal circulation and 

the influence associated with cloud development. The model was run in re-initialization time-

slices mode and a bias correction methodology was applied. The results obtained by the 

atmospheric model were analyzed and validated by comparison with observational data over 

65 ground-based stations covering the entire IP and with another 𝑊𝑅𝐹 − 𝐴𝑅𝑊 simulation, 

performed and validated by Soares et al., (2012). After validation it was possible to quantify 

the model's ability to correctly predict solar radiation over IP and, after bias removal, create a 

climatology of downward global solar irradiation at the Earth's surface and of the cloud cover 

that could serve as a basis for future projects in the area of power plants. (article 2: Perdigão, 

Joao, Salgado, Rui, Magarreiro, C., Soares, Pedro M.M., Costa, M.J., Dasari, H.P., 2017. An 

Iberian climatology of solar radiation obtained from WRF regional climate simulations for 

1950–2010 period, Atmospheric Research 198, 198, 151–

162.DOI10.1016/j.atmosres.2017.08.016) 

In chapter four, the IFS/ECMWF predictions of direct solar radiation were analyzed. The errors 

associated with the forecast of this radiative variable were quantified at very short (1 hour) and 

short term (1 to 3 days), for one year period of data using observations taken at the ground 

based station of Évora. The quality of the forecast and error quantification were obtained by 

using a set of statistical parameters. A bias correction (BC) approach is included and it is also 

developed and tested a method for estimating sky conditions. (article 3: Perdigão, J.; Canhoto, 

P.; Salgado, R.; Costa, M.J., 2020. Assessment of Direct Normal Irradiance Forecasts Based 

on IFS/ECMWF Data and Observations in the South of Portugal. Forecasting, 2, 130-150. 

https://doi.org/10.3390/forecast2020007). 

In the next sections is described briefly the state of the art on solar radiation variability and 

forecasting, particularly over IP.  
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1.3. Solar Radiation in Atmosphere: a synthesis 

 

The Sun is the star that sustains the planet's physical, chemical, and biological phenomena and 

is the main source of energy on planet Earth. It is a gaseous sphere of radius ~ 109 times greater 

than the Earth and has a mass of ~333000 times greater. From an astronomical point of view, 

it is a star of the main sequence, with a spectral class of 𝐺2𝑉  type and with a chemical 

composition of 𝑋 = 0.7381 , 𝑌 = 0.2485  and 𝑍 = 0.0134  (Asplund et al., 2009), whose 

energy production occurs via proton-proton reaction (see for instance, Carrol and Ostlie, 1996). 

Our Sun is made by several layers: the Core, the radiative and convective layer, the photosphere, 

the chromosphere, the transition region and the Corona (Zeilik and Gregory, 1998). The surface 

of the Sun is called the photosphere, has a thickness around 330 𝑘𝑚 and a temperature around 

the 5800 𝐾 (Carrol and Ostlie, 1996). The total energy emitted by the surface layer of the Sun 

is approximately equivalent to a blackbody emitter at ~5800 𝐾 whose theoretical spectrum is 

given in Figure 1.3a. 

 
a)  b)  

 

 

Figure 1.3. Spectral irradiance: (a) blackbody curve of an emitter at 5800𝐾 assuming an atmosphere without 

aerosols or clouds and (b) from the Sun at top of atmosphere and surface for a zenithal angle of 60º. 

Blackbody spectrum elaborated from online data obtained at SpectraPlot (http://www.spectraplot.com/blackbody). Image (b) taken from Liou (2002). 

 

Figure 1.3b) depicts irradiance spectrum of the Sun for an atmosphere without aerosols or 

clouds. The differences between irradiances at the top of the atmosphere and the surface are 
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evident and shows at surface the absorption by atmosphere constituents (specially ozone and 

water vapor).  

One of the interesting features of photosphere layer is the appearance of sunspots (cooler 

regions) in a cycle of approximately eleven years (see Figure 1.4).  

 

 

Figure 1.4. Annual mean sunspot number since the beginning of XVII century until present day. 

Image was obtained from website of National Oceanic and Atmospheric Administration (NOAA). (https://www.ngdc.noaa.gov/stp/solar/ssn.html). 

 

Some studies try to associate this sunspots phenomenon with climatic variations on the planet. 

There are records which seem to support that the absence of this phenomenon in the late 

sixteenth century was associated with a period which is designated by the small ice age and 

known as the Maunder minimum (Eddy, 1976; Wilson, 1994). It’s important to notice that these 

sunspots are observable since Galileo’s era. 

Electromagnetic radiation interacts with the atmosphere medium through different processes 

that depend on its wavelength, the chemical composition and the size of the particles that 

compose the medium. 

Clouds and water vapor are the main responsible for changes in solar radiation at surface (Liou, 

2002). On the other hand, aerosols (anthropogenic or natural origin) can affect radiation in a 

direct or indirect way. In the first case, the aerosols scatter and absorb shortwave radiation and 
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emit longwave radiation (𝐿𝑊), while in the second case, aerosols also have the ability to interact 

with the clouds by modifying their structure, properties and longevity (Albrecht, B., 1989; 

Hansen et al., 1997; Lohmann and Feitcher, 2005; Streets et al., 2006; among others), known 

as indirect aerosols effects. The scheme that illustrate the indirect aerosols effects can be seen 

in Figure 1.5. 

 

 

Figure 1.5. Aerosols impact in cloud properties. CDNC and LWC means cloud droplet number concentration and 

liquid water content, respectively. 

Image taken from Haywood and Boucher (2000). 

 

In Earth Sciences and in the theory of radiative transfer it is usual to divide the electromagnetic 

spectrum into two parts: short (𝑆𝑊) and 𝐿𝑊 radiation. Radiation whose wavelength is in the 

range of 0.1 to 4 𝜇𝑚 is called 𝑆𝑊 and is associated with the energy that comes from the Sun 

(known as Global Radiation). Radiation whose wavelength range is between 4 to 100 𝜇𝑚 is 

called 𝐿𝑊 and is associated with the energy that is emitted by the surface of the planet and its 

atmosphere constituents. 

Global solar radiation is the algebraic sum of direct and diffuse solar radiation. Direct solar 

radiation (DNI) is defined as the downward solar radiation coming from the Sun that reaches 

the earth’s surface directly. Diffuse solar radiation (DIF) is the component of downward 

radiation scattered by constituents (gases, aerosols and clouds) in the Earth’s atmosphere. These 

components are depicted in Figure 1.6. 
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Figure 1.6. Components of solar radiation between the top of atmosphere (TOA) and the ground for a horizontal 

and tilted plane: Direct Horizontal Solar Irradiance (DHI), Direct Normal Solar Irradiance (DNI), Global 

Horizontal Solar Irradiance (GHI). 

Scheme elaborated from Chan, 2013. The drawing is not to scale. 

 

Measurements of Global Horizontal Irradiance (GHI), also known as surface downward solar 

radiance (𝑆𝑊), the DNI and DIF are made with a pyranometer mounted horizontally, by a 

pyrheliometer mounted in an automatic solar tracker and by a pyranometer shaded from the 

direct sunlight, respectively. The relation between these quantities is given by 

𝐺𝐻𝐼 = 𝐷𝑁𝐼 × 𝑐𝑜𝑠(𝜃) + 𝐷𝐼𝐹𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 (1.1) 

where 𝜃 refers to the solar zenith angle (Liou, 2002). 

One of the first models used for estimating global radiation was proposed by Angstrom (1924) 

and was a linear relation between sunshine hours (theoretical and real) in the form, 

𝐻

𝐻𝑐
= 𝛼 + (1 − 𝛼)

𝑛

𝑁
 (1.2) 

where α is an empirical constant with a value of 0.2 related to the mean proportion of radiation 

received on a totally overcast day, and 𝑛 and 𝑁 are actual and maximum theoretical sunshine 

durations, respectively. Both quantities 𝐻 and 𝐻𝑐 in Eq. 1.2 should be specified as well as their 

relation with the previous quantity GHI. Originally 𝐻𝑐 was the maximum downward solar 

irradiance at the surface on a clear day, which was later substitute by 𝐻0 in the Angstrom-

Prescott Equation 1.3 being 𝐻0 the maximum extraterrestrial irradiance. Although, we do not 
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intend to discuss this equation since this diverges from the essential focus of this thesis, one of 

the problems of its application was the necessity of knowing the solar radiation under clear sky 

days (𝐻0). 

The equation (1.2) was slightly modified by Prescott (1940) and, nowadays, is known as 

Ångström-Prescott equation, 

𝐻

𝐻0
= 𝑎 + 𝑏

𝑛

𝑁
 (1.3) 

In equation (1.3) 𝑎 and 𝑏 are constants to be determined (experimentally) and are specific for 

each region. 

Several types of regression models (and empirical coefficients) have been evaluated and 

proposed in literature using equation (1.3) (see Prescott, 1940; Hinrichsen, 1994; among 

others). For instance, Stanhill et al. (2014) using Angstrom-Prescott equation found absence of 

significant changes in values of 𝑎 and 𝑏, caused by aerosols, and concluded that cloud cover 

played the major role in dimming and brightening phenomena as discussed in the next section. 

Accurate forecast of solar components at a given location is of great importance for many solar 

radiation projects. This way, a solar quantification is necessary for CSP or photovoltaic (PV) 

power plants that require the knowledge of direct normal solar irradiance and of the global solar 

irradiance at the Earth surface, respectively. 

The production of electricity from CSP systems is obtained from the conversion of DNI into 

heat by concentrating solar radiation through parabolic mirrors (see Figure 1.7), while PV 

systems convert solar energy in (direct current) electricity using specific materials 

(semiconductor), by photovoltaic effect. These systems require the knowledge of global 

radiation. In what concerns to CSP systems there are different power plant operational schemes 

to obtain heat from DNI radiation. Figure 1.7 shows a diagram of different types of CSP 

systems.  
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Figure 1.7. Different types of CSP technologies. 

Scheme obtained from Islam et al. (2018). 

 

A comprehensive review of state-of-the-art concentrated solar power can be seen in Islam et al. 

(2018), among others. In the literature there are several articles focus on the assessment and 

review of predictions in solar components, such as Bijarniya et al. (2016), who presented a 

review of concentrate solar power technology; Qazi et al., (2015), who compare artificial neural 

networks with other empirical models, or Inman et al. (2013) which also analyzed extensively 

solar forecasting methods and applications. This study of Yang et al. (2018) showed a history 

and trends in solar irradiance and PV power forecasting by establishing the technological 

infrastructure and identifying the key innovations in recent advances in solar forecasting. 

Several authors already mentioned the importance of knowing DNI component of solar 

radiation with at least one day-ahead of forecasting for purpose of maximizing profit (Lopes et 

al., 2018; Nonnenmacher et al., 2016; Law et al., 2014, among others). Vick et al. (2012) 

mentions in their article that: “To estimate how well CSP plants can meet utility electrical 

loading, the monthly insolation and diurnal accuracy of the DNI models should also be 

evaluated to determine what sky conditions, times of the year, and locations that the DNI models 

still need improvement”. According with Kraas et al., (2013), for CSP stations in Spain, “…a 

38h forecast is required to calculate the electricity production for sale on the market by means 

of a power plant model”. Nowadays, there are several methods to obtain the different 
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components of solar radiation. For example, a recent study made by Ayeta and Tandeo (2018), 

showed a computationally and efficient method to predict GHI. After a simple pos-processing 

BC, the authors reached a conclusion that the methodology is adequate for operational 

applications in different geographical regions. This study of Lee et al. (2017) also compared 

and evaluated models (ten) in order to convert GHI in DNI, for Korea, in 2007−2009 period, 

and reported one of the models (Reindl-2 model) as the most suitable. Nevertheless, in the same 

work, the authors proposed a new method and found that errors (𝐵𝑖𝑎𝑠 and root mean square 

error – 𝑅𝑀𝑆𝐸) were significantly lower (in order of 10%) than found with the other models. 

The incoming solar radiation that is absorbed by the atmosphere and by the surface of the Earth 

(i.e that is absorbed by the system Globe+atmosphere) has to be balanced by the outgoing 

longwave radiation emitted by the system Globe+ atmosphere at the Top of the atmosphere 

(TOA), due to the principle of conservation of energy. This balance between the incoming 

() energy from the sun and the outgoing () energy from the Earth is known as energy budget. 

The net Radiation Budget at the Earth's Surface (𝐸𝑛𝑒𝑡) is given by 

𝐸𝑛𝑒𝑡 = (𝑆𝑊↓ − 𝑆𝑊↑) + (𝐿𝑊↓ − 𝐿𝑊↑) (1.4) 

Over the last few decades a number of studies have been carried out and various schemes have 

been developed and published in an attempt to establish this energy budget for the Earth (see 

for instance Wallace and P. Hobbs, 1977, Ramanathan, 1987, Kiehl and Trenberth, 1997 or 

Stephens et al., 2012; among others). 

A comparison of recent values referent to global annual mean energy balances estimations have 

been made by Wild (2017), who reported: “Increasing consensus thus emerges on a global 

mean surface downward shortwave radiation near 185 𝑊𝑚−2 , as well as a global mean 

surface downward and upward longwave radiation slightly above 340 𝑊𝑚−2  and below 

400 𝑊𝑚−2, respectively.” 

Figure 1.8 shows a scheme of the annual mean of Earth’s global energy budget and was obtained 

by Wild et al., 2015. A schematic detailed overview of recent determination of global annual 

energy budgets obtained for different authors can be found in Figure 4 of Wild (2017). 
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Figure 1.8. Scheme of global annual mean energy budget taken from from Wild et al. (2015). 

All values are in 𝑊𝑚−2, and uncertainty values are in parentheses. Shortwave fluxes are presented at yellow color 

and longwave fluxes at orange color.  

 

According with a recent energy budget estimate by Wild et al. (2015), from the incoming solar 

radiation at the top of atmosphere (340 𝑊𝑚−2), 75 𝑊𝑚−2 is reflected by clouds and aerosols 

back to space (see Figure 1.8), 80 𝑊𝑚−2 is absorbed by clouds and aerosols.  

Without this induced 𝐿𝑊, surface average temperature on Earth would be approximately 

255 𝐾 (18 ℃)  (Coakley and Yang, 2014). Therefore, 185 𝑊𝑚−2  of shortwave incoming 

radiation reach the Earth surface, although with an amount of 25 𝑊𝑚−2, that is reflected by 

the surface, back to space, and 160 𝑊𝑚−2 that is absorbed by surface. In order to maintain the 

balance of energy in the atmosphere + globe system, the outgoing longwave radiation at the top 

of atmosphere, ~240 𝑊𝑚−2, must be equal to the difference between the incoming radiation 

at top of atmosphere minus the amount reflected by atmosphere and surface (100 𝑊𝑚−2), 

i.e.,the total shortwave radiation absorbed by the atmosphere ( 80 𝑊𝑚−2 ) and surface 

(160 𝑊𝑚−2), = 240 𝑊𝑚−2. With regard to detailed knowledge of the Earth’s global energy 

budget, in Table 1, of Wild (2017), is presented a review of the main radiative components of 

the annual global mean energy budget obtained in the last two decades from different sources 

(models, observations, …), and is presented the state of the art relative to this subject as well as 
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points out some challenges (still) to overcome, such as the partitioning of surface net radiation 

into nonradiative fluxes of sensible and latent heat, uncertainties of surface albedos, among 

others.  

In the next sections the state of art in what concerns to global solar radiation forecast is 

presented (main focus of this work). 

It is important to notice that, in the present thesis, particularly in the chapters two and three, the 

terms solar radiation at surface, global radiation, solar radiation or another term related with 

radiation means Downward Global Solar Irradiance at the Earth's Surface and will be 

represented by 𝑆𝑊.  
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1.4. Dimming and Brightening periods 

 

The translation movement of Earth around Sun produces daily variations (sun altitude, length 

of day and angle of incidence of the sun's rays at the earth’s surface) in solar energy received 

by the Earth. These variations are also dependent from the latitude where the measurements are 

made. 

Solar radiation has a variability on an astronomical scale (thousands of years) as a consequence 

of variation of the eccentricity of the Earth's orbit, the precession and the obliquity of the Earth's 

axis, and these factors conjugated leads, periodically, to extreme climate events on Earth – 

Milankovitch theory (see for instance, Imbri and Imbrie, 1980; Berger and Loutre, 1991).  

However, on a much shorter time scale, several studies around the world showed that the Earth 

has experienced two opposite periods known as “global dimming”, a decrease in downward 

solar radiation at the Earth’s surface from 1960 to 1990” (Ohmura and Lang, 1989; Stanhill and 

Moreshet, 1992; Gilgen et al., 1998; Stanhill and Cohen, 2001, Liepert, 2002), and a “global 

brightening”, an increase in global irradiance since 1990 (Wild et al., 2005, Wild et al., 2009; 

Wild, 2009; Wang and Wild, 2016). These phenomena were discovered at the beginning in 

some regions over Europe and later on over other parts of the world (Gilgen et al., 1998). 

Relatively to the magnitude of dimming and brightening periods, observations indicate a 

decrease in surface solar radiation with absolute trend of ~ − 2 to −9 𝑊𝑚−2𝑑𝑒𝑐𝑎𝑑𝑒−1 for 

dimming (Gilgen et al., 1998, Stanhill and Cohen, 2001; among others), followed by an increase 

between +1 to +9 𝑊𝑚−2𝑑𝑒𝑐𝑎𝑑𝑒−1 after the nineties (Wild, 2016; Wild, 2009; Wild et al., 

2005, among others). 

According to Wild (2009, 2012), although this phenomenon has been identified in many regions 

of the world (see Table 1 of the review paper of Wild, 2009), the term global was used 

inadequately since it was referring to global solar radiation and not to planetary (global) scale. 

Currently, the term "global" has been replaced by "period". 

The principal candidates to explain dimming and brightening periods are variations in 

atmospheric transparency, changes in aerosol concentration (natural/anthropogenic), 

urbanization factors (anthropogenic air pollution) or variability of cloud cover. (Ohmura and 

Lang, 1989; Liepert and Tegen, 2002; Alpert et al., 2005; Stanhil and Cohen, 2008; Norris and 
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Wild, 2007; Liley, 2009; Sanchez-Lorenzo et al., 2009; Wild, 2009; Wang et al., 2015; among 

others). 

During the last decades, many authors have studied these phenomena over different regions of 

the world and some explanations were presented. Ohmura and Lang (1989) proposed cloud 

changes as the main factor for explaining global dimming. Liepert (2002) proposed changes in 

cloud amount and optical properties as explanation. Wild et al. (2005) stated that changes in 

aerosols were the main factor to explain the brightening period. Alpert et al. (2005) and Alpert 

and Kishcha (2008) argued that solar dimming was reflex of an urbanization effect (local effect 

instead a worldwide effect). Norris and Wild (2007), from clear sky data, found that the cloud 

cover effects are insignificant for the dimming over Europe. Ruckstuhl et al. (2008) found over 

Germany and Switzerland (after 1980) a solar brightening and showed that the direct aerosol 

effect had approximately five times more impact on climate forcing than the indirect aerosol 

and other cloud effects. Ohmura (2009) showed that the direct and indirect effects of aerosols 

are responsible for the variability of solar radiation at surface. After, Norris and Wild (2009) 

reported that direct aerosol effects or changes in cloud optical properties were the major causes 

of dimming. Zhou (2011) showed that the interdecadal variability of seasonal mean surface 

solar radiation over Northwest China may be associated with an increased low cloud cover. 

Wild (2012) argued that the reversal from dimming to brightening was caused by an increase 

in the transparency of the atmosphere due to a reduction in cloud cover and anthropogenic 

aerosol concentrations. 

Variations of sunshine duration and DTR was studied by Rahimzadeh et al. (2015) over Iran, 

between 1961 and 2009, and they found a nonsignificant trend from the mean annual sunshine 

series over the entire period. Nevertheless, a slight decrease in sunshine duration was observed 

after 2000 with a strong decline in 2009. Annual DTR showed a significant drop until the 

beginning of the 1990s and after, no relevant variations were found. They showed that these 

results where a consequence of changes in aerosols concentrations. Wang et al. (2015) argued 

that dimming cannot be considered as an urban effect. Based on sunshine duration over China, 

Wang et al. (2017) found a regional phenomenon over the dimming period (decline in SD) 

dependent of changes in urbanization. Nevertheless, their analysis showed that rather than local 

effects, the decadal variations in SD, in China, over the period 1960−2013, were observed at 

large scale instead as a local effect. Cusworth et al. (2017), investigate the relation between 

aerosols, clear sky and downward surface solar radiation over the central and southeastern 

United States (US), for the 2000−2014 period, and found, from in situ 𝑆𝑊 measurements and 
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using the column version of the rapid radiative transfer model for general circulation 

(RRTMG−SW) driven by aerosol optical depth (AOD), an increase of solar radiation 

~1 𝑊𝑚−2𝑦𝑒𝑎𝑟−1. The authors concluded that the behavior observed was a consequence of the 

reductions in aerosols concentrations in the atmosphere. Jahani et al. (2017), studied global 

solar radiation and its relationship with cloud cover for 1998−2015 over Iran and found a 

dimming in the referred period. The authors reached the conclusion that dimming shows a 

strong dependence of an increasing amount of aerosols over the region but, they don’t rule out 

the relationship between both clouds and aerosols. Mao et al. (2017) analyzed several variables 

related with radiation (e.g., water vapor, among others) from satellite during monsoon season, 

over India (2006−2015 period), and found that the increase in AOD was inconsistent with solar 

radiation. However, they established that the decreases in water vapor amount and clouds could 

significantly contribute to solar brightening and to the surface warming. 

Pfeifroth et al. (2018b), compared and evaluated surface data in Europe, for the period 

1983−2015, with records of two satellites from the CM-SAF (Climate Monitoring Satellite 

Application Facility), in order to assess their accuracy and ability to capture temporal and 

spatial variability of Surface Solar Radiation in Europe. The authors reported an overall 

brightening period after the 1980s (with values between 1.9 and 2.4 𝑊𝑚−2𝑑𝑒𝑐𝑎𝑑𝑒−1). The 

results also showed that, the strongest Brightening was found in eastern Europe (specially over 

Spring season). Concerning to north and southern Europe, the trends were not completely 

reproduced by satellites, in particularly over southern area. The authors reached the conclusion 

and reported that “the observed trends in surface solar radiation in Europe is caused by changes 

in clouds and that remaining differences between the satellite- and the station-based data might 

be connected to changes in the direct aerosol effect and in snow cover”. 

According with Wild (2016), the brightening phenomena has been somewhat less coherent than 

the preceding dimming, with trend reversals at widespread locations. On the other hand, and in 

this century, there are locations (like China or India) where dimming or brightening periods are 

still visible. For example, Padma et al. (2007) estimate, using ground-based stations, over India, 

and for the period of 1981 to 2004, a pronounced dimming with a strongest negative trend of 

~0.9 𝑊𝑚−2𝑦𝑒𝑎𝑟−1. Zhou et al. (2019) related that the main influencing factor of decadal 

variability of surface solar radiation across China between 1984 and 2015 are aerosol optical 

depth and aerosol-cloud interaction rather than clouds. On the other hand, Yang et al. (2019), 

related that clouds had played two opposite roles in the surface solar radiation changes over 

China in 1958−2016 period. They showed that clouds played two opposite roles in the last 30 
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years since compensate the decline in solar radiation under clear sky conditions for 1985−99 

period and counteracting the increasing in solar radiation under cloud free conditions in 

2008−2016 period. However, they reported that aerosols loading had been increasing before 

2000 and started to decline around 2008 and are the main possible cause of dimming and 

brightening periods. 

Recent studies reveal that in the beginning of the twentieth century there was also an early 

brightening. Manara et al., 2015 (over Italy) and García et al. (2014), (over Canary Islands-

Spain), have found for the period between ~1930 and 1950, an increase in sunshine duration. 

As seen before, there are a number of studies on the subject, and for several regions around the 

world, although the majority of researcher (as seen previously) claims that aerosols are the main 

responsible by dimming and brightening periods (Stanhill and Moreshet, 1992; Wild et al., 

2005; Norris and Wild, 2007; Ruckstuhl et al., 2008; Augustine and Dutton, 2013; Persad et 

al., 2014; Nabat et al., 2014; among others). According with Wild (2016), “the majority of the 

studies since AR5 thus appear to support the general picture that since the mid-20th century 

aerosol effects dominate on the longer (multidecadal) timescales, whereas cloud effects become 

more relevant on shorter decadal/subdecadal timescale.” 

Schwarz et al. (2020), address that: “changes in clouds and aerosol are the prime potential 

causes for the phenomenon, but the scientific community has not yet reached a consensus about 

the relative role of the different potential forcing agents”. 

The causes of these solar radiation variations are not entirely understood and the transition to 

brightening also need explanation as seen in previous examples. 
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1.5. Forecasting model, ERA−40 and NCEP/NCAR reanalysis 

 

The first attempts to predict the weather appeared with the Babylonians and later with the Greek 

philosophers such as Theophrastus (371−287 b.C.) or Aristotle (384−322 b.C.). Some centuries 

later, in the early part of twentieth century, Lewis Richardson (1881−1953), made important 

contributions to weather forecasting but, without computers, the time necessary to produce a 

forecast wasn’t practical. It was necessary more than four decades after Richardson, at the 

beginning of the fifties, for a group of scientists using the Electronic Numerical Integrator and 

Computer (ENIAC) to forecast the geopotential height of the atmosphere one day ahead. 

Nowadays, there are several methods and models for forecast climate variables and, in 

particular, to forecast solar radiation parameters. 

Concerning reanalysis, Betts et al. (2006) stated that: “… is a way to produce a dynamically 

consistent global analysis of the state of the atmosphere over an extended period of time (many 

years or decades) with no gaps in space or time”. 

In this section, a special emphasis will be given to 𝑊𝑅𝐹 − 𝐴𝑅𝑊  model, ERA−40 and 

NCEP/NCAR reanalysis. 

