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1 Introduction

Impulsive problems have been object of growing and constant interest, mainly because they
provide adequate mathematical tools to describe evolution processes with sudden changes,
and to model real phenomena in science, as, for instance, population and biological dynamics,
biotechnology and ecology, engineering and industrial robotic, etc. As a result, differential
equations with impulses have been recently studied by many authors. They employed various
methods and techniques, such as, bifurcation theory [16, 17], method of lower and upper
solutions [9, 14, 23, 24], fixed point theorems and fixed point index in cones [11, 12, 32], critical
point theory and variational methods [22, 30, 33]. For contributions to general and classical
theory we refer to e.g. [1, 13, 25].

Problems with implicit impulse conditions depending both on values of the solution and
its derivative at the points of the impulse action have been considered by several authors (see
[3, 4, 15, 19, 20] and the references therein). In particular, we refer to [18] dealing with the
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problem

u′′(t) = f (t, u(t), u ′(t)) a.e. on [0, ∞),

∆u(tk) = I0k(tk, u(tk), u′(tk)), ∆u ′(tk) = I1k(tk, u(tk), u ′(tk)) for k ∈N,

u(0) = A, u ′(∞) = B,

where {tk} is a sequence of points in (0, ∞) such that tk < tk+1 for k∈N and limk→+∞ tk =∞;
f : [0,+∞)×R2 → R is an L1-Carathéodory function;

u ′(∞) := lim
t→∞

u ′(t), ∆u(i)(t) := u(i)(t+)− u(i)(t−) for t ∈ (0, ∞)

and i ∈ {0, 1}; A, B ∈ R and Iik : (0,+∞)×R2 → R are continuous for i ∈ {0, 1} and k ∈ N.
The arguments included Green’s functions, Schauder’s fixed point theorem and, to have the
compactness of the representing operator, also the equiconvergence both at ∞, and at each
impulse moment tk.

Similarly, functional boundary conditions generalize local boundary data and encompass
a broad spectrum of conditions where global information on the unknown function is given,
including integral and nonlocal conditions, advanced or delay data, maximum or minimum
arguments, among others. Existence, nonexistence and multiplicity results for general bound-
ary conditions were studied, for example, in [2, 5, 8, 26–29], for scalar differential equations
and, in [6], for coupled systems of differential equations.

Our idea in this paper is to combine both techniques, applied in the papers mentioned
above, in the study of impulsive problems with impulse effects depending both on the un-
known function and on its first derivative and with nonlocal boundary conditions. In partic-
ular, our aim is to get results on the existence of solutions to the boundary value problem

−u′′(t) = f (t, u(t), u ′(t)) a.e. on [0, 1], (1.1)

∆u(t) = I0k(t, u(t), u ′(t)), ∆u ′(t) = I1k(t, u(t), u ′(t)) if t = tk ∈ D, (1.2)

L0(u(0), u(1), u ′(0), u) = 0, L1(u(0), u(1), u ′(1), u) = 0, (1.3)

where m ∈ N, D = {t1, . . . , tm} ⊂ (0, 1), t1 < · · · < tm, f : [0, 1]×R2 → R is a Carathédory
function, I0k, I1k : [0, 1] ×R2 → R with k ∈ {1, . . . , m} and L0, L1 : R3 × PCD → R satisfy
conditions given below, PCD is the space of piecewise continuous functions defined below
and the symbol ∆ has a usual meaning, i.e. ∆v(t) = v(t+)− v(t−) for any t ∈ [0, 1] and any
function v : [0, 1] → R such that both limits in the above formula are defined and have finite
values.

As far as we know, nonlocal boundary conditions together with impulsive effects of the
types (1.3) and (1.2) are treated in this paper for the first time. This was enabled due to the
implemented technique: lower and upper solutions method together with a proper truncation
argument. Let us emphasize that, on the contrary to e.g. periodic problem, for (1.1)–(1.3) no
a priori estimate of the derivative of the sought solution is available.

The paper is organized as follows: in Section 2 the general framework is established and
the basic definitions are introduced. In Section 3 we present our main result: existence and
localization theorem and its proof. Last section provides a nontrivial example illustrating the
power of our main result.



Discontinuous functional impulsive problems 3

2 Preliminaries

For a given function v : [0, 1] → R and points t ∈ (0, 1] and s ∈ [0, 1), the symbols v(t−) and
v(s+) stand respectively for the corresponding one-sided limits

v(t−) := lim
τ→t−

v(τ) and v(s+) := lim
τ→s+

v(τ)

whenever these limits exist and have finite values. In such a case, for t ∈ (0, 1), we write
∆v(t) = v(t+) − v(t−). Note that the functions such that v(t−) ∈ R for all t ∈ (0, 1] and
v(s+) ∈ R for all s ∈ [0, 1) are usually called regulated functions. The space G of such
functions is known to be a Banach space with respect to the supremum norm

‖v‖ = ‖v‖∞ := sup
t∈[0,1]

|v(t)| for v ∈ G.

