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a b s t r a c t 

This work concerns with the clean inclusion of the forcing term in the lattice Boltzmann method (LBM) 

for the modeling of non-uniform body forces in steady hydrodynamics. The study is conducted for the 

two-relaxation-time (TRT) scheme. Here, we consider a simple, but yet sufficiently generic, flow config- 

uration driven by a spatially varying body force based on which we derive the analytical solution of the 

forced LBM-TRT and compare two force strategies set by first- and second-order expansions. This proce- 

dure exactly establishes the macroscopic system satisfied by each force formulation at discrete level. The 

obtained theoretical results are further verified in two distinct benchmark channel flow problems. Over- 

all, this study shows that the spatial discrete effects posed by the LBM modeling of the force term may 

come in through two sources. The first one is a defect inherent to LBM, arising from the non-local spatial 

discretization of the forcing term, and given by the discrete Laplacian of the body force. While it corrupts 

the discrete momentum balance with a non-linear viscosity dependent term in the single-relaxation-time 

schemes, this inconsistency is avoided with the TRT scheme, through its free-tunable relaxation degree of 

freedom �. The other error source is unique to the use of second-order force expansions, where its non- 

zero second-order velocity moment interferes with the discrete momentum balance through a spurious 

first-order derivative term, leading to several forms of inconsistency in the LBM steady solution. For simu- 

lations under the convective scaling it makes the LBM scheme a numerical representation of a differential 

system distinct from the physical one, whereas under the diffusive scaling it leads to viscosity-dependent 

numerical errors, which corrupt the otherwise consistent structure of TRT steady-state solutions. In con- 

trast, the defects reported herein are absent with the first-order force expansion scheme operated within 

the scope of the LBM-TRT model for steady hydrodynamics. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

The lattice Boltzmann method (LBM) [1–3] is a well estab-

ished numerical technique to solve the Navier-Stokes equations

NSE). Despite its many inherent advantages, cf. the review arti-

les [4,5] and the monographes [6,7] , the crucial step to bridge

he link between the mesoscopic LBM formulation and the spe-

ific hydrodynamics variables still presents some challenges. For

he “athermal” LBM, such a consistency link is expressed by the

imultaneous satisfaction of the following two points: (i) the LBM

rst three velocity moments should match the required hydrody-

amic expressions and (ii) no numerical artifacts should be intro-

uced during the discretisation process. 
� Fully documented templates are available in the elsarticle package on CTAN . 
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045-7930/© 2020 Elsevier Ltd. All rights reserved. 
The present work deals with the implementation of external

ody forces in LBM, a topic with both theoretical and applied in-

erest, e.g., in multiphase flows [8–11] , flows in porous media [12–

5] , rotating fluid flows [16–19] , turbulent flows [20–23] , etc. In

his regard, it is well-established that, when translated into the

ormulation of forces, each of the two consistency points men-

ioned above relates to a specific discretization step. Point (i), con-

erned with the proper choice of velocity moments, is dictated

y the velocity expansion order of the forcing term [24–26,31] ,

hereas point (ii), concerned with the reduction of discrete lattice

rtifacts, is favoured with the second-order space-time discretiza-

ion of the forcing term [27–31] . Although the superiority of the

econd-order space-time discretization is undisputed, it should be

oted that inherent discrete force errors still exist. This is docu-

ented in [11,14,32,33,36] and will be further pointed out in this

ork. Yet, the more controversial issue lies in the order of the ve-

ocity space expansion of the LBM forcing term where some works,

https://doi.org/10.1016/j.compfluid.2020.104537
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2020.104537&domain=pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle
mailto:goncalo.nuno.silva@gmail.com
https://doi.org/10.1016/j.compfluid.2020.104537
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e.g., [24,25,30,31] , advocate the inclusion of second-order terms

while others, e.g., [14,27,29,37,40,41] , prefer the first-order trunca-

tion. The correct force expansion order for steady flow simulations

will be the main topic of this work. 

Early works [38,39] have already discussed this issue, attribut-

ing to this source of controversy the lack of distinction between

steady- and unsteady-state dynamics in the numerical model for-

mulation. This distinction is well-established within CFD commu-

nity. For example, the numerical diffusion phenomenon, which

originates from a mixed space/time derivative term of the advec-

tive flux, is known to affect time-dependent problems, where it

can be cancelled with the inclusion of a anti-numerical-diffusion

correction [42–45] . At steady-state this error does not exist, so the

inclusion of such a correction, rather than beneficial, will introduce

the exact same numerical diffusion artefact that was designed to

eliminate in the first place. A very similar explanation applies to

the duality in the truncation order of the LBM forcing term. In

time-dependent hydrodynamic problems there is a spurious vis-

cous stress term, given by a mixed space/time derivative of the

Euler momentum flux, which introduces a body force artefact, as

independently noted by many studies [24,30,31,39] . The inclusion

of the second-order velocity term in the force expansion views the

elimination of this body force artefact, mimicking the role of the

anti-numerical-diffusion correction mentioned above. That is why,

when applied to steady problems, the inclusion of this second-

order force term does not meet a similar term to cancel, rather

introducing the same artefact that was proposed to eliminate. 

These conclusions reported above correspond to the original

findings of [38,39] and were established recurring to the tradi-

tional second-order Chapman–Enskog expansion [1,4,7,37] applied

to both time-independent and time-dependent settings; this lat-

ter subject to either convective or diffusive scalings. The work

[39] showed that only the time-dependent setting, when accessed

through the convective scaling, is compatible with the second-

order force expansion, while the remaining cases should stick with

a first-order force scheme. These observations back up previous

studies that, by adopting the diffusive scaling under distinct theo-

retical frameworks, e.g. the Chapman–Enskog expansion in [37] or

the (Hilbert) regular asymptotic expansion in [41] , agreed on the

first-order force expansion as the correct choice to reproduce the

hydrodynamic external force in the time-dependent incompress-

ible Navier-Stokes equations. 

The present study aims to re-evaluate the aforementioned re-

sults by focusing on the time-independent setting, i.e. the less con-

sensual case since the steady-state Chapman–Enskog analysis un-

dertaken in [38,39] remains less popular. Thus, with the modeling

of steady hydrodynamics in mind, the purpose of this work is to

examine the possible sources of spatially-dependent force errors

based on an exact analysis. For that, we study a simple, but yet

sufficiently generic, flow configuration of an incompressible fluid

driven by a spatially varying body force, which permits deriving

the analytical solution of the forced LBM scheme following the

procedures of He et al. [46] and Ginzburg and d’HumiÃĺres [14,47] .

The two techniques are presented herein for their pedagogical in-

terest, as they lead to identical results; our goal is to show that the

procedure of [14,47] , although less popular, is considerably simpler

than [46] . With the adopted theoretical procedures we divert from

the scope of approximate perturbative methods, e.g. [29,30,39] ,

and exactly establish the consistency of each force scheme with

respect to steady hydrodynamics in an unambiguous way, where

possible force error sources are identified at discrete level. The the-

oretical study is complemented with numerical tests where the ef-

fect of the force errors is assessed from the perspective of both

convective and diffusive scalings. This will prove useful in under-

standing the role of the identified errors and how they impact the

correctness of simulations. 
f
In this work, we consider the two-relaxation-time (TRT) LBM

cheme [37] , which is presented in Section 2 together with

he inspected forcing schemes. They are theoretically studied in

ection 3 , where we derive the exact solution of the forced LBM-

RT scheme for the aforementioned steady-state flow configura-

ion, extending previous works, e.g., [10,13,14,48] , to a non-uniform

orce-driven setup; the details of the underlying derivations are

hown in Appendix A and Appendix B . Then, in Section 4 , the

xact results are verified for two benchmark flow problems, each

ossessing known analytical solution; they model: (i) the porous

hannel flow with wall injection and (ii) the rotating channel

oiseuille flow. Finally, the main conclusions of this study are sum-

arized in Section 5 . 