 

1.5.1. ERA−40 and NCEP/NCAR reanalysis 

 

Atmospheric reanalysis products are used for assessing different meteorological parameters 

when datasets are not available for a region. Reanalysis, such as ERA−40, The Japanese 55-

year Reanalysis (JRA55), NCEP/NCAR, ERA−Interim, among others has been widely used in 

the assessment of several climatic variables by numerous researchers. These products are the 

result of the assimilation of observational data (obtained by several ways), and using a global 

numerical weather prediction model, in order to reproduce the state of the atmosphere at any 

given time, and thus providing us a large number of climatic variables. The reanalysis has the 

advantage that they are characterized by long time series, at different temporal scales (hourly, 

daily, …) and at different resolutions, with global spatial coverage. This is one reason why they 

are also used by the NWP models as initial conditions. ERA−40 is a reanalysis of the ECMWF 

containing data for 45 years 1957−2001 period (Uppala et al., 2005), while NCEP/NCAR is the 
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reanalysis project for the period of 1948 to the present day (Kalnay et al., 1996). It’s important 

to notice that ERA−40 solar radiation parameters (doesn’t provide direct solar irradiance) are 

generated by the assimilation of observational data (see Figure 1 of Uppala et al., 2005) and the 

ECMWF numerical weather prediction model. Lately, the European Centre for Medium−Range 

Weather Forecast (IFS/ECMWF) also provides forecasts of the direct solar radiation. 

ERA−40 and NCEP/NCAR products have been widely used in atmospheric studies and are also 

used to run RCM. Relative to solar radiation variability, the reanalysis was also used by some 

researchers, since these products provided variables such as downward global solar irradiance 

(NCEP/NCAR), clear sky downward global solar irradiance (NCEP/NCAR), net shortwave 

radiation (NCEP/NCAR), downward global solar irradiance at the surface (ECMWF), surface 

net solar radiation clear sky (ECMWF), top solar radiation (ECMWF), among others radiative 

variables.  

There are several studies that use reanalysis to assess climate conditions over specific regions. 

For example, Betts et al. (2006) evaluated temperature, relative humidity, precipitation, 

sensible and latent heat flux as well as downward shortwave and longwave radiation using 

ERA−40 and NCEP/Department of Energy (DOE) Atmospheric Model Intercomparison 

Project reanalysis, and found that both variables obtained with reanalysis were well captured 

when compared with the second International Land-Surface Climatology Project (ISLSCP-II) 

dataset from ECMWF. They also found that incoming solar radiation estimated by ERA−40 

presented the lowest bias. Bromwich et al. (2007) assessed the performance of ERA−40 (and 

other reanalysis products) over polar regions and found that clouds (in ERA−40) were too 

optically thin. Thus, the real impact of clouds on the radiation would compromise the results. 

However, these authors refer to reanalysis products as “powerful tools” in climate studies. Wild 

et al. (1998) had already referred to the fact that the performance of the ERA−40 was more 

accurate in clear sky conditions. Träger─ Chatterjee et al. (2010) evaluated the downward solar 

radiation at surface of the ERA−40 and ERA−Interim reanalysis over Germany and adjacent 

regions and concluded that both products have limitations. For example, and with respect to 

ERA−40, in regions with low/higher cloud indices ERA−40 underestimate/overestimate 

downward solar radiation at surface. They attribute these results to limitations in the 

representation of clouds by ERA−40. You et al. (2010) assessed the variability of downward 

solar radiation at surface over Tibetan Plateau, for 1961−2005 period, in a monthly basis, using 

ERA−40 reanalysis data and sunshine duration. In this study, it was found a 
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brightening/dimming before/after the eighties, in opposition to major results previously seen in 

section 1.4. This was explained as changes in transmittivity of atmosphere due to a decrease 

(brightening period)/increase (dimming period) of anthropogenic aerosols concentration. 

However, Wild and Schmucki (2011) verified that ERA−40 fails to reproduce the major decadal 

changes in solar surface radiation, specially over regions heavily polluted since a monthly mean 

distribution of aerosols are presented and not actual values. Nevertheless, their analysis showed 

that ERA−40 reveals dimming and brightening periods although induced by changes in cloud 

cover and with an extent smaller than in observations. In the same study, Wild and Schmucki 

(2011), carried out an analysis using 23 climatic models, over five climatic regions (Europe, 

Japan, Southeast China, Northwest China and India), where dimming and brightening were 

observed in situ, and they found strong variations in surface solar radiation. On the other hand, 

they discovered that only half of the models used in the study could qualitatively describe the 

observational solar variations. 

Relatively to NCEP/NCAR reanalysis, Xia et al. (2006) assessed solar radiation at surface in 

China using two satellite-based surface insolation data sets and relative to the results obtained, 

the authors found an overestimation that exceeded surface observations between 40 𝑊𝑚−2 to 

more than 100 𝑊𝑚−2 . This overestimation was explained by inaccurate representation of 

clouds and aerosols in the reanalysis model. A similar overestimation was found by You et al. 

(2013) over the Tibetan Plateau with a bias of +31.3% relative to the annual observations. The 

authors also found that the all-sky and clear-sky SSR trends derived from both NCEP/NCAR 

and ERA−40 does not capture the decadal variations seen in surface observations. The previous 

bias was assigned to inaccuracies related to clouds and aerosols assimilation. Tahir et al. (2020), 

stated that the surface solar irradiance obtained from NCEP/NCAR for two observational 

stations in Sind province (Pakistan) were overestimated as a consequence of deficiencies in the 

radiative transfer model (inappropriate cloud fraction and aerosols). Zhang et al. (2016), assess 

six current representative global reanalysis (included NCEP/NCAR) using surface 

measurements from different observation networks worldwide (647 sites) and found an 

overestimation, caused by a bias in cloud fraction, between 11.25 𝑊𝑚−2 and ~49.80 𝑊𝑚−2. 

On the other hand, Silva et al. (2010), using NCEP/NCAR reanalysis data and sunshine duration 

measurements over northeastern Brazil, for 1958−2009 period, found a reasonable correlation 

between datasets as well as evidence of global dimming. Pinto et al. (2010), also found a good 

spatial representation of the solar radiation at surface in several regions over South America 

from reanalysis products (ERA−40 and NCEP/NCAR).  
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1.5.2. Weather Research and Forecasting model (WRF−ARW) 

 

In the last decades, RCM have played a key role in research of different variables (such as 

temperature, precipitation, wind, ...), or energy budgets (Folini and Wild, 2011; Wild and 

Schmucki, 2011). 

The Weather Research and Forecasting model is one of these regional climate models and is a 

powerful and versatile tool in climate simulations, since it presents a great flexibility in 

parameterizations, including microphysics, cumulus schemes, surface layer physics, planetary 

boundary layer (PBL) and atmospheric radiation physics.  

𝑊𝑅𝐹  is the world’s most used atmospheric model with more than 36 000 registrations 

distributed across 162 countries and with over 26 500 citations in peer-reviewed journals, with 

an average of over 10 citations per publication, and an average of 510 publications per year for 

the 2011−2015 period (Powers et al., 2017). For instance, and relative only to Iberian Peninsula 

(or part of it), the 𝑊𝑅𝐹 was widely used to perform downscaling in different atmospheric areas, 

such as:  

(i) to evaluate the capacity of WRF to simulate Spanish precipitation and to determine its 

adequacy for future climate simulations (Argüeso et al., 2012); (ii) to reproduce the surface 

wind direction over complex terrain located in the north-eastern of IP (Jimenez and Dudhia, 

2013); (iii) to evaluate four PBL schemes and the impacts of air quality outputs over Catalonia 

(Banks and Baldasano, 2016); (iv) the behaviour of the sea breeze along the north coast of 

Spain (Arrillaga et al., 2016); (v) to evaluate trends of extreme temperature indices over 

Iberian Peninsula (Fonseca et al., 2016); (vi) to describe the wind resource for the present and 

future using the RCP4.5 and RCP8.5 emission scenarios (Soares et al., 2017); (vii) to assess 

the future changes in precipitation over the Iberian Peninsula (Cardoso et al., 2019); (viii) to 

forecast different surface and near-surface variables (temperature, downward longwave 

radiation over a region in Eastern Spain (Caselles et al., 2018);(ix) to estimated the 

spatiotemporal distribution of moisture recycling (González-Rojí et al., 2020); among other 

considerable references in literature over the last decade. 

In the next paragraphs a short-detailed description is made of 𝑊𝑅𝐹 model based on the NCAR 

technical note (Skamarock et al., 2008) and in the description of the NCAR Community 

Atmosphere Model (Collins et al., 2004). 
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The 𝑊𝑅𝐹 model contains two dynamic cores: The Non-hydrostatic Mesoscale Model (NMM) 

developed at the National Centers for Environmental Prediction by Janjic (2003), and the 

Advanced Research WRF (𝐴𝑅𝑊) core, developed at the National Center for Atmospheric 

Research by Skamarock et al. (2005). 

The 𝑊𝑅𝐹 version used in this thesis was the 3.3.1, with the dynamical core 𝐴𝑅𝑊. The main 

components of 𝑊𝑅𝐹 are presented in Figure 1.9. The equations that govern the core of 𝑊𝑅𝐹 −

𝐴𝑅𝑊 model are based on the Eulerian solutions for compressible and non-hydrostatic equations 

and use a vertical coordinate system (Skamarock et al., 2008). Figure 1.9. shows schematically 

the system components in 𝑊𝑅𝐹 model. 

 

 

Figure 1.9. Scheme of the system components in the 𝑊𝑅𝐹 model. 

Image taken from pg. 2 of Skamarock et al. (2005). 

 

The core consists on a set of modified differential equations, with terms that consider air 

humidity, Coriolis force and cartographic projection, in order to simulate the atmosphere. In 

terms of temporal discretization, 𝑊𝑅𝐹 uses a time−split scheme known as Runge-Kutta of 3rd 

order, which integrates a set of ordinary differential equations with a formulation of the type 

predictor-corrector. Relative to spatial discretization, 𝑊𝑅𝐹 model uses the Arakawa C-type 

grid. These specifications are described in Skamarock et al. (2008). 

A short description of the parametrizations used in this work is made in the next paragraphs. 

The microphysical scheme has the role of solving, for each grid point, the processes associated 

with water vapor, clouds (with or without ice) and precipitation. In this work the microphysics 

scheme used was the WSM-3 Class Simple Ice Scheme (Hong et al., 2004). This scheme is a 



 

26 

routine where water coexists in three categories: water vapor, water/ice clouds and rain/snow, 

and where is assumed that, above the freezing point, the clouds exist in the form of water and 

rain and below freezing point in the form of ice and snow (Skamarock et al., 2008). 

In what concerns to cumulus parameterization, the routine of the cloud processes, our choice 

was the computationally efficient Grell-Devenyi ensemble scheme (Grell, G.A. and D. Devenyi, 

2002), in which multiple cumulus schemes and variants are run within each grid box and then 

the results are averaged to give the feedback to the model. The cumulus parameterization 

provides the vertical profile of heating, humidity and precipitation associated to convection. 

This scheme determines updraft (and downdraft), mass flux and other fluxes (Skamarock et al., 

2008). 

The surface layer parameterization plays a vital role in the interaction between surface and 

atmosphere (exchange of energy, momentum and water between these two systems). The 

scheme selected for surface layer was the thermal diffusion scheme which aims to determine 

the friction velocity and the turbulent transfer coefficients in order to predict the fluxes of heat, 

water vapor and momentum between the lowest model level and the surface. In this scheme the 

soil mixture is fixed with a land use and season-dependent constant value and is represented by 

five layers with thicknesses of 1, 2, 4, 8 and 16 𝑐𝑚, without explicit vegetation (Skamarock et 

al., 2008). 

Regarding to the parameterization of the PBL, the Yonsei University−YSU (Hong et al., 2006) 

routine was chosen. The PBL is the region associated to human activities (atmosphere adjacent 

to the earth's surface), and for this reason, a source of natural and anthropogenic aerosols. The 

PBL schemes determine the flux profiles within the well-mixed boundary layer and the stable 

layer, and thus provide atmospheric tendencies of temperature, moisture (including clouds), and 

horizontal momentum in the entire atmospheric column (Skamarock et al., 2008).  

Relative to radiation schemes, they are responsible for reproducing the shortwave and the 

longwave radiation fluxes at the surface and the scattering and absorption of shortwave and 

longwave radiation and emission of longwave radiation in the atmosphere. In this thesis, 

radiation parametrization was, for both shortwave and longwave, parameterized with the 

Community Atmospheric Model – CAM (Community Atmospheric Model) scheme (Collins et 

al., 2004). 

CAM 𝑆𝑊 scheme is a spectral band with 19 discrete spectral intervals (seven in the ultraviolet 

band, three in the photosynthetic active region band and nine in the near-infrared band). 
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CAM 𝐿𝑊 is a spectral scheme with 8 longwave bands (wavenumber range between 500 to 

1500 𝑐𝑚−1) which interacts with ozone, carbon dioxide, cloud fraction, gases and aerosols. 

According with Collins et al. (2004), CAM scheme includes five chemical species of aerosol 

(sea salt, soil dust, black and organic carbonaceous aerosols, sulfate and volcanic sulfuric acid) 

with a monthly mean aerosol profile. It also worth noting that CAM scheme imposes the direct 

and semi-direct effects of tropospheric aerosols on shortwave fluxes and heating rates. This 

radiation scheme is a one-dimensional column scheme. Details of the several parametrizations 

in 𝑊𝑅𝐹 model are available in Skamarock et al. (2008). 

In this work, NCEP/NCAR reanalysis data provides the initial and lateral boundary conditions 

for simulations at 6−hour interval. A complete description of 𝑊𝑅𝐹 setup used in this thesis can 

be seen in section 3.2.1. 

Solar radiation predictions were obtained from 𝑊𝑅𝐹 model over Xinjiang (China), for two 

days with different radiation schemes by Chen et al. (2017) who showed that the results were 

strongly dependent on the radiative scheme and that Rapid Radiative Transfer Model (RRTM) 

and CAM are the most appropriate under clear sky days. Wilmot et al. (2014) found an 

overestimation of incoming radiation over southeastern coastal Texas. According with previous 

authors, and taking in account the fifth-generation Penn State/National Center for Atmospheric 

Research mesoscale model (MM5) and the Weather Research and Forecasting (𝑊𝑅𝐹) models, 

biases for outgoing radiation were smaller with 𝑊𝑅𝐹 . This later study revealed that other 

variables (such as water vapor, latent heat flux, sensible heat flux, friction velocity, ...) were 

also assessed and in most of them the best score was found with 𝑊𝑅𝐹 model predictions. 

Wild (2016) argued that global climate models generally simulate the observed 

dimming/brightening qualitatively but underestimate the corresponding magnitude over several 

regions. On the other hand, the majority of state-of-the-art RCM tends to overestimate the 

surface solar radiation flux as compared to ground observations (e.g. Lara-Fanego et al., 2012a; 

Ruiz-Arias et al., 2015). Hence, a common practice to the majority of climate researchers is to 

apply bias removal technics in order to reduce biases errors. In the case of solar radiation 

predictions, NWP models alone are not sufficiently accurate for predict solar radiation for the 

majority of solar applications (Jimenez et al., 2016). 

Diagne et al. (2014) found a significative improvement over Reunion Island in hourly basis for 

global horizontal irradiance outputs, obtained by 𝑊𝑅𝐹 model, after application of a Kalman 
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Filter. According with these authors, post-processing methods remove bias without the 

necessity of long climatological series. 

Lima et al. (2016) established a methodology for obtaining solar irradiances over northeastern 

region of Brazil and found that, 𝑊𝑅𝐹 model adjusted by an artificial neural network lowers the 

𝐵𝐼𝐴𝑆 and 𝑅𝑀𝑆𝐸 and increase the correlation coefficients between ground-based stations and 

𝑊𝑅𝐹 outputs. 

Based on two regional climate models (𝑊𝑅𝐹 and Regional Atmospheric Modeling System – 

RAMS), Avolio et al. 2016, evaluated the performance of the models to predict shortwave 

irradiances and wind speed for two stations in Southern Italy (Lamezia Terme and Leccethe). 

Their analysis showed that the errors were reduced up to 20% after application of a multi-

model approach. Rincón et al. (2018) using a Kalman filter with model output statistics 

improved 𝑊𝑅𝐹 outputs obtained for global horizontal irradiances over Paraguay and found a 

reduction of 97% in annual 𝐵𝐼𝐴𝑆 and 13% of annual 𝑅𝑀𝑆𝐸. 

The 𝑊𝑅𝐹  model has also been used in Iberian Peninsula to simulate solar radiation. For 

example, by Lara-Fanego et al. (2012b) that used the model to evaluate direct normal radiation 

during a year and they found that the model is more accurate in forecasting DNI over clear sky 

conditions and these results were also improved after the application of a post-processing 

correction. Over the southern half of IP, Santos-Alamillos et al. (2012), using daily wind and 

solar radiation obtained for 2007, found the existence of a complementarity between those two 

renewable energies. Ruiz-Arias et al. (2016) evaluated the 𝑊𝑅𝐹  to predict shortwave 

downward total solar radiation flux for Spain over a ten years period. They found an 

overestimation relative to observations as consequence of a very low cumulus cloud amount 

due to a possibly misrepresentation of the radiative impact of that type of cloud. Subsequently, 

they proposed an original method to correct this bias based on concurrent radiometric ground 

observations (known as optimal interpolation), their results provided global and direct 

irradiances with a nominal uncertainty of ~5%. According with these authors, lower biases are 

found when a large number of ground-based stations were used. Later, Ruiz-Arias et al. (2016), 

investigated the overestimation found in shortwave total down radiation and found that these 

errors are tied to a deficient representation of cumulus cloud and/or their radiative impact, in 

particular during spring and summer and in northern mountains. Magarreiro (2016) evaluated 

the reliability of 𝑊𝑅𝐹  to forecast global radiation with a combination of statistical bias 

correction methods and found an overestimation, on a daily basis, over the entire IP. This 
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overestimation was also explained as a result of a systematic underestimation of cloud fractional 

coverage by the model.  
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2. 

2.Variability and trends of downward surface 

global solar radiation over the Iberian 

Peninsula from ERA−40 reanalysis 

 

This chapter is a transcription of the paper published with the following reference: 

 

Perdigão, J. C., Salgado, R., Costa, M. J., Dasari, H. P., Sanchez-Lorenzo, A., 2016. 

Variability and trends of downward surface global solar radiation over the Iberian Peninsula 

based on ERA−40 reanalysis. Int. J. Climatol., 36, 3917–3933. doi:10.1002/joc.4603 

 

 

Abstract 

 

A climate study of the incident downward surface global solar radiation (SSRD) in the Iberian 

Peninsula (IP) based primarily on ERA−40 reanalysis is presented. NCEP/NCAR reanalysis 

and ground-based records from several Portuguese and Spanish stations have been also 

considered. The results show that reanalysis can capture a similar interannual variability as 

compared to ground-based observations, especially on a monthly basis, even though ERA−40 

(NCEP/NCAR) annual values tend to underestimate (overestimate) the observations with a 

mean relative difference of around 20 𝑊𝑚−2(40 𝑊𝑚−2). On the other hand, ground-based 
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measurements in Portuguese stations during the period 1964−1989 show a tendency to decrease 

until the mid−1970s followed by an increase up to the end of the study period, in line with the 

dimming/brightening phenomenon reported in the literature. Nevertheless, there are different 

temporal behaviors as a greater increase since the 1970s is observed in the south and less 

industrialized regions. Similarly, the ERA−40 reanalysis shows a noticeable decrease until the 

early 1970s, followed by a slight increase up to the end of the 1990s, suggesting a 

dimming/brightening transition around the early 1970s, earlier in the south and center and later 

in the north of the IP. Although there are slight differences in the magnitude of the trends, as 

well as the turning year of the dimming/brightening periods, the decadal changes of ERA−40 

fairly agree with the ground-based observations in Portugal and Spain, in contrast to most of 

the literature for other regions of the world, and is used to perform a climatology of the SSRD 

in the study area. NCEP/NCAR reanalysis do not capture the decadal variations of SSRD in the 

IP. The results show that part of the decadal variability of the global radiation in the IP is related 

to changes in cloud cover (represented in ERA−40). 

 

Keywords: Radiation variability; Radiation trends; Downward surface global solar radiation; 

Total cloud cover; ERA−40; NCEP/NCAR; Ground-based observations; Iberian Peninsula 
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2.1. Introduction 

 

It is well known that the most important factor that shapes the climate of our planet is the solar 

radiation that reaches the Earth, so any changes in radiation will induce modifications on 

temperature, humidity, rainfall, etc. Meanwhile, renewable energies constitute a vital resource 

for the near future. In particular the solar energy is increasingly becoming a reliable and 

competitive source of energy and the correct evaluation of this resource and estimation of its 

trends, in the present and in the near future, is critical in assessing the viability of projects of 

solar power plants (e.g., Hammer et al., 2003; Wild et al., 2015).  

In recent decades the scientific community has dedicated some attention to surface solar 

radiation and to its variation all over the globe. Some studies reported that between the 1950s 

and mid 1980s there was a decrease of the surface solar radiation, a phenomenon known as the 

“global dimming” (Ohmura and Lang, 1989; Stanhill and Moreshet, 1992; Stanhill and Cohen, 

2001, among others). Later on it was observed the opposite effect, which is known as the “global 

brightening” (e.g. Wild et al., 2005). 

During the last years, many authors have dedicated their attention to the study of surface solar 

radiation decadal variations over different regions of the globe, such as, for example, China 

(Xia, 2010; Liu et al., 2010; Wang et al., 2015), the Tibetan Plateau (You et al., 2013), 

Northeast Brazil (Silva et al., 2010), the whole of Europe (Chiacchio and Wild, 2010; Sanchez-

Lorenzo et al., 2015), Northern Europe (Stjern et al., 2009), Southern Europe (Sanchez-Lorenzo 

et al., 2013a; Mateos et al., 2014a; Manara et al., 2015), or the United States (Liepert, 2002; 

Augustine and Dutton, 2013) . 

Many attempts have been conducted to explain these effects and the major candidates are the 

changes in the amount and properties of clouds in the atmosphere (Liley, 2009; Stjern et al., 

2009; Russak, 2009; Chiacchio et al., 2010, among others) and aerosol concentrations (Norris 

and Wild, 2007; Sanchez-Lorenzo et al., 2009, among others). For example, Liley (2009) found 

for New Zealand an increasing trend of cloudiness until the end of the eighties and then an 

opposite trend, in line with the observed dimming/brightening phenomenon observed in surface 

solar radiation series. Chiacchio et al., (2010) found, in Alaska, changes in decadal solar 

radiation and explained the same as a result of changes in clouds and atmospheric circulation 

patterns over the Pacific. Russak (2009) distinguished two different periods over Estonia 
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between 1950 and 2007 and found correlations between changes in solar radiation and the 

amount of low clouds, as well as the transparency of the atmosphere.  

Other studies explain the dimming/brightening periods as the result of the changes in aerosol 

effects in the atmosphere (e.g., Liepert and Tegen, 2002; Wild et al., 2005; Norris and Wild, 

2007) due to their ability to affect directly and indirectly the solar radiation that reaches the 

surface of the Earth (e.g., Lohmann and Feichterm 2005; Yu et al., 2006). Thus, for example, 

Qian et al., (2007) suggested that in China the increase of aerosols in the period 1960 to 1980 

was the main factor that led to a decrease in solar radiation in clear sky conditions.  

On the other hand, Alpert et al., (2005) and Alpert and Kishcha (2008) revealed higher rates of 

solar radiation decrease during the dimming period in urban areas relatively to rural areas, 

which was attributed to an impact of urbanization on the trends of surface solar radiation. 

Nevertheless, a recent study by Wang et al., (2015), using 105 pairs of stations with collocated 

measurements of surface solar radiation, concluded that on a global scale the dimming period 

cannot be considered an urban effect. For an extensive analysis on the dimming/brightening 

subject, see review papers of Wild (2009, 2010; 2012). 

Regarding the use of reanalysis products to study the climatology and changes in surface solar 

radiation, it is worth mentioning that Kaurola et al. (2010) describe that ERA−40 data on a 

monthly basis reduced the bias on the surface radiation as compared to the records on a daily 

basis, especially when temporal variations related to cloud radiative effects are studied. 

Similarly, Betts et al. (2006) verified that ERA−40 reproduced the most important variations 

associated with clouds and shortwave radiation. However, Wild and Schmucki (2011) found 

that the strong ERA−40 simulated decline in cloud amount over Europe is not observed in the 

same extent in ground-based records, as well as that reanalysis product fails to reproduce the 

dimming/brightening phenomenon. Träger-Chatterjee et al. (2010) assessed the downward 

surface solar irradiation for Germany from reanalysis products and found some limitation to 

adequately represent the clouds, especially in summertime. However, reanalysis products have 

some advantages over historical observed series since a variety of meteorological data obtained 

by different instrumentation (surface observations, satellites, aircraft, etc.) is assimilated, 

allowing a consistency in the data obtained by the quality control of the model, while presenting 

a regular spatial and temporal resolution. 

The North Atlantic Oscillation (NAO) is a major phenomenon that influences the weather and 

climate variability of Europe (Hurrell 1995, 1996). The NAO is related to precipitation (Hurrell, 
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1995, Trigo et al., 2002) and influences the temporal and spatial variability in the Iberian 

Peninsula (IP). Specifically, the positive (negative) phase of NAO explains a reduction 

(increase) of precipitation and a decrease (increase) in the percentage of cloud fraction over the 

south of Europe. In Portugal, high values in the NAO index correlate with low values of 

precipitation and cloudiness (Trigo et al., 2002). Sanchez-Lorenzo et al. (2009) described that 

cloud cover and sunshine duration over IP are linked to NAO, especially during winter. Pozo-

Vázquez et al. (2004) found for IP high correlations between the NAO index and the monthly 

sums of sunshine duration. 

Sanchez-Lorenzo et al. (2009) describe that clouds show a decreasing trend in the IP between 

1960 and the mid of 2000, where as sunshine duration series shows a decrease from the 1950s 

to the mid−1980s (dimming), with a subsequent increase until the 2000s (brightening). 

Sanchez-Lorenzo et al. (2013a) found from the analysis of 13 Spanish observational stations a 

positive trend for the global radiation in the 1985−2010 period with a value of +3.9 𝑊𝑚−2 per 

decade, in line with the sunshine durations trends since the 1980s. Mateos et al. (2014a) found 

a strong brightening in IP for the period 2003−2012 as a result of a decrease of clouds and 

aerosols in the region. The decreasing trends observed for shortwave radiation was explained 

in 75% by clouds and the remaining 25% by the effect of aerosols. 