For basic properties of regulated functions, see e.g. [7], [10] or [21]. For our purposes, the
following compactness criterion for subspaces of G will be essential (cf. [7] or [21, Lemma 4.3.4
and Corollary 4.3.7]).

Theorem 2.1 (Fraňková). A given subset B of the space G of regulated functions is relatively compact
if and only if

• B is the set of equi-regulated functions, i.e. for every ε > 0 there is a division {α0 < . . .< αn}
of the interval [0, 1] such that for every v ∈ B, j ∈ {1, . . . , n} and t, s ∈ (αj−1, αj) we have
|v(t)− v(s)| < ε

and

• the set
{

v(t) : v ∈ B
}
⊂ R is bounded for each t ∈ [0, 1].

In what follows, the symbol D stands for the fixed set D = {t1, . . . , tm} of points of im-
pulses in the open interval (0, 1) ordered in such a way that 0 < t1 < · · · < tm < 1. It will be
helpful to denote also t0 = 0 and tm+1 = 1. The symbols PCD and PC1

D then denote respec-
tively the corresponding sets of functions piecewise continuous on [0, 1] or with a derivative
piecewise continuous on [0, 1]. More precisely, PCD is the set of all functions u : [0, 1] → R

continuous at every t ∈ [0, 1] \ D, continuous from the left at every t ∈ D and having, in ad-
dition, finite right limits u(s+) for all s ∈ D. Obviously, when equipped with usual algebraic
operations, the space PCD is a closed subspace of the Banach space G of regulated functions.
Therefore, it is also a Banach space (with respect to the supremum norm). Analogously, PC1

D
is the set of all functions u ∈ PCD having a finite derivative u ′(t) at each t ∈ [0, 1] \ D, while
u ′ is continuous at each t ∈ [0, 1] \ D and, in addition, it has finite limits u ′(t−) and u ′(s+)

for all t, s ∈ D. For a given u ∈ PC1
D, by u ′ we always mean a function which coincides with

the derivative of u on (0, 1) \D and is extended to the whole interval [0, 1] by the prescriptions

u ′(0) = u ′(0+), u ′(1) = u ′(1−) and u ′(t) = u ′(t−) if t ∈ D.

Of course, for such an extension of the derivative we have u ′ ∈ PCD whenever u ∈ PC1
D. It is

easy to verify that both the mappings

u ∈ PC1
D → (u ′, u(0), ∆u(t1), . . . , ∆u(tm)) ∈ PCD ×Rm+1,

and
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(v, d0, d1, . . . , dm) ∈ PCD ×Rm+1

→ u(t) = d0 +
∫ t

0
v(s)ds +

m

∑
k=1

dk χ(tk ,t](t) ∈ PC1
D,

where χM(t) = 1 if t ∈ M and χM(t) = 0 if t /∈ M, are continuous with respect to the norms

‖u‖PC1 := ‖u‖∞ + ‖u′‖∞ on PC1
D

and

‖(v, d0, d1, . . . , dm)‖ = ‖v‖∞ +
m

∑
k=0
|dk| on PCD ×Rm+1

and provide a one-to-one correspondence between the spaces PC1
D and PCD × Rm+1. As

a consequence, PC1
D is a Banach space when equipped with the norm ‖ · ‖PC1 . This together

with Theorem 2.1 leads directly to the following compactness criterion for subsets of PC1
D.

Corollary 2.2. A subset B of the space PC1
D is relatively compact if and only if

• the set {u ′ : u ∈ B} is equi-regulated

and

• for a given t ∈ [0, 1], the set
{

u(t) : u ∈ B
}
⊂ R is bounded.

Solutions to our problem (1.1)–(1.3) will be understood in the Carathéodory sense as func-
tions with piecewise absolutely continuous derivatives. More precisely, the symbol AC1

D
stands for the set of functions u ∈ PC1

D having first derivatives absolutely continuous on
each subinterval (tk−1, tk) with k ∈ {1, . . . , m + 1} and solutions to (1.1)–(1.3) are defined as
follows.

Definition 2.3. By a solution u of problem (1.1)–(1.3) we understand a function u ∈ AC1
D

satisfying equation (1.1) a.e. on [0, 1] together with conditions (1.2) and (1.3).