. LBM-TRT Model 

The LBM [6,7] solves for the populations f q ( � x , t) , defined on

pace � x and time t , along a discrete velocity set, called lattice, fea-

uring one immobile � c 0 = 

�
 0 and Q − 1 non-zero velocity vectors � c q 

er grid node. The LBM evolves through a succession of stream-

ng and collision steps. In this work the collision step adopts the

wo-relaxation-time (TRT) model [37] . The TRT is formulated on

he symmetry argument that any lattice quantity ψ q can be de-

omposed onto symmetric ψ 

+ 
q = 

1 
2 (ψ q + ψ q̄ ) and anti-symmetric

 

−
q = 

1 
2 (ψ q − ψ q̄ ) components, where � c q̄ = −�

 c q . On this basis, the

volution equation of LBM-TRT, with an external source term S q 
onsidered explicitly, reads as follows [37] : 

f q ( � x + 

�
 c q δt, t + δt) = 

[ 
f q − 1 

τ+ ( f + q − e + q ) −
1 

τ− ( f −q − e −q ) 

+ 

(
1 − 1 

2 τ+ 

)
S + q δt + 

(
1 − 1 

2 τ−

)
S −q δt 

] 
× ( � x , t) . (1)

By design the collision model in TRT is controlled by two re-

axation times: τ+ that controls symmetric modes and sets the

uid viscosity ν , and τ− that controls anti-symmetric modes and

s a free parameter. Most importantly, the function formed by

hese two relaxations � = 

(
τ+ − 1 

2 

)(
τ− − 1 

2 

)
is the only trace of

he relaxation parameters pre-factoring the spatial truncation er-

ors of TRT. Thus, � is what controls the stationary field of non-

imensional TRT solutions [14,37,47] . The Navier-Stokes equations

NSE) are modelled with the following e −q (anti-symmetric) and e + q 

symmetric) equilibrium [37] : 

 

−
q = t � q 

c qαρ̄u α

c 2 
, e + q = t � q 

[
P 

c 2 
+ (3 c qαc qβ − c 2 δαβ ) 

ρ̄u αu β

2 c 4 

]
. (2)

Above, u α is the fluid velocity and P is the pressure, related

o density ρ by the equation of state P = c 2 s ρ, where the lattice

ound speed c s is a free parameter, limited by the necessary stabil-

ty condition 1 − c 2 s 

∑ Q−1 
q =0 

t � q > 0 [44] . The density ground state is

¯ := ρ0 , with ρ0 = const . , according to the incompressible model

49] (for the compressible case ρ̄ := ρ( � x , t) , but this case is not

onsidered herein). The inclusion of an external acceleration field

�
  is expressed by the standard LBM forcing term given by: 

 

−
q = t � q 

c qαρ̄a α

c 2 
, S + q = A t � q 

[
(3 c qαc qβ − c 2 δαβ ) 

ρ̄a αu β

c 4 

]

with 

{
A = 0 first − order force expansion , 

A = 1 second − order force expansion . 
(3)

Note, the symmetric source term S + q accounts for two forcing

ormulations, as determined by A in Eq. (3) . 
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The zeroth- and first-order velocity moments of the LBM solu-

ion establish the mass density and momentum density: 

= 

Q−1 ∑ 

q =0 

f q , ρ̄�
 u = 

Q−1 ∑ 

q =1 

�
 c q f q + 

δt 

2 

ρ̄�
 a . (4)

The source term, Eq. (3) , possesses the following zeroth-, first-

nd second-order velocity moments: 

−1 ∑ 

q =0 

S + q = 0 , 

Q−1 ∑ 

q =1 

�
 c q S 

−
q = ρ̄�

 a , 

Q−1 ∑ 

q =1 

c qαc qβ S + q = A ρ̄
(
a αu β + a βu α

)
. (5) 

. Exact analysis of LBM with spatially varying force 

Consider the LBM scheme operating on the two-dimensional

ine-velocity (D2Q9) model, defined on the Cartesian system

  = (x, y ) , with velocities �
 c 1 = −�

 c 3 = (1 , 0) c, �
 c 2 = −�

 c 4 = (0 , 1) c,

  5 = −�
 c 7 = (1 , 1) c and 

�
 c 6 = −�

 c 8 = (−1 , 1) c. For this model, the

eights in the equilibrium, Eq. (2) , are t � 
1 , 2 , 3 , 4 

= 1 / 3 and t � 
5 , 6 , 7 , 8 

=
 / 12 . Note, the rest population 

�
 c 0 = (0 , 0) c, with weight t � 

0 
= (3 −

 c 2 s ) / 3 c 
2 
s , is not relevant for the steady-state regime, thus not con-

idered in this work. 

In this section, we seek for the analytical solution of the LBM-

RT equation, with a spatially-varying external body force, for the

acroscopic momentum balance in bulk (i.e. boundary effects are

xcluded). For the analysis purpose, the following standard condi-

ions are adopted [10,13,14,48] : (1) time-independence; (2) invari-

nce along the x-direction; (3) velocity field 

�
 u = (u, υ) ; and (4) ac-

eleration field 

�
 a = (a x , a y ) . The application of conditions (1) and

2) over Eq. (1) provides the following simplified LBM-TRT evolu-

ion equation: 

f q 
(
y + c qy δt 

)
= f q ( y ) − 1 

τ+ 
(

f + q ( y ) − e + q ( y ) 
)

− 1 

τ−
(

f −q ( y ) − e −q ( y ) 
)

+ 

(
1 − 1 

2 τ+ 

)
S + q ( y ) δt + 

(
1 − 1 

2 τ−

)
S −q ( y ) δt, (6) 

here the only non-trivial velocity moment in Eq. (4) computes

he u velocity component as follows: 

−1 ∑ 

q =1 

c qx f q (y ) = ρ̄u j −
δt 

2 

ρ̄(a x ) j . (7)

Hereinafter, the spatial dependency along the y coordinate is
xpressed in grid units by index j , where y = j δx and δx = c δt
s the grid space step. By inserting Eq. (6) into Eq. (7) , one can
nalytically solve the exact macroscopic governing equations of
he LBM-TRT system. For completeness, this task is shown in Ap-
endix for two theoretically different procedures: He et al. [46] in

ppendix A and Ginzburg and d’HumiÃĺres [14,47] in Appendix B .
lthough the former is more popular, the latter is more general
nd simpler to apply. The most important point for our intents is
hat, in the end, the two procedures recover the same exact mo-

entum balance for LBM-TRT at discrete level, which is given by: 

u j+1 υ j+1 − u j−1 υ j−1 

2 δx 
− (a x ) j − ν

u j+1 − 2 u j + u j−1 

δx 2 

+ δx 2 
(

8� − 3 

12 

)
(a x ) j+1 − 2(a x ) j + (a x ) j−1 

δx 2 

+ A 

3 ν

c 2 

(
u j+1 (a y ) j+1 − u j−1 (a y ) j−1 

2 δx 
+ 

υ j+1 (a x ) j+1 − υ j−1 (a x ) j−1 

2 δx 

)
= 0 , 

(8) 

where ν = 

1 
3 c 

2 δt 
(
τ+ − 1 

2 

)
is the fluid kinematic viscosity. 
Eq. (8) corresponds to the second order difference scheme for

he continuous differential equation: 

∂ y ( uυ) − a x − ν ∂ yy u 

+ ( I ) δx 2 
(

8� − 3 

12 

)
∂ yy a x ︸ ︷︷ ︸ 

Error ( I) 

+ A 

3 ν

c 2 
( ∂ y ( ua y ) + ∂ y ( υa x ) ) ︸ ︷︷ ︸ 

Error (II) 

= 0 , (9) 

Eq. (9) brings about two forced-based terms (signalized above)

ot found in the physical incompressible NSE with an external

ody force, which is our target differential equation. These two

erms have the following meanings: 

Error (I) in Eq. (9) , represented by the Laplacian of a x , is an

igher-order correction resulting from the non-local stencil dis-

retization of the (spatially-varying) body force [13,14,48] . This

erm is intrinsic to the LBM and recognized to impact the LBM

odeling of diverse flow problems [14,32] . This correction scales

ith δx 2 , i.e. it is the same order of the LBM discretization er-

or. But though it vanishes in the hydrodynamic limit, i.e. when

x → 0, at finite grid resolutions it holds non-negligible, and even

ominant [13,32,36] . Additionally, it depends on the relaxation

ates. While in TRT it scales with �, in the single-relaxation-time

SRT) collision model [50] this relaxation footprint becomes �∝ ν2 ,

hich is responsible for creating a non-linear viscosity-dependent

rtefact [13,14] . 

