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9.1 INTRODUCTION

The concept of “organic farming” appeared during the second green revolu-

tion in the mid-20th century as an alternative to the prevailing conventional

agriculture systems, in order to increase crop production for feeding a contin-

uously growing world population (Srivastava et al., 2016). So-called conven-

tional farming consists mainly of the application of two basic principles: the

application of synthetic pesticides for the elimination of pests or diseases

that can compromise, damage, or reduce crop production and the use of syn-

thetic chemical fertilizers to enhance crop yields (Seufert et al., 2009). These

principles are in agreement with those of organic farming; however, organic

farming is restricted to the application of the “natural version” of pesticides

and fertilizers (Stolze and Lampkin, 2009). The key point is the reduction of

external threats that can compromise crop production, to obtain higher yields

(Bellon et al., 2014).

The use of chemical fertilizers lead to the rapid industrialization of their

synthesis processes and reduced the dependence on external factors to pro-

duce them (i.e., manure production). Fertilizers can be applied depending on

the nutritional deficiencies of the plant, allowing the farmer to take direct

actions to solve the problem. However, the use of those fertilizers and the
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agriculture practice by if self generate a rapid and constant loss of soil nutri-

ents and biodiversity (Bellon and Penvern, 2014). Thus, a reduction in the

use of chemical fertilizers will mitigate this loss with the aid of external con-

tributions or the integration with other activities, such as livestock and their

nutrient stocks recycling (Reganold and Wachter, 2016).

The application of synthetic fertilizers can be considered an advantage at

first, however, it has generated several environmental impacts in many agri-

cultural areas of the planet (Van Stappen et al., 2015). The uncontrolled use

of these fertilizers, their application in suboptimal or negative conditions, as

well as the losses of nutrients by runoff, leaching, or volatilization have

caused public health problems and environmental deterioration (Jeločnik

et al., 2015).

In this sense, organic farming aims to maintain rationalized production

levels, friendly with the ecosystem where it is farmed, acting according to the

inherent limits of the region (Van Stappen et al., 2015). Moreover, organic

farming seeks the diversification of nutrient inputs as long as they do not gen-

erate an associated environmental problem and take advantage of the outputs

generated in other farming systems, such as wastes or products derived from

livestock, crop residues, or sewage sludges (Wezel et al., 2014).

The concept of “organic farming” is based on a holistic view of farming

systems, which has each part completely integrated in the system, such as

soil and its microbiota, climatic conditions, plants, and animals (Acs et al.,

2005). Soil microbiota is also considered in the global analysis of agricul-

tural systems, suggesting that a soil with the correct microbiota favors the

development of healthier plants. Thus, plants are capable of efficiently cap-

turing nutrients and dealing with different diseases. In this sense, plant

growth-promoting bacteria (PGPB) are capable of interacting positively with

plants, promoting their development directly and indirectly (Garcia-Fraile

et al., 2015; Grobelak et al., 2015; Menéndez et al., 2016). Amongst these

PGPB, the genus Rhizobium and related genera, which are commonly known

as legume symbionts, are the best examples of beneficial microorganisms

contained in soils (Bhattacharjee and Dey, 2014).

Moreover, this holistic view determines that the application of nutrient

inputs must be conditioned to their geographical availability, making cultural

practices the most cost-effective action (Provost and Pedneault, 2015).

Farmers need to maximize their crops yields through specific actions, such as

crop rotations and the application of nonsynthetic fertilizers, seeking the

integration and synergy of different actions, such as cultural techniques and

crop diversification (Benoit et al., 2016; Mu et al., 2016; Viaene et al., 2016).

Every action produces different effects on the organic farming system;

for example, the application of intercropping, which is the mixed cultivation

of different crops, is one of the agricultural practices matching perfectly with

organic farming philosophy (Mao et al., 2015). In many cases, intercropping

practices involve the cultivation of cereals in a row with leguminous plants,
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due to the biological nitrogen fixation occurring in their root nodules

(Hauggaard-Nielsen et al., 2009; Ngwira et al., 2012; Scalise et al., 2015).

Legumes act as providers of nitrogen and make available other essential

nutrients, due to the microbiota associated with their nodules and roots,

which are able to solubilize phosphates and potassium and to mobilize other

nutrients as well as produce phytohormones in order to enhance plant devel-

opment (Chapagain and Riseman, 2014; Latati et al., 2016). Moreover,

through indirect mechanisms, the microbiota associated with leguminous

plants might play a role as biocontrollers in order to prevent or reduce plant

diseases (Bhardwaj et al., 2014). Apart from intercropping, there are many

agricultural and/or management practices. Thus, in this chapter, we will ana-

lyze each of the techniques used to improve the fertility of the agronomic

systems in conditions of organic farming. Additionally, we will make a

distinction between what are considered management practices and the appli-

cation of organic or biological inputs employed to increase the fertility of

fields in organic farming.

9.2 MANAGEMENT PRACTICES

To achieve a well-balanced agricultural system, the application of the best

possible management practices is absolutely necessary. In the case of organic

farming, these management practices have focused on the maintenance of

the available pools of nutrients, and moreover they should explore new ways

to obtain more nutrients in agricultural fields (Gomiero et al., 2011).