Throughout the paper we consider the following assumptions:

(A) f : [0, 1]×R2 → R of (1.1) satisfies the Carathéodory conditions, i.e.

• f (·, x, y) is Lebesgue integrable for all (x, y) ∈ R2,

• f (t, ·, ·) is continuous on R2 for a.e. t ∈ [0, 1],

• for each ρ > 0 there is a function µρ Lebesgue integrable on [0, 1] and such that
| f (t, x, y)| ≤ µρ(t) for a.e. t ∈ [0, 1] and all x, y ∈ R such that |x| ≤ ρ and |y| ≤ ρ.

(B) L0, L1 : R3 ×PCD → R and I0k, I1k : [0, 1]×R2 → R are continuous for all k ∈ {1, . . . , m}.

Important tools for our proofs will be associated lower and upper solutions given by the
following definition.
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Definition 2.4. A function α ∈ AC1
D is a lower solution of (1.1)–(1.3) if

−α′′(t) ≤ f (t, α(t), α ′(t)) a.e. on [0, 1],

∆α(tk) ≤ I0k(tk, α(tk), α ′(tk)) for k ∈ {1, . . . , m},

∆α ′(tk) > I1k(tk, α(tk), α ′(tk)) for k ∈ {1, . . . , m},

L0(α(0), α(1), α ′(0), α) ≥ 0,

L1(α(0), α(1), α ′(1), α) ≥ 0,

(2.1)

while a function β ∈ AC1
D is an upper solution of (1.1)–(1.3) if

−β′′(t) ≥ f (t, β(t), β ′(t)) a.e. on t ∈ [0, 1],

∆β(tk) ≥ I0k(tk, β(tk), β ′(tk)) for k ∈ {1, . . . , m},

∆β ′(tk) < I1k(tk, β(tk), β ′(tk)) for k ∈ {1, . . . , m},

L0(β(0), β(1), β ′(0), β) ≤ 0,

L1(β(0), β(1), β ′(1), β) ≤ 0.

(2.2)

The following lemma enables us to construct the operator representation of our problem.
Its proof is obvious and can be left to readers.

Lemma 2.5. Linear problem

−u′′(t) = h(t) for a.e. t ∈ [0, 1],

∆u(tk) = Ck, ∆u ′(tk) = Dk for k ∈ {1, . . . , m},

u(0) = A, u ′(1) = B

has a unique solution for any h Lebesgue integrable on [0, 1], A, B∈R, Ck, Dk ∈R (k∈ {1, . . . , m}).
This solution is given by

u(t) = A + B t+
∫ 1

0
G(t, s) h(s) ds +

m

∑
k=1

Ck χ(tk ,1](t) +
m

∑
k=1

Dk (t− tk) χ(tk ,1](t)− t
m

∑
k=1

Dk ,

where

G(t, s) =

s if 0 ≤ s ≤ t ≤ 1,

t if 0 ≤ t ≤ s ≤ 1,

is the Green function associated to the homogeneous problem

−u′′(t) = 0, u(0) = 0, u ′(1) = 0.

Remark 2.6. In what follows, the following evident estimate

max

{
sup

t,s∈[0,1]

∣∣G(t, s)
∣∣, sup

t,s∈[0,1]

∣∣∣∂G
∂t

(t, s)
∣∣∣} = 1 (2.3)

will be useful.
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Our main existence tool will be the Schauder fixed point theorem (see e.g. [31, Theo-
rem 2.A]).

Theorem 2.7 (Schauder). Let B be a nonempty, closed, bounded and convex subset of a Banach space
X and let T : B → X be a compact operator mapping B into B. Then T has at least one fixed point
in B.

3 Main result

First, we will construct a proper auxiliary problem and its operator representation. To this
aim, the existence of associated lower and upper solutions will be needed. Thus, we will
make use of the following assumption.

(C) Problem (1.1)–(1.3) possesses a pair α, β of a lower and an upper solutions such that

α(t) ≤ β(t) and α ′(t) ≤ β ′(t) for t ∈ [0, 1]. (3.1)

Then, for t ∈ [0, 1] and x, y, w ∈ R, define

δ0(t, w) =


α(t) if w < α(t),

w if w ∈ [α(t), β(t)],

β(t) if w > β(t),

(3.2)

δ1(t, w) =


α′(t) if w < α′(t),

w if w ∈ [α′(t), β′(t)],

β′(t) if w > β′(t),

(3.3)

and

f̃ (t, x, y) = f (t, δ0(t, x), δ1(t, y)) +
δ1(t, y)− y

1 + |y− δ1(t, y)| , (3.4)

and consider the following auxiliary problem



−u′′(t) = f̃ (t, u(t), u ′(t)) for t ∈ [0, 1] \ D,

∆u(tk) = I0k
(
tk, δ0(tk, u(tk)), δ1(tk, u ′(tk))

)
,

∆u ′(tk) = I1k
(
tk, δ0(tk, u(tk)), δ1(tk, u ′(tk))

)
,

u(0) = δ0
(
0, u(0) + L0(u(0), u(1), u ′(0), u)

)
,

u ′(1) = δ1
(
1, u ′(1) + L1(u(0), u(1), u ′(1), u)

)
.