Error (II) in Eq. (9) , represented by the first-order derivative of

he force and velocity product, is not intrinsic to LBM. Rather, it

s an artefact created uniquely by the discretization of the second

rder velocity moment of the force term [38,39] , i.e. it is only rel-

vant when A = 1 in Eq. (3) and absent when A = 0 is considered

nstead. In practice, the spurious term associated to A = 1 leads

o an inconsistent numerical scheme, which can be identified in

everal ways, from the breaking of the TRT viscosity-independent

roperty to the inconsistent convergence towards a differential sys-

em distinct from the physical one. These defects will be illustrated

n the next section, by examining two test cases. 

 note on the effect of the LBM force errors on boundaries 

In flow confined problems the LBM bulk solution, Eq. (8) , must

e supplemented with the prescription of boundary conditions.

owever, when a low-order boundary scheme is used, then addi-

ional numerical artefacts are likely to be introduced. For exam-

le, take a constant force so that Errors (I) and (II) vanish, even

ere the bounce-back (BB) rule will introduce by itself an error

hat varies with � and affects the precision of the no-slip wall

ocation at O(δx 2 ) [7,27] (i.e. a �-dependent error that affects

he BB accommodation of the flow curvature); this error is par-

icularly harmful in the framework of the SRT collision operator

here this �-dependency of BB turns into the well-established ν2 -

ependency of the no-slip wall location [7,27] . For this horizontal

ow setup with halfway walls, this BB error is removed by setting

= 3 / 16 . 

However, a conflict in this � choice becomes evident when a

on-uniform body force is considered. Namely, according to Eq. (8) ,

ven when Error (II) is absent due to A = 0 , the removal of Er-

or (I) will require � = 3 / 8 for this setup. Worse, the studies [32–

4] have identified this problem and showed that Error (I), which

s intrinsic to the LBM discretization of non-uniform body forces,

ets transferred from bulk to boundaries; for example, in the BB

ase it leads to body force �-dependent artefacts that affect the

recision of the no-slip wall location on a much larger extent, at

oth O(δx ) and O(δx 2 ) (i.e. they affect the BB accommodation of

oth the flow gradient and the flow curvature). This implies that,

n this case, there is no single � value capable of fixing the BB wall

ocation at the desired place; for a detailed discussion on the pros
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Fig. 1. Schematic representation of studied channel flow problems: (a) porous flow with wall injection, (b) rotating Poiseuille flow. 
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and cons of using � = 3 / 16 vs. � = 3 / 8 in the BB wall modeling

of this problem class we refer to [32–34] . 

Two alternative and general strategies to avoid these prob-

lems have been devised in [32,33] ; specifically, [32] proposed a

new bulk force correction while [33] constructed a new class of

high-order boundary schemes, both strategies were designed to re-

move or mitigate the interference of the aforementioned spatially-

varying force errors in bulk and boundaries, respectively; more-

over, they also accounted for the influence of � on the accuracy

of the numerical solutions [33] , guaranteeing that � stays free to

optimize other features of the LBM-TRT scheme. 

4. Application of exact analysis and validation 

The analytical solution of the LBM-TRT, previously addressed

in Section 3 , indicates that the stationary momentum balance of

LBM with a force scheme A = 1 gives rise to a spurious momen-

tum contribution given by ∂ y (ua y + υa x ) . The present section is es-

sentially devoted to examine this artefact. For that, we consider

the two flow configurations sketched in Fig. 1 . They model: (a)

porous channel flow with wall injection, and (b) rotating channel

Poiseuille flow. 

Since the objective of the present study concerns with the

bulk flow solution , the numerical tests illustrated herein make use

of standard boundary schemes, namely periodic boundary condi-

tions at inlet/outlet boundaries and the bounce-back (BB) rule at

solid walls. 1 The LBM solution is considered at steady-state when

| ∑ 

u x (t) / 
∑ 

u x (t − t a ) − 1 | < 10 −12 with t a = 100 δt . Then, accuracy

is measured as L 2 (u ) = 

√ ∑ 

(
u ( num ) − u ( exact ) 

)2 
/ 
∑ 

(
u ( exact ) 

)2 
, with

the sums taken over all grid nodes, u (num) the numerical solution

and u (exact) the solution of the continuous problem. 

4.1. Porous channel Brinkman flow with wall injection 

Consider a constant acceleration field g x that drives an incom-

pressible fluid inside a channel filled with a porous medium of

homogenous permeability k , see Fig. 1 (a). The fluid motion is de-

scribed by Brinkman’s model [12–14,32,33] , given by the forcing

term: 

a x = g x − ν

k 
u, a y = −ν

k 
υ. (10)

The introduction of Eq. (10) into Eq. (8) establishes the exact

discrete momentum balance satisfied by LBM-TRT for this problem,
1 To guarantee the LBM results are indeed free from the contamination of bound- 

ary effects, we actually considered both BB and Zou-He [51] wall boundary condi- 

tions. Based on the observation that conclusions held unchanged, and for the sake 

of brevity, this paper only shows the BB outcomes. 

w

 

 

d

hich is given as follows: 

(1 + γ ) 
u j+1 υ j+1 − u j−1 υ j−1 

2 δx 
− g x + 

ν

k 
u j 

−νeff 

u j+1 − 2 u j + u j−1 

δx 2 
= 0 , (11)

ith coefficients 

= −A 

6 ν2 

k c 2 
, νeff = ν (1 + δν) , δν = 

δx 2 

k 

(
8� − 3 

12 

)
. (12)

Eq. (11) reproduces the following equivalent differential equa-

ion: 

(1 + γ ) ∂ y (uυ) − g x + 

ν

k 
u − νeff ∂ yy u = 0 . (13)

Physically, this problem should be governed by ∂ y (uυ) − g x +
ν
k 

u − ν ∂ yy u = 0 , which points to two error sources in Eq. (13) . 

The first one is the γ artefact that affects the convective term;

is created by the non-zero second-order velocity moment of the

orcing term, due to A = 1 (i.e. Error (II) in Eq. (9) ), and it only van-

shes with a first-order force expansion, where A = 0 and therefore

= 0 , see Eq. (12) . 

The second error source in Eq. (13) refers to the effective vis-

osity νeff coefficient, which affects the diffusive term, modifying

he actual viscosity value ν by an amount equal to 1 + δν, see

q. (12) . The added artefact δν is called the viscosity correction

14] and is created by the intrinsic force discretization error (i.e. Er-

or (I) in Eq. (9) ). For this problem, δν depends on: (i) the physical

egime, scaling inversely with permeability k ; (ii) the grid resolu-

ion, scaling with the square of mesh resolution δx 2 ; and (iii) the

RT relaxation parameter �, which nullifies δν for � = 3 / 8 in this

orizontal channel setup. When degrading the TRT to the single-

elaxation-time (SRT) collision model [50] , i.e. setting τ+ = τ− = τ,

hen the relaxation footprint becomes �∝ ν2 , which leads to a non-

inear dependence on the model viscosity. This succinctly explains

he inconsistency of SRT schemes to model Brinkman flows [13] ; a

eeper analysis on this subject is given by [14,32,33] . 

The velocity profile, subject to boundary conditions u (y =
h ) = 0 and υ(y = ±h ) = υ0 = const , obeys the trivial solution

= υ0 along the υ component, whereas the u component, in non-

imensional form ū = u ν/ (g x h 
2 ) , has the solution: 

¯
 = Da 

[
1 + exp ( ̄y ψ ) 

(
sinh (ψ ) 

sinh (ψ ζ ) 
sinh ( ̄y ψ ζ ) 

− cosh (ψ) 

cosh (ψ ζ ) 
cosh ( ̄y ψ ζ ) 

)]
, (14)

ith ȳ = y/h ∈ [ −1 , 1] . 