The main objective of this work is to study the patterns, evolution and trends of downward 

surface global solar radiation at the surface in the IP with ERA−40 reanalysis data and explore 

its relationship with clouds. Section 2.2 and 2.3 presents the data, the study area and describes 

the methodology used for this study; in section 2.4, shortwave radiation reanalysis data were 

compared to the common period to the measurements taken at Portuguese and Spanish 

meteorological stations. In section 2.5, annual and monthly area averaged values of downward 

surface global solar radiation and total cloud fraction are computed for ERA−40 reanalysis 

product and analyzed for the IP region. Temporal averages of shortwave radiation and total 

cloud cover were carried out over the entire ERA−40 period. Finally, conclusions are presented 

in section 2.6. 
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2.2. Data and Methods 

 

2.2.1. Data and Area of Study 

 

The daily downward surface global solar radiation (SSRD, in 𝑊𝑚−2 ) data measured at 

Portuguese meteorological stations (Bragança, Porto, Évora and Faro) were obtained from the 

World Radiation Data Centre (WRDC, http://wrdc-mgo.nrel.gov/). SSRD from other 

Portuguese stations, also available at the WRDC was not considered for this study due to 

insufficient data (Table 2.1). For Lisbon, the monthly data were obtained directly from the 

Portuguese Institute of Ocean and Atmosphere (IPMA). 

 

Table 2.1. Location and data availability for the Portuguese stations. 

Bold stations refer to stations used in this study. 

STATION PERIOD LAT (N) LON (W) 
ALTITUDE 

(m) 

MISSING MONTHLY DATA 

(%) 

Lisbon 58-89 38.43 -9º.09 77 0 

Monte Estoril 64-89 38.42 -9.24 31 90.7 

Porto 64-89 41.08 -8.36 93 2.2 

Coimbra 64-89 40.12 -8.25 141 10 

Faro 64-86 37.01 -7.58 7 0.4 

Évora 64-89 38.34 -7.54 309 1.0 

Penhas Douradas 64-89 40.25 -7.33 1380 19 

Castelo Branco 64-89 39.50 -7.29 386 82.4 

Bragança 64-89 41.48 -6.44 691 4.8 

 

The analysis was done on a monthly mean basis obtained from the daily values. A month was 

considered only if the data available corresponded to at least two thirds of that month. In the 

absence of data for a month at a given station and a given year, the average of all corresponding 

months in the series was used. The annual average was calculated taking into account those 

values. The percentage of missing monthly values in the period under study is indicated in Table 

2.1, which contains also the locations of the stations used. In addition, a collection of 13 Spanish 

series available since 1985 were considered in this study. For more details about the dataset, 

we refer to Sanchez-Lorenzo et al. (2013a). 
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SSRD and total cloud cover (TCC) variables from ERA−40 and NCEP/NCAR reanalysis are 

also used in this study on an annual and seasonal basis. ERA−40 is the 45  year second 

generation reanalysis based on the European Centre for Medium-Range Weather Forecast 

(ECMWF) operational three-dimensional variation assimilation system, making 

comprehensive use of satellite data and conventional observations (Uppala et al., 2005). It 

covers the period from September 1957 to August 2002 and the model uses 60 vertical levels 

and a T159 spectral resolution. The shortwave radiative variables were computed by the 

Fouquart and Bonnel (1980) scheme. The data were extracted from the ECMWF portal. The 

spatial resolution used in the present study is 0.25° ×  0.25°, every 6 hours. NCEP/NCAR data 

(Kalnay et al., 1996) covers the period from 1948 until present and has horizontal resolution of 

2.5° × 2.5°  (T62 Gaussian grid ~ 209 𝑘𝑚 ), with 17  pressure level and 28  sigma levels. 

Monthly mean data was downloaded from National Oceanic and Atmospheric Administration 

(NOAA) portal. 

In section 2.4, annual and monthly averaged trends for SSRD and TCC are computed from 

ERA−40 and for the IP region (36N−44N; 10W−4E), and for the period from 1958 to 2001. 

The seasons are defined according to the World Meteorological Organization (WMO) 

nomenclature i.e., winter (DJF), spring (MAM), summer (JJA) and autumn (SON). 

 

2.2.2. Homogenization methods 

 

Climatological series sometimes contains temporal inhomogeneities. In this study, the Standard 

Normal Homogeneity Test (SNHT, Alexandersson, 1986), Buishand Range Test (Buishand, 

1982), Pettitt Test (Pettitt, 1979) and Von Neumann Ratio Test (Von Neuman, 1941) were used 

for testing the homogeneity of the Portuguese series. The absolute homogeneity tests were 

applied for each station separately (Wijngaard et al., 2003; Morozova and Valente, 2012; 

Hakuba et al., 2014) since observational stations have a low density (only five) and are 

considerably spaced from each other. Specifically, the Pettitt Test, SNHT, and Buishand test 

suppose that tested values are independent and identically normal distributed (null hypothesis), 

while under alternative hypothesis, tests assume inhomogeneous series as consequence of a 

break or a shift. On the other hand, for the Von Neumann Ratio Test the null hypothesis is that 

the data are independent and identically distributed random values, and with alternative 

hypothesis that the values in the series are not randomly distributed. 



 

37 

For each of the tests description, let be 𝑛 the length of a time series to be tested, where 𝑥𝑖 is i-

th element of the series with mean 𝜇 and standard deviation 𝜎. 

Statistic 𝑇(𝑘), in SNHT test, compares the mean of the first 𝑘 observations with the mean of 

the last (𝑛 − 𝑘) observations,  

𝑇(𝑘) = 𝑘 [
1

𝑘
∑

𝑥𝑖 − 𝜇

𝜎

𝑘

𝑖=1

]

2

+ (𝑛 − 𝑘) [
1

(𝑛 − 𝑘)
∑

𝑥𝑖 − 𝜇

𝜎

𝑛

𝑖=𝑘+1

]

2

, 𝑘 = 1,… , 𝑛 (2.1) 

The null hypothesis is rejected if 𝑇0 = 𝑚𝑎𝑥
1≤𝑘≤𝑛

𝑇(𝑘) and if 𝑇0 is above a certain level given in a 

table of Khaliq and Ouarda (2007). 

The Buishand statist test, 𝑆(𝑘), is defined as 

𝑆(𝑘) =∑(𝑥𝑖 − 𝜇),          𝑘 = 1,… , 𝑛

𝑘

𝑖=1

 (2.2) 

with, 𝑆(0) = 0, and 𝑅 statistic given by  

𝑅 = (𝑚𝑎𝑥
0≤𝑘≤𝑛

𝑆(𝑘) − 𝑚𝑖𝑛
0≤𝑘≤𝑛

𝑆(𝑘)) 𝜎⁄  (2.3) 

Critical values for 𝑅 √𝑛⁄ , were obtained, from Buishand (1982).  

𝑌(𝑘) statistic test, for Pettitt test, is calculated as 

𝑌(𝑘) = 2∑𝑟𝑖 − 𝑘(𝑛 + 1), 𝑘 = 1,… , 𝑛

𝑘

𝑖=1

 (2.4) 

Since Pettitt test is a non-parametric test, 𝑟1…… . . 𝑟𝑛 is the rank of the 𝑥𝑖 … . . 𝑥𝑛. The critical 

value of the test 𝑌(𝑘) is calculated for a probability level 𝛼 as 

𝑌𝑘𝛼 = √−𝑙𝑛𝛼(𝑛3 + 𝑛2) 6⁄  (2.5) 
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and a change point will occurs when, 

𝑌𝑘 = 𝑚𝑎𝑥
1≤𝑘≤𝑛

|𝑌(𝑘)| (2.6) 

Von Neumann ratio test (VNRT) is defined as 

𝑁 =
∑ (𝑥𝑖 − 𝑥𝑖+1)

2𝑛−1
𝑖=1

∑ (𝑥𝑖 − 𝜇)2
𝑛
𝑖=1

 (2.7) 

Critical values was calculated, with probability level 𝛼, as 

𝑁𝛼  ~ 2 − 2𝑢𝛼√
𝑛 − 2

(𝑛 − 1)(𝑛 + 1)
 (2.8) 

According to Wijngaard et al. (2003) and Hakuba et al. (2014), three classes were considered: 

Class I: Useful – one or zero test reject the null hypothesis; Class II: Doubtful – two tests reject 

the null hypothesis; Class III: Suspect – three or four tests reject the null hypothesis. In this 

work, the null hypothesis was rejected at 1%  level. The series in Class I and II may be 

considered homogeneous, whereas inhomogeneous for Class III (Wijngaard et al., 2003). 
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2.3 Statistical methods 

 

The parameters used to evaluate the data model and meteorological data were the mean bias 

(𝐵𝐼𝐴𝑆), root mean square error (𝑅𝑀𝑆𝐸), the correlation coefficient (𝑟) and coefficient of 

variation (𝐶𝑉). For a series with 𝑥𝑖 values, with mean (𝜇) and standard deviation (𝜎), the 𝐶𝑉 

(in percentage) is defined as: 

𝐶𝑉(%) =
𝜎

|𝜇|
× 100 (2.9) 

This parameter measures the variability in the values of a series relative to de population mean.  

Normalized 𝐵𝐼𝐴𝑆, in percentage, is defined as: 

𝑁𝐵𝐼𝐴𝑆(%) =
𝐵𝐼𝐴𝑆

1
𝑛
∑ 𝑥𝑖
𝑛
𝑖=1

× 100 (2.10) 

A simple linear regression model (including the determination coefficient – 𝑅2), as well the 

nonparametric statistical method of Mann-Kendall (Mann, 1945), were applied to find possible 

trends in annual and monthly data. The method of Mann-Kendall (𝑀𝐾 test) has been widely 

used by several authors in meteorological studies. (Silva et al., 2010, Obot et al., 2010; Cislaghi 

et al., 2005 among others) to statistically assess if there is a monotonic upward or downward 

trend of the variable of interest over time and it is recommended by the World Meteorological 

Organization (WMO). 

Specifically, for a time series containing a set of observations (𝑥𝑖, … . 𝑥𝑛), the 𝑀𝐾 test is given 

by 

𝑆 = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝑥𝑗)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (2.11) 
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where:  

𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝑥𝑗) = 1,             𝑖𝑓(𝑥𝑖 − 𝑥𝑗) > 0 

𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝑥𝑗) = −1, 𝑖𝑓(𝑥𝑖 − 𝑥𝑗) < 0 

𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝑥𝑗) = 0,           𝑖𝑓(𝑥𝑖 − 𝑥𝑗) = 0 

(2.12) 

The statistical value of the test is the Mann-Kendall index (𝑍𝑀𝐾), given by 

𝑍𝑀𝐾 =

{
 
 

 
 
𝑆 − 1

𝜎
𝑖𝑓 𝑆 > 0

0 𝑖𝑓 𝑆 = 0
𝑆 + 1

𝜎
𝑖𝑓 𝑆 < 0

 (2.13) 

with 

𝜎 = √
1

18
[𝑛(𝑛 − 1)(2𝑛 − 5) −∑𝑡𝑝

𝑞

𝑝=1

(𝑡𝑝 − 1)(2𝑡𝑝 + 5)] (2.14) 

A positive value in equation (2.11) indicates that there is a positive trend in the observations, a 

very large value of 𝑆 reveals that the latest observations correspond to higher values than the 

first, for the same series; on the other hand, if the result of equation (2.11)  gives a negative 

value, it can be assumed that there is a negative trend. In this work is considered a significant 

𝛼 level of 5%, which corresponds to |𝑍𝑀𝐾| ≥ 1.96. The 𝛼 level value is obtained from the 

standard normal distribution table. 

The sequential version of 𝑀𝐾 test (with the acquisition of two series − one regressive and 

another progressive), slightly modified by Sneyers (1975), allows to determine the point in time 

when the trend starts and when it becomes meaningful. In this version of the 𝑀𝐾 test, original 

values of a set of observations (𝑥𝑖 , … . 𝑥𝑛) are replaced by their ranks 𝑦𝑖 in ascending order. The 

magnitude of 𝑦𝑖 , (𝑖 = 1,… ,𝑁)  are compared with 𝑦𝑗 , (𝑖 = 1,… ,𝑁) , and a statistic test is 

defined as 

𝑡𝑖 =∑𝑛𝑖

𝑖

𝑗=1

 (2.15) 
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where, 𝑛𝑖 represents the sum of a temporal series whose values 𝑦𝑖 > 𝑦𝑗. Assuming that there is 

a trend (null hypothesis is rejected), the series presents a normal distribution and variance given 

by:  

𝐸(𝑡𝑛) =
𝑛(𝑛 − 1)

4
 (2.16) 

𝑉𝐴𝑅(𝑡𝑛) =
𝑛(𝑛 − 1)(2𝑛 + 5)

72
 (2.17) 

The sequential values of the statistic are given by: 

𝑢(𝑡𝑛) =
(𝑡𝑛 − 𝐸(𝑡𝑛))

√𝑉𝐴𝑅(𝑡𝑛)
 (2.18) 

The progressive series (forward direction) is determined from equation (2.18), starting from the 

value 𝑖 = 1,… ,𝑁, generating the statistical 𝑢(𝑡𝑛). The regressive series is determined backward 

from the last term of the series 𝑖 = 𝑁,… , 𝑖, generating the statistical 𝑢′(𝑡𝑛). The intersection 

between the progressive 𝑢(𝑡𝑛) and regressive 𝑢′(𝑡𝑛) series should occur within the confidence 

intervals and representing the beginning of the trend. The series became significant when the 

values of statistical data exceed the confidence intervals of 95% level. 
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2.4 Comparison of shortwave radiation data from ground-based 

and reanalysis datasets in Portugal and Spain 

 

2.4.1. Changes of shortwave radiation in ground-based observation of Portugal 

 

Due to the lack of studies dealing with the decadal changes of SSRD over Portugal using 

ground-based measurements (e.g., see Sanchez-Lorenzo et al., 2015), in this section we first 

introduce their main characteristics. For more details about decadal changes in Spain, we refer 

to Sanchez-Lorenzo et al. (2013a). 

As detailed in Section 2.2.2, the annual SSRD series for Portuguese stations were tested by 

means of four homogeneity tests. The results confirm that the five series can be considered 

homogeneous. Specifically, Bragança, Porto and Lisboa series obtained classification of Class 

I, whereas Évora and Faro were classified as Class II since null hypothesis was not rejected for 

the Buishand and Von Neumann tests. Consequently, we have used the five series for the 

subsequent analyses. Figure 2.1 shows the mean annual SSRD series in the five observational 

stations of Portugal. 
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Figure 2.1. Mean annual global incident radiation observed in Portuguese stations. 

In the bottom right plot, a mean of five Portuguese series is represented. The red dashed line corresponds to a five-

year-centred moving average. 

 

As can be seen from Table 2.1, the length of time series varies from station to station. In order 

to smooth the data and facilitate trend detection and qualitative analysis, a five-year centered 

moving average was applied. Table 2.2 shows the some climatological parameters on annual 

basis for the five Portuguese stations under analysis. 
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Table 2.2. Annual climatology for meteorological station in Portugal with mean (X̅), standard deviation (𝜎), slope 

(𝑏), coefficient of determination (𝑅2) and MK indice (ZMK) with a 𝛼 level of confidence of 5%. 

Bold values means significant trends. 

STATIONS Period 𝑋̅ 𝜎 𝑏 𝑅2 𝑍𝑀𝐾  

Braganca 1964-89 181.0 9.0 -0.5 0.2 -1.5 

Porto 1964-89 178.2 10.1 -0.4 0.1 -1.1 

Lisbon 1964-89 192.5 7.8 -0.1 0.0 -0.3 

Évora 1964-89 191.6 9.8 0.9 0.5 3.7 

Faro 1964-86 207.7 7.5 0.7 0.4 2.9 

 

Porto series clearly shows a decrease of the SSRD by the end of the 1970s with a maximum 

annual average value observed in 1970 of 194 𝑊𝑚−2   and the minimum in 1977 of 

153 𝑊𝑚−2. Similarly, Bragança reveals a decrease of radiation until the mid-70s followed by 

an increase. The maximum annual value was reached in 1969 ( 204 𝑊𝑚−2) and the minimum 

value in 1977 ( 161 𝑊𝑚−2). Évora and Faro present a similar behavior, contrasting to that 

observed in Porto and Bragança, i.e., an increase of SSRD is observed since the early 1970s, 

without any visible dimming period. Regarding Faro, the maximum annual value was registered 

in 1978 ( 222 𝑊𝑚−2) and the minimum, in 1966, with an average value of 196 𝑊𝑚−2. Évora 

station recorded a maximum mean annual value of  205 𝑊𝑚−2 in 1982, and a minimum annual 

value of 171 𝑊𝑚−2 in 1970. Finally, in Lisbon there are no relevant decadal variations in the 

series, which is in contrast with the changes observed in the other stations from Portugal. 

Nevertheless, it is worth mentioning that the use of individual series is questionable, especially 

when the homogeneity testing of the series has been subjected to absolute methods due to the 

lack of reference series. For this reason, we have also computed the composite mean series of 

Portugal (Figure 2.1) that allows a higher signal-to-noise ratio, enabling a better identification 

of decadal variations than single station series and reduce the possible inhomogeneities 

remaining in the series. The SSRD mean values over Portugal range between ~180 𝑊𝑚−2 and  

~200 𝑊𝑚−2. It is possible to identify two periods - until the end of the 1970s the behavior of 

SSRD is characterized by a decrease followed by an increase, in line with previous literature 

(e.g., Wild, 2009, 2012), although with an earlier turning year as compared to other regions of 

Europe (e.g., Wild, 2009; Sanchez-Lorenzo et al., 2013b; Sanchez-Lorenzo et al., 2015).  

Figure 2.2 shows the standard deviation of the global radiation on a monthly basis (between the 

same months) during the period of analysis. 
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Figure 2.2. Standard deviations of the observed SSRD monthly means. 

 

In general and in all months the highest values of variability corresponds to the cities of Porto 

and Bragança (in the north of Portugal), which in June presents the largest deviation. The inter-

annual variability is greater in the cities of Évora and Porto with annual standard deviations of 

10 𝑊𝑚−2. Faro station shows the lowest inter-annual value of 8 𝑊𝑚−2 and has the maximum 

mean value of SSRD. The observed variability in the SSRD may be associated to inter-annual 

variability in cloudiness due to atmospheric circulation patterns such as NAO (Trigo et al., 

2002). On the other hand, due to the proximity of the IP to the north of Africa, it is expected 

that the SSRD is strongly affected by Saharan dust aerosol in particular in the spring and 

summer months, as well as by summer forest fires. Saharan dust aerosols increase the aerosol 

optical depth of the atmosphere and lead to a significant decrease of the solar radiation that 

reaches the ground (Antón et al., 2012; Valenzuela et al., 2012; Obregón et al., 2015). 

Lisbon and Porto are the major Portuguese cities and are located near the coast, where the 

majority of the Portuguese population and industries are concentrated. At the south of Tagus 

river the industrialization is less relevant (location of districts of Évora and Faro). An analysis 

of the population in Portugal shows that in the period under review (1960 –1990), the population 

grew in Lisbon (+53.8%), Porto (+40.5%) and Faro (+8.3%) and decreased in Évora 

(−20.7%) and Bragança (−20.8%) districts (Cravidão and Matos, 1990). 
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The SSRD pattern observed in Bragança and Porto (Figure 2.1) shows a decrease of SSRD that 

may be associated to the period commonly known as global dimming (Stanhill and Cohen, 

2001). Still, the data shows that the increase in SSRD appears relatively earlier than that 

described in the literature, (e.g. Wild et al., 2005, Wild, 2009, 2012). Results seem to indicate 

that the locations where industrial, topography of region and demography is relevant are those 

where the increase of SSRD arises later or is not visible at all (like in Lisbon). In the remaining 

stations of Portugal, located in the countryside in the south, with a lower industrial and 

population density and almost flat topography, the measurements hint at an earlier increase of 

radiation. 

Specifically, Évora and Faro stations (cities at south of Portugal) seem to indicate an increase 

of SSRD over the whole study period. These cities are located in regions with small industrial 

density and demographic growth and with only a few occurrences of forest fires when compared 

with northern Portuguese regions (Leite et al., 2014). Therefore, it is reasonable to assume that 

the typical atmosphere was characterized by low aerosol loads (background atmospheric 

aerosol), with occasional events of desert dust or forest fire particle transports, which means 

that possibly the area did not experience enough aerosol influence to be part of the dimming 

phenomenon (Alpert and Kishcha, 2008). 

Since the area in question had little industry and the dominant circulation brings air masses 

from the Atlantic Ocean, it does not seem that the concentration of strongly absorbing aerosols 

(from local areas or from another region) has increased significantly and triggered a pronounced 

indirect effect of aerosols (as described for example in Twomey et al.,1984 and Albrecht, 1989). 

Daily 120-h back-trajectory analyses of air masses for south-western IP, from 2005 to 2010, 

showed that the most frequent situations observed were the clean and maritime situations 

(Obregón et al., 2012). This would, at least partly, explain the behavior of Évora and Faro 

series, which shows a stronger increase of SSRD than the other Portuguese stations. 

Overall, the turning year from the period of decrease and increase if SSRD was around five 

years before in the stations in the south as compared to the stations in the north (especially Porto 

station). Results from winter and summer seasons confirm that the beginning of the brightening 

period is noticed over Portugal in the late seventies. SSRD in spring and autumn show an 

opposite behavior, i.e., autumn presents a positive trend without a decrease of SSRD, and spring 

season a negative trend without an increase (Figure 2.3). 
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Figure 2.3. Evolution of seasonal mean SSRD in Portugal in the period 1964−86 (blue solid line). 

A five year centred moving average was applied (dashed line). Series expressed in anomalies (observation minus 

mean of reference period). 

 

Table 2.3 contains the seasonal trends over the periods for the mean of five series (Portugal). 

Table 2.3. Seasonal linear trends for SSRD mean over Portugal for different periods. Trend values in 𝑊𝑚-2𝑦-1. In 

parenthesis, is presented the α level of confidence obtained by 𝑀𝐾 test. 

Bold values means significant trend and the values in parenthesis indicate the level of significance. 

 Period 

 1964-86 1964-77 1978-86 

DJF 0.1 0.0 0.9 

MAM -0.4 -1.2 (80%) 1.1 

JJA -0.0 -1.6 (98%) 1.9 (80%) 

SON 0.4 (80%) 0.5 0.5 

The linear trend in the majority of the seasons, over Portugal, is non-significant over the entire 

period. The dimming and the brightening trends are mainly observed during summer with 
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−1.6 𝑊𝑚−2𝑦𝑒𝑎𝑟−1  and 1.9 𝑊𝑚−2𝑦𝑒𝑎𝑟−1 , respectively. However, the highest level of 

confidence is only obtained for the observed dimming period. 

 

2.4.2. Evaluation of ERA−40 and NCEP/NCAR reanalysis products against ground-based 

measurements 

 

The mean annual cycle and interannual variability of ERA−40 and NCEP/NCAR SSRD are 

compared with the global radiation measured at the meteorological stations described in section 

2.2.1. For the analysis, the nearest grid points of the reanalysis products are considered. It is 

worth noting that the comparisons present some limitations due to the large spatial scale 

between grid point of reanalysis and observations (e.g., Hakuba et al., 2014). The mean 

correlation coefficients and the bias values for Portugal and Spain, on annual and monthly basis, 

are shown in Figure 2.4 and Figure 2.5 respectively, whereas in the Supplementary Material 

additional results for individual stations are presented (Figure 2.14; Table 2.7). 

ERA−40 (NCEP/NCAR) annual and monthly averaged SSRD radiation values are always 

lower (higher) than the corresponding ground-based measurement values as indicated by the 

negative (positive) 𝐵𝐼𝐴𝑆 (Table 2.7 – supplementary material, Figure 2.4 and Figure 2.5). The 

spatial distribution over IP (Figure 2.4) shows a tendency towards negative biases, except in 

the northern areas, with a performance of ERA−40 better than NCEP reanalysis data. For 

instance, ERA−40 database underestimates the SSRD in comparison to the observations with a 

mean 𝐵𝐼𝐴𝑆 of around 20 𝑊𝑚−2 (or 10% in relative values) for Portugal, where NCEP/NCAR 

overestimation is around 40 𝑊𝑚−2 (or 20% in relative values). 
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Figure 2.4. Annual spatial distribution of 𝐵𝐼𝐴𝑆  (left image) and correlation coefficient (right image) for 

Portuguese (1964−1986) and Spanish (1985−2001) stations. 

Squares represent values from validation between NCEP/NCAR and observation data and filled circles results 

from ERA−40 and observations. 𝐵𝐼𝐴𝑆 values in 𝑊𝑚−2. 

 

It is known (Wild, 2001) that NCEP reanalysis is too transparent relative to surface solar 

radiation, and probably this is one of the reasons that may explain the highest bias found relative 

to ERA−40. 

The correlation coefficient (r), on an annual basis (Figure 2.4), between the data measured at 

the selected stations and reanalysis products is relatively low, with mean values of 𝑟 = 0.4 

(ERA−40) and 𝑟 = 0.2 (NCEP/NCAR). Spatial distribution of correlation coefficient is, for 

both reanalysis, worst at northern stations either in Portugal or in Spain. It is well known that 

clouds are structures of various dimensions. Due to the coarse spatial resolution of the 

reanalysis, cloud properties are not well represented (Kaurola et al., 2010), which may explain, 

at least partially, the biases, as also found by Träger-Chatterjee et al. (2010) in Germany and 

You et al., (2013) in the Tibetan Plateau, especially for the NCEP/NCAR reanalysis. 

The reliability of ERA−40 and NCEP/NCAR data to assess SSRD was also investigated on a 

monthly basis (Figure 2.5). 
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Figure 2.5. Mean correlation coefficients (triangles for NCEP and squares for ERA−40) and 𝐵𝐼𝐴𝑆 (bars) for all 

stations in Portugal and Spain, between the monthly mean series of observed solar radiation at selected 

meteorological stations and simulated solar radiation at the nearest grid point of reanalysis product. 