(3.5)
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Finally, we define

(Tu)(t) = δ0
(
0, u(0) + L0(u(0), u(1), u ′(0), u)

)
+δ1

(
1, u ′(1) + L1(u(0), u(1), u ′(1), u)

)
t

+
m

∑
k=1

[
I0k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk)))

]
χ(tk ,1](t)

+
m

∑
k=1

[
I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk))) (t− tk)

]
χ(tk ,1](t)

−t
m

∑
k=1

I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk)))

+
∫ 1

0
G(t, s) f̃ (s, u(s), u′(s))ds for u ∈ PC1

D and t ∈ [0, 1].

(3.6)

The relationship between the operator T and the auxiliary problem (3.5) is described by
the following assertion.

Proposition 3.1. A function u ∈ PC1
D is a solution to (3.5) if and only if it is a fixed point of the

operator T given by (3.6).

Proof. From the construction of the operator T it is clear that any fixed point of T has piecewise
absolutely continuous derivative, more precisely it belongs to the set AC1

D. Moreover, having
in mind Lemma 2.5 we easily verify that u solves problem (3.5) if and only if it is a fixed point
of T.

Remark 3.2. If for a given ρ > 0 the function µρ has a meaning from (A), then having in mind
definitions (3.2)–(3.4), we can see that the following estimate of f̃ is true:

| f̃ (t, x, y)| ≤ µr0(t) + 1 for a.e. t ∈ [0, 1] and all x, y ∈ R,

where
r0 = max

{
‖α‖∞, ‖β‖∞, ‖α ′‖∞, ‖β ′‖∞

}
. (3.7)

As a result, we may put

µρ(t) = µr0(t) for all ρ ≥ r0 and a.e. t ∈ [0, 1]. (3.8)

Next, we will find conditions ensuring the solvability of problem (3.5).

Proposition 3.3. Let assumptions (A)–(C) hold. Then problem (3.5) has at least one solution
ū ∈ PC1

D.

Proof. We will prove that the operator T satisfies the assumptions of the Schauder fixed point
theorem (Theorem 2.7).

For better transparency, this proof is divided into several steps.

Step 1. We will show that the operator T maps PC1
D into PC1

D.
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Clearly, Tu ∈ PCD for every u ∈ PC1
D. Furthermore, differentiating the relation (3.6), we

get



(Tu) ′(t) = δ1
(
1, u ′(1) + L1(u(0), u(1), u ′(1), u)

)
+

m

∑
k=1

[
I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk)))

]
χ(tk ,1](t)

−
m

∑
k=1

I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk))) +
∫ 1

0

∂G
∂t

(t, s) f̃ (s, u(s), u′(s))ds

(3.9)

for u ∈ PC1
D and t ∈ [0, 1] \ D, wherefrom, taking into account the properties of the Green

function G, we deduce immediately that Tu ∈ PC1
D for each u ∈ PC1

D.

Step 2. Let t ∈ [0, 1] and a bounded subset B of PC1
D be given. We will show that the set (TB)(t) ={

(Tu)(t) : u ∈ B
}

is then bounded subset of R.

Choose an arbitrary t ∈ [0, 1] and let ‖u‖PC1 = ‖u‖∞ + ‖u ′‖∞ ≤ ρ < ∞ for every u ∈ B.
Our aim is to find a uniform estimate for elements of (TB)(t).

First, by (3.2) and (3.3) we have∣∣δ0
(
0, u(0) + L0(u(0), u(1), u ′(0), u)

)∣∣ ≤ max
{
|α(0)|, |β(0)|

}
and ∣∣δ1

(
0, u ′(1) + L1(u(0), u(1), u ′(1), u)

)
t
∣∣ ≤ max

{
|α ′(1)|, |β ′(1)|

}
.