The following parameters in Eq. (14) are defined: ψ =
( Re 

2 ) 
(1+ γ ) 

(1+ δν) 
, ζ = ( 4 (1+ δν) 

(1+ γ ) 2 Re 2 Da 
+ 1) 1 / 2 , with the physical non-

imensional groups Da = 

k 
2 (Darcy number) and Re = 

h υ0 
ν
h 
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Fig. 2. Velocity profiles in the porous channel flow with wall injection simulated with LBM-TRT for N y = 2 h /δx = 32 computational cells and � = 3 / 8 , comparing two force 

schemes and their respective analytical solutions, given by Eq. (14) with γ = 0 (for A = 0 ) and γ = −2 / 15 (for A = 1 ). Panel (a): Re = 1 . 5 , Da = 1 (open-flow regime); Panel 

(b): Re = 10 , Da = 0 . 025 (impermeable regime). 
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Reynolds numbers). The physical solution for this problem should

eature γ = 0 (set by A = 0 ), whereas the case γ � = 0 (set by

 = 1 ) establishes a different physical problem. Fig. 2 illustrates

his difference showing that for the same Da and Re two clearly

istinct u velocity profiles are recovered, each agreeing with the

espective theoretical predictions. 2 

We note that the numerical artefact γ , defined in Eq. (12) ,

an be re-written in terms of non-dimensional groups as γ =
A 

6 Ma 2 

Re 2 Da 
, with Ma = 

υ0 
c the Mach number. The γ impact is there-

ore twofold, depending on how we handle Ma in LBM simulations.

Under the convective scaling we fix Ma = O(1) [40] , hence γ
lso becomes fixed. Fig. 3 demonstrates the mesh convergence re-

ults in this case. The second-order mesh convergence of LBM to-

ards Eq. (14) is only established providing the correct A value

s set in the problem solution. For A = 0 the LBM numerical so-

ution converges as a second-order scheme, as expected, towards

he physical solution, in which γ = 0 . For A = 1 the LBM is also

econd-order convergent, but towards a different unphysical physi-

al problem, given by Eq. (14) with γ � = 0 fixed. At the same time,

he LBM with A = 1 , but used to solve the physical problem in-

tead, as given by Eq. (14) with γ = 0 , then becomes zeroth-order

onvergent. That is, the scaling that formally justifies the forcing

cheme with A = 1 for time-dependent problems, leads in turn to

 non-convergent behavior towards the physical solution at steady-

tate. 

Under the diffusive scaling, the Mach number is Ma = O(δx )

40] . Therefore, with fixed Re and Da, the numerical artefact γ for-

ally scales as O(δx 2 ) ; recall, γ ∝ Ma 2 . In this case, the importance

f the γ error term may be overlooked as being the same order of

he LBM discretization. However, the structure of this error term is

ifferent. Contrary to the typical LBM-TRT spatial discretization er-

ors, the γ artefact introduces a non-linear dependence on viscos-

ty, which contaminates the overall viscosity-independent structure

f the TRT numerical errors. This general shortcoming – caused by

BM force schemes with a non-zero second order velocity moment,

articularized here for the A = 1 case – is studied in more details

n [52] . Fig. 4 quantifies the impact of such a ν-dependence on

he L 2 ( u ) accuracy of LBM-TRT solutions under the diffusive scal-

ng. Comparing panels (a) and (b) in Fig. 4 it is confirmed that, in
2 For clarity, the present analysis takes � = 3 / 8 , which sets δν = 0 , thus mak- 

ng γ the only effective force-related error throughout. The impact of δν in the 

rinkman model simulation of porous media flows has been studied in details in 

13,14,32,33] . 

g

 

f  

t  
ccordance to γ in Eq. (12) , the effect of ν increases the smaller is

 (with δx fixed), and scales as ν2 for any fixed k . Fig. 5 confirms

his defect from a different perspective; it shows the effect of ν
n the quality of the velocity profiles, again for fixed Re and Da.

he marked transfigurations in the shape of the profiles, caused

y varying ν , are unphysical and particularly alarming when sim-

lating the more impermeable regime, Da � 1, which is a sce-

ario often found in literature, e.g., [12,15,32] . These results report

he gains in using a force scheme with A = 0 , rather than A = 1 ,

or the simulation of steady incompressible porous flow problems.

he possible gains by switching to A = 1 when solving the time-

ependent regime of this problem class have not been quantified,

o the best of our knowledge; to fill this gap we envisage, for ex-

mple, the benchmark provided in Section 3 of [35] as an interest-

ng route for the time-dependent analysis. 

.2. Rotating channel Poiseuille flow 

Consider a constant acceleration field g x that drives an incom-

ressible fluid inside a channel that undergoes rotation about an

xis perpendicular to its own axis. The channel angular speed is
�
 = �z 

�
 i z , where �z = const > 0 , see Fig. 1 (b). Under these condi-

ions the acceleration field is given by: 

 x = g x , a y = −2�z u. (15) 

Note, in principle, the a x component should also feature the

oriolis acceleration term 2�z υ . It is omitted though as the υ
omponent is identically zero in this problem, due to the imper-

eability boundary condition υ(y = ±h ) = 0 . 

With the υ = 0 solution established and the introduction of

q. (15) into Eq. (8) , then the LBM describes this problem at dis-

rete level exactly as follows: 

g x + ν
u j+1 − 2 u j + u j−1 

δx 2 
+ A 

6�z ν

c 2 

(
u 

2 
j+1 

− u 

2 
j−1 

2 δx 

)
= 0 . (16)

Eq. (16) reproduces the following equivalent differential equa-

ion: 

 x + ν ∂ yy u + A 

6�z ν

c 2 
∂ y u 

2 = 0 . (17) 

Eq. (17) subject to u (y = ±h ) = 0 is not accessible to a closed-

orm analytical solution. Hence, we follow the ideas of [17] and

ackle this non-linear problem through a perturbation procedure.
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Fig. 3. Mesh convergence analysis in the porous channel flow with wall injection simulated with the LBM-TRT scheme using � = 3 / 8 and Ma = 0 . 3 . Panel (a): Re = 1 . 5 , 

Da = 1 (open-flow regime); Panel (b): Re = 10 , Da = 0 . 025 (impermeable regime). Mesh convergence rates are quantified over lines. 

Fig. 4. Dependence of L 2 ( u ) error versus viscosity ν for LBM-TRT solutions using the numerical parameters defined in Fig. 2 . The error measure L 2 ( u ) adopts for the reference 

solution u (exact) the physical solution given by Eq. (14) with γ = 0 . Panel (a): Re = 1 . 5 , Da = 1 (open-flow regime); Panel (b): Re = 10 , Da = 0 . 025 (impermeable regime). 

Fig. 5. Velocity profiles in the porous channel flow with wall injection simulated with LBM-TRT as function of viscosity ν , with δν = 0 , predicted by the two force schemes 

A = 0 and A = 1 . Panel (a): Re = 1 . 5 , Da = 1 (open-flow regime); Panel (b): Re = 10 , Da = 0 . 025 (impermeable regime). 

 

 

 

 

 

r

u

For that, we express u in non-dimensional form ū = u ν/ (g x h 
2 )

and assume the ū velocity in Eq. (17) can be represented by ū =
ū (0) + ε ū (1) + ε2 ū (2) + ε3 ū (3) + O(ε4 ) , with the smallness param-

eter defined as: 

ε = A 

6 �z g x h 

3 

2 
. (18)
c ν
 

After some lengthy algebra, the asymptotic solution of Eq. (17) ,

epresented in terms of ū up to O(ε4 ) , is given by: 

 ( y ) = 1 

2 

(
1 − y 2 

)(
1 + ε

30 
y 

(
3 y 2 − 7 

)
+ ε2 

1440 

(
1 − y 2 

)2 (
9 y 2 − 25 

)

+ ε3 

2494800 
y 

(
3969 y 8 − 28756 y 6 + 75590 y 4 − 92116 y 2 + 56417 

)
+ O 

(
ε4 

))
, 

(19)
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Fig. 6. Velocity profiles in the rotating channel Poiseuille flow simulated with LBM-TRT for N y = 2 h /δx = 32 computational cells and � = 3 / 16 using two force schemes 

(with A = 0 and A = 1 ) versus the analytical solutions given by Eq. (19) truncated at different O(εn ) -orders, with n = { 0 , 1 , 2 , 3 } . Panel (a): ε = 0 . 25 ; Panel (b): ε = 1 . 