 

In the majority of the months, the values of the correlation coefficient are approximately above 

0.6 for Portugal and Spain, indicating a good correlation (see supplementary material, Figure 

2.14). The lowest correlations were obtained for the summer months. In those months the 

variance in the observations is much larger than in the reanalysis database probably due to the 

non-inclusion of the actual concentration of aerosols in the reanalysis process. For instance, the 

radiative fields of ERA−40 use a climatological aerosol profile and do not take into account the 

actual aerosol type and load (Uppala et al., 2005). Thus, the decrease in the correlations during 

summertime can be explained by the fact that it is the season with the highest atmospheric 

aerosol loading over the IP (Alados-Arboledas et al., 2003; Toledano et al., 2007). 

Nevertheless, the inaccurate representation of clouds, especially the convective systems, can be 

also considered as another likely cause of the disagreement as compared to surface observations 

(Wild and Schmucki, 2011; Xia et al., 2006; Enriquez-Alonso et al., 2015). 

The 𝐶𝑉 of the annually averaged observed series (see supplementary material, Table 2.7) is low 

(less than 5%), indicating a weak interannual variability of the mean incident global radiation, 

in line with the observed 𝐶𝑉 in sunshine duration series in IP (Gil et al., 2015). The mean annual 

values of 𝐶𝑉 are slightly higher for observations than reanalysis products, since these products 

are based in radiative transfer model computations and not in radiation measurements 

contributing to smoothing the data series. 
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2.4.3. Trends of SSRD for Portugal and Spain from observations, ERA−40 and 

NCEP/NCAR data 

 

The least square linear method was applied to the Portugal annual series (see Table 2.2) and the 

results indicate that for the whole period only two of the five stations studied (Évora and Faro) 

show a significant linear trend, whose confirmation was provided by 𝑀𝐾 test (𝑍𝑀𝐾 equal to 3.7 

and 2.9, respectively). The result shows that in the 1964−1989 period, the trends are relatively 

strong with an increase in radiation of about 0.9 𝑊𝑚−2𝑦𝑒𝑎𝑟−1  in Évora and, 

0.7 𝑊𝑚−2𝑦𝑒𝑎𝑟−1 in Faro. In the other stations the trends are not statistically significant, as 

confirmed by the MK test. It is worth mentioning that Évora and Faro show rates of increase in 

SSRD comparable with the nearest stations in Spain (Caceres and Malaga), as shown in Table 

5 of Sanchez-Lorenzo et al., (2013a). 

Figure 2.6 shows the anomaly means of annual SSRD over Portugal and Spain from 

observations (mean series), ERA−40 and NCEP/NCAR data. 

The anomaly series are expressed as differences relative to a common period for Portugal 

(1964−86) and Spain (1985−2001). In Portugal, ERA−40 and NCEP/NCAR reanalysis 

replicate the general features of observations. ERA−40 captures better the dimming period than 

NCEP/NCAR, but both with a transition from dimming to brightening in the early 1970s (see 

Figure 2.6). 
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Figure 2.6. Anomaly mean of annual SSRD for Portugal (1964−86) and Spain (1985−2001) from observations 

(blue line), ERA−40 (red line) and NCEP (green line) data. 

Bottom plots show five years centred moving averaged applied to Portugal and Spain data. 

 

Relatively to Spain annual anomalies (1985−2001), ERA−40 and NCEP/NCAR show a general 

positive trend as the ground-based observations. Table 2.4 shows results for linear trends for 

different periods. 

For Portugal, signals are similar in all periods (except for 1978−86 period in NCEP/NCAR), 

although the magnitude of the trends present slight differences between ground based stations 

and reanalysis products, as well as the turning year of the dimming/brightening periods. In the 

case of observational Spanish data sets, only one period (1985−2001) is considered. 
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Table 2.4. Linear trends for annual mean SSRD over three periods in Portugal for observations, ERA−40 and 

NCEP data. All values in 𝑊𝑚-2𝑦𝑒𝑎𝑟-1. 

In parenthesis, is presented the α level of confidence obtained by MK test. Bold values means significant trend and 

the values in parenthesis indicate the level of significance. 

 Portugal Spain 

 1964-86 1964-77 1978-86 1985-2001 

OBS 0.1 -0.5 (90%) 1.1 (90%) 0.4 (90%) 

ERA-40 0.1 -0.3 (80%) 0.2 0.2 

NCEP/NCAR 0.1 -0.1 -0.1 0.4 (98%) 

 

Linear regression applied to Portugal over the 1964−86 period, is not statistically significant, 

as shown by the 𝑀𝐾  test (see Table 2.4). For subdivided periods, linear trends shows for 

Portugal significant values, with −0.5 𝑊𝑚−2𝑦𝑒𝑎𝑟−1 for the dimming (1964−1977) period and 

1.1 𝑊𝑚−2𝑦𝑒𝑎𝑟−1 for the brightening (1978−86) period, taking into account a 90% of level 

of confidence. ERA−40 data, for the same locations, show only a decreasing trend over the 

1964−1977 period but with approximately one half of that presented in Portugal and with non-

significant for Spain. Results show that NCEP, in Spain, presents a trend of the same magnitude 

of observational series (0.4 𝑊𝑚−2𝑦𝑒𝑎𝑟−1), both with a high significance level (above 90%). 

For a detailed SSRD trends over Spanish stations (1985−2001) see analysis in paper of Sanchez-

Lorenzo et al. (2013a) who found a significant positive trend of around 4 𝑊𝑚−2 per decade.  

Overall, the decadal changes of the reanalysis products fairly agree with the observations, 

especially for ERA−40, in contrast to literature for other regions of the world. The comparison 

between ERA−40 and observations of the SSRD shows a fairly good agreement in the analyzed 

period, especially on a monthly basis, where r values are relatively high. Results obtained from 

NCEP/NCAR reanalysis have a tendency to be higher than ground-based stations and ERA−40 

reanalysis, as seen in biases and decadal changes of radiation shown previously.  

This work suggests that the ERA−40 data may be used in order to study the climatology and 

evolution of the surface solar radiation and clouds, over the regions where aerosol 

concentrations have not changed significantly. Results obtained with NCEP/NCAR reanalysis 

are poorer when compared with observational data. 
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2.5. Assessing SSRD and TCC in the IP from ERA−40 reanalysis 

data 

 

In this section, the variability and trends of the SSRD and TCC over the IP using ERA−40 

reanalysis data from the ECMWF are examined and discussed. Monthly means of SSRD and 

TCC for the entire period are computed and analysed. The relation between the interannual 

SSRD over IP and TCC is also analysed.  

 

2.5.1. General features of SSRD and TCC climatology 

 

The ERA−40 data was used to create a climatology of the surface solar radiation for the IP. 

Figure 2.7 presents the spatial averages of SSRD and TCC from ERA−40 (1957−2002). 

 

 

Figure 2.7. Mean values of SSRD (left image) and cloud cover (right image) from ERA−40. Radiation is expressed 

in  𝑊𝑚-2. 

 

As expected, the averaged SSRD presents a latitudinal gradient showing higher values at lower 

latitudes and lower values at higher latitudes. On the other hand, the mean TCC is larger for 

higher latitudes. In this period, the mean SSRD ranged from a minimum of 135 𝑊𝑚−2 in the 

northern part of the IP to a maximum of 180 𝑊𝑚−2 in the south. The spatial TCC pattern is in 

phase opposition with respect to SSRD. In addition to the latitudinal gradients, Figure 2.7 also 

shows longitudinal variations, mainly over the Mediterranean region, with a decrease of SSRD. 
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A relative maximum of SSRD in the southern IP is observed, covering the Algarve (Portugal) 

and Andalusia (Spain). The longitudinal gradient is more intense near the Portuguese West 

coast. The relation between SSRD and TCC was investigated in more depth for the period 

considered. 

The IP annual mean values of the SSRD plotted as a function of the corresponding IP mean 

TCC values clearly illustrates that SSRD and TCC are negatively correlated, with a high 

coefficient of determination (𝑅2 > 0.8), as shown in Figure 2.15 (supplementary material). 

This result reveals a strong dependence of clouds on radiation in the ERA−40 and NCEP/NCAR 

reanalysis. This finding would be expected since the annual aerosol field is fixed, and so only 

the clouds and the water vapor may have a direct impact on the SSRD. 

The spatial distribution of the mean and standard deviation of SSRD for two months 

(January/July) associated with two different seasons (winter/summer) were computed. Figure 

2.8 depicts the results obtained. 

 

 

Figure 2.8. The mean ERA−40 SSRD for January and July and corresponding standard deviation. 
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In January, SSRD range from about 40 𝑊𝑚−2 in the north to more than 80 𝑊𝑚−2 in Murcia 

region, southeast of Spain. In July the mean SSRD values are almost four times higher, reaching 

values close to 300 𝑊𝑚−2 in a wide region, including Alentejo and Algarve (Portugal), as well 

as Estremadura and Andalusia (Spain).  

The variability (standard deviation) of the SSRD is larger in January over the southern and 

central regions of Portugal and Spain, particularly in Extremadura and Andalusia and lower in 

the same regions in the summer months. The lower absolute variability observed in the northern 

part of the IP (Galicia, Asturias, País Vasco) in January is in agreement with the lower values 

of SSRD in the region. In winter months, variability in precipitation (clouds) is usually 

associated to variability in the pathway of the frontal systems which arise from Atlantic Ocean 

(Trigo, 2006; Fragoso et al., 2010; among others). 

 

2.5.2. Trend analysis of SSRD and TCC  

 

Figure 2.9 shows the time series of the spatially averaged annual SSRD and TCC in the IP from 

1958 to 2001 and gives a general frame of the evolution of these two quantities in the region. 

The annual time series of SSRD and TCC reveal non-statistically significant trend in ERA−40 

over IP for the 1958−2001 period as shown in Table 2.5 (low values of 𝑅2). 

 

 

Figure 2.9. Temporal evolution of the annual mean values of the SSRD and of the TCC, over the whole IP, from 

ERA−40 data. 

Red line is the five-year centered moving average. Black solid lines denote linear trends for two periods. 
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The spatially averaged ERA−40 SSRD mean values with a five-year centered moving average 

show two distinct periods for the IP (Figure 2.9): a decrease of SSRD in the beginning of the 

seventies (hereafter referred as ERA−40 dimming period) followed by a slight increase up to 

the end of the time series (hereafter referred as ERA−40 brightening period). In contrast, the 

TCC shows an opposite behavior with a decrease after 1971. Figure 2.9 allows identifying a 

maximum of SSRD over the IP in 1961 with a value of about 175 𝑊𝑚−2 and a minimum in 

1972 (153 𝑊𝑚−2). With respect to TCC, an opposite behavior is observed as referred before 

with the maximum obtained in 1972.  

According to these results, trends for two separate periods were computed (before and after 

1971) and are presented in Figures 2.9 and Table 2.5. 

 

Table 2.5. Mean, standard deviation (𝜎), slope (𝑏), 𝑅 − 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 and time series trend obtained from the by 𝑀𝐾 

test for 𝑆𝑊 and TCC in IP. 

Bold ZMK index means significant trend. In parenthesis, is presented the α level of confidence. 

 Period 𝑿̅ 𝝈 b R2 ZMK (∝= 𝟎. 𝟎𝟓) 

SSRD 

1958-2001 166.9 4.6 0.1 0.1 1.5 

1958-1971 166.9 5.8 -0.97 0.5 -3.0 

1972-2001 166.9 4.1 0.36 0.6 4.7 

TCC 

1958-2001 0.44 0.0 -0.0 -0.0 -1.6 

1958-1971 0.44 0.0 0.0 0.3 1.8 

1972-2001 0.44 0.0 -0.0 0.5 -4.1 

 

The annual evolution of SSRD series shows a statistically significant trend for both periods. In 

the first period, the SSRD shows a linear decrease of 1 𝑊𝑚−2𝑦𝑒𝑎𝑟−1  with a statistically 

significant 𝑍𝑀𝐾. In the second period, it is visible a slight increase of the radiation, with a slope 

of 0.4 𝑊𝑚−2𝑦𝑒𝑎𝑟−1 and with also significant 𝑍𝑀𝐾 at 95% level of confidence. An opposite 

pattern is noticed for TCC with a significant linear trend only in the second period. 

Results from sequential 𝑀𝐾  test analysis (Figure 2.10) show that in the first period 

(1958−71) there is a decrease of the SSRD, which started around the late 60’s (~1967) 

turning significant in the following year. This result is also consistent with the analysis done 

for the mean of five observational series in Portugal (section 2.4). 
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Figure 2.10. Sequential 𝑀𝐾 applied to IP data for 𝑆𝑊 (left panel) and TCC (right panel) divided in two periods 

(1958−1971) and (1972−2001). 

The forward series is the solid line and backward series is the dashed line. 

 

For TCC an opposite behavior is observed with an increase that began in the same year as the 

SSRD increase but without a statistically significant trend although positive. In the second 

period (1972−2001), there is an opposite behavior, with SSRD presenting a significant 

statistical increase after 1985 while the TCC decreases for the same year (see Figure 2.10 and 

Table 2.5). These results show that the dimming/brightening phenomena is present in the 

ECMWF ERA−40 dataset over IP, but that the transition occurred earlier than revealed by the 

majority of global or regional studies (e.g. Wild et al., 2005; Wild and Schmucki, 2011). 

Anyway, it is possible to look at the dimming/brightening at a regional scale. Thus, the IP was 

divided into small areas (1° × 1°) and in each of these a five-year centered moving average was 

applied in order to compute the inflection point (minimum value of the centered moving 

average). The transition year, computed as the minimum of the centered moving average shows 

a latitudinal gradient (Figure 2.11), which suggests that the ERA−40 dimming period finished 

in 1970 in the south and center IP and a few years later (1973−74) in the north, being the 

year of 1971 the average for the whole Peninsula.  

The fact that ERA−40 does not consider the evolution of the aerosol concentration (Upalla et 

al., 2005), may explain, at least partially, the anticipation of the inflection point in the reanalysis 

as compared to studies based on ground-observations. Note that the transition years in the 

ERA−40 data set are consistent with observations in Portuguese stations located in low 

industrialized regions (Faro and Évora), as shown before (see previously section). 
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Figure 2.11. Dimming/brightening transition year computed from ERA−40 SSRD data-set on a 1º × 1º grid over 

IP. 

 

These results show that part of the dimming/brightening phenomena in the Iberian Peninsula 

must be related with decadal changes in the cloud radiative effects and not only to changes in 

the aerosol loading, especially over south regions where brightening arise five to ten years 

earlier than shown in literature (Wild et al., 2005), with a gradient that increase from southwest 

to northeast.  

The SSRD linear trends were computed for the IP in both the ERA−40 dimming (1958−71) and 

brightening periods (1972−2001). Figure 2.12 shows the spatial distribution of the linear 

regression trends over the IP. For both periods, the pattern of SSRD trends shows a longitudinal 

gradient with an increase in the northeast direction. In the first period (1958−1971) trends are 

always negative with the highest values (−1.8 𝑊𝑚−2𝑦𝑒𝑎𝑟−1) observed in Northeastern Spain, 

provinces of Navarra, Aragon and Catalonia. For Portugal, the maximum negative trend 

(−1 𝑊𝑚−2𝑦𝑒𝑎𝑟−1) is found over the south (Alentejo and Algarve). 
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Figure 2.12. Spatial distribution of linear trends in SSRD for 1957−1971 (left) and 1972−2001 (right) periods. 

 

Relatively to the second period (1972−01), linear trend values are always positive for entire IP 

with a maximum of +1 𝑊𝑚−2𝑦𝑒𝑎𝑟−1 over the same region where in the first period the major 

negative trends were found (Northeast region). Although, the period of observational series 

“break” in different years, there is a tendency to underestimate the trend of the brightening in 

the reanalysis product as compared to the ground-based observations, with rates below the 4 −

6 𝑊𝑚−2 per decade reported in this study and in Sanchez-Lorenzo et al. (2013a) and in line 

with the results of Wild and Schmucki (2011). Equally, it is worth noting that during the 

dimming period, and especially for the ERA−40, there is a tendency to overestimate the rates 

of decrease as compared to surface observations, and in contrast to Wild and Schmucki (2011). 

The monthly mean area averaged trends in IP for SSRD and TCC were computed for both 

periods and are presented in Figure 2.13. The results for the first period show that there is a 

clear decrease of radiation in 75% of the months. The maximum (negative) value of 𝑍𝑀𝐾 is 

reached in August, although with other two months with negative 𝑍𝑀𝐾 statistical significance 

(April and July). In the case of TCC, the 𝑀𝐾 test proved to be statistically significant for the 

months of April, July and August. However, results show an opposite behavior relatively to 

SSRD with an increase in all months with the exception of March, October and December. 
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Figure 2.13. Monthly mean trends in ERA−40 dataset. Results from MK test for the SSRD and TCC over IP. 

 

In the second period it is observed for both parameters and for almost all the months, an increase 

in SSRD (except in September and November) and a decrease in TCC (except for September). 

Table 2.6 summarizes the results of the monthly tendencies, where the grey colour indicates the 

existence of a statistically significant trend and the sign indicates positive (+) or negative (−) 

trends. 

 

Table 2.6. 𝑀𝐾 test statistical analysis of the monthly averaged variability in the IP in various periods of study. 

The light grey indicates the existence of trends with a confidence level of 95%. 

Period Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1958-71 
SSRD − − + − − − − − − + − + 

TCC + + − + + + + + + − + − 

1972-01 
SSRD + + + + + + + + − + − + 

TCC − − − − − − − − − − + − 

 

As expected, there are opposite trends in both parameters, especially visible for spring and 

summer periods. 𝑀𝐾 test shows an increase of SSRD in March, in both periods, statistically 

significant in the first period, which is consistent with that described by Miranda et al. (2006). 
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2.6. Conclusions 

 

Both downward surface global solar radiation (SSRD) and total cloud cover (TCC) variabilities 

were studied in the Iberian Peninsula based on the ERA−40. NCEP/NCAR reanalysis data and 

global radiation data, for five Portuguese stations, obtained from WRDC and IPMA and 

processed in this study, and for 13 Spanish series available from Sanchez-Lorenzo et al. (2013a) 

were also used. 

The SSRD mean series in Portugal show two distinct periods of decrease and increase during 

the study period, known as the dimming and brightening periods in the literature, although with 

an earlier turning year (around 5 years) than that described in the literature, in particular over 

south of Portugal. The observational data reveal an increasing trend of global radiation in the 

stations located in the South of Portugal, without a pronounced decrease before the 1980s, in 

the period 1964−1986.  

Least square linear method shows for Évora and Faro a statistically significant increase in the 

SSRD of 1 𝑊𝑚−2𝑦𝑒𝑎𝑟−1, in the study period. This behavior has to be mainly explained by the 

interannual variability of clouds and respective synoptic patterns over North Atlantic Ocean. 

Overall, the observations suggest that the decadal evolution of SSRD may be influenced by 

local causes associated to human activities, particularly the emission of aerosols, as well as 

cloud changes.  

ERA−40 database underestimates the SSRD in comparison to the observations for Portugal and 

Spain, whereas NCEP/NCAR overestimated the latter. The correlation coefficients (𝑟) found 

between the ground-based stations for Portugal and Spain obtained from the nearest ERA−40 

and NCEP/NCAR grid data points are relatively high for the monthly series. Specifically, the 

correlation coefficient values are above 0.7 with the highest values obtained during winter and 

autumn seasons. 

From reanalysis and for Iberian Peninsula, it seems that ERA−40 captures better the decadal 

variability observed in ground-based SSRD records than NCEP/NCAR. Specifically, the time 

evolution of ERA−40 SSRD values for IP shows two distinct periods: a decrease of SSRD to 

the beginning of the seventies (ERA−40 dimming period), followed by a slight increase up to 

the end of the time series (ERA−40 brightening period), with a significant linear trends of 
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−1 𝑊𝑚−2𝑦𝑒𝑎𝑟−1 and +0.4 𝑊𝑚−2𝑦𝑒𝑎𝑟−1, respectively. For both periods, it is possible to see 

a longitudinal gradient toward the northeast direction. TCC shows an opposite behavior.  

SSRD and TCC are negatively correlated with a fairly high coefficient of determination (𝑅2 >

0.8). This finding would be expected since the annual aerosol field is fixed (Uppala et al., 

2005). Results show that part of the dimming/brightening phenomena in the Iberian Peninsula 

must be related with decadal changes in the cloud radiative effects and not only to changes in 

the aerosol loading, especially over southern regions where brightening arise approximately 5 

years earlier than reported in literature (Wild et al., 2005). 

ERA−40 reveals a reasonable ability to simulate the radiation, in particular on a monthly basis, 

considering the uncertainty in the observational data, the problem of fixed aerosols in the 

reanalysis data and its spatial resolution. It was thus possible to obtain a useful low resolution 

climatology of the surface global solar radiation over Iberian Peninsula based on ERA−40 

reanalysis. 
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Supplementary Material 

 

Table 2.7. Descriptive statistics of annual mean of downward surface global solar radiation for observed and 

reanalysis data over Portugal and Spain. 

STATION OBS ERA-40 NCEP 
NBIAS  

(ERA-40) 

NBIAS 

(NCEP) 

CV 

(OBS) 

CV 

(ERA-40) 

CV 

(NCEP) 

𝒓𝑶𝒃𝒔 

(ERA-40) 

𝒓𝑶𝒃𝒔 
(NCEP) 

Lisboa 193.4 176.5 226.1 -8.7 16.9 4.0 2.4 1.2 0.6 0.5 

Porto 177.7 168.6 228.5 -5.1 28.6 6.0 2.9 1.6 0.4 0.3 

Faro 207.7 181.5 230.9 -12.6 11.2 3.6 3.2 1.1 0.3 0.2 

Évora 190.1 177.9 237.6 -6.4 25.0 4.9 3.1 1.5 0.4 0.3 

Bragança 181.5 159.0 225.8 -12.4 24.4 5.2 3.2 1.9 0.1 0 

Albacete 188.2 178.4 233.4 -5.2 24.0 3.9 1.7 2.1 0.2 0 

Bilbao 131.7 141.0 210.0 7.0 59.4 7.5 2.0 1.3 0 -0.3 

Caceres 194.5 175.2 238.5 -10.0 22.6 2.4 2.0 2.3 0.6 0.5 

Coruna 157.0 147.2 208.8 -6.2 33.0 3.2 2.2 1.1 0.5 0.5 

Logrono 164.5 150.9 214.1 -8.3 30.2 3.4 2.4 1.5 0.6 0.4 

Madrid 188.3 170.2 232.0 -9.6 23.2 2.9 2.3 2.0 0.7 0.5 

Malaga 204.1 182.7 238.9 -10.5 17.1 3.0 2.5 2.1 0 0.3 

Murcia 197.9 182.9 237.0 -7.6 19.8 2.6 1.1 1.7 0.8 0.5 

Oviedo 137.8 143.0 209.2 3.8 51.8 4.5 1.9 1.2 0.4 0.5 

Pmaiorca 187.3 175.2 210.0 -6.4 12.2 3.4 1.4 1.4 0.5 0 

Ssebastian 138.2 161.6 231.1 16.9 67.2 4.8 1.8 1.9 -0.3 -0.4 

Santander 142.3 141.2 210.0 -0.8 47.6 3.7 1.8 1.3 0.5 0 

Valladolid 182.3 159.5 231.1 -12.5 26.8 3.3 2.2 1.9 0.2 0 
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Figure 2.14. Correlation coefficients (dots) and 𝐵𝐼𝐴𝑆 (bars) between the monthly mean series of observed SSRD 

at selected meteorological stations (Portugal and Spain) and reanalysis products nearest grid point. 
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Figure 2.15. SSRD radiation versus TCC spatially averaged over IP, for ERA−40 (upper image) and NCEP/NCAR 

(down image). 

SSRD in 𝑊𝑚−2. TCC NCEP/NCAR data in percentage. 
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3. 

3.An Iberian Climatology of Solar Radiation 

obtained from WRF regional climate 

simulations for 1950–2010 period 

 

This chapter is a transcription of the paper published with the following reference: 

 

Perdigão, Joao, Salgado, Rui, Magarreiro, C.,Soares, Pedro M.M., Costa, M.J., Dasari, H.P., 

2017. An Iberian climatology of solar radiation obtained from WRF regional climate 

simulations for 1950−2010 period, Atmospheric Research 198, 198, 151–

162.DOI10.1016/j.atmosres.2017.08.016 

 

 

Abstract 

 

The mesoscale Weather Research and Forecasting (𝑊𝑅𝐹 ) Model is used over the Iberian 

Peninsula to generate 60 years (1950−2010) of climate data, at 5 𝑘𝑚 resolution, in order to 

evaluate and characterize the incident shortwave downward radiation at the surface (𝑆𝑊), in 

present climate. 

The simulated values of 𝑆𝑊 in the period 2000−2009 were compared with data measured in 

Spanish and Portuguese meteorological stations before and a statistical bias correction was 
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applied using data from Clouds and the Earth’s Radiant Energy System (CERES), on board 

four different satellites. The spatial and temporal comparison between 𝑊𝑅𝐹  results and 

observations show a good agreement for the analyzed period, although the model overestimates 

observations. This overestimation has a mean normalized bias of about 7% after bias correction 

(or 17% for original 𝑊𝑅𝐹 output). Additionally, the present simulation was confronted against 

another previously validated 𝑊𝑅𝐹 simulation performed with different resolution and set of 

parametrizations, showing comparable results. 𝑊𝑅𝐹 adequately reproduces the observational 

features of 𝑆𝑊 with correlation coefficients above 0.8 in annual and seasonal basis. 

60 years of simulated 𝑆𝑊 over the Iberian Peninsula were produced, which showed annual 

mean values that range from 130 𝑊𝑚−2, in the northern regions, to a maximum of around 

230 𝑊𝑚−2 , in the southeast of the Iberian Peninsula (IP). 𝑆𝑊 over IP shows a positive 

gradient from north to south and from west to east, with local effects influenced by topography 

and distance to the coast.  