Further, due to continuity of I0k and I1k, for an arbitrary k ∈ {1. . . . , m} we get∣∣I0k(tk, δ0(tk, u(tk), u ′(tk))) χ(tk ,1](t)
∣∣ ≤ M0k := max

(x,y)∈Qk

|I0k(tk, x, y)| < ∞

and ∣∣I1k(tk, δ0(tk, u(tk), u ′(tk))) (t− tk) χ(tk ,1](t)
∣∣ ≤ M1k := max

(x,y)∈Qk

|I1k(tk, x, y)| < ∞,

where Qk = [α(tk), β(tk)]× [α ′(tk), β ′(tk)].

Finally, by (2.3) we have |G(t, s)| ≤ 1 for t, s ∈ [0, 1] and consequently by the third point of
(A) and by the definition (3.4) of f̃ we have∣∣∣∣ ∫ 1

0
G(t, s) f̃ (s, u(s), u ′(s))ds

∣∣∣∣ ≤ ∫ 1

0
(µρ(s) + 1)ds.

To summarize, the relation
|(Tu)(t)| ≤ max

{
|α(0)|, |β(0)|

}
+ max

{
|α ′(1)|, |β ′(1)|

}
+ M0 + 2 M1 +

∫ 1

0
(µρ(s) + 1)ds < ∞,

where

M0 =
m

∑
k=1

M0k and M1 =
m

∑
k=1

M1k,

holds for any u ∈ B. This proves our claim.

Step 3. Let B be a bounded subset of PC1
D. We will show that the set

{
(Tu) ′ : u ∈ B

}
is equi-regulated.
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Let B ⊂ PC1
D be bounded and let ρ > 0 be such that B⊂ Bρ = {u ∈ PC1

D : ‖u‖PC1 ≤ ρ}.
Further, let ε > 0 be given and let [s, t] ⊂ (t`−1, t`) for some ` ∈ {1, . . . , m + 1}. Then

m

∑
k=1

[
I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk)))

]
χ(tk ,1](t)

=
m

∑
k=`−1

[
I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk)))

]
χ(tk ,1](t)

=
m

∑
k=`−1

[
I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk)))

]
χ(tk ,1](s)

=
m

∑
k=1

[
I1k(tk, δ0(tk, u(tk)), δ1(tk, u ′(tk)))

]
χ(tk ,1](s)

and

(Tu) ′(t)− (Tu) ′(s) =
∫ 1

0

(
∂G
∂t

(t, τ)− ∂G
∂t

(s, τ)

)
f (τ, u(τ), u ′(τ))dτ

for all u ∈ B. Further, since

∂G
∂t

(t, τ)− ∂G
∂t

(s, τ) =

0, if 0 ≤ τ < s < 1 or 0 < t < τ ≤ 1,

1, if 0 < s < τ < t < 1,

it follows that ∣∣(Tu) ′(t)− (Tu) ′(s)
∣∣ ≤ ∫ t

s

∣∣∣∣∂G
∂t

(t, τ)− ∂G
∂t

(s, τ)

∣∣∣∣ (µρ(τ) + 1)dτ

≤
∫ t

s
(µρ(τ) + 1)dτ for all u ∈ B

and hence∣∣(Tu) ′(t)− (Tu) ′(s)
∣∣ < ε for all u ∈ B whenever

∫ t

s
(µρ(τ) + 1)dτ < ε.

Therefore, any refinement {α0, . . . , αn} of {t0, . . . , tm+1} which is such that∫ αj

αj−1

(µρ(τ) + 1)dτ < ε for all j ∈ {1, . . . , n}

satisfies the requirements from the definition of equi-regulatedness contained in Theorem 2.1.
Consequently, the set

{
(Tu) ′ : u ∈ B

}
is equi-regulated and this completes the proof of our

claim.

Step 4. We will construct a nonempty, closed, bounded and convex subset B of PC1
D such that

T B ⊂ B.

Let B ⊂ PC1
D be bounded and let ρ > 0 be such that B ⊂ Bρ = {u ∈ PC1

D : ‖u‖PC1 ≤ ρ}.
Recall that by Step 2 we have∥∥Tu

∥∥
∞ ≤ max

{
|α(0)|, |β(0)|

}
+ max

{
|α ′(1)|, |β ′(1)|

}
+M0 + 2 M1 +

∫ 1

0
(µρ(s) + 1)ds for all u ∈ Bρ.
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Similarly, from (3.9) we deduce that the inequality

|(Tu) ′(t)| ≤ max
{
|α ′(1)|, |β ′(1)|

}
+ 2 M1 +

∫ 1

0
(µρ(s) + 1)ds

holds for any u ∈ B and any t ∈ [0, 1], i.e.∥∥(Tu) ′
∥∥

∞ ≤ max
{
|α ′(1)|, |β ′(1)|

}
+ 2 M1 +

∫ 1

0
(µρ(s) + 1)ds

for all u ∈ Bρ. Hence, with respect to (3.8), we conclude that

‖Tu‖PC1 = ‖Tu‖∞ + ‖(Tu) ′‖∞ ≤ κ(r0) for all u ∈ Bρ and ρ ≥ r0

where 
κ(ρ) := max

{
|α(0)|, |β(0)|

}
+ 2 max

{
|α ′(1)|, |β ′(1)|

}
+M0 + 4 M1 + 2

∫ 1

0
(µρ(s) + 1)ds for ρ > 0.