Fig. 7. Mesh convergence analysis in the rotating channel Poiseuille flow of the LBM-TRT scheme with � = 3 / 16 . The error measure L 2 ( u ) adopts for the reference solution 

u (exact) the asymptotic solution given by Eq. (19) truncated at different O(εn ) -orders, with n = { 0 , 1 , 2 , 3 } . Panel (a): ε = 0 . 1 fixed; Panel (b): ε = 0 . 25 fixed. Mesh convergence 

rates are quantified over lines. 
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ith ȳ = y/h ∈ [ −1 , 1] . 

Note, the physical problem of the rotating channel Poiseuille

ow is established for ε = 0 , which recovers the parabolic pro-

le in Eq. (19) , i.e. ū ( ̄y ) = 

1 
2 (1 − ȳ 2 ) . This solution coincides with

he outcome of LBM with A = 0 , i.e. with the first-order force

odel. 3 3 In contrast, the LBM with A = 1 , i.e. with the second

rder force expansion, establishes a different physical problem as

iven by Eq. (19) with ε � = 0. Fig. 6 illustrates the u velocity pro-

les recovered by LBM with A = 0 or A = 1 , and compares them

o the theoretical profiles, predicted by different O(ε) asymptotic

olutions in Eq. (19) . The different matchings are coherent with the

nalytical predictions. 

Again, the numerical artefact ε, defined in Eq. (18) , can be

e-written in terms of non-dimensional groups as follows: ε =
 

6 Ma 2 

Ek Re 
, where Ek = 

ν
� h 2 

(Ekman number), Re = 

u 0 h 
ν (Reynolds
z 

3 The recovering of the parabolic solution is a bulk result. Hence, it holds in- 

ependently of the boundary scheme employed. If the bounce-back (BB) rule is 

sed, as considered herein, then the exact location of the no-slip zero velocity state 

epends on the relaxation parameters. In this particular setup, considering a half- 

ay wall [7,27] , the exact solution for A = 0 is recovered with � = 3 / 16 in TRT (or 

= c 2 δt/ 
√ 

48 in SRT). 

t

 

[  

s  

t  

t  

a  
umber) and Ma = 

u 0 
c (Mach number), with velocity reference

cale as u 0 = 

g x h 
2 

ν . This permits understanding the impact of ε,

ased on the Ma setting. 

Under the convective scaling we fix Ma = O(1) [40] . As a re-

ult, for fixed Ek and Re, the LBM with A = 1 becomes a second-

rder numerical scheme for a problem distinct from the physical

ne. Fig. 7 demonstrates the mesh convergence analysis taking dif-

erent O(ε) approximations of the predicted theoretical solution,

s given by Eq. (19) . The plots confirm that the outcomes of LBM

ith A = 1 tend to a second-order convergence towards Eq. (17) as

(ε) is increased, which confirms that LBM with A = 1 is indeed

eproducing the differential system given by Eq. (17) . The parabolic

olution, as physically expected to be recovered in this problem, is

nly retrieved for LBM with A = 0 , whereas the second-order force

cheme A = 1 leads to a zeroth-order accurate representation of

he (physical) O(ε0 ) solution. 

Under the diffusive scaling, the Mach number is Ma = O(δx )

40] . Therefore, for Ek and Re fixed, the numerical artefact repre-

ented by ε will formally scale as O(δx 2 ) ; recall, ε∝ Ma 2 . Although

his case may appear favourable, since the ε error decreases with

he square of mesh resolution, with this scaling we tolerate ε to

ct as an unphysical viscosity-dependent numerical error. Fig. 8
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Fig. 8. Dependence of L 2 ( u ) error versus viscosity ν for LBM-TRT solutions N y = 2 h /δx = 32 computational cells and � = 3 / 16 . The error measure L 2 ( u ) adopts for the 

reference solution u (exact) the reference solution given by Eq. (19) truncated at O(ε0 ) . Recall, Ek = 

ν
�z h 

and Re = 

u 0 h 
ν . Panel (a): Ek = 1 and Re = 10 ; Panel (b): Ek = 0 . 2 and 

Re = 10 . 

Fig. 9. Velocity profiles in the rotating channel Poiseuille flow simulated with LBM-TRT as function of viscosity ν , predicted by the two force schemes A = 0 and A = 1 . 

Recall, Ek = 

ν
�z h 

and Re = 

u 0 h 
ν . Panel (a): Ek = 1 and Re = 10 ; Panel (b): Ek = 0 . 2 and Re = 10 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

[  

 

t  

e  

 

s  

t  

o  

d  

d  

b  

c  

t

5

 

s  

i  

t

quantifies the impact of the ν-dependence on the L 2 ( u ) accuracy

of the TRT steady solutions obtained under the diffusive scaling.

Fig. 9 illustrates the negative impact of this viscosity effect on the

quality of the velocity profiles, which for Re and Ek fixed are sev-

erally distorted with the ν values. These results clearly establish

how unreliable LBM with A = 1 is in the modeling of the Coriolis

acceleration term [18,19] for steady incompressible flows, a choice

that is particularly harmful in the simulation of the Ek � 1 regime

where the ε force error tends to become dominant, see panel (b)

in Fig. 9 . On the other hand, the benefits of using a force model

with A = 1 have been reported in [17] for the modeling of rotat-

ing compressible flows. The case of time-dependent incompressible

flows, although theoretically conceivable to reach a superior accu-

racy with the force scheme using A = 1 , a numerical proof of the

advantage of A = 1 over A = 0 is still lacking, up to the best of or

knowledge. 

Finally, we comment on the effect of the intrinsic force dis-

cretization error (i.e. Error (I) in Eq. (9) ), which is absent from

Eq. (16) because the Laplacian of a x vanishes for the momentum

balance along the x-direction. Yet, this term still impacts this prob-

lem, but for the momentum balance along the y -direction. Looking

at the solution of the NSE satisfied by this problem along the y -

direction we arrive at the hydrostatic momentum balance: −∂ y P +
ρ̄ a y = 0 , with a y = −2�z u, see Eq. (15) . It turns out that the
ame problem when tackled by LBM (derivations can be found in

10,11,32] ) satisfies the discrete momentum balance − 1 
ρ̄

P j+1 −P j−1 

2 δx 
+

(a y ) j + 

δx 2 

4 

(a y ) j+1 −2(a y ) j +(a y ) j−1 

δx 2 
= 0 , which when translate d into

his case reads − 1 
ρ̄

P j+1 −P j−1 

2 δx 
− 2�z u j − δx 2 

2 �z 
u j+1 −2 u j + u j−1 

δx 2 
= 0 or

quivalently − 1 
ρ̄

P j+1 −P j−1 

2 δx 
− 2�z 

u j+1 +2 u j + u j−1 

4 = 0 , where the term
u j+1 +2 u j + u j−1 

4 represents the non-local stencil integration of the

patially-varying contribution in the body force. The reason why

he discrete Laplacian of a y in the y -momentum is independent

f the relaxation rates, contrasting with the �-dependence on the

iscrete Laplacian of a x in Eq. (8) , is explained by the fact that the

iscrete momentum balance established here represents a static

alance, i.e. a system at quasi-equilibrium where all relaxation

ontributions vanish; this is intuitively expected as relaxation con-

ributions come associated with non-equilibrium phenomena. 

. Conclusions 

By analytically solving the LBM-TRT scheme for a specific

teady-state force-driven flow configuration, we exactly established

ts discrete momentum balance. This study permitted identifying

he existence of two spatially-dependent force error sources. 
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The first one is due to the non-local spatial discretization of the

orcing term, given by the discrete Laplacian of the body force. This

s a defect inherent to LBM. Such a term is responsible for corrupt-

ng the discrete momentum balance with a non-linear viscosity de-

endent term in the single-relaxation-time schemes that, however,

an be avoided with the TRT scheme, through its free-tunable re-

axation degree of freedom � as previously indicated in [14,32,33] .