The analysis of the simulated cloud fraction indicates that clear sky days are found in more than 

30%  of the period at the southern area of IP, particularly in the Algarve (Portugal) and 

Andalusia (Spain), and this value increases significantly in the summer season for values above 

80%. 

 

Keywords: 𝑊𝑅𝐹  model; Downscaling Climatology; Downward Solar radiation; Cloud 

fractions; Iberian Peninsula. 
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3.1. Introduction 

 

Incoming solar radiation is an important variable from meteorological, economic and social 

perspectives. In the last IPCC report it is stated that “𝐶𝑂2 emissions from fossil fuel combustion 

and industrial processes contributed about 78 % of the total greenhouse gas emission increase 

from 1970 to 2010, with a similar percentage contribution for the period 2000−2010” (IPCC, 

2014). To reduce 𝐶𝑂2  emissions it is necessary to decarbonize the electricity generation. 

Detailed knowledge of the solar resource in the present and in the near future is essential for 

assessing the viability of projects related to the harnessing of solar energy. 

Solar radiation studies carried out in various regions have revealed that, in the past century, the 

Earth has undergone two opposite periods regarding the variability of solar radiation: Global 

Dimming (Stanhill and Cohen, 2001), with a reduction in solar radiation at the surface until the 

mid-1980s and later the global Brightening (Wild et al., 2005), with an increase of global 

radiation at the surface. Based on observations and ERA−40 reanalysis, Perdigão et al. (2016) 

confirmed the existence of these two distinct periods in Portugal, known as dimming and 

brightening, but with an earlier turning year than the one described in the literature, in particular 

over the south of Portugal. This latter study revealed an increasing trend of surface global 

radiation located in the south of Portugal, without a pronounced decrease before the 1980s, in 

the period 1964−986. 

Before reaching the Earth’s surface, incoming solar radiation is scattered, absorbed and 

reflected in the atmosphere. Clouds play a major role in spatiotemporal solar radiation 

variability. Hence, it is common that studies on solar radiation at Earth’s surface include also 

an analysis of cloud cover. Sanchez-Lorenzo et al. (2009) analysed observational cloudiness 

series for Iberian Peninsula (IP) and found a decreasing trend in the IP between 1960 and mid 

2000s. The authors report higher annual values over northern areas (4.5 𝑜𝑘𝑡𝑎𝑠) and smaller 

values in southern areas (3.5 𝑜𝑘𝑡𝑎𝑠), reaching minimum values in July and August (less than 

3 𝑜𝑘𝑡𝑎𝑠). According to the authors, the sunshine duration series show a decrease from 1950 to 

the mid–1980s that is not associated with total cloud cover. On the other hand, later on, 

Sanchez-Lorenzo et al. (2013b) found, for the 1985−2010 period, a positive trend in the global 

radiation in line with the sunshine duration trends since the 1980s. 
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Many commercial systems have been installed in the IP intended for solar energy power 

generation, particularly in the southern regions. In the study of Ridao et al. (2007), present and 

future of renewable solar energy was analyzed for Andalusia, with an average solar radiation 

energy of 4.6 ± 0.3 𝑘𝑊ℎ 𝑚2⁄ 𝑑𝑎𝑦, which qualifies the southern IP as a strategic region in 

Europe regarding solar energy technology implementation. In the European Union, solar energy 

presents itself as the main source of renewable energy investment until 2030 (APREN, 2014). 

Spain is the fifth country of the European Union in the production of photovoltaic energy, with 

more than 4 𝐺𝑊 of installed capacity (IDAE, 2016). In Portugal, the currently installed solar 

power capacity is more than 450 𝑀𝑊 (almost 3% of the energy produced) and it is expected 

to double that capacity by 2030. Alentejo and Algarve are the Portuguese regions with the 

highest installed solar capacity (APREN, 2014). 

Santabàrbara et al. (1996) built annual and seasonal maps of solar radiation in and around 

Catalonia province (Spain), for the period 1964−1993, from daily in situ global solar irradiation 

datasets and found maximum values over the inner part of Catalonia and at the south coast. 

According to Jerez et al. (2013), IP shows a strong potential in terms of complementarity 

between solar and wind power. The authors combined simulated data obtained from the MM5 

numerical model with a new developed algorithm to identify optimum spatial distributions for 

solar and wind power plants in order to guarantee a certain energy generation provided by 

renewable resources. Results show Valencia, Murcia and Andalusia provinces (Spain), as well 

as Algarve (Portugal), as optimal locations for solar power plants. Šúri et al. (2007) used a solar 

radiation model (Šúri and Hofierka, 2004) and showed that Portugal and the Mediterranean 

regions have the greatest potential for solar electricity production with maximum values in 

summer months. Also, Ruiz-Arias et al. (2012) showed similar conclusions. The authors 

evaluated the potential of renewable energies in electricity production for the province of Jaén 

(southern of Spain) and proposed a scenario where PV could produce up to 21%  of the 

electricity demand in that region. 

Due to the increasing demand of solar energy systems, an accurate knowledge of the solar 

resource plays a key role from an economic perspective. There are several methodologies and 

models to obtain solar irradiation maps and to predict solar radiation. For instance, Ehnberg and 

Bollen (2005) proposed a model based on cloud observations. Alsamamra et al. (2009) used a 

statistical methodology for mapping global solar radiation at the surface. Martín et al. (2010), 

applied several statistical methods based on observational time series to predict half daily values 

of global solar irradiances. Martín et al. (2010), proposed an empirical model to estimate the 
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solar energy as a function of other climatic variables. Ruiz-Arias et al. (2015) used an 

interpolation methodology to adjust global horizontal and direct normal irradiances obtained 

with 𝑊𝑅𝐹 model with observational ground-based station data. 

The application of Regional climate models (RCMs) in the evaluation of solar radiation features 

(trends, variability and climatology) in the past, present and future may overcome the problem 

of gaps in observational time series, the poor spatial coverage of ground-based stations and time 

series size. This approach allows for a detailed spatial characterization of any regions in order 

to select the one with best conditions to receive solar power plants, improving in that way the 

risk analysis of their implementations for political and economic decision-makers. 

RCMs are used for downscaling of global climate simulations and have been extensively used 

in various regions (e.g. Feser et al., 2011; Soares et al., 2012). Reviews on RCMs can be seen 

in Dudhia (2014), Rummukainen (2010), Laprise (2008) or Giorgi and Mearns (1999). The 

mesoscale Weather Research and Forecasting (𝑊𝑅𝐹) model (Skamarock et al. 2008) has been 

increasingly used as RCM. It is an open source tool, with considerable flexibility given the 

variety of parameterizations available, which makes it a very versatile tool for research in 

atmospheric physics. This model was used and evaluated over IP for different meteorological 

variables and by several authors such as Ruiz-Arias et al. (2015), Dasari et al. (2014), Rios-

Entenza et al. (2014), Soares et al. (2014), Cardoso et al. (2013), Soares et al. (2012), Mercader 

et al. (2010), among others. For instance, Santos-Alamillos et al. (2012) proposed and evaluated 

a method to analyze the spatiotemporal balance between solar and wind resources over the 

southern part of IP, using the 𝑊𝑅𝐹 model with a spatial resolution of 9𝑘𝑚. The results show 

the existence of complementarity between the solar and wind energy, but with a marked 

seasonality in strength and spatial coverage. 

Lara-Fanego et al. (2012a) evaluated the reliability of 𝑊𝑅𝐹  to predict global and direct 

irradiance over Andalusia (southern of Spain) and found that the model presents substantial 

quality. Nevertheless, their analysis showed that 𝑊𝑅𝐹 tends to overestimate both irradiances 

with a relative seasonal bias of about 10% for global and twice higher for direct radiation.  

The common practice in dynamical regional climate downscaling is to perform long continuous 

integrations with RCMs, starting from a single set of initial conditions, for a long period without 

re-initialization time slices. (e.g. Soares et al., 2012; Marteau et al., 2015). This technique 

allows the model to develop internal variability but it is computationally expensive. In this 

work, we used a 𝑊𝑅𝐹 simulation of six decades with annual re-initializations to avoid such 



 

73 

computation costs (Dasari et al., 2014). This approach allows to perform model simulations 

simultaneously, resulting in a gain of execution time of the complete numerical experiment. 

This procedure is in agreement with other authors, namely Raju et al. (2015) and Xue et al. 

(2014). Lo et al. (2008) discuss advantages and disadvantages of this technique. According to 

these authors, the re-initialization approach is widely accepted in weather forecasting to 

mitigate the problems of systematic error growth in long integrations but it is rarely used in 

regional climate simulations. This happens because: (i) it is not easily portable; (ii) long spin-

up time of RCMs constrains the re-initialization process and (iii) possible occurrence of 

discontinuity points between consecutive simulations. However, Lo et al. (2008) compared 

long-term continuous integration with short-term reinitialized simulations showing that the re-

initialization runs outperform the continuous simulation runs. 

Many authors pointed out the difficulties RCMs have in the representation of the large-scale 

features as they are forced at their boundaries (e.g. Jones et al., 1995; Yhang and Hong, 2011). 

Waldron et al. (1996) and Von Storch et al. (2000) firstly presented the nudging methodology. 

In the subsequent years nudging techniques were further developed and employed in many 

studies, but its use is not consensual (Alexandru et al., 2008; Miguez-Macho et al., 2004; Hong 

and Chang, 2012, Hong and Kanamitsu, 2014), due to disagreements regarding the advantage 

of reducing freedom from regional model’s large scales and other potentially negative lateral 

consequences. 

An important issue in NWP analysis is the evaluation of the model results. Usually, this 

evaluation is performed through the comparison between observational ground-based data with 

the nearest grid point of the model outputs. Bias correction (eg, Ruiz-Arias et al., 2015; Acharya 

et al., 2013; Haddeland et al., 2012; Piani et al., 2010), in a post-processing stage, is often 

performed. Ehret et al., (2012) present the state-of-the art of bias correction methods as well 

the assumptions and implications. 

The main objectives of this paper are: firstly, to evaluate the quality of the 5 𝑘𝑚 resolution 

𝑊𝑅𝐹 simulations with annual re-initializations, to predict incident shortwave solar radiation at 

the surface (𝑆𝑊) through the comparison with observations and other 𝑊𝑅𝐹  simulations 

(continuous and previously validated); secondly, to characterize the solar radiation at the 

surface with bias correction and the cloud fraction, in the 1950–2010 period over the IP, in 

order to assess the regions with major solar resource potential. The paper is structured as 

follows: sections 3.2 to 3.4 describes the methodology used in this study, as well as the data, 

model setup and study area. The performance of the simulations and bias correction 
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methodology is discussed in section 3.5. A detailed climatology of 𝑆𝑊 and cloud cover over 

IP is presented and discussed in section 3.6. Finally, conclusions are presented in section 3.7. 
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3.2. Datasets and Methods 

 

3.2.1. Model and numerical experiments 

 

𝑊𝑅𝐹 mesoscale model V3.3.1. (Skamarock et al., 2008) was configured with two domains, 

using two-way nesting, with horizontal resolutions of 75 𝑘𝑚  and 25 𝑘𝑚 , and 30  vertical 

pressure levels. From the 25 𝑘𝑚 resolution simulation output, a dynamical downscaling to a 

5 𝑘𝑚  resolution domain was carried out (Figure 3.1), using one way nesting, with hourly 

output. The results of the 5 𝑘𝑚  resolution simulation (𝑊𝑅𝐹5  hereinafter) are used in the 

characterization of the IP climatology.  

 

 

Figure 3.1. 75 𝑘𝑚, 25 𝑘𝑚 and 5 𝑘𝑚 𝑊𝑅𝐹 simulation domains (left) and orography (in meters) used by 𝑊𝑅𝐹 

simulations (right). 

 

In order to reduce the time required to simulate 60 years, the procedure adopted in this work 

consists in splitting the climate runs into several yearly simulations that are performed 

simultaneously. 𝑊𝑅𝐹5  was integrated continuously for 13  months starting from 

00 𝑈𝑇𝐶 1 𝑀𝑎𝑦  of each year for six decades (1950−2010). The first month of each simulation 

was used as model spin up time and was neglected in the analysis. The NCEP/NCAR (National 

Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis 

data at 2.5° latitude/longitude resolution (Kalnay et al., 1996), updated every 6 hours, was used 

as initial and forcing boundary condition. The model setup for these simulations are described 
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in detail in Dasari et al. (2014), where the results were validated for extreme events of heat and 

cold waves and showing a good agreement with E−OBS V7.0 dataset (Haylock et al., 2008). 

Since the 𝑊𝑅𝐹5 simulation followed a less common simulation strategy based on multiple one 

year time-slices, its performance is also investigated through comparison with results obtained 

from a continuously integrated 𝑊𝑅𝐹 simulation (𝑊𝑅𝐹9). 𝑊𝑅𝐹9 simulation was previously 

validated for temperature and precipitation over Portugal (Soares et al., 2012), precipitation 

over Iberia (Cardoso et al., 2013) and offshore wind (Soares et al., 2014), with the results 

showing a good agreement with observations. In 𝑊𝑅𝐹9, the model simulation ran continuously 

from 00 𝑈𝑇𝐶 1 𝐽𝑎𝑛𝑢𝑎𝑟𝑦 1989 to the end of 2012 where the first month is used as model spin 

up. The 𝑊𝑅𝐹9  simulation was performed using two one-way nested grids (27  and 9 𝑘𝑚 

horizontal resolution) and the results from the finer domain are used for comparison. The 

outermost domain was designed in a way to reduce spurious boundary effects in the inner region 

and both grids were centered in the Iberian Peninsula. Additionally, grid nudging (Stauffer and 

Seaman 1990) was applied to the outermost grid, every 6ℎ at all levels above the planetary 

boundary layer. This 𝑊𝑅𝐹 simulation was forced by ERA-Interim reanalysis (Berrisford et al., 

2009). CAM3 was selected to parameterize radiation processes at sub-grid scales for both 

shortwave and longwave radiation (Collins et al., 2004). This scheme takes into account the 

interactions of the radiation with clouds and with several aerosol types and trace gases. A 

detailed description of 𝑊𝑅𝐹9 simulations can be found in Soares et al. (2012). Similarities and 

differences in physical parameterizations, for 𝑊𝑅𝐹5 and 𝑊𝑅𝐹9, can be seen in Table 3.1. 

 

Table 3.1. Configurations of the physical parametrizations used in each model. 

Model NCEP/NCAR WRF−ARW 

Acronym 𝑾𝑹𝑭𝟓 𝑾𝑹𝑭𝟗 

Resolution 5𝑘𝑚 9𝑘𝑚 

Vertical Level 30𝜎 49𝜎 

Microphysics WSM3 – class simple ice scheme 

(Hong et al., 2004) 

WSM6 – Class single moment 

(Hong and Lim, 2006) 

SW CAM3 

(Collins et al., 2004) LW 

PBL YSU (Hong et al., 2006) Mellor-Yamada-Janjic 

(Janjic, 2001) 

Convection scheme Grell-Devenyi ensemble 

(Grell, G.A. and D. Devenyi, 2002) 

Betts-Miller-Janjic 

(Betts, 1986; Betts and Miller, 1986; 

Janjic, 1990; 1994,2000) 
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3.2.2. Observational data 

 

In order to assess the ability of 𝑊𝑅𝐹 model to simulate the 𝑆𝑊, these results were compared 

with daily observations obtained from 65 stations of IPMA (Portuguese Weather service) and 

AEMET (Spanish Weather service). 

Global solar irradiance was measured using Kipp & Zonen pyranometers, model CM-11, with 

a spectral sensitivity in the wavelength range 305−2800 nm and with an uncertainty of ± 2% 

(according to the manufacturer). These instruments are classified, in accordance with 

International Standard ISO 9060/1990, as secondary standards. This classification was adopted 

by the World Meteorological Organization (WMO, 2008). 

In the Spanish network, all radiometers are calibrated every two years. For more information 

see Ruiz-Arias et al. (2015) or García et al. (2014). Relatively to IPMA, calibration was 

performed only at the factory (Kipp & Zonen), and some of the pyranometers in the network 

were replaced in the period used. The quality control is based mainly on the spatial distribution 

of records over all observational stations. 

The comparison between simulations and observations was made using the nearest neighbour 

technique, i.e., the closest grid point model values were compared with the correspondent 

measured ones. The analysis was made for the time periods when observations and simulations 

were simultaneously available (2000−2009). 

 

Figure 3.2. Geographical location of the 65 observational stations used to evaluate the 𝑊𝑅𝐹 simulations and 

length of the time series. 

The scale indicates the percentage of days available at each station for the period 2000−2009. 
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Figure 3.2 presents the location of the 𝑆𝑊 ground-based stations and the percentage of days 

with data within the mentioned period. Since the observations have different time periods, for 

seasonal analysis, it was decided not to compute monthly means for the stations with less than 

20 days for each month in the respective observation period, yielding a total of fifteen stations. 

In turn, a given yearly value is considered valid if at least 2 3⁄  of valid monthly values are 

available in that year. IP average errors were computed considering all fifteen stations. Winter 

(DJF), Spring (MAM), Summer (JJA) and Autumn (SON) were defined according to standard 

procedures in meteorology. 

 

3.2.3. Cloud Fraction estimation 

 

Clouds have a strong impact in the Earth’s radiation budget by modifying the shortwave (𝑆𝑊) 

and longwave (𝐿𝑊) radiative fluxes. From RCMs it is possible to obtain radiation fluxes 

considering the presence (all sky) or absence (clear sky) of clouds. In this work, clear sky and 

all-sky shortwave downward radiation are used in order to estimate the cloud fraction simulated 

by the 𝑊𝑅𝐹 model. In this sense, a shortwave radiative cloud fraction (𝑆𝑊𝑅𝐶𝐿𝐹) was defined 

as the ratio of the global solar radiation downward to clear-sky radiation as suggested by 

Deardorf (1978), Crawford and Duchon (1999), Choi et al. (2008) and Gubler et al., (2012):  

𝑆𝑊𝑅𝐶𝐿𝐹 = 1 −
𝑆𝑊𝑎𝑙𝑙𝑠𝑘𝑦

𝑆𝑊𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦

 (3.1) 

𝑆𝑊𝑎𝑙𝑙𝑠𝑘𝑦 is the all-sky shortwave downward radiation at the surface, and 𝑆𝑊𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦 is the clear 

sky shortwave downward radiation that reaches the Earth’s surface. The ratio 

𝑆𝑊𝑎𝑙𝑙𝑠𝑘𝑦 𝑆𝑊𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦⁄  expresses the reduction of solar radiation mainly due to clouds, with 

values near one representing clear-sky conditions and near zero a total cloud cover. It should 

be noticed that the 𝑆𝑊𝑅𝐶𝐿𝐹 is not exactly a cloud fraction, in particular it never attains the 

value 1. Despite being different from the cloud cover estimated by the meteorological 

observers, this definition linked to the light attenuation by clouds, may be used as a proxy to 

cloud fraction, with the advantage of that it is directly applicable in the field of solar energy, as 

it is an indicator of the cloud effect on its availability at the surface. In this work, the term clear 
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sky days means days without clouds or partially cloudy and refer to 𝑆𝑊𝑅𝐶𝐿𝐹 values lower than 

or equal to 0.10 (less than 1 𝑜𝑘𝑡𝑎 ~ 0.13). 

 

3.2.4. Statistical error measures and methods 

 

The results of global radiation for each station were compared with the ground-based 

measurements in order to assess the quality of the simulations. The mean bias (𝐵𝐼𝐴𝑆), mean 

absolute error (𝑀𝐴𝐸), mean absolute percentage error (𝑀𝐴𝑃𝐸), root mean square error (𝑅𝑀𝑆𝐸) 

and correlation coefficient (𝑟) were calculated and are defined as: 

𝐵𝐼𝐴𝑆 =
1

𝑁
∑(𝑚𝑖 − 𝑜𝑖)

𝑁

𝑖=1

 (3.2) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑚𝑖 − 𝑜𝑖|

𝑁

𝑖=1

 (3.3) 

𝑀𝐴𝑃𝐸 =
𝑀𝐴𝐸

1
𝑁
∑ 𝑜𝑖
𝑁
𝑖=1

 (3.4) 

𝑅𝑀𝑆𝐸 = [
1

𝑁
∑(𝑚𝑖 − 𝑜𝑖)

2

𝑁

𝑖=1

]

1
2

 (3.5) 

𝑟 =
∑ (𝑜𝑖 − 𝑜̅)(𝑚𝑖 − 𝑚̅)
𝑁
𝑖=1

[ ∑ (𝑜𝑖 − 𝑜̅)2
𝑁
𝑖=1 ∑ (𝑚𝑖 − 𝑚̅)2

𝑁
𝑖=1 ]

1
2

 (3.6) 

 

where 𝑁 is the number of data and 𝑚 and 𝑜 are respectively the model simulation and observed 

values. We defined normalized 𝐵𝐼𝐴𝑆  (𝑁𝐵𝐼𝐴𝑆 ), and normalized root mean square error 

(𝑁𝑅𝑀𝑆𝐸) as respectively 𝐵𝐼𝐴𝑆 and 𝑅𝑀𝑆𝐸 divided by the 𝑆𝑊 mean. 
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3.2.5. Statistical bias correction methodology 

 

In this study a bias correction was applied, based on the methodology proposed by Piani et al. 

(2010) where a detailed description may be found. The implementation described in Hagemann 

et al. (2011) was followed. The methodology is based on the adjustment of a transfer function 

that “transforms” the original simulated dataset in a corrected set with the same probability 

distribution function (PDF) as the observed set. In order to adjust the transfer function, the 

simulated and observed time series, of the same length and for the same period, are sorted in 

ascending order and plotted one versus another. The transfer function, with a few set of 

parameters is then the result of a fitting procedure. In general, different kinds of functions can 

be tested, but Hagemann et al. (2011) found that in the majority of the cases a two-parameter 

linear fit is sufficient. 

In this study, data from the Clouds and the Earth’s Radiant Energy System (CERES) were used 

as the observations, in order to correct the 𝑊𝑅𝐹5 model outputs. The CERES experiment is 

one of the scientific satellite instruments developed for NASA's Earth Observing System 

(EOS). The first CERES instrument was launched in December of 1997 aboard NASA's 

Tropical Rainfall Measurement Mission (TRMM) satellite. CERES instruments are now 

installed also on three separate satellite missions, including the EOS Terra and Aqua 

observatories more recently on the Suomi National Polar-orbiting Partnership (S–NPP) 

observatory. CERES is a set of three co-aligned broadband radiometer detectors whose spectral 

ranges are 8 𝑡𝑜 12 𝜇𝑚 for infrared, 0.3 𝑡𝑜 5 𝜇𝑚 for shortwave and 0.3 𝑡𝑜 100 𝜇𝑚 for global 

radiation. CERES products include both solar-reflected and Earth-emitted radiation from the 

top of the atmosphere to the Earth's surface. The Energy Balanced and Filled (EBAF) surface 

products (Kato et al., 2013) are used in this study corresponding to the Surface Downwelling 

Shortwave Radiation and Surface Downwelling Clear Sky Shortwave Radiation, for the period 

March 2000 until December 2009. CERES data were obtained from NASA website 

(ceres.larc.nasa.gov) and are available on a monthly basis with a 1° × 1° horizontal resolution.  

Detailed information about CERES origins, instrument calibrations, source of errors among 

other technical features, can be found in Wielicki et al. (1996). 
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3.3. Regional Climate model simulations: Assessment and bias 

correction 

 

3.3.1. Comparison of daily and seasonal simulated SW against observations 

 

Figure 3.3a shows the daily bias values of 𝑆𝑊 and it is found that for the majority of the 

stations the model overestimates the 𝑆𝑊 with values of approximately 30 𝑊𝑚−2. The highest 

bias values are mostly located in the north/northeastern part of IP (Asturias, Basque Country 

and Catalonia) with values between 30 − 50 𝑊𝑚−2 . In the central part of IP, 𝑊𝑅𝐹5 

overestimates the 𝑆𝑊  by 30 𝑊𝑚−2 . At southwest and southeast, 𝑊𝑅𝐹5  tends to 

underestimate observations exhibiting values in the range of −20 𝑊𝑚−2 to 0 𝑊𝑚−2.  

The mean bias in 𝑊𝑅𝐹5 is consistent with the one obtained for Spain by Ruiz-Arias et al. 

(2016). These authors found a mean bias of approximately 29 𝑊𝑚−2  over the period 

2003–2012, with highest values along the Cantabrian coast and mountains as in the case of 

present 𝑊𝑅𝐹5 analysis. 

 

 

Figure 3.3. Daily 𝐵𝐼𝐴𝑆 (a) and correlation coefficient (b) for the 𝑊𝑅𝐹5.  

𝐵𝐼𝐴𝑆 in 𝑊𝑚−2. (In the computation of the correlation, the annual cycle was not suppressed) 
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𝑊𝑅𝐹5 daily simulation shows highest 𝑅𝑀𝑆𝐸 at the northern regions of IP (not shown here), 

especially over the Basque country (above 80 𝑊𝑚−2) and smallest values in central and south 

regions over IP (65 𝑊𝑚−2). 

Daily correlation coefficients between ground-based observations and 𝑊𝑅𝐹5 (Figure 3.3b) 

show that 𝑊𝑅𝐹5 performs better in the central part of IP, with high correlation coefficients, 

above 0.80. North/northwestern regions of IP present the smallest 𝑟 values (above 0.6). It is 

important to notice that the correlation coefficient is insensitive to biases and thus it only 

explains the spatial similarities/differences between simulations and observations for the 

various stations over the figure. Table 3.2 summarizes the errors found for daily values. 

 

Table 3.2. Performance of 𝑊𝑅𝐹 model for both resolutions in a daily and seasonal basis (spatially averaged values 

over the IP). 