(3.10)

Now, if we put R = max{r0,κ(r0)} and B = BR, then the inequality ‖Tu‖PC1 ≤ R will be true
for all u ∈ B. This proves our claim.

To summarize, by Steps 1–3 and Corollary 2.2, the operator T is compact in PC1
D and,

by Step 4, it maps the nonempty, closed, bounded and convex set B = BR into itself. By
Theorem 2.7 it follows that T has a fixed point ū ∈ B which is a solution of (3.5) according to
Proposition 3.1.

Now we can formulate our main result. It provides sufficient conditions for the existence
of at least one solution of problem (1.1)–(1.3), as well as its localization.

Theorem 3.4. Let the assumptions of Proposition 3.3 be satisfied. Furthermore, suppose:

f (t, α(t), α ′(t))) ≤ f (t, x, α ′(t))

for a.e. t ∈ [0, 1] and x ∈ [α(t), β(t)],

f (t, x, β ′(t)) ≤ f (t, β(t), β ′(t)))

for a.e. t ∈ [0, 1] and x ∈ [α(t), β(t)],

(3.11)

{
I0k(tk, α(tk), α ′(tk)) ≤ I0k(tk, x, y) ≤ I0k(tk, β(tk), β ′(tk))

for (x, y) ∈ [α(tk), β(tk)]×[α ′(tk), β ′(tk)] and k ∈ {1, . . . , m},
(3.12)



I1k(tk, x, α ′(tk)) ≤ I1k(tk, α(tk), α ′(tk))

for x ≥ α(tk) and k ∈ {1, . . . , m},

I1k(tk, x, β ′(tk)) ≥ I1k(tk, β(tk), β ′(tk))

for x ≤ β(tk) and k ∈ {1, . . . , m},

(3.13)



L0(β(0), y, z, u) ≤ L0(β(0), β(1), β ′(1), β)

for y ≤ β(1), z ≤ β ′(1) and u ∈ PCD such that u ≤ β on [0, 1],

L0(α(0), y, z, u) ≥ L0(α(0), α(1), α ′(1), α)

for y ≥ α(1), z ≥ α ′(1) and u ∈ PCD such that u ≥ α on [0, 1]

(3.14)
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and 

L1(x, y, β ′(1), u) ≤ L1(β(0), β(1), β ′(1), β)

for x ≤ β(0), y ≤ β(1) and u ∈ PCD such that u ≤ β on [0, 1],

L1(x, y, α ′(1), u) ≥ L0(α(0), α(1), α ′(1), α)

for x ≥ α(0), y ≥ α(1) and u ∈ PCD such that u ≥ α on [0, 1].

(3.15)

Then problem (1.1)–(1.3) has at least one solution u such that

α(t) ≤ u(t) ≤ β(t) and α ′(t) ≤ u ′(t) ≤ β ′(t) for t ∈ [0, 1].

Proof. By Proposition 3.3 the auxiliary problem (3.5) has a solution ū such that ‖ū‖PC1 ≤ R,
where R = max{r0,κ(r0)} > 0 is given by (3.7) and (3.10). Thus, it remains to show that ū
satisfies the following set of inequalities

α(t) ≤ ū(t) ≤ β(t) for t ∈ [0, 1], (3.16)

α ′(t) ≤ ū ′(t) ≤ β ′(t) for t ∈ [0, 1] (3.17)

and

α(0) ≤ ū(0) + L0(ū(0), ū(1), ū ′(0), ū) ≤ β(0), (3.18)

α ′(1) ≤ ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū) ≤ β ′(1). (3.19)

Indeed, in such a case, in view of (3.2) and (3.3), the relations

f̃ (t, ū(t), ū ′(t)) = f (t, ū(t), ū ′(t)),

δ0
(
0, ū(0) + L0(ū(0), ū(1), ū ′(0), ū)

)
= ū(0) + L0(ū(0), ū(1), ū ′(0), ū),

δ1
(
1, ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū)

)
= ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū),

I0k
(
tk, δ0(tk, ū(tk)), δ1(tk, ū ′(tk))

)
= I0k

(
tk, ū(tk)), ū ′(tk))

)
and

I1k
(
tk, δ0(tk, ū(tk)), δ1(tk, ū ′(tk))

)
= I1k

(
tk, ū(tk)), ū ′(tk))

)
are true for all t ∈ [0, 1] and k ∈ {1, . . . , m}. Therefore, it follows immediately that then ū is
the desired solution of the given problem (1.1)–(1.3).