The other error source arises from the use of the second-order

elocity space expansion in the force formulation. The introduced

econd-order velocity moment interferes with the discrete mo-

entum balance, via a spurious first-order derivative, whose neg-

tive impact is shown to produce the following defects. With LBM

imulations running under the convective scaling this second-order

erm renders the forced LBM a second-order spatial convergent

cheme towards a differential system different from the physi-

al one or it makes LBM a zeroth-order convergent scheme to-

ards the physical problem, i.e. LBM becomes an inconsistent nu-

erical scheme. Note, this convective scaling analysis is impor-

ant not only because of its interest in specific flow simulations,

ut essentially because only this scaling permits theoretically jus-

ifying the second-order expansion of the forcing term in time-

ependent problems. When simulations run under the diffusive

caling the aforementioned second-order moment term is allowed

o change with the grid resolution, but at costs of contaminating

he overall structure of the TRT numerical errors, rendering the

non-dimensional) forced TRT steady-state solutions unavoidably

iscosity-dependent. 

Opposingly, the first-order force expansion operated in the

BM-TRT framework consistently reproduces spatially-varying body

orces, reaching the same solution under convective or diffusive

calings, as physically expected at steady-state. These conclusions

re in agreement with [38,39] , and support the first-order force

cheme in steady hydrodynamics. 

Given that the modeling of force-driven unsteady flows seems,

owever, more accurate with a second-order force scheme, e.g.

30,39] , we pinpoint the possibility of switching the structure of

he source term on the fly, i.e. automaticall y during the LBM simu-

ation. A straightforward idea for this realization consists in flag-

ing the A value within the force scheme, Eq. (3) , in terms of

he time evolution of some relevant macroscopic quantity, e.g. the

ow velocity. As by default, the LBM evolves as a time-marching

rocedure, the algorithm can be initialized with A = 1 and so

aintained until the simulation is about to reach the steady-

tate criterion; at this point, we switch to A = 0 so that, right

fter, when the steady-state regime is reached the corresponding

ime-independent solution supports the consistency properties dis-

ussed in this work. This procedure mimics the protocol employed

n the flagging of the anti-numerical-diffusion correction popular-

zed in the simulation of time-varying advection-diffusion prob-

ems [43,45] . 
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ppendix A. Analytical solution of LBM-TRT based on 

rocedure of He et al. [46] 

The starting point in He et al. [46] derivation begins with the

rst order velocity moment : 

−1 ∑ 

q =1 

c qx f q (y ) = c( f j 
1 

− f j 
3 

+ f j 
5 

− f j 
6 

− f j 
7 

+ f j 
8 
) = ρ̄u j −

δt 

2 

ρ̄(a x ) j 

(A.1) 

The explicit content of each population in Eq. (A.1) is then de-

ermined. The first step expands Eq. (6) for the two main links

 = 1 and 3, as follows: 

f j 
1 

= 

(
τ+ − τ−

τ+ + τ−

)
f j 
3 

+ 

1 

3 

(
2 τ−

τ+ + τ−

)
P j 

c 2 
+ 

1 

3 

(
2 τ+ 

τ+ + τ−

)
ρ̄
(

u j 

c 

)

+ 

1 

3 

(
2 τ−

τ+ + τ−

)
ρ̄

(
u 

2 
j 

c 2 
− 1 

2 

υ2 
j 

c 2 

)

+ 

1 

3 

τ+ 
(

2 τ− − 1 

τ+ + τ−

)
δt ρ̄

(
(a x ) j 

c 

)

+ A 

1 

3 

τ−
(

2 τ+ − 1 

τ+ + τ−

)
δt ρ̄

(
2 

u j (a x ) j 
c 2 

− υ j (a y ) j 
c 2 

)
, (A.2) 

f j 
3 

= 

(
τ+ − τ−

τ+ + τ−

)
f j 
1 

+ 

1 

3 

(
2 τ−

τ+ + τ−

)
P j 

c 2 

+ 

1 

3 

(
2 τ+ 

τ+ + τ−

)
ρ̄
(
−u j 

c 

)
+ 

1 

3 

(
2 τ−

τ+ + τ−

)
ρ̄

(
u 

2 
j 

c 2 
− 1 

2 

υ2 
j 

c 2 

)

+ 

1 

3 

τ+ 
(

2 τ− − 1 

τ+ + τ−

)
δt ρ̄

(
− (a x ) j 

c 

)

+ A 

1 

3 

τ−
(

2 τ+ − 1 

τ+ + τ−

)
δt ρ̄

(
2 

u j (a x ) j 
c 2 

− υ j (a y ) j 
c 2 

)
. (A.3) 

The second step expands Eq. (6) for the diagonal links, from

 = 5 to 8, as follows: 

f j 
5 

= 

(
1 

2 τ− − 1 

2 τ+ 

)
f j−1 
7 

+ 

(
1 − 1 

2 τ− − 1 

2 τ+ 

)
f j−1 
5 

+ 

1 

12 τ+ 
P j−1 

c 2 
+ 

1 

12 τ− ρ̄
(

u j−1 

c 
+ 

υ j−1 

c 

)

+ 

1 

12 τ+ ρ̄

(
u 

2 
j−1 

c 2 
+ 

υ2 
j−1 

c 2 
+ 3 

u j−1 υ j−1 

c 2 

)

+ 

1 

12 

(
1 − 1 

2 τ−

)
δt ρ̄

(
(a x ) j−1 

c 
+ 

(a y ) j−1 

c 

)

+ A 

1 

12 

(
1 − 1 

2 τ+ 

)
δt ρ̄

(
2 

u j−1 (a x ) j−1 

c 2 
+ 2 

υ j−1 (a y ) j−1 

c 2 

+ 3 

u j−1 (a y ) j−1 

c 2 
+ 3 

υ j−1 (a x ) j−1 

c 2 

)
, (A.4) 

f j 
6 

= 

(
1 

2 τ− − 1 

2 τ+ 

)
f j−1 
8 

+ 

(
1 − 1 

2 τ− − 1 

2 τ+ 

)
f j−1 
6 

+ 

1 

12 τ+ 
P j−1 

c 2 
+ 

1 

12 τ− ρ̄
(
−u j−1 

c 
+ 

υ j−1 

c 

)

+ 

1 

12 τ+ ρ̄

(
u 

2 
j−1 

c 2 
+ 

υ2 
j−1 

c 2 
− 3 

u j−1 υ j−1 

c 2 

)

+ 

1 

12 

(
1 − 1 

2 τ−

)
δt ρ̄

(
(a x ) j−1 

c 
+ 

(a y ) j−1 

c 

)

https://doi.org/10.13039/501100001871


10 G. Silva / Computers and Fluids 203 (2020) 104537 

 

 

 

 

 

 

 

 

i

 

 

c

 

 

 

 

E  

E  

t  

t  

s  

E  

w

 

+ A 

1 

12 

(
1 − 1 

2 τ+ 

)
δt ρ̄

(
2 

u j−1 (a x ) j−1 

c 2 
+ 2 

υ j−1 (a y ) j−1 

c 2 

− 3 

u j−1 (a y ) j−1 

c 2 
− 3 

υ j−1 (a x ) j−1 

c 2 

)
, (A.5)

f j 
7 

= 

(
1 

2 τ− − 1 

2 τ+ 

)
f j+1 
5 

+ 

(
1 − 1 

2 τ− − 1 

2 τ+ 

)
f j+1 
7 

+ 

1 

12 τ+ 
P j+1 

c 2 
+ 

1 

12 τ− ρ̄
(
−u j+1 

c 
− υ j+1 

c 

)

+ 

1 

12 τ+ ρ̄

(
u 

2 
j+1 

c 2 
+ 

υ2 
j+1 

c 2 
+ 3 

u j+1 υ j+1 

c 2 

)

+ 

1 

12 

(
1 − 1 

2 τ−

)
δt ρ̄

(
− (a x ) j+1 

c 
− (a y ) j+1 

c 

)