 Resolution DAILY DJF MAM JJA SON 

𝑩𝑰𝑨𝑺 (𝑾𝒎−𝟐) 
𝑊𝑅𝐹5 29.9 25.1 43.6 37.1 22.1 

𝑊𝑅𝐹9 31.8 17.1 47.6 45.4 21.1 
       

𝑴𝑨𝑬 (𝑾𝒎−𝟐) 
𝑊𝑅𝐹5 51.7 25.9 46.8 52.4 28.1 

𝑊𝑅𝐹9 39.2 18.0 47.6 46.1 21.7 
       

𝑹𝑴𝑺𝑬 (𝑾𝒎−𝟐) 
𝑊𝑅𝐹5 71.6 29.7 53.9 61.7 33.0 

𝑊𝑅𝐹9 55.5 21.6 51.6 52.5 25.5 
       

𝒓 
𝑊𝑅𝐹5 0.8 0.9 0.8 0.6 0.9 

𝑊𝑅𝐹9 0.9 0.9 0.9 0.8 0.9 

 

As detailed in section 3.2.2, the seasonal analysis was done considering only fifteen ground-

stations. The seasonal bias shows similar spatial patterns to the results obtained for the daily 

bias analysis. 𝑊𝑅𝐹5  is able to simulate the seasonal evolution of 𝑆𝑊 (see Figure 3.4), 

although an overall overestimation can be seen in the majority of the ground-based stations for 

all seasons, with only two exceptions: Sines (south-west coast of Portugal) and Ibiza (Spanish 

Mediterranean island). 
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Figure 3.4. Seasonal 𝐵𝐼𝐴𝑆 and correlation coefficient for 𝑆𝑊 compared with ground-based observational data. 

𝐵𝐼𝐴𝑆 in 𝑊𝑚-2.  
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𝑊𝑅𝐹5 performance is better in winter and autumn in comparison with spring and summer (see 

Table 3.2). The smallest mean bias error is found in autumn (22 𝑊𝑚−2) and the highest value 

for spring (44 𝑊𝑚−2), which may be related to the larger variability of cloud conditions over 

the area in springtime (Salgueiro et al., 2014). According to Ramos et al. (2014), the cyclonic 

weather type over IP has a maximum in spring, imposing a considerably large cloud radiative 

effect as documented in Salgueiro et al., 2016. 𝑅𝑀𝑆𝐸 are relatively high in spring and summer, 

with values above 50 𝑊𝑚−2 (Table 3.2), and the smallest errors are found in the southwestern 

region and southeastern coast of Iberian Peninsula (not show here), in line with the spatial 

distribution obtained for bias analysis (Figure 3.3a).  

𝑊𝑅𝐹5 seasonal errors are also consistent with the monthly errors found by Ruiz-Arias et al. 

(2016). The worst statistical results obtained in the mountainous regions of Cantabria and the 

Pyrenees suggest that the model, at this resolution, has limited skill in representing orographic 

clouds. However, this topic needs further investigation. Ruiz-Arias et al. (2016), suggest that 

the bias found in 𝑊𝑅𝐹 could be a result of an underestimation of the actual cloud amount, and 

possibly, a misrepresentation of the radiative impact of low cumulus clouds. 

Seasonal correlation coefficient varies between 0.6 in summer and ~0.9 in autumn, with large 

spatial dispersion in spring and especially in summer. The poor performance of the model in 

summer was also found by Dasari et al. (2014) for temperature, and it may be explained by an 

incorrect quantification of the aerosol effects, since the model uses a monthly mean distribution 

of aerosols (Collins et al., 2004) and not actual values. Cardoso et al. (2013) also found small 

correlation coefficients in summer precipitation as a result of a combination of strong surface 

heating, instability and the connected convection over some parts of IP. According to Alapaty 

et al. (2012), NWP models do not consider cumulus cloud feedbacks in radiation at a subgrid-

scale, and these effects can cause a bias in shortwave and longwave radiation. This may also 

explain the relatively high 𝑅𝑀𝑆𝐸 found in our analysis.  

 

3.3.2. Comparison with other validated WRF simulation 

 

The 𝑊𝑅𝐹5 performance is additionally investigated by comparison with results obtained from 

the previously validated 𝑊𝑅𝐹9  experiment, where continuous model integration was 

performed. 
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Table 3.2 and Figure 3.5 show the results of the comparison with the observation, for both 

models. 

 

Figure 3.5. Correlation coefficients and statistical errors (𝑁𝐵𝐼𝐴𝑆 , 𝑁𝑀𝐴𝐸  and 𝑁𝑅𝑀𝑆𝐸 ) over IP, in the 

2000−2009 period for 𝑊𝑅𝐹5 and 𝑊𝑅𝐹9. 

 

In general, 𝑊𝑅𝐹5 and 𝑊𝑅𝐹9 overestimate the observed 𝑆𝑊 either on a daily or on a seasonal 

basis. Daily 𝑁𝐵𝐼𝐴𝑆 of 𝑆𝑊 in 𝑊𝑅𝐹5 is slightly smaller than in 𝑊𝑅𝐹9, whereas with respect 

to the 𝑀𝐴𝑃𝐸, 𝑁𝑅𝑀𝑆𝐸 and correlation coefficients, 𝑊𝑅𝐹9 shows a slightly better performance 

than 𝑊𝑅𝐹5. Daily 𝑁𝐵𝐼𝐴𝑆 values show, for both configurations, errors below 17%. 𝑁𝑅𝑀𝑆𝐸 

for 𝑊𝑅𝐹5  are larger than for 𝑊𝑅𝐹9 , with values of 40%  and 30% , respectively. The 

correlation coefficients between daily simulated and observed 𝑆𝑊, for both experiences 

during the whole period compared (2000−09) are greater than 0.8, revealing a good model 

behaviour. 
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Seasonal 𝑁𝐵𝐼𝐴𝑆 of 𝑆𝑊 show that the 𝑊𝑅𝐹5 forecast has a slightly better performance than 

𝑊𝑅𝐹9, with values varying between 13% and 28%. With respect to the 𝑁𝑅𝑀𝑆𝐸 , 𝑊𝑅𝐹5 

(𝑊𝑅𝐹9) forecast shows values in the range of 22% (19%) in summer and ~33% (24%) in 

winter (see Figure 3.5). 𝑀𝐴𝑃𝐸 shows that 𝑊𝑅𝐹5 slightly outperforms 𝑊𝑅𝐹9 in spring with 

an error of 22% , and in the summer season with an error of 16% . Seasonal correlation 

coefficients produce very similar results with high correlations, for both experiences, especially 

in autumn (𝑟 ≥ 0.9). It can be observed in Figure 3.5, that for both experiences, the errors show 

a clear seasonal dependence. 

Our errors present the same magnitude as those of other studies such as Lorenz et al. (2009) 

over the south of Spain, with 𝑁𝑅𝑀𝑆𝐸 between irradiance forecasts and observations in the 

range of 20% to 35%. 

The use of different parameterizations in numerical models inevitably leads to different results 

(Cossu and Hocke, 2014; Mercader et al., 2010) but, according to this analysis, statistical errors 

obtained in 𝑊𝑅𝐹5 and 𝑊𝑅𝐹9 are in agreement for 𝑆𝑊 and presents comparable errors. 

The comparisons of the simulations obtained in both experiments with the observations show 

that the quality of the prediction of solar radiation by the 𝑊𝑅𝐹5 simulation, which uses the less 

conventional technique of annual re-initializations, is not lower than the previously validated 

𝑊𝑅𝐹9 simulation.  

 

3.3.3. Statistical bias correction and comparison against observations   

 

The bias between models and observations may be reduced by applying a bias correction. This 

methodology was applied to 𝑆𝑊 radiation by Ruiz-Arias et al. (2015).  

Following the methodology described in Hagemann et al. (2011), summarized in section 3.2.5, 

the shortwave all sky and clear sky shortwave radiative fluxes at the surface were corrected 

using the CERES dataset. To obtain the transfer function, 𝑊𝑅𝐹 and CERES data were spatially 

averaged over IP for the common period. The transfer function, shown in Figure 3.6, was 

obtained using monthly average values. 



 

87 

 

Figure 3.6. Transfer functions obtained from 𝑊𝑅𝐹 data and CERES data on a monthly basis for 𝑆𝑊 (a) and 

clear Sky 𝑆𝑊 (b). The functions were obtained from monthly spatial mean values over IP for 2000−2009 period. 

 

Figure 3.6b also reveals that the model produces higher clear sky shortwave radiation than 

estimated by CERES. The 𝑆𝑊𝑅𝐶𝐿𝐹 was determined from the bias corrected 𝑊𝑅𝐹5 clear sky 

radiation parameter. 

The transfer function obtained was applied to all modelled values, at all grid points and time 

steps. The corrected values were then compared with ground-based observations for the same 

period. Note that these time series are independent from the CERES data used to compute the 

transfer function. Figure 3.7 shows the correlation and the 𝑁𝐵𝐼𝐴𝑆 between 𝑊𝑅𝐹5 and ground-

based observed 𝑆𝑊 fluxes, for the 2000−2009 period, after bias correction. 
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Figure 3.7. (a) 𝑁𝐵𝐼𝐴𝑆 (in percentage) and (b) correlation coefficient (c) 𝑁𝑅𝑀𝑆𝐸 and (d) 𝑀𝐴𝑃𝐸 for 𝑆𝑊 over 

2000−2009 period between model and observations for several Iberian ground-based stations. 

 

The analysis of Figure 3.7 shows a strong correlation between 𝑊𝑅𝐹5 𝑆𝑊 and observations, 

with a mean correlation of the order of ~0.97, improving the scores obtained before the bias 

correction (see section 3.1). The differences between model and observations were significantly 

reduced after the correction. The mean 𝑁𝐵𝐼𝐴𝑆  fell from 17%  to 7%  (~11 𝑊𝑚−2) . The 

corrected 𝑁𝐵𝐼𝐴𝑆 are close to those shown in Ruiz-Arias et al. (2015). 𝑁𝑅𝑀𝑆𝐸 (Figure 3.7c) 

and 𝑀𝐴𝑃𝐸 (Figure 3.7d) dropped respectively from 39% to 18% and from 28% to 14%. 

In general, 𝑊𝑅𝐹5  simulations show a very similar performance when compared with 

observational ground-based data, 𝑊𝑅𝐹9 and CERES data, which increases the confidence in 

the climatology that will be addressed in the next section. 
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3.4. SW climatology over the Iberian Peninsula for 1950−2010 

period 

 

Figure 3.8 illustrates the climatological 60 year mean 𝑆𝑊 over IP, at a 5 𝑘𝑚  horizontal 

resolution, obtained from the 𝑊𝑅𝐹5  simulations after applying the post-processing bias 

correction methodology. 

 

 

Figure 3.8. Sixty-year annual mean for the 1950−2010 period of, (a) 𝑆𝑊↓ and (b) standard deviation. 

Values are in 𝑊𝑚-2. 

 

During this period, the mean 𝑆𝑊 ranged from a minimum of 140 𝑊𝑚−2 in the north of IP to 

a maximum value above 230 𝑊𝑚−2 at the south corresponding to a spatial average value of 

190 𝑊𝑚−2. The spatial distribution clearly shows a gradient increasing from north to south 

and from west to east modelled by the effects of the coast and topography. Ruiz-Arias et al. 

(2015) also found this gradient, with lower irradiation values northward.  

In Spain, Andalusia and Murcia are the regions with the highest 𝑆𝑊. The greatest mean value 

of 𝑆𝑊 (230 𝑊𝑚−2 ) was found in Granada and Almeria. The lowest mean values are 

associated with the west and north Atlantic coastal zone and range between 140 𝑊𝑚−2 and 

180 𝑊𝑚−2. The smallest values are found in Coruna (Galicia – Spain). For Portugal, the central 

and southern parts (Alentejo and Algarve) are those with the highest mean 𝑆𝑊 values (above 

200 𝑊𝑚−2). This pattern is, in general, consistent with the study conducted by Sanchez-
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Lorenzo et al. (2009) for Spain, over the 1985–2010 period, which used observational sunshine 

duration data.  

The 𝑆𝑊 variability (annual standard deviation) is relatively high in the northern part of IP, 

particularly in Galicia (Spain), with an average value of 105 𝑊𝑚−2. For Portugal, Minho and 

Douro Litoral (at north) are the regions where the 𝑆𝑊 variability is larger, with averages 

above 100 𝑊𝑚−2. The spatial distribution of 𝑆𝑊 during the four seasons is depicted in Figure 

3.9 and reveals values that range from a minimum of 50 𝑊𝑚−2, in winter, to a maximum 

around 325 𝑊𝑚−2, in the summer season. Maximum 𝑆𝑊 values are found over the south of 

Portugal and Spain. The lowest 𝑆𝑊 values, independently of the season, are found over 

north/northeast regions of IP. High variability (standard deviation) is found in spring and 

summer seasons (Figure 3.9), especially along the Atlantic coastal regions, with values above 

80 𝑊𝑚−2 . This same high variability was found by Ruiz-Arias et al. (2015), with the 

Cantabrian coast presenting lower values of radiation in comparison with the rest of Spain. 
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Figure 3.9. Spatial seasonal average in the period 1950-2010 for 𝑆𝑊, Winter (DJF), Spring (MAM), Summer 

(JJA), Autumn (SON), and standard deviation in Winter (STD_DJF), Spring (STD_MAM), Summer (STD_JJA) 

and Autumn (STD_SON). 

Values are in 𝑊𝑚-2. 
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Annual cycles of 𝑆𝑊 and 𝑆𝑊𝑅𝐶𝐿𝐹, obtained from monthly means over land, are plotted in 

Figure 3.10. These plots show, as expected, an annual pattern for 𝑆𝑊 with maximum values 

in summer, presenting a peak of 340 𝑊𝑚−2 (median value) in July and an inverse pattern for 

𝑆𝑊𝑅𝐶𝐿𝐹, with a minimum peak in June and July (0.04). It should be noted that 𝑆𝑊𝑅𝐶𝐿𝐹 is 

computed using 𝑆𝑊, which reinforces their interdependence. 

 

 

Figure 3.10. Annual cycle of monthly mean area averaged 𝑆𝑊 (a) and 𝑆𝑊𝑅𝐶𝐿𝐹 (b) over IP for the 1950−2010 

period.  

The horizontal solid line within the box represents the median. The bottom and top of the boxes indicate the first 

and third quartiles, respectively. The circles and crosses represent outliers. The lower and upper ends of the 

whiskers are the minimum and maximum values of the datasets, respectively. 𝑆𝑊𝑅𝐶𝐿𝐹 varies between 0 (without 

clouds) and 1 (overcast). 

 

The shape of the boxplots show that the data distributions are generally symmetrical (see box 

and respective median). The interquartile ranges are relatively small in July and August for 

𝑆𝑊 and 𝑆𝑊𝑅𝐶𝐿𝐹, which suggest a low inter-annual variability (long periods with no clouds) 

during summer. 𝑆𝑊 variability is higher in March and September. For 𝑆𝑊𝑅𝐶𝐿𝐹 , larger 

spreads are obtained in the months of autumn and winter (Figure 3.10b). In those months, upper 

quartiles have values above 0.2 as expected and in accordance with the results obtained by 

Sanchez-Lorenzo (2009), for total cloud cover in Spain. The boxplots of Figure 3.10 allow for 

the identification of potential outliers. The existence of outliers may be partially explained by 

the interannual variability in the frontal system tracks affecting the region (Ramos et al., 2014; 

Trigo et al., 2002) and by the irregular occurrence of Saharan dust events (Obregón et al., 2015; 

Wagner et al., 2009; Alados-Arboledas et al., 2003). These events are not taken into account 

by the numerical model since the concentration and properties of the aerosols are fixed in the 

WRF simulations (Collins et al., 2004).  



 

93 

Figure 3.11 shows maps of the percentage of clear sky days for the whole period and over two 

selected months: August and December.  

a) 

 
 

b) 

 

 
 

c) 

 

 

 

 

Figure 3.11. Percentage of clear sky days of (a): daily, (b) August and (c) December. 

Values are in percentage. 
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The maps show a high percentage of days without clouds, especially over central, south 

(Andalusia and Algarve) and northeast (Catalonia) parts of IP. Over these regions, more than 

30% of the days may be considered as clear sky (less than 1 𝑜𝑘𝑡𝑎– 𝑆𝑊𝑅𝐶𝐿𝐹 less or equal to 

0.1 for a conservative perspective, since the synoptic scale of WMO considers clear sky days 

until 2 𝑜𝑘𝑡𝑎𝑠 for the recording of the total cloud cover). 

In December, for over 2/3 of the Iberian Peninsula (north coastal regions of Portugal until 

Tagus River, Galicia and Basque Country), the percentage of clear sky days is less than 10% 

of the days in all period. However, areas along Spanish Mediterranean coast (Southeastern part 

of Andalusia, Murcia, Valencian community and Catalonia) present more than 30% of clear 

sky days, even in December. On the other hand, in August, the percentage of clear sky days is 

above 70%  in more than half of the Iberian Peninsula (central and south). This result is 

consistent with Ridao et al. (2007), which found that Andalusia (south of Spain) is the region 

with the greatest potential of all European regions for the implementation of solar energy 

systems. 
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3.5. Conclusions 

 

A high resolution climatology of 𝑆𝑊 solar radiation over IP, obtained from simulations 

performed using the 𝑊𝑅𝐹 model at 5 𝑘𝑚 resolution (𝑊𝑅𝐹5) is presented in this work. The 

comparison between 𝑊𝑅𝐹5 and observations for the downward shortwave radiation at the 

surface shows a good performance, although with a slight overestimation of radiation. The 

results indicate that the model simulations were significantly improved after applying a bias 

correction using CERES data. The daily bias over central IP was approximately 28 𝑊𝑚−2 

(~17%) before bias correction and 7% after. In the northern coastal regions, namely in Galicia, 

Asturias, Cantabria and Basque Country, daily bias are above 40 𝑊𝑚−2  (before bias 

correction). Similar results were obtained for the seasonal analysis. Correlation coefficients 

obtained from the comparisons between the observations and the model results are high, above 

0.8  for 70% of the ground-based stations. Seasonal correlation coefficients show a lower 

correlation in summer and higher values in autumn with values between 0.4 (summer) and 0.9 

(autumn). 

The 𝑊𝑅𝐹5 strategy, based on multiple one year time-slices, was found to be a valid alternative 

to the more computationally time demanding strategy based on continuous model integration, 

as its results exhibit a similar behaviour and comparable errors to those obtained in a previously 

validated 𝑊𝑅𝐹 run simulation at 9 𝑘𝑚 (𝑊𝑅𝐹9). 𝑁𝑅𝑀𝑆𝐸 for 𝑆𝑊 ranges from 22 𝑊𝑚−2 to 

39 𝑊𝑚−2, for 𝑊𝑅𝐹5 and 18 𝑊𝑚−2 to 30 𝑊𝑚−2, for 𝑊𝑅𝐹9 configuration. Regardless of the 

season, 𝑊𝑅𝐹9 always presents smaller 𝑁𝑅𝑀𝑆𝐸 than 𝑊𝑅𝐹5.  

The errors found in the present work, although mitigated by the application of a bias correction, 

may be related with a misrepresentation of clouds at higher spatial resolution (see Lara-Fanego 

et al., 2012b), and first of all, by an incorrect quantification of the aerosol effects, since the run 

uses a monthly mean distribution of aerosols (Collins et al., 2004) and not actual values. In fact, 

the main limitation of this work is the failure to take into account the evolution of aerosol 

distribution over the Iberian Peninsula, which is known to have been very important during the 

last century (see for example Mateos et al., 2014b; Antón et al., 2017). This misrepresentation 

of the aerosols may introduce large temporal and spatial deviations and prevents the utilization 

of the simulated series for trend analysis, as the uncertainties related to the non aerosol inclusion 

are larger than those resulting from solar radiation changes. Future works should take into 

account the spatial and temporal evolution of aerosol loads. 
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The IP climatology of 𝑆𝑊 produced for the 1950−2010 period confirms the existence of two 

gradients (latitudinal and longitudinal). Regions with higher 𝑆𝑊 values are situated in the 

southeastern regions of IP (Andalusia and Murcia). The lowest values of mean 𝑆𝑊 were found 

in the northwestern region of Galicia. The variability of 𝑆𝑊 also increases from south to north 

and from east to west directions with higher values over Galicia. 

The cloud cover was also evaluated following the definition proposed by Crawford and Duchon 

(1999) namely the shortwave radiative cloud fraction (𝑆𝑊𝑅𝐶𝐿𝐹 ). Results show that the 

southern half of the Iberian Peninsula has a larger part of its territory with more than 30% of 

clear sky days during the period under study, and these values are substantially higher in 

summer months (above 80% for almost all territory). 

The 𝑆𝑊 radiation climatology obtained from the 𝑊𝑅𝐹 5 𝑘𝑚 simulations is a solid base in the 

planning of renewable power plants on solar resources, providing estimates in areas where there 

are no measurements. It should however be taken into account that aerosols can attenuate on 

average 10 to 20% of the horizontal irradiance and even more when desert dust aerosols are 

present. Thus the simulation results presented should be used with some caution since a monthly 

mean distribution of aerosols was considered. 

The presented climatology points out Andalusia (Spain), Murcia (Spain), Alentejo (Portugal) 

and Algarve (Portugal) as the regions with the greatest 𝑆𝑊 potential to implement solar 

energy systems, allowing to identify, at a fine scale, the areas that have higher solar potential. 

Based on these results, it can be stated that 𝑊𝑅𝐹 simulations over Iberian Peninsula represent 

relatively well the downward solar radiation at the surface after a simple bias correction and 

can be used to study the future distribution of solar radiation over the region, according to 

different climate change scenarios.  
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4. 

4.Assessment of Direct Normal Irradiance 

Forecasts based on IFS/ECMWF data and 

observations in the south of Portugal 

 

This chapter is a transcription of the paper published with the following reference: 

 

Perdigão, J.; Canhoto, P.; Salgado, R.; Costa, M.J. Assessment of Direct Normal Irradiance 

Forecasts Based on IFS/ECMWF Data and Observations in the South of Portugal. 2020. 

Forecasting, 2, 130-150. https://doi.org/10.3390/forecast2020007 

 

 

Abstract 

 

Direct Normal Irradiance (DNI) predictions obtained from the Integrated Forecasting System 

of the European Centre for Medium-Range Weather Forecast (IFS/ECMWF) are compared 

against ground-based observational data for one location at the south of Portugal (Évora). 

Hourly and daily DNI values are analysed for different temporal forecast horizons (1 to 3 days 

ahead) and results show that the IFS/ECMWF slightly overestimates DNI for the period of 

analysis (1 August 2018 until 31 July 2019) with a fairly good agreement between model and 

observations. Hourly basis evaluation shows a relatively high errors, independently of the 

forecast day. Root mean square error increases as the forecast time increases with a relative 



 

99 

error of ~45% between the first and the last forecast. Similar patterns are observed in the daily 

analysis with comparable magnitude errors. The correlation coefficients between forecast and 

observed data are above 0.7 for both hourly and daily data. A methodology based on a new 

DNI attenuation Index (𝐷𝐴𝐼) is developed here to estimate cloud fraction from hourly values 

integrated over a day and, with that, to correlate the forecasts accuracy with sky conditions. 

This correlation with 𝐷𝐴𝐼 reveals that in IFS/ECMWF model, the atmosphere as being more 

transparent than reality since cloud cover is underestimated in the majority of the months of the 

year, taking the ground-based measurements as reference. The use of 𝐷𝐴𝐼 estimator confirms 

that the errors in IFS/ECMWF are larger under cloudy skies than under clear sky. The 

development and application of a post-processing methodology improves the DNI predictions 

from the IFS/ECMWF outputs, with a decrease of error of the order of ~ 30%, when compared 

with raw data. 

 

Keywords: Direct Normal Irradiance (DNI); IFS/ECMWF; Forecast; Evaluation; DNI 

Attenuation Index (𝐷𝐴𝐼); Bias correction  
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4.1. Introduction 

 

Solar energy is becoming a crucial renewable resource in modern societies, contributing to the 

sustainability of the planet with the mitigation of greenhouse gases emissions by reducing the 

consumption of coal or fuel oil for electricity production. However, the availability of solar 

resource over time at a given region of interest determines the cost/benefit of solar power plants 

implementation. Since the temporal series of solar radiation measurements are spatially limited, 

and thus scarce and sometimes inexistent, the prediction and validation of solar resource is a 

key factor for such enterprises. 

Several researchers have estimated the potential of renewable energies like wind or solar 

radiation for electricity or thermal energy production around the world; for example, in Europe 

and Africa (Gaetani el al., 2014), in Chile (Escobar et al., 2015), in Iberian Peninsula (Santos 

et al., 2015), in United Kingdom (Du et al., 2016), and in Spain (Ruiz-Arias et al., 2012). Solar 

power is a very promising energy source in Iberian Peninsula (IP) and a strong growth is 

expected in this area. In the IP there are multiple options for using renewable energy (solar, 

wind, hydro) to generate electricity, however the solar resource is high throughout the year 

(Perdigão et al., 2017; Ruiz-Arias et al., 2015; Šúri et al., 2007). 

Concerning solar energy, there are two main ways of converting solar energy into electricity: 

photovoltaic (PV) and concentrating solar power (CSP). The PV panels convert either direct 

and diffuse solar irradiance, while the CSP technology only concentrate the Direct Normal 

Irradiance (DNI). The focus of this work is on the prediction of DNI, in view of its use in CSP 

plant management. The forecast of global solar radiation (direct + diffuse) for the same region 

was addressed, for example, in Perdigão et al. (2017) and Pereira et al. (2019). 

There are several approaches to predict solar irradiance such as Numerical Weather Prediction 

(NWP), Cloud Motion Vector (CMV), statistical time series analysis and other methods (Ruiz-

arias et al., 2016; Martín et al., 2010; Alsamamra et al.,2009). In the last years, one of the major 

research challenges for the use of NWP in solar energy applications is the DNI forecast, aiming 

at the development and increase of CSP installed capacity and operation management. These 

CSP needs the knowledge of DNI for specific sites (Kraas et al., 2013; Law et al., 2014), and 

one of the difficulties is the need to forecast the DNI with several days ahead to increase 

efficiency and minimize the operational costs of the power plants (Nonnenmacher et al., 2016; 

Gomez-Gil et al., 2012). For instance, Casado-Rubio et al. (2017) proposed a simple 
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methodology to obtained DNI forecast, based on Weather Research and Forecasting model 

(𝑊𝑅𝐹  model) and a radiative transfer simulation (for 1-day forecast) and found that this 

procedure can be used as diagnostic tool for operational power plants. 