• ad (3.17): Suppose that there is a t̄ ∈ [0, 1] such that

ū ′(t̄)− β ′(t̄) = max
t∈[0,1]

(
ū ′(t)− β ′(t)

)
> 0. (3.20)

As, by the definition (3.3) of δ1 and by the last relation in (3.5) we have

ū ′(1) = δ1(1, ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū)) ≤ β ′(1),

it follows that t̄ < 1.

Assume that t̄ ∈ [0, 1)\D. Then either t̄ ∈ [0, t1) or t̄ ∈ (tk−1, tk) for some k ∈ {2, . . . , m+ 1}.
In both cases there is a ∆ > 0 such that t̄ + ∆ < tk and ū ′(s)− β ′(s) > 0 for all s ∈ [t̄, t̄ + ∆].
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In particular, δ1(s, ū(s)) = β ′(s) for s ∈ [t̄, t̄ + ∆]. Now, using (3.11) and the first inequality in
(2.2), we will deduce for t ∈ [t̄, t̄ + ∆]

0 ≥
(
ū ′(t)− β ′(t)

)
−
(
ū ′(t̄)− β ′(t̄)

)
=
∫ t

t̄

(
ū ′′(s)− β ′′(s)

)
ds

=
∫ t

t̄

(
− f (s, δ0(s, ū(s)), δ1(s, ū ′(s)))− δ1(s, ū ′(s))− ū ′(s)

|ū ′(s)− δ1(s, ū ′(s))|+ 1
− β ′′(s)

)
ds

=
∫ t

t̄

(
− f (s, δ0(s, ū(s)), β ′(s))) +

ū ′(s)− β ′(s)
ū ′(s)− β ′(s) + 1

− β ′′(s)
)

ds

>
∫ t

t̄

(
− f (s, δ0(s, ū(s)), β ′(s)))− β ′′(s)

)
ds

≥
∫ t

t̄

(
− f (s, β(s), β ′(s))− β ′′(s)

)
ds ≥ 0,

a contradiction, of course.

It remains to consider the possibility that there exists k ∈ {1, 2, ..., m} such that either (3.20)
with t̄ = tk or

ū ′(tk+)− β ′(tk+) = sup
t∈[0,1]

(
ū ′(t)− β ′(t)

)
> 0

holds. The latter case leads to a contradiction by arguments analogous to those used above.
So, let (3.20) with t̄ = tk for some k ∈ {1, 2, ..., m} be the case. In particular, we have

ū ′(tk+)− β ′(tk+) ≤ ū ′(tk)− β ′(tk), δ1(tk, ū ′(tk)) = β ′(tk)

and ∆ū ′(tk) ≤ ∆β ′(tk), i.e.

0 ≥ ∆ū ′(tk)− ∆β ′(tk) = I1k(tk, δ0(tk, ū(tk)), δ1(tk, ū ′(tk)))− ∆β ′(tk)

= I1k(tk, δ0(tk, ū(tk)), β ′(tk))− ∆β ′(tk).

Thanks to (3.13), Definition 2.4 (cf. the third line in (2.2)) and the third line in (3.5) this leads
to a contradiction

0 ≥ I1k(tk, δ0(tk, ū(tk)), δ1(tk, ū ′(tk)))− ∆β ′(tk)

≥ I1k(tk, δ0(tk, ū(tk)), β ′(tk))− ∆β ′(tk). ≥ I1k(tk, β(tk), β ′(tk))− ∆β ′(tk) > 0.

This means that ū ′(t) ≤ β ′(t) holds for t ∈ [0, 1].

Similarly, we can prove that also α ′(t) ≤ ū ′(t) holds for t ∈ [0, 1]. This completes the proof
of (3.17).

• ad (3.16): Integrating the inequality α ′(t) ≤ ū ′(t) over [0, t] for t ∈ (0, t1], we get

α(t)− α(0) ≤ ū(t)− ū(0) for t ∈ [0, t1]. (3.21)

Further, as ū(0) = δ0(0, ū(0) + L0(ū(0), ū(1), ū ′(0), ū)) ≥ α(0), it follows that

α(t) ≤ ū(t) + α(0)− ū(0) ≤ ū(t) for t ∈ [0, t1].