+ A 

1 

12 

(
1 − 1 

2 τ+ 

)
δt ρ̄

(
2 

u j+1 (a x ) j+1 

c 2 
+ 2 

υ j+1 (a y ) j+1 

c 2 

+ 3 

u j+1 (a y ) j+1 

c 2 
+ 3 

υ j+1 (a x ) j+1 

c 2 

)
, (A.6)

f j 
8 

= 

(
1 

2 τ− − 1 

2 τ+ 

)
f j+1 
6 

+ 

(
1 − 1 

2 τ− − 1 

2 τ+ 

)
f j+1 
8 

+ 

1 

12 τ+ 
P j+1 

c 2 
+ 

1 

12 τ− ρ̄
(

u j+1 

c 
− υ j+1 

c 

)

+ 

1 

12 τ+ ρ̄

(
u 

2 
j+1 

c 2 
+ 

υ2 
j+1 

c 2 
− 3 

u j+1 υ j+1 

c 2 

)

+ 

1 

12 

(
1 − 1 

2 τ−

)
δt ρ̄

(
(a x ) j+1 

c 
− (a y ) j+1 

c 

)

+ A 

1 

12 

(
1 − 1 

2 τ+ 

)
δt ρ̄

(
2 

u j+1 (a x ) j+1 

c 2 
+ 2 

υ j+1 (a y ) j+1 

c 2 

− 3 

u j+1 (a y ) j+1 

c 2 
− 3 

υ j+1 (a x ) j+1 

c 2 

)
. (A.7)

Subtraction of Eq. (A.2) from Eq. (A.3) gives: 

f j 
1 

− f j 
3 

= 

2 

3 c 
ρ̄u j + 

2 δt 

3 c 

(
τ− − 1 

2 

)
ρ̄(a x ) j (A.8)

Subtraction of Eq. (A.5) from Eq. (A.4) , and of Eq. (A.6) from

Eq. (A.7) gives, respectively: 

f j 
5 

− f j 
6 

= 

1 

2 τ+ ρ̄
u j−1 υ j−1 

c 2 
+ 

1 

6 τ− ρ̄
u j−1 

c 

+ 

1 

6 

(
1 − 1 

2 τ−

)
δt ρ̄

(a x ) j−1 

c 

+ A 

1 

2 

(
1 − 1 

2 τ+ 

)
δt ρ̄

(
u j−1 (a y ) j−1 

c 2 
+ 

υ j−1 (a x ) j−1 

c 2 

)

+ 

(
1 − 1 

2 τ− − 1 

2 τ+ 

)(
f j−1 
5 

− f j−1 
6 

)
+ 

(
1 

2 τ− − 1 

2 τ+ 

)(
f j−1 
7 

− f j−1 
8 

)
, (A.9)

− f j 
7 

+ f j 
8 

= − 1 

2 τ+ ρ̄
u j+1 υ j+1 

c 2 
+ 

1 

6 τ− ρ̄
u j+1 

c 

+ 

1 

6 

(
1 − 1 

2 τ−

)
δt ρ̄

(a x ) j+1 

c 

−A 

1 

2 

(
1 − 1 

2 τ+ 

)
δt ρ̄

(
u j+1 (a y ) j+1 

c 2 
+ 

υ j+1 (a x ) j+1 

c 2 

)

−
(

1 − 1 

2 τ− − 1 

2 τ+ 

)(
f j+1 
7 

− f j+1 
8 

)

−
(

1 

2 τ− − 1 

2 τ+ 

)(
f j+1 
5 

− f j+1 
6 

)
. (A.10)

Introduction of the three results, Eqs. (A .8) , (A .9) and (A .10) ,

nto the first-order velocity moment, Eq. (A.1) , yields: 

1 

c 
ρ̄u j −

δt 

2 c 
ρ̄(a x ) j 

= 

1 

6 τ−c 
ρ̄(4 τ−u j + u j−1 + u j+1 ) 

+ 

1 

2 τ+ c 2 
ρ̄
(
u j−1 υ j−1 − u j+1 υ j+1 

)
+ 

(
1 − 1 

2 τ−

)
δt 

c 
ρ̄(4 τ−(a x ) j + (a x ) j−1 + (a x ) j+1 ) 

+ A 

(
1 − 1 

2 τ+ 

)
δt 

2 c 2 
ρ̄

(
u j−1 (a y ) j−1 + υ j−1 (a x ) j−1 

−u j+1 (a y ) j+1 − υ j+1 (a x ) j+1 

)

+ 

(
1 − 1 

2 τ− − 1 

2 τ+ 

)(
f j−1 
5 

− f j−1 
6 

− f j+1 
7 

+ f j+1 
8 

)
−

(
1 

2 τ− − 1 

2 τ+ 

)(
f j+1 
5 

− f j+1 
6 

− f j−1 
7 

+ f j−1 
8 

)
. (A.11)

The last two terms in Eq. (A.11) can be determined with re-

ourse to the following three relationships: 

( f j 
5 

− f j 
6 

− f j 
7 

+ f j 
8 
) = 

1 

c 
ρ̄u j −

2 δt 

3 c 

(
τ− − 1 

2 

)
ρ̄(a x ) j −

δt 

2 c 
ρ̄(a x ) j 

(A.12a)

( f j+1 
5 

− f j+1 
6 

− f j−1 
7 

+ f j−1 
8 

) = 

1 

τ−
1 

c 
ρ̄u j −

2 δt 

3 c 

(
1 − 1 

2 τ−

)
ρ̄(a x ) j 

−
(

1 − 1 

τ−

)
( f j 

5 
− f j 

6 
− f j 

7 
+ f j 

8 
) 

(A.12b)

( f j−1 
5 

− f j−1 
6 

− f j+1 
7 

+ f j+1 
8 

) 

= 

1 

c 
ρ̄(u j−1 + u j+1 ) −

2 δt 

3 c 

(
τ− − 1 

2 

)
ρ̄
(
(a x ) j−1 + (a x ) j+1 

)
− δt 

2 c 
ρ̄
(
(a x ) j−1 + (a x ) j+1 

)
+ ( f j+1 

5 
− f j+1 

6 
− f j−1 

7 
+ f j−1 

8 
) 

(A.12c)

The first relationship is determined by combining Eq. (A.1) with

q. (A.8) . The second relationship results from re-writing

q. (A.9) at j + 1 and Eq. (A.10) at j − 1 , and then adding the

wo equations, with Eq. (A.8) included to simplify. The third rela-

ionship follows by writing Eq. (A.1) at j ± 1 positions, and then

implifying the outcome with aid of Eq. (A.8) . The ensemble of

q. (A.12) are inserted into Eq. (A.11) . After some simplifications,

e arrive at the following equation: 

1 

2 c 2 
ρ̄
(
u j+1 υ j+1 − u j−1 υ j−1 

)
− 1 

3 c 

(
τ+ − 1 

2 

)
ρ̄
(
u j+1 − 2 u j + u j−1 

)
− δt 

c 
ρ̄(a x ) j 

+ 

2 

3 c 
δt ρ̄

((
τ+ − 1 

2 

)(
τ− − 1 

2 

)
− 3 

8 

)
×

(
(a x ) j+1 − 2(a x ) j + (a x ) j−1 

)
+ A 

1 

2 c 2 

(
τ+ − 1 

2 

)
δt ρ̄

(
u j+1 (a y ) j+1 + υ j+1 (a x ) j+1 − u j−1 (a y ) j−1 

−υ j−1 (a x ) j−1 

)
= 0 . (A.13)
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Finally, multiplication of Eq. (A.13) by c / δt , and introduction of

x = c δt provides the equation: 

u j+1 υ j+1 − u j−1 υ j−1 

2 δx 
− (a x ) j −

1 

3 

c 2 δt 

(
τ+ − 1 

2 

)
u j+1 − 2 u j + u j−1 

δx 2 

+ δx 2 
(

8� − 3 

12 

)
(a x ) j+1 − 2(a x ) j + (a x ) j−1 

δx 2 

+ A 

(
τ+ − 1 

2 

)
δt 

(
u j+1 (a y ) j+1 − u j−1 (a y ) j−1 

2 δx 

+ 

υ j+1 (a x ) j+1 − υ j−1 (a x ) j−1 

2 δx 

)
= 0 , (A.14) 

hich leads to Eq. (8) . 