Until the most recent years, DNI measurements are not available in many places or with long 

series, and this variable was not a direct output of NWP models. Currently, the Integrated 

Forecast System of the European Centre for Medium-Range Weather Forecasts (IFS/ECMWF) 

provides the direct normal irradiance as an output. However, the use of NWP models in DNI 

forecast is still not perfect and requires Multiple Output Statistic (MOS) methodologies (Law 

et al., 2014). Lopes et al. (2018) used the IFS global model of ECMWF to assess DNI for short-

term (24 hours) in south of Portugal and (2018) found relative differences in the range ~7% to 

~12% on an annual basis between predictions and observations at ground-based stations. Lara-

Fanego et al. (2012a) found a relative root mean square error of 60% for hourly DNI forecasts 

in Spain for all sky conditions, using the Advanced Research Weather Research and Forecasting 

model (𝑊𝑅𝐹). Troccoli and Morcrette (2014) analysed the direct solar radiation data using two 

different radiation schemes of the IFS/ECMWF for four ground-based measuring stations in 

Australia and found mean absolute errors between 18% and 45% and correlation coefficients 

between 0.25 and 0.85. In that work, the usage of a post-processing bias correction improved 

results, resulting in mean absolute errors between 10% and 15% and correlation coefficients 

of about 0.9. Ruiz-Arias et al. (2015) also found better results for DNI forecasts from 𝑊𝑅𝐹 

model by using a post-processing algorithm. Law et al. (2014) presents a comprehensive review 

on DNI forecast obtained from several methods and some examples of DNI forecast accuracies 

are presented. According to Vick et al. (2012), most studies on DNI models have assessed the 

annual and hourly mean bias and root mean square errors between measured and DNI models. 

However, according to the same authors, the accuracy of monthly and daily direct normal 

irradiation forecasts should also be assessed to detect gaps in DNI modelling that may be 

improved and correlated with sky conditions, time of the year or location. 

Since there are a number of on-going projects in Portugal to explore the solar resource, it is 

imperative to carry out studies that help understand the errors associated with direct normal 

irradiance predictions over several days ahead. 

The Portuguese Institute for Sea and Atmosphere (IPMA), the meteorological Portuguese 

authority, uses the ECMWF global model predictions as a main forecast tool. Comparisons 

between operational global NWP models show that the ECMWF skills over Europe are the best 

(Haiden et al., 2012). Good numerical predictions of the near surface weather conditions 
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presuppose a good representation of the surface radiative balance. However, a correct forecast 

of the global irradiance does not necessarily mean an accurate partition between direct and 

diffuse components, as this partition is not essential in order to solve the surface balance. In 

response to a growing demand from the solar energy market, the ECMWF has recently (2015) 

started to include DNI among the available predicted variables. These forecasts are likely to be 

used by solar plants in southern Portugal. 

Therefore, the main objective of this study is to assess the performance of the IFS/ECMWF 

global model (CY45R1 cycle − released at 5 June /2018) to predict DNI in south of Portugal, 

by comparing its results with observational data of Évora station, on an hourly and daily basis 

and for various forecasting horizons (up to four days ahead). This publication also presents a 

method to predict sky conditions based on observational DNI data. A post-processing 

methodology is also tested in order to minimize the bias in the IFS/ECMWF model. 
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4.2. Datasets and Methods 

 

4.2.1. DNI observational data 

 

The measurements used in this study are obtained from the observatory of Atmospheric 

Sciences located at the University of Évora (38.57° 𝑁, 7.9° 𝑊 , 293 m a.m.s.l.). DNI was 

measured using a first-class pyrheliometer (Kipp & Zonen, model CHP01), following the 

World Meteorological Organization (WMO) and the International Standard ISO 9060:1990. 

This model of pyrheliometer was designed to measure the solar irradiance with an opening half-

angle of 2.5°. 

A period of one year of DNI measurements is used in this study, from 1 August 2018 until 31 

July 2019. The sensor output is sampled every 5 seconds and one-minute mean, minimum, 

maximum and standard deviation values are recorded. Hourly values are then computed by 

averaging one-minute values when the number of records for that hour corresponds to at least 

fifty minutes. The data for solar zenith angles above 89° (twilight and nighttime) were not 

considered and thus removed from the analysis. The daily mean was computed using a similar 

methodology of that used by Troccoli and Morcrette (2014), i.e. if one or more hourly values 

are not present on a given day, then that day is not used in the analysis.  

All instruments of this measuring station are subject to maintenance and cleaning procedures 

following the recommendations of the World Meteorological Organization and data was subject 

to BSRN (Baseline Surface Radiation Network) quality filters (Long et al., 2010) based on 

physically possible and extremely rare values. 

In this chapter, the seasons are defined according to the WMO nomenclature i.e., winter 

(December−January−February: DJF), spring (March−April−May: MAM), summer 

(June−July−August: JJA) and autumn (September−October−November: SON). 

 

4.2.2. DNI forecast data 

 

Predicted DNI from IFS/ECMWF, from 1 August 2018 until 31 July 2019, was obtained with 

a resolution of 0.125° × 0.125° (lat×lon grid). The forecast data are provided with an hourly 
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time step for the first three days and with a three-hour time step for the 4th day. In this work, 

forecasts were separated into four intervals: day_0 (1st day); day_1 (2nd day); day_2 (3rd day); 

and day_3 (4th day). The predicted accumulated solar irradiation in hour time steps for the 

entire forecast horizon is converted into hourly mean irradiance values of DNI.  

The shortwave radiation scheme of the IFS/ECMWF used in this study is the new radiation 

scheme implemented at 11 July/2017, called ecRad (Hogan and Bozzo, 2016). This scheme is 

faster than the previously McRad scheme (Morcrette et al., 2008) and, can be executed more 

times during the forecast. This scheme computes the profiles of shortwave and longwave 

irradiances at half levels, and these are interpolated horizontally back onto the model grid using 

cubic interpolation (Hogan and Bozzo, 2016). The aerosol distribution was adapted from Tegen 

et al. (1997), using a climatology of six hydrophobic aerosol species as well as the newer 

climatology obtained from a reanalysis of atmospheric composition produced by the 

Copernicus Atmosphere Monitoring Services (CAMS), with 11 hydrophilic and hydrophobic 

species (Flemming et al., 2017). 

According with Hogan and Bozzo (2016), ecRad incorporates a method to represent longwave 

scattering of clouds which leads to an improvement in forecast skills. The default ice optical 

properties are computed using the Fu scheme (Fu, 1996), but two additional schemes are 

available. 

In the work by Hogan and Bozzo (2016), it is possible to find the evolution of the ECMWF 

Radiation Scheme after 2000 and the options available. More details on the physical processes 

(and the options available) are reported in the IFS documentation in the ECMWF web page 

(www.ecmwf.int). 

The nearest neighbour technique was used to select the forecast data for comparison with 

measurements. To assess forecasting accuracy, the observational data was compared with the 

forecasts for the nearest model grid point. Wild and Schmucki (2011), made several statistical 

tests surrounding a grid point to analyse trends and the results showed that different grid points 

surrounding a given grid point (selected by a Lat/Lon value) do not differ significantly from 

each other in the majority of the cases. 
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4.2.3. Statistical indicators for model assessment 

 

The quality of the DNI forecasts is evaluated against observational data using common 

statistical parameters as the mean bias error (𝑀𝐵𝐸), mean absolute error (𝑀𝐴𝐸), root mean 

square error (𝑅𝑀𝑆𝐸) and correlation coefficient (𝑟). In this work, errors are calculated based 

on hourly, daily and monthly mean values. Similar to the analysis presented by Nonnenmacher 

et al. (2016) and Perez et al. (2013), night-time values (zero solar irradiance) are excluded from 

the model assessment. The ratio (𝑅𝑆𝑅) between the root mean square error and the observations 

standard deviation (σ𝑜𝑏𝑠) is also determined. 

These statistical parameters are defined as follows: 

𝑀𝐵𝐸 =
1

𝑛
∑(𝑚𝑖 − 𝑜𝑖)

𝑁

𝑖=1

 (4.1) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑚𝑖 − 𝑜𝑖|

𝑁

𝑖=1

 (4.2) 

𝑅𝑀𝑆𝐸 = [
1

𝑁
∑(𝑚𝑖 − 𝑜𝑖)

2

𝑁

𝑖=1

]

1
2

 (4.3) 

𝑟 =
∑ (𝑜𝑖 − 𝑜̅)(𝑚𝑖 − 𝑚̅)
𝑁
𝑖=1

[∑ (𝑜𝑖 − 𝑜̅)2
𝑁
𝑖=1 ∑ (𝑚𝑖 − 𝑚̅)2

𝑁
𝑖=1 ]

1
2

 (4.4) 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝜎𝑜𝑏𝑠
=
[
1
𝑁
∑ (𝑚𝑖 − 𝑜𝑖)

2𝑁
𝑖=1 ]

1
2

[∑ (𝑜𝑖 − 𝑜̅)2
𝑛
𝑖=1 ]

1
2

 (4.5) 

where 𝑁  is the number of data points and 𝑚  and 𝑜  are the forecast and observed values, 

respectively. The 𝑀𝐵𝐸  represents a systematic error between predicted and observational 
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values, while the 𝑅𝑀𝑆𝐸 quantifies the spread in the distribution of errors. The 𝑀𝐵𝐸 provides 

information on the underestimation (negative values) or overestimation (positive values) of 

forecasts using the measured values as reference. On the other hand, the 𝑅𝑀𝑆𝐸 is very sensitive 

to high magnitudes errors due to the higher statistical weight of large errors. The 𝑀𝐴𝐸 

represents the average magnitude of errors in a set of forecasts without considering their 

direction (bias) and gives the same weight to all errors (see as an example, Chai and Draxler, 

2014), i.e., it is less sensitive to large deviations. 𝑅𝑀𝑆𝐸 is one of the most relevant statistical 

parameters for solar power plants analysis (e.g. Landelius et al., 2018). For all statistical 

parameters, the best results are obtained when values are equal or near zero, except for the 

correlation coefficient when values closer to one correspond to better performances. According 

with Moriasi et al. (2007), 𝑅𝑆𝑅 incorporates the benefits of error index statistics and includes 

a scaling/normalization factor, so that the resulting statistic and reported values can apply to 

various constituents. The 𝑅𝑆𝑅 parameter varies between zero and a positive value with the 

values close to zero representing a better forecast simulation Moriasi et al. (2007). The same 

thresholds performance ratings as shown in Table 4 of Moriasi et al. (2007) are used here, i.e., 

values of 𝑅𝑆𝑅 < 0.5  indicate the optimal performance rating while 𝑅𝑆𝑅 > 0.7  represent 

unsatisfactory model performance rating. 

 

4.2.4. Cloud Area Fraction and DNI Attenuation Index (DAI) 

 

In most of solar radiation studies, an index known as clearness index is used to quantify the 

bulk atmosphere transmittance (see Iqbal, 1975; Lopes et al., 2018, among others). This 

clearness index is defined as the ratio of global horizontal irradiance to extraterrestrial 

horizontal irradiance. 

In this section, a new methodology is proposed to estimate the clearness of the atmosphere 

(termed DNI attenuation index−𝐷𝐴𝐼 ) based exclusively on the observed direct normal 

irradiance. DNI varies during the day due to Sun-Earth geometry and atmospheric constituents, 

though the main factor of DNI variation is the cloud coverage, which can drastically reduce this 

component of solar radiation when the direct beam from the sun is intercepted, sometimes 

reaching a value of zero depending on the type of clouds. The 𝐷𝐴𝐼 is therefore an indicator of 

the cloud attenuation of DNI. 
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This method is based on the integration of the measured hourly mean values of DNI (see Figure 

4.1a) obtained every day, for a given month, and it constitutes a measure of sky conditions for 

a particular month. This has the advantage of not relying on reanalyses, satellite data or other 

products that could also be a source of bias. 

a) b) 

 
Figure 4.1. Curves of hourly mean DNI projected on the horizontal plane for two different days: (a) partially 

cloudy sky and (b) clear sky day. 

A is the area under the curve corresponding to the measured DNI (energy per unit area) and is obtained by 

numerical integration using the trapezoid rule. 

 

In this way, a dimensionless quantity (in percentage) called DNI attenuation index (𝐷𝐴𝐼) is 

defined as 

𝐷𝐴𝐼𝑖 = (1 −
𝐴𝑖
𝑁𝐹

) × 100% (4.6) 

where 

𝐴𝑖 = ∫ 𝐼(𝑡)𝑑𝑡 ~ 
𝑡1

𝑡0

𝛥𝑡

2
∑(𝐼𝑘−1 + 𝐼𝑘)

24

𝑘=1

 (4.7) 

with ∆𝑡 = 3600 𝑠 because a time step of one hour is used and 𝑁𝐹 is the normalization factor 

calculated as 

𝑁𝐹 = 𝑚𝑎𝑥
1≤𝑖≤𝑛

(𝐴𝑖) (4.8) 

in which 𝑖 is the number of day of the month. 
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To obtain the 𝐷𝐴𝐼 it is assumed that the maximum value of daily energy per unit area (integral) 

in a given month is interpreted as a clear sky day in that month and the 𝐷𝐴𝐼 will take the value 

of zero for that particular day. Different normalization factors will be expected for different 

months, with higher values during the summer. Although 𝐷𝐴𝐼 does not allow to effectively 

distinguish the contribution of aerosols or cloud cover to DNI variations, it provides a clear idea 

of the transparence of the atmosphere for a specific day and it hints at the identification of a 

clear day (or clearness of atmosphere) from an overcast day or extreme aerosol event. The 𝐷𝐴𝐼 

varies between zero (clear sky day) and one (overcast sky). 

The relation between 𝐷𝐴𝐼 and oktas was established through three classes of days (WMO, 

2008): class I – clear sky day (0 − 2 𝑜𝑘𝑡𝑎𝑠; 𝐷𝐴𝐼 < 31.25%); class II – partially cloudy skies 

(3 − 5 𝑜𝑘𝑡𝑎𝑠; 31.25 ≤ 𝐷𝐴𝐼 ≤ 68.75%) and class III as cloudy skies (6 − 8 𝑜𝑘𝑡𝑎𝑠; 68.75% ≤

𝐷𝐴𝐼 ≤ 100%), in the same way as presented in Table 1 of the article of Jafariserajehlou et al. 

(2019). 

The total cloud area fraction obtained from the Clouds and the Earth's Radiant Energy System 

(CERES) radiometer combined with the Moderate Resolution Imaging Spectroradiometer 

(MODIS), both on board the Terra and Aqua satellites, is also considered in this work for 

assessment of 𝐷𝐴𝐼  estimates. The CERES-MODIS cloud mask data were obtained on a 

monthly basis (CERES_SYN1deg_Ed4.1) for the period available for this study (08/2017 until 

05/2019) and from CERES portal (see ceres.larc.nasa.gov). The cloud area fraction consists of 

the percentage of cloudy pixels identified in areas of 1°×1° (Wielicki et al., 1996). 

 

4.2.5. Post-processing correction 

 

A linear least square statistical method for bias correction in order to correct daily direct solar 

radiation values obtained from IFS/ECMWF was tested. This method is the simplest post-

processing technique and has been applied in several studies over the past years (see for 

example Polo et al., 2015). Mejia et al. (2018) found that MOS linear fit procedure 

outperformed the quantile-quantile mapping (Q-Q). 

The linear regression parameters were computed for each month using forecast and observed 

daily values for the period of 01/08/2017 until 31/07/2018. 
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The correction parameters are obtained, for each month, using the linear equation 

𝑦𝑚𝑜𝑑𝑒𝑙,𝑗
𝑖 = 𝑚𝑗 × 𝑥𝑜𝑏𝑠,𝑗

𝑖 + 𝑏𝑗 (4.9) 

𝑖 = 1,… 28 30⁄ 31⁄ ;  𝑗 = 1,…12 

where 𝑥𝑜𝑏𝑠, 𝑚𝑗 and 𝑏𝑗are, respectively, the observed DNI values, the slope of the fitted line and 

the intercept.  

The regression parameters were used to correct the IFS/ECMWF forecasts for the following 

year – the period of analysis (01/08/2018 until 31/07/2019) – using the following equation (Polo 

et al., 2016) 

𝑦𝑖
𝐵𝐶𝑚𝑜𝑑𝑒𝑙,𝑗

= 𝑦𝑖
𝑚𝑜𝑑𝑒𝑙,𝑗

− [(𝑚𝑗 − 1)𝑥
𝑖
𝑜𝑏𝑠,𝑗 + 𝑏𝑗] (4.10) 

𝑖 = 1,… 28 30⁄ 31⁄ ;  𝑗 = 1,…12 
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4.3. Results and discussion  

 

4.3.1. Assessment of hourly and daily DNI forecasts 

 

As an example, Figure 4.2 shows the time series of predicted hourly mean DNI during four 

consecutive days and the corresponding observed values for two selected cases, one in JJA, 

other in SON: forecasts issued on 1st August 2017 00:00 and on 27th November 2017 00:00. 

 
a) August, 1st b) November, 27th 

 

Figure 4.2. Example of four consecutive days of observed (red line) and simulated (blue line) hourly mean DNI 

in Évora starting at (a) 1st August 2017 00:00 and (b) 27th November 2017 00:00. 

 

The IFS/ECMWF forecasts have a similar behavior to that of observational DNI for the two 

selected cases, with a fairly good agreement, especially in the case of August (Figure 4.2a). 

Figure 4.2b show a partially cloudy day (day_0) and a cloudy day (day_1), making evident that 

the model did not predict clouds correctly on November 28 since observational data clearly 

shows an overcast day. Another interesting feature in Figure 4.2 is that the IFS/ECMWF scheme 

slightly underestimated the DNI in the Summer case (Figure 4.2a) and overestimated it in the 

Autumn case (Figure 4.2b) in the case of partly cloudy day. It is important to note that the 

example presented in Figure 4.2 is simply a selected example. 
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Figure 4.3 shows the comparison between ground-based measurements of hourly mean DNI 

and forecast data obtained from IFS/ECMWF for the entire period of study and for the four 

forecasted days. 

 
Figure 4.3. Scatter plots of predicted vs. measured hourly mean DNI for: (a) day_0, (b) day_1, (c) day_2 and (d) 

day_3, during the entire period considered. 

The dashed line represents the 𝑦 =  𝑥 line and the solid line is the least squares regression fit. 

 

As expected, the errors associated to the hourly DNI forecast are quite significant with a strong 

scatter around 𝑦 = 𝑥 line (dashed line). The slope of the regression line gives an indication of 

the quality of the forecasts and it is possible to conclude that the DNI IFS/ECMWF forecast are 

reasonable for the first three days ahead since the density of points is higher around the 𝑦 = 𝑥 

line (dashed line in Figure 4.3). The worst forecast is for day_3. From the Figure 4.3 it is also 

possible to verify that IFS overestimates DNI for lower values and underestimates DNI for 

higher irradiance values. This underestimation can be explained by the use of a constant 
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monthly aerosol climatology in the IFS/ECMWF as argued by Lopes et al. (2018), concluding 

that the model tends to underestimate DNI under very clear sky atmospheric conditions, when 

the actual aerosol concentrations are below mean values. 

The statistical errors, on an hourly basis, are presented in Table 4.1. 

 

Table 4.1. Statistical indicators of comparison between observed and predicted hourly mean DNI for the entire 

period (01/08/2018 – 31/07/2019). 

Bold values mean best score. 

Day 𝑴𝑩𝑬 (𝑾𝒎−𝟐) 𝑴𝑨𝑬 (𝑾𝒎−𝟐) 𝑹𝑴𝑺𝑬 (𝑾𝒎−𝟐) 𝒓 

0 13.54 136.80 195.41 0.84 

1 15.03 146.35 210.60 0.81 

2 17.273 154.97 224.02 0.78 

3 1.048 197.88 267.25 0.70 

 

The assessment between datasets shows that errors increase from the first day of forecast to the 

last day; day_0 exhibited the best performance with the lowest errors. 𝑀𝐵𝐸 between calculated 

and measured DNI is smaller than 18 𝑊𝑚−2. Regarding the 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸, their values 

increases from day_0 to day_3 (fourth day of forecast) with a difference between them of 

~61𝑊𝑚−2  (~45%)  and 72 𝑊𝑚−2  (~37%) , respectively. High correlation coefficients 

(𝑟 ≥ 0.70) are obtained between the observations and forecasts for all forecast horizons (see 

Table 4.1). 

The boxplots of Figure 4.4 show the 𝑀𝐵𝐸, 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸 and correlation coefficient based on 

hourly values for each forecast day and for the entire period of data (365 days). 



 

113 

 

Figure 4.4. Boxplots of statistical indicators based on hourly values for (a) 𝑀𝐵𝐸, (b) 𝑀𝐴𝐸, (c) 𝑅𝑀𝑆𝐸 and (d) 

correlation coefficient, for different days ahead of forecast. 

The crosses represent the mean value of the sample, the horizontal solid line within the box represents the median, 

and the bottom and top of the boxes indicate the first and third quartiles, respectively. Boxes correspond to the 

interquartile range (IQR) where fifty per cent of the data is located. The circles represent the outliers, and the lower 

and upper ends of the whiskers are the minimum and maximum values of the datasets, respectively. 

 

𝑀𝐵𝐸 indicates a slightly overestimation of hourly mean DNI for the majority of the forecasts 

days (> 50%) in the period. The length of the IQR is a measure of the relative dispersion of a 

dataset and Figure 4a show similar length, in IQR, for the first two days of forecasts with values 

 in [−80; 100 ] 𝑊𝑚−2. On the other hand, the difference between the IQR of first forecast day 

and the last one (day_4) in the same plot is about 24%. In what concerns to 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸, 

as expected, a similar pattern like 𝑀𝐵𝐸 was found, with errors increasing as the lead time of 

the forecast increases, and a relative percentage error, relatively to the mean, between day_0 

and day_3, for both parameters, of the order of 30%. It is worth noting that a significant number 
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of outliers exist after the second day of forecasting. As for the correlation coefficients, these 

values indicate a good forecast performance with the best results obtained for day_0 with the 

highest median value of ~0.98 (Figure 4.4d). The correlation coefficient (𝑟) presents a good 

performance for all forecast days in the analysis. 

Considering now the daily mean values, Figure 4.5 shows the comparison between measured 

and predicted DNI for the entire period. 

 

 

Figure 4.5. Comparison between predicted and measured daily mean DNI for the four prediction days: (a) day_0, 

(b) day_1; (c) day_2 and (d) day_3. 

𝑀𝐵𝐸, 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸 and 𝑟 are also presented in each plot. The solid lines are the linear fits and the dashed line 

represents the 𝑦 =  𝑥 line. 

 

As observed in the case of hourly values, the differences between observed and predicted DNI 

increases from the first day of forecast to the last one. Another common feature observed is the 
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DNI overestimation for lower values of direct normal irradiance as it can be seen through the 

trend lines. The statistical indicators obtained are comparable to the analysis made for the 

hourly values, showing a low forecast bias, with 𝑀𝐵𝐸 values below 7 𝑊𝑚−2 for all forecast 

days. Regarding 𝑅𝑀𝑆𝐸, an increase of 35% percent (from ~61 𝑊𝑚−2 to 76 𝑊𝑚−2 between 

the first and the last day of forecast. It is evident from the scatter plots of Figure 4.5 that between 

roughly 250 𝑊𝑚−2 and 350 𝑊𝑚−2 the distribution of data points is closer to the 𝑦 = 𝑥 line 

(ratio 1: 1 ), which reveals a good agreement between observations and predictions. The 

overestimation occurs for observational DNI values below 200 𝑊𝑚−2 , with a larger 

dispersion, which may reflect inaccuracies in IFS cloud representation. 

Figure 4.6 shows the monthly mean of daily values of simulated and measured DNI for the 

period between 1 August/2018 and 31 July/2019, thus allowing to analyze the similarity 

between datasets throughout the year for the different forecast days. 

 

 

Figure 4.6. Monthly mean of predicted and observed daily mean DNI in Évora for the four different forecast days 

in the period from August/2018 to July/2019. 

 

As shown in Figure 4.6, IFS/ECMWF model overestimates the radiation in more ~50% of the 

days throughout the year, independently of forecast day, although with small differences 

datasets. 

The variation of statistical indicators between datasets (on a daily basis) grouped by months is 

presented in Figure 4.7. 
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Figure 4.7. Statistical indicators obtained from the comparison between measurements and predictions of daily 

mean DNI values of. (a) 𝑀𝐵𝐸; (b) 𝑀𝐴𝐸; (c) 𝑅𝑀𝑆𝐸; (d) correlation coefficient. 0, 1, 2 and 3 represent day_0, 

day_1, day_2 and day_3, respectively. 

 

Overall, 𝑀𝐵𝐸, 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 present better results for the first day of forecast (day_0). The 

highest values of statistical errors correspond to the forecasts obtained for day_3. 

From Figure 4.7a, 𝑀𝐵𝐸 values ranges from about −42 𝑊𝑚−2 to 35 𝑊𝑚−2, and show ~60% 

of the months with positive 𝑀𝐵𝐸 values (independently of forecast days). According with the 

same figure, the underestimation occurs in two thirds of the months belonging to the MAM and 

SON seasons, probably as a consequence of a less accurate representation of the clouds (or 

aerosols) at short time scales in the radiative scheme of IFS/ECMWF. 
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According with Lopes et al. (2018), the IFS global model from ECMWF tends to underestimate 

DNI in clear sky conditions due to the use of a monthly mean profile of aerosols. Perdigão et 

al. (2017) also used the same argument in the assessment and characterization of the shortwave 

downward radiation incident at the Earth’s surface over Iberian Peninsula using the mesoscale 

Weather Research and Forecasting (𝑊𝑅𝐹) model.  

Figure 4.7b and 4.7c show that 𝑀𝐴𝐸  and 𝑅𝑀𝑆𝐸  present lower values, independently of 

forecast day, in JJA and SON seasons. 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 present a similar variation that as found 

for 𝑀𝐵𝐸  (Figure 4.7b and 4.7c) with values ranging from 33 𝑊𝑚−2  to 87 𝑊𝑚−2  and 

36 𝑊𝑚−2  to 102 𝑊𝑚−2 , respectively. As mentioned above, results show high correlation 

coefficients for all forecast days, although with the IFS/ECMWF model performing better in 

the first day of forecast.  