Now, let k ∈ {1, . . . , m} be such that

α(t) ≤ ū(t) for t ∈ [0, tk]. (3.22)



Discontinuous functional impulsive problems 13

Analogously to (3.21) we derive

α(t)− α(tk+) ≤ ū(t)− ū(tk+) for t ∈ (tk, tk+1]

and, with respect to the second line in (3.5), we get

α(t) ≤ ū(t) + α(tk+)− ū(tk+)

= ū(t) + α(tk+)− I0k(tk, δ0(tk, ū(tk)), δ1(tk, ū ′(tk)))− ū(tk)

for t ∈ (tk, tk+1]. Furthermore, having in mind that

α(tk) ≤ δ0(tk, ū(tk)) ≤ β(tk) and α ′(tk) ≤ δ1(tk, ū ′(tk)) ≤ β ′(tk)

due to (3.2) and (3.3), we can use (3.12), the second line in (2.1) and hypothesis (3.22) to deduce
that

α(t) = ū(t) + α(tk+)− I0k(tk, δ0(tk, ū(tk)), δ1(tk, ū ′(tk)))− ū(tk)

≤ ū(t) + α(tk+)− I0k(tk, α(tk), α ′(tk))− ū(tk)

≤ ū(t) + α(tk)− ū(tk) ≤ ū(t) for t ∈ (tk, tk+1].

By induction principle, we can conclude that α(t) ≤ ū(t) holds on the whole interval [0, 1].
Similarly we can prove that ū(t) ≤ β(t) on [0, 1]. This completes the proof of (3.16).

• ad (3.18): Suppose that

ū(0) + L0(ū(0), ū(1), ū ′(0), ū) > β(0).

Then by (3.5) and (3.2)

ū(0) = δ0(0, ū(0) + L0(ū(0), ū(1), ū ′(0), ū) = β(0)

and using the monotonicity type condition (3.14) we obtain

0 < ū(0) + L0(ū(0), ū(1), ū ′(0), ū)− β(0)

= L0(β(0), ū(1), ū ′(0), ū) ≤ L0(β(0), β(1), β ′(0), β) ≤ 0,

a contradiction. Hence, it must be

ū(0) + L0(ū(0), ū(1), ū ′(0), ū) ≤ β(0).

Similarly, we would show that

α(0) ≤ ū(0) + L0(ū(0), ū(1), ū ′(0), ū),

is true, as well. Thus, the relations (3.18) are true.

• ad (3.19): Suppose that

ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū) > β ′(1).

Then by (3.5) and (3.3)

ū ′(1) = δ1(1, ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū) = β ′(1).
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Furthermore, the monotonicity type condition (3.15) together with (2.2) yield the following
contradiction:

0 < ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū)− β ′(1)

= L1(ū(0), ū(1), β ′(1), ū) ≤ L1(β(0), β(1), β ′(1), β) ≤ 0.

Consequently, it has to be

ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū) ≤ β ′(1).

Similarly it can be shown that

α ′(1) ≤ ū ′(1) + L1(ū(0), ū(1), ū ′(1), ū).

This completes the proof of (3.19).

To summarize, all the relations (3.16)–(3.19) are true and hence the fixed point ū of T is
a solution of the given problem (1.1)–(1.3).

4 Example

To illustrate the range of applications of our main result, let us consider problem (1.1)–(1.3),
with m = 1, D = {t1} = { 1

2},

f (t, x, y) =

{
0.001 [(t− 2) y3 + x] if 0 ≤ t ≤ 1

2 ,

0.001 [(t− 6) y3 + x] if 1
2 < t ≤ 1,

I01(
1
2 , x, y) = 0.1

[
3
2 +

1
3 x + y3

]
, I11(

1
2 , x, y) = 0.1

[
1
2 −

1
4 x + y3

]
,

L0(x, y, z, u) =− x+ 1
6

(
z+ sup

t∈[0,1]
u(t)

)
, L0(x, y, z, u) =− 2y−z+

∫ 1

0
u(t)dt.

It is easy to verify that (A), (B) are satisfied. Furthermore, the functions

α(t) = −(t + 1) for t ∈ [0, 1] and β(t) =

{
t + 1 if 0 ≤ t ≤ 1

2 ,

t + 4 if 1
2 < t ≤ 1

are lower and upper solutions of the given problem and conditions (3.1), (3.11), (3.12), (3.13),
(3.14) and (3.15) hold. Therefore, our Theorem 3.4 ensures the existence of its solution
u∗ ∈ PC1

D such that
α(t) ≤ u∗(t) ≤ β(t) and − 1 ≤ u ′∗(t) ≤ 1.
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