ppendix B. Analytical solution of LBM-TRT based on 

rocedure of Ginzburg and d’Humières [14,47] 

The starting point in Ginzburg and d’Humières [14,47] deriva-

ion consists of re-formulating the LBM-TRT equations originally

ritten in evolution form, Eq. (1) , by equivalent equations in re-

urrence form. For this task, we adopt the compact notation of

14] defining: (i) in equilibrium E ±q = e ±q + �±S ±q δt and (ii) in non-

quilibrium g ±q = − 1 
τ±

(
f ±q − E ±q 

)
; so that, Eq. (1) reads as: 

f q ( � x + 

�
 c q δt, t + δt) = 

[
f q + g + q + g −q 

]
( � x , t) . (B.1) 

Based on Eq. (B.1) , the steady-state recurrence conditions for

he g ±q in LBM-TRT, originally derived in [47] , are given by: 

 

±
q ( � x ) = 

[ 
�̄q E 

∓
q − �∓ �̄2 

q E 
±
q + 

(
� − 1 

4 

)
�̄2 

q g 
±
q 

] 
( � x ) , (B.2) 

here the relaxation coefficients are defined as �± = (τ± − 1 / 2)

nd � = �+ �−, and the following first- and second-order central

ink-wise finite difference operators are introduced 

¯
q ψ ( � x ) = 

1 

2 

[ ψ( � x + 

�
 c q δt) − ψ( � x − �

 c q δt) ] , (B.3a)

¯ 2 
q ψ ( � x ) = ψ( � x + 

�
 c q δt) − 2 ψ( � x ) + ψ( � x − �

 c q δt) , (B.3b)

here ψ denotes an arbitrary quantity. The link-wise operators,

qs. (B.3) , relate to spatial centered finite difference (FD) stencils,

epresented along the y -coordinate axis, as follows: 

¯
q ψ = δt c qy �̄y ψ, with �̄y ψ j = 

ψ j+1 − ψ j−1 

2 δx 
, (B.4a)

¯ 2 
q ψ = δt 2 c 2 qy �̄

2 
y ψ, with �̄2 

y ψ j = 

ψ j+1 − 2 ψ j + ψ j−1 

δx 2 
. 

(B.4b) 

Note, the node value solution is denoted as ψ j = ψ(y j ) , where

 j defines the grid node location, labelled by index j . In the denom-

nator of the FD stencils δx = c δt measures the vertical distance

etween neighboring cells. 

The x -component of the momentum balance is determined by

he first order velocity moment of Eq. (B.2) , restricted to the odd-

rder component: 

−1 ∑ 

q =1 

c qx g 
−
q = 

Q−1 ∑ 

q =1 

c qx �̄q E 
+ 
q − �+ 

Q−1 ∑ 

q =1 

c qx �̄
2 
q E 

−
q 

+ 

(
� − 1 

4 

) Q−1 ∑ 

q =1 

c qx �̄
2 
q g 

−
q . (B.5) 

The momentum solvability condition is given by: 

−1 ∑ 

q =1 

�
 c q g 

−
q = ρ̄�

 a δt. (B.6) 
The proof of Eq. (B.6) results from the g −q definition,

iven by g −q = − 1 
τ−

(
f −q − e −q − �− S −q δt 

)
, and then deter-

ined as 
∑ Q−1 

q =1 
�
 c q g 

−
q = − 1 

τ−
∑ Q−1 

q =1 
�
 c q 
(

f −q − e −q − �− S −q δt 
)

= 

1 
τ−

(
ρ̄�

 u − δt 
2 ρ̄�

 a − ρ̄�
 u − �−ρ̄�

 a δt 
)

= − 1 
τ− ( −τ− ρ̄�

 a δt ) = ρ̄�
 a δt . 

hen, with the assumptions given in Section 3 it is concluded that

he only non-trivial links of the LBM solution ( g −q included) are

 qx c qy � = 0. This restriction combined with Eq. (B.6) enables us to

etermine the exact g −q solution of this problem as [14] : 

 

−
q = 3 

c 2 qy 

c 2 
S −q δt. (B.7) 

The introduction of Eq. (B.7) for g −q , Eq. (2) for e ±q and Eq. (3) for

 

±
q into Eq. (B.5) , further making use of Eq. (B.4) to express the

ink-wise operators in terms of FD stencils, leads us to: 

¯ a x δt 3 

Q−1 ∑ 

q =1 

t � q 

c 2 qx c 
2 
qy 

c 4 
= �̄y P δt 

Q−1 ∑ 

q =1 

t � q 

c qx c qy 

c 2 

+ �̄y ( ̄ρuυ) δt 
6 

2 

Q−1 ∑ 

q =1 

t � q 

c 2 qx c 
2 
qy 

c 4 

+ A �+ δt 2 �̄y ( ̄ρa x υ + ρ̄a y u ) 3 

Q−1 ∑ 

q =1 

t � q 

c 2 qx c 
2 
qy 

c 4 

−�+ δt 2 �̄2 
y ( ̄ρu ) 

Q−1 ∑ 

q =1 

t � q 

c 2 qx c 
2 
qy 

c 2 

−�δt 3 �̄2 
y ( ̄ρa x ) 

Q−1 ∑ 

q =1 

t � q 

c 2 qx c 
2 
qy 

c 2 

+ 

(
� − 1 

4 

)
δt 3 3 ̄�2 

y ( ̄ρa x ) 

Q−1 ∑ 

q =1 

t � q 

c 2 qx c 
4 
qy 

c 4 
. 

(B.8)

For standard lattices, the second- and fourth-order velocity mo-

ents are 
∑ Q−1 

q =1 
t � q c qαc qβ = δαβ c 2 , ∀ α, β , and 

∑ Q−1 
q =1 

t � q c 
2 
qαc 2 

qβ
=

1 
3 c 

4 , with α � = β . The sixth-order moment is anisotropic. In a hori-

ontal setup, it yields 
∑ Q−1 

q =1 
t � q c 

2 
qαc 4 

qβ
= 

1 
3 c 

6 with α � = β . After com-

uting each velocity moment in Eq. (B.8) we obtain: 

¯ a x = �̄y ( ̄ρuυ) + A �+ δt �̄y ( ̄ρa x υ + ρ̄a y u ) − �+ 

3 

c 2 δt �̄2 
y ( ̄ρu ) 

− �

3 

c 2 δt 2 �̄2 
y ( ̄ρa x ) + 

(
� − 1 

4 

)
c 2 δt 2 �̄2 

y ( ̄ρa x ) . (B.9) 

After re-arranging Eq. (B.9) and expressing the FD stencils ac-

ording to Eq. (B.4) , with δx = c δt considered, we obtain: 

u j+1 υ j+1 − u j−1 υ j−1 

2 δx 
− ( a x ) j −

�+ 

3 
c 2 δt 

u j+1 − 2 u j + u j−1 

δx 2 

+ δx 2 
(

8� − 3 

12 

)
( a x ) j+1 − 2 ( a x ) j + ( a x ) j−1 

δx 2 

+ A �+ δt 

(
u j+1 ( a y ) j+1 − u j−1 ( a y ) j−1 

2 δx 
+ 

υ j+1 ( a x ) j+1 − υ j−1 ( a x ) j−1 

2 δx 

)
= 0 . 

(B.10) 

Then, with �+ = (τ+ − 1 / 2) , we finally arrive at Eq. (8) . 

Discussion: The end result deduced here in Appendix B is

dentical to the analytical solution obtained in Appendix A . How-

ver, compared to the He et al. [46] derivation summarized

n Appendix A , the procedure presented here considerably sim-

lifies the workload required. Most importantly, Ginzburg and

’HumiÃĺres procedure [14,47] offers a rather more general frame-

ork to access the LBM solution. The reason is that it solves for

quilibrium and non-equilibrium components of populations sep-

rately. Thus, it is easily applicable/extendable to other types of
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analyses, such as in the study of boundary schemes or interfaces

[14,32,33] . 
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