The majority of statistical errors found in this work are in line with values obtained in the 

forecast of DNI by Nonnenmacher et al. (2016) and Lara-Fanego et al. (2012a) using 𝑊𝑅𝐹 

model, and Gala et al. (2013) using a clear sky model, among other studies. Table 2 of Law et 

al. (2014), show a summary of the state of art of DNI accuracy obtained from NWP and other 

methodologies. 

 

4.3.2. Relation between the DNI attenuation index (DAI) and DNI forecasts 

 

Inaccurate representation of clouds in the radiative transfer scheme of global numerical weather 

prediction models is the primary cause of errors in the prediction of solar radiation. In this 

section, the DNI attenuation index (𝐷𝐴𝐼) is proposed to assess and analyze the impact of cloud 

representation in DNI forecast from the IFS/ECMWF model, as defined in Section 4.2.4 

(Equation 4.6). 

Before analyzing the relationship between the 𝐷𝐴𝐼 index, computed using data from the Évora 

radiometric station (section 4.2.1) and the quality of the DNI forecast errors, the reliability of 

DAI is assessed, on a monthly basis, using the Total Cloud Area Fraction from CERES (section 

4.2.4) for the same local. According to Almorox et al. (2017), global solar irradiation obtained 

from CERES, at monthly basis, provide a very good accuracy for solar radiation studies since 

their results shows a good fit between CERES data and solar radiation data from different 

meteorological stations over Spain. 
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Figure 4.8. (a) Monthly mean cloud cover from CERES versus 𝐷𝐴𝐼 in Evora, and (b)Temporal evolution of 

CERES cloud Fraction (red line) and 𝐷𝐴𝐼 (blue line) in the period between Aug/2017 and Jul/2019 (twenty-two 

months). 

Black solid line represents the linear fit. 

 

The linear regression between CERES cloud fraction and 𝐷𝐴𝐼  shows a good agreement 

between these two indexes (Figure 4.8a), with a correlation coefficient of 𝑟~0.92 . When 

comparing the temporal evolution of 𝐷𝐴𝐼 and cloud area fraction (CERES) on a monthly basis, 

both time series exhibits a similar pattern (Figure 4.8b), and shows, as expected, a decrease of 

cloud cover in JJA season in contrast with an increase of the cloud cover in the DJF season. 

The major discrepancies between datasets occur in February/2018, February/2019 and in 

August/2018, corresponding to periods in which the region was affected by aerosol events 

(Saharan dust particles, in February, and forest fires in August). 

The results suggest that 𝐷𝐴𝐼 may be used as a proxy to cloud cover, particularly suitable to 

estimate the impact of clouds on the DNI forecast. 

As for the observations, the 𝐷𝐴𝐼  of model predictions was also calculated and hereafter is 

referred as 𝐷𝐴𝐼 (IFS). Figure 4.9 shows a boxplot comparison between 𝐷𝐴𝐼 and 𝐷𝐴𝐼 (IFS) 

index. 
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Figure 4.9. Monthly boxplots of daily mean values of 𝐷𝐴𝐼  based on observations (OBS) and IFS/ECMWF 

forecasts (IFS), for Évora. 

The red circles represent outliers (maximum value). 

 

From Figure 4.9 it can be seen that in the majority of analyzed months, the 𝐷𝐴𝐼 (IFS) is lower 

than 𝐷𝐴𝐼, meaning that cloud scheme in IFS/ECMWF model underestimates the clouds and 

aerosols events when compared with the 𝐷𝐴𝐼  index. 𝐷𝐴𝐼  are characterized by a lower 

variability in summer with more than 50% of the days with values lower than 31.25% (clear 

sky days) and a higher variability during spring season (higher IQR values with more than 50% 

of days with values higher than 31.25%). These results are in line with the study by Royé et al. 

(2018), in which low levels of cloudiness (clear skies days) over Iberian Peninsula were found 

for the case of summer months, using satellite data from the MODIS and for the period 

2001–2017, with the exception of the Cantabrian coast. On the other hand, the variability of 

observed 𝐷𝐴𝐼 is higher, mainly due to a higher variability on actual cloud cover and aerosol 

concentrations values. This variability also explains the relative high errors reported in 
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previously section. Perdigão et al. (2017) also found a high variability in downward shortwave 

radiation during March. 

Figure 4.10 shows the relation between the cloud class, grouped according to cloud coverage 

(in 𝑜𝑘𝑡𝑎𝑠), estimated on the basis of 𝐷𝐴𝐼, as indicated in Section 4.2.4, and the statistical 

indicator 𝑅𝑀𝑆𝐸 (in three ranges of values), obtained for each day, from hourly raw values. Day 

type class (I-clear, II-partially cloudy and III-overcast) is obtained following the WMO 

guidelines. 

 

 

Figure 4.10. (a) Scatter plot of 𝐷𝐴𝐼 versus Root Mean Square Error (𝑅𝑀𝑆𝐸) for day_0 and (b) Number of days 

in a seasonal basis within different ranges of forecast errors grouped in classes, according to the cloud coverage – 

class I (0 − 2 𝑜𝑘𝑡𝑎𝑠), class II (3 − 5 𝑜𝑘𝑡𝑎𝑠) or class III (6 − 8 𝑜𝑘𝑡𝑎𝑠) for 𝑅𝑀𝑆𝐸.  

 

From both plots of Figure 4.10, it becomes evident that 𝑅𝑀𝑆𝐸 strongly depends on the sky 

conditions, and its possible verify that:  

(i) Approximately ~19% of the days presents 𝑅𝑀𝑆𝐸 values lower than 100 𝑊𝑚−2 (blue dots 

in Figure 10a). This percentage corresponds mostly to a cloud coverage lower than or equal to 

two 𝑜𝑘𝑡𝑎𝑠 – clear skies days; 

(ii) ~47%  of the days presents a cloud coverage of class II type, in the range 

[100 − 200] 𝑊𝑚−2; 

(iii) 𝑅𝑀𝑆𝐸 values above 200 𝑊𝑚−2 occur for ~34% of the days (red dots in Figure 10a). For 

this value, the majority of days are found in the cloud coverage type II category, suggesting that 

the model gives worst results in partially cloudy days, due to an inaccurate cloud representation 
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or of their effects on the solar irradiance at the surface. For instance, Lopes (2015) found that 

thin clouds (like cirrus) may cause a decrease in DNI of around 20%; 

(iv) the errors found in summer months can be explained by the monthly constant aerosol 

climatology used in IFS/ECMWF as argued by Lopes et al. (2018). 

The analysis of the climatology of cloud cover at Évora based on 𝐷𝐴𝐼 for the period from 1 

August/2018 to 31 July/2019 (Figure 4.10b), shows that circa 45% of the days are in the class 

I, considering only 𝑅𝑀𝑆𝐸 errors below 200 𝑊𝑚−2, and these days are mainly in the MAM 

and JJA seasons, when more clear skies days occur over Évora city. These values are consistent 

with those found by Sanchez-Lorenzo et al. (2009) and by Perdigão et al. (2017) for the same 

sky conditions over the Iberian Peninsula. 

Concerning the cloud coverage of class II and III, for the period in analysis and independently 

of the 𝑅𝑀𝑆𝐸 values, there are ~37% and ~13% of days, respectively. Cloud coverage of type 

III are mostly found in DJF season. 

It’s important to mention that the quality and reliability of the forecast of solar radiation is 

directly related to the accuracy of cloud representation as well as of aerosols. For instance, Lara-

Fanego et al. (2012a) found that 𝑅𝑀𝑆𝐸 values ranged from 20% to 100% for clear and cloudy 

skies, respectively, using 𝑊𝑅𝐹 model over Andalusia. 

Another feature can be seen in Figure 4.11 where it is possible to observe a relation between 

the 𝑅𝑆𝑅 and the 𝐷𝐴𝐼 for the first day of forecast (day_0). 
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Figure 4.11. Relation between 𝐷𝐴𝐼 and 𝑅𝑆𝑅 based on hourly mean DNI forecasts and measurements for the first 

day of predictions between 01/08/2018 and 31/07/2019 (one year). 𝑅𝑆𝑅 is dimensionless varying between zero 

and a large positive number.  
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As expected, from Figure 4.11, as the 𝐷𝐴𝐼 increases the 𝑅𝑆𝑅 increase. The forecast obtained 

from IFS/ECMWF presents a better performance for clear sky days. In general, the DNI forecast 

tends to be more accurate (𝑅𝑆𝑅 < 0.5) for lower values of 𝐷𝐴𝐼, which represents ~50% of 

the days in Évora. This value of clear sky days is of the same order of the study of Freile-Aranda 

et al. (2017), who found, for a climatic region which includes Évora, a minimum cloud cover 

(at an annual average) around 43%. The best performance (of IFS/ECMWF) are found for 

summer months (smaller values of 𝑅𝑆𝑅 ≤ 0.5 and 𝐷𝐴𝐼 ≤ 2oktas). For instance, Kraas et al. 

(2013), also found that during summer season the forecasts are generally more reliable than in 

other seasons. 

 

4.3.3. Statistical bias correction analysis of daily DNI forecasts 

 

The bias between solar radiation forecasts from Numerical Weather Prediction models and 

observations can be decreased by applying a bias post-processing correction. This bias 

correction methodology have been used in solar radiation studies by several authors, such as 

Ruiz-Arias et al. (2015), Polo et al. (2015, 2016), Perdigão et al. (2017), Mejia et al. (2018), 

among other authors.  

The forecast values of DNI are corrected following the methodology described in section 4.2.5. 

In Figure 4.12, we show the result of the application of the MOS method for the various forecast 

horizons.  

Error metrics are also presented in graphs using the new corrected predictions. 
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Figure 4.12. Comparison between predicted and measured daily mean DNI for the four prediction days: (a) day_0, 

(b) day_1; (c) day_2 and (d) day_3 before (blue dots) and after bias correction (red dots). 𝑀𝐵𝐸, 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸 and 

𝑟, after BC, are also presented in each plot. 

The solid lines are the linear fits - green for BC procedure and black for IFS/ECMWF raw data - and the dashed 

line represents the 𝑦 =  𝑥 line. 

 

Overall, the MOS correction significantly improve the results. The corrected data exhibited 

(now) less dispersion around 𝑦 = 𝑥 line. Statistical errors decrease in the order of about 30%, 

when compared with initial IFS predictions and independently of the forecast day. For example, 

𝑀𝐴𝐸 values decrease from the interval [49 − 60] 𝑊𝑚−2 to [32 − 41] 𝑊𝑚−2, while 𝑅𝑀𝑆𝐸 

values decrease from [61 − 76] 𝑊𝑚−2 to [43 − 57] 𝑊𝑚−2. Correlation coefficient are in line 

with previously values, i.e., all 𝑟 values were improved with values ≥ 0.89.  

To a better comparison, Figure 4.13 shows the cumulative distribution functions (CDF) of daily 

DNI, for each day of forecast, before and after correction procedure. 
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Figure 4.13. Cumulative distribution functions (CDF) of daily mean DNI grouped by day of forecast, (a) Day_0; 

(b) day_1; (c) day_2 and (d) day_3, from 1/08/2018 to 31/07/2019, original forecasts (black line), forecasts after 

bias correction (red line) and observations (blue line). 

 

Results in Figure 4.13 show the similarity of the CDF between observational and IFS/ECMWF 

outputs before and after the bias correction. In general, and independently of the forecast day, 

as said before, the linear regression method successfully improved the DNI outputs with the 

new corrected cumulative distribution function plots closer to the observed DNI. 
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4.4. Conclusions 

 

Given the importance that alternative energies have in a sustainable economic, social and 

environmental perspective, it is important to know in advance how solar, wind or other 

renewable energy resource change on an hourly, daily or monthly basis. In this work, DNI from 

Integrated Forecasting System of European Centre for Medium-Range Weather Forecasts 

(IFS/ECMWF) dataset was evaluated over one year (1/08/2018 to 31/07/2019) against observed 

DNI, at hourly time scales, for one station located at Evora (south of Portugal) for different 

days ahead of forecast (until three days ahead). 

Statistical 𝐵𝐼𝐴𝑆, 𝑀𝐴𝐸, 𝑅𝑀𝑆𝐸, 𝑅𝑆𝑅 and correlation coefficient were used to assess the relation 

between IFS/ECMWF and observational DNI. Additionally, this paper, also describes a new 

methodology based on DNI observations (we called of DNI attenuation index – 𝐷𝐴𝐼 ) to 

estimate the transparency of the atmosphere in a particular region. The 𝐷𝐴𝐼 was evaluated with 

total cloud cover parameter obtained from CERES product data and results showed high 

correlation coefficients between datasets, suggesting that 𝐷𝐴𝐼 can be used as proxy to classify 

the cloud coverage in direct solar radiation studies. This index was used to analyze the relation 

between the cloud coverage and the predicted DNI, as well as the respective associated error.  

The IFS/ECMWF DNI forecasts present similar magnitudes and pattern relatively to 

observational data but the errors increase with the forecast lead time (from 1 to 3 days ahead). 

Discrepancies between modelled and measured radiation are relatively small mainly for the first 

three days of forecasts. The analysis of hourly data showed that the DNI is overestimated by 

IFS/ECMWF. Regarding the correlation coefficient, values are found above ≥ 0.7 , 

independently of the forecast day. This work also shows that the first day ahead forecast (day_1) 

has similar error magnitudes in relation to the first 24 hours forecast (day_0). 

Hourly analysis also shows values of 𝑀𝐵𝐸, lower than 20 𝑊𝑚−2. Regarding the 𝑀𝐴𝐸 and 

𝑅𝑀𝑆𝐸 values, an increase from day_0 to day_3 was observed, with a difference between the 

first and the third day of forecast ~45% and ~37%, respectively. High correlation coefficients 

(𝑟 ≥ 0.7) are found for all forecast days. 

Daily analysis shows better results, with 𝑀𝐵𝐸 values lower than 7 𝑊𝑚−2 for all forecast days. 

In the case of 𝑅𝑀𝑆𝐸, values increase about 35% percent from the first day of forecast to the 
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last one. The correlation coefficients of daily data are higher than in the case of hourly data, 

ranging between 0.82 (day_3) and 0.89 (day_0). 

The mean-monthly cloud coverage is well captured by 𝐷𝐴𝐼 along the year. As expected, the 

observed DNI is higher in spring and summer months with the lowest values in 𝐷𝐴𝐼 for the 

same seasons. The underestimation of cloud cover by the IFS/ECMWF seems to be evident 

since comparison between observed and predicted 𝐷𝐴𝐼  reveals that model tends to 

underestimate the effects of clouds on DNI. This relation was also found for Andalusia (located 

in Iberian Peninsula) using 𝑊𝑅𝐹 model by Lara-Fanego et al. (2012a) in the case of three days 

ahead DNI forecasts. 

The accuracy of IFS/ECMWF to forecast DNI is higher for clear or partially cloudy sky days. 

𝐷𝐴𝐼  index confirms that the performance of the IFS/model decrease with an increasing of 

clouds/aerosols effects. 

A bias correction post-processing through a linear regression was used to correct the 

IFS/ECMWF predictions, which has shown to significantly improve the forecast for Évora with 

a decrease in the order of 30%  for all statistical error metrics, except for the correlation 

coefficient, independently of the days ahead in consideration.  

The results obtained in this work are consistent with those obtained by Lopes et al. (2018) for 

the same location, and by Nonnenmacher et al. (2016), Troccoli and Morcrette (2014), among 

others, where it was found that errors increase with the lead time forecast. Overall, ECMWF 

DNI forecasts provide valuable information for the management and operation of CSP plants, 

especially after the usage of the post-processing bias correction. 
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5 

5. Conclusion 

“Discovery follows discovery,  

each both raising and answering questions,  

each ending a long search,  

and each providing the new instruments for a new search.” 

Robert Oppenheimer 

 

Solar radiation is a primary energy source and a crucial component of the global energy balance, 

which drives different systems, such as the hydrologic or the climate systems. 

In the Iberian Peninsula many commercial and research power plant systems are in place in 

order to use solar energy for the production of electricity. In this context, the knowledge of the 

flux of solar radiation that affects the Earth's surface and its evolution, becomes extremely 

important and is critical as an assessment for a strategic planning of projects related to the 

production of solar energy.  

The present work aimed to contribute to the evaluation of the solar resource in two main frames: 

evolution and analysis of the trends of solar radiation at the surface over the Iberian Peninsula 

using ERA−40 and NCEP/NCAR reanalysis products, and in the prediction of solar radiation 

(global and direct) at the surface based on numerical weather prediction models.  

This thesis is the compilation of three publications (each forming a chapter), and the research 

main findings of this work are presented by chapter. 

In chapter two, Variability and trends of downward surface global solar radiation over the 

Iberian Peninsula from ERA−40 reanalysis, the variability and trends of surface radiation over 

the Iberian Peninsula using ground based, ERA−40 reanalysis from ECMWF and NCEP/NCAR 
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reanalysis data were examined. An extensive analysis is also made for five Portuguese ground 

based stations. 

Due to the lack of reference series, these annual 𝑆𝑊 series were tested by means of four 

(absolute) homogeneity tests in order to test the quality of the data. After this, reanalysis 

products were validated with these series and with thirteen previously validated series obtained 

from Sanchez-Lorenzo et al. (2013a), over Spain. Monthly means of 𝑆𝑊 for 40 years were 

carried out and analyzed. Deviations from the temporal mean for each month and for each year 

were computed and variations discussed. The relation between the interannual variability of 

solar radiation over Iberian Peninsula and the cloud cover were analyzed. The trends of surface 

radiation for each month during the past decades was computed and discussed. The main ideas 

to take out of this work are: 

• SW mean values over Portugal ground based stations show two periods, in line with 

literature – dimming and brightening periods (e.g., Ohmura and Lang, 1989; Stanhill and 

Cohen , 2001; Wild, 2009, 2012, among others), although with an earlier turning year as 

compared to other regions of Europe (e.g., Wild, 2009; Sanchez-Lorenzo et al., 2013b; 

Sanchez-Lorenzo et al., 2015). This reversal and partial recovery were found around mid-

70s. The comparison was restricted to the period when observations were available (~1960-

1990). 

• The turning year from dimming to brightening was found around five years before in the 

observational stations located in the south as compared to the stations in the north. Ground 

based stations located in areas with high industrial and population density are those where 

the reversal from dimming to brightening arises later. This behavior was explained with local 

causes associated to industry presence over the region and the dominant circulations patterns 

over north Atlantic Ocean that influence the interannual variability of clouds.  

• ERA−40 reanalysis product reveals a reasonable capability to reproduce solar radiation 

over IP, specially in a monthly basis, considering the uncertainty in the observational data, the 

monthly ERA−40 mean aerosol profile (fixed), and its spatial resolution. 

• ERA−40 (NCEP/NCAR) annual and monthly averaged of SW values are always lower 

(higher) than the corresponding ground-based measurement values. The inaccurate 

representation of clouds, especially the convective systems, as well as the non-inclusion of the 

actual concentration of aerosols in the reanalysis process can be considered as causes for this 

disagreement. 



 

130 

• ERA−40 captures better the dimming period than NCEP/NCAR, but both with a transition 

in the dimming period to brightening in the early 1970s and in line with observational stations 

(special in the south). The magnitude of the trends presents slight differences between 

observational series and reanalysis products. 

• At a regional scale (IP divided in areas of 1°×1°), ERA−40 reveal a dimming period that 

finished in 1970 in the south and center of IP and a few years later (~4/5 years) in the north 

regions. 

• The dimming/brightening phenomena in the Iberian Peninsula from ERA−40 must be 

primary related with decadal changes in the cloud radiative effects and also to changes in the 

aerosol loading , especially over south regions where brightening arise five to ten years earlier 

than shown in literature (e.g, Ohmura and Lang, 1989; Liepert, 2002; Wild et al., 2005).  

• SW climatology obtained from ERA−40, over IP, shows a latitudinal gradient with higher 

values at lower latitudes and lower values at higher latitudes. TCC negatively correlates to 

SW, revealing a strong dependence of clouds on radiation scheme of reanalysis products, 

since the annual aerosol field is fixed, and so only the clouds and the water vapor may have a 

direct impact on the 𝑆𝑊. 

In chapter three, Climatology and variability of solar radiation obtained from WRF regional 

climate simulations in Iberian Peninsula (1950-2010), the mesoscale 𝑊𝑅𝐹 − 𝐴𝑅𝑊  was 

evaluated to predict the incident shortwave radiation at the surface. The model was configured 

using three nested domains with a horizontal resolution of 75, 25 and 5 𝑘𝑚  (this last one 

centered over the region of study), with 30 vertical hydrostatic pressure levels for a 60 year 

period between 1950−2010, and was initiated with NCEP reanalysis data available at 2.5 

resolution for each year starting from the 1st May and each simulation run for 13 months. The 

first month of each simulation was neglected and the model boundary conditions were updated 

at every 6 hour interval also from NCEP reanalysis data. After validations using ten years of 

data (2000−2009 period) over 65 ground-based stations and a post-processing bias correction 

methodology, 𝑊𝑅𝐹 outputs were used to create a detailed climatology of 𝑆𝑊 (and clouds) in 

order to improve the characterization of this important resource over this region. Main findings 

of this chapter were: 

• The dynamical downscaling used in this thesis started from a single set of initial conditions, 

with re-initialization time slices integrations of thirteen months. This methodology revealed 
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to be a valid alternative to the more computationally time demanding strategy based on 

continuous model integration (without interruption for re-initialization). Results obtained with 

this methodology were compared with another 𝑾𝑹𝑭 model configuration and errors were 

comparable. 

• WRF model overestimates the 𝑺𝑾  in the majority of the stations located in the 

north/northeastern of IP and tends to underestimate 𝑺𝑾 over the southwest and southeast 

regions. 

• Daily correlation coefficients reveal that WRF performs better in the central part of IP than 

over the North/North-Western regions. 

• Incorrect quantification of the aerosol effects in radiative scheme of the model explain mean 

bias whose values are in agreement with Ruiz-Arias et al. (2016). 

• Errors were significantly reduced after application of a BC post-processing methodology 

(in approximately 41%). 

• 𝑺𝑾 climatological for 60 years, over IP, showed a spatial distribution with a gradient that 

increases from north to south and from west to east modelled by the effects of the coast and 

topography. 

• The highest 𝑺𝑾 variability is major in the northern part of IP, particularly in Galicia 

(Spain). 

• 𝑺𝑾𝑹𝑪𝑳𝑭 show that the percentage of clear sky days (less than  𝑜𝑘𝑡𝑎), for the whole period, 

are more than 30% of the days (include all seasons) at south of IP (Andalusia, Murcia and 

Algarve). In the summer months this value rises for more than 𝟕𝟎%.  

• The climatology obtained with 𝑊𝑅𝐹 model points out Andalusia (Spain), Murcia (Spain), 

Alentejo (Portugal) and Algarve (Portugal) as the regions with the greatest SW↓ potential to 

implement solar energy systems. 

In the last chapter, Assessment of Direct Normal Irradiance Forecasts based on IFS/ECMWF 

data and observations in the south of Portugal, the direct solar irradiance forecasts provided by 

IFS/ECWMF are evaluated for Évora ground-based station. The errors associated with these 

forecasts were quantified at very short (1 hour) and short term (1 to 3 days), for one year of 

data. The quality of the forecast and error quantification were assessed by using a set of 

statistical error metrics. It was also proposed a method for modelling sky conditions using the 
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in situ observational data of the measured DNI. To improve IFS/ECMWF predictions, a post-

processing BC methodology, based on a linear regression, was tested. Major findings were: 

• IFS/ECMWF overestimates DNI for lower values of radiation and underestimates DNI 

under clear sky atmospheric conditions for higher irradiance values. This underestimation 

can be explained by the use of a constant monthly aerosol climatology in the IFS/ECMWF.  

• IFS/ECMWF model overestimates the radiation in ~𝟓𝟎% of the days throughout the year, 

independently of forecast day horizon, although with small differences datasets. 

• The underestimation occurs in the majority of the days belonging to Spring and Summer 

months, probably as a consequence of a less accurate representation of the clouds (or aerosols) 

at short time scales in the radiative scheme of IFS/ECMWF. 

• The assessment between datasets show that the statistical errors are comparable (in hourly 

and daily basis). Overall, statistical analysis shows better results for the first day of forecast, 

with errors increasing from the first day of forecast to the last one. The majority of statistical 

errors found in this work are in line with values obtained by Nonnenmacher et al. (2014) and 

Lara-Fanego et al. (2012a), both studies using 𝑊𝑅𝐹 model or by Gala et al. (2013) using a 

clear sky model, among other studies. 

• A new proxy (𝑫𝑨𝑰 – DNI Attenuation Index) was developed to provides a clear idea of the 

transparency of the atmosphere for a specific day since it allows the identification of a clear 

day from an overcast day or extreme aerosol event. Results turned out to be promising. This 

method has the advantage of not relying on reanalyses, satellite data or other products that could 

also be a source of bias. 

• The annual cycle of monthly clouds is well captured by DNI attenuation index (𝐷𝐴𝐼).  

• Results obtained using 𝐷𝐴𝐼 proxy show that cloud scheme in IFS/ECMWF underestimates 

the clouds and aerosols events. 

• The analysis of the climatology of cloud cover at Évora based on 𝑫𝑨𝑰, for the analyzed 

period, shows that 𝟒𝟓% of the days are in the cloud coverage class I (below to 2 𝑜𝑘𝑡𝑎𝑠). DAI 

are characterized by a lower variability in summer with more than 50% of the days with 

values lower than 31.25% (clear sky days) and a higher variability during spring season. The 

values are consistent with those found by Sanchez-Lorenzo et al. (2009) and by Perdigão et al. 

(2017) for the same sky conditions over the Iberian Peninsula. 
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• DNI forecast tends to be more accurate for lower values of 𝑫𝑨𝑰 which represents ~50% 

of the days in Évora. This value is consistent with the study of Freile-Aranda et al. (2017). 

• The application of a post-processing methodology (in a daily basis) improves the estimation 

of DNI. The simulated values were significantly closer of to the ground-based observations 

and errors where reduced in some cases more than 𝟑𝟎%. 
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