9.2.1 Conservation Tillage

The use of tillage in agriculture was one of the first techniques implemented

by humans and generated many benefits in terms of weed control and soil

aeration, making nutrients assimilable or mixing depths of soils, which were

not explored by plant roots (Drakopoulos et al., 2016). However, tillage was

one of the practices that most actively contributes to the loss of edaphic

material, due to surface exposure of unconfined material that can be washed

away by runoff or wind action (Crittenden et al., 2015).

Conservational tillage is based on the minimal disruption of the soil com-

position structure and biodiversity, reducing soil degradation and also water

contamination (Holland, 2004). Ancient civilizations, such as Egyptians and

Incas, also used this kind of practice, inserting seeds directly on the soil

(Derpsch, 1998).

There are many studies analyzing the outcomes of this kind of practice

(Karlen et al., 2013; Martı́nez et al., 2013; Nascente et al., 2013;

Garcia-Franco et al., 2015); however, some of were of short duration and did

not show the full reality (Derpsch et al., 2014). The implementation of agri-

cultural practices with minimum tillage is a difficult task, due to the
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problems of obtaining correct homogenization and integration of external

nutrients to the environment, such as the necessity for inverting and mixing

horizons, which is not in agreement with the restrictive point of view

of conservational tillage (minimum actions and impact on the fields)

(Säle et al., 2015).

The main potential positive effect on field fertility is the increase in the

percentage of organic carbon available in the soil, which in turn affects

the creation of humic�fulvic complexes that act by retaining the ions of the

different nutrients (Soane et al., 2012; Zikeli et al., 2013). Soils with high

concentrations of organic carbon influence positively the microbial activity

and its diversity (Raphael et al., 2016). These parameters are directly related

to crop production (Sun et al., 2016).

The application of conservational tillage is extremely interesting for trop-

ical agricultural systems, due to the positive influence on the content of

organic carbon in the soils. The climatic conditions, high temperatures, and

precipitation rates, tend to accelerate the mineralization process of organic

matter in agricultural soils, which is also favored by tillage, helping the

development of aerobic microorganisms and causing the degradation of

organic matter of the upper horizon into CO2 (Chivenge et al., 2007;

Lienhard et al., 2013; Raphael et al., 2016).

Nontillage systems tend to be deficient in K and P, due to their “extrac-

tion” along with crops. Most studies focus on how the different practices

have an influence on these nutrients (Gadermaier et al., 2011; Rosolem and

Calonego, 2013). Their loss can be partially compensated for by crop rota-

tion, but it is often necessary to make external amendments (Rosolem and

Calonego, 2013).

As a conservation practice, the main effects are reflected in the popula-

tions where the densities and their biological activities are affected (Mathew

et al., 2012), being increased by the bacterial and fungal biomass in direct

relation to the increase in organic carbon (Lienhard et al., 2013). This diver-

sity and density decreases as depth increases, unlike in conventional tillage

soils (Huang et al., 2013).

Nontillage systems are associated with the absence of cropping practices

that break or produce inversions in surface horizons, thus, direct sowing is

usually carried out (Lienhard et al., 2013; Nascente et al., 2013). In this type

of system, the greatest problem is associated with the correct fertilization,

since the use of fertilizers in solid form is difficult without mechanical incor-

poration to substrates. In some cases, occasional tillage is recommended to

reduce the undesirable effects of loss of productivity, which, depending on

the soil, may not affect the microbiota (Rincon-florez et al., 2016).

A very conservative cultural practice, but not as restrictive as the absence

of tillage, is so-called minimum tillage, which only disturbs the first few cen-

timeters of soil (not more than 20 cm), keeping the soil structure closer to

natural conditions and allowing the application of both solid and liquid
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residues, thus, the farmer might incorporate external nutrients more easily

(Debiase et al., 2016).

9.2.2 Crop Rotation

This is one of the oldest techniques used in agriculture, dating back to the

pre-Roman era in Europe, although it was this civilization that developed a

forceful technique using the “food-feed-fallow” system. This system involves

the division of cultivable land into three equal parts, one of which cultivated

human-food vegetables, another with crops intended for animal feed and,

finally, another part left for a year as pasture for cattle in order to regain fer-

tility. This system is continuously reinitiated, rotating the three parts for

annually (White, 1970).

There are old treaties about this practices dating back to Roman times,

showing how to use crops in these rotational systems, as well as their contri-

butions to soil fertility. In this sense, the Roman agronomist Columela (54

BC) showed the utility of the leguminous plants Vicia and Lupinus for the

maintenance of soil fertility. Since the mid-19th century, scientific knowl-

edge has been applied to agriculture, showing how different crops have dif-

ferent nutritional requirements. Moreover, it has been shown that the

alternation of crops on the same land has a positive impact on land fertility,

producing selective extraction or helping to mobilize some nutrients (Liebig

and Playfair, 1847).

The concept of crop rotation defines all temporary succession of crops in

the same field. This succession has to be done considering the environmental

characteristics, such as climate and substrate, but also the agronomic require-

ments of crops (Brankatschk and Finkbeiner, 2015).

There are models that aim to automatically create crop rotations in an

integrated way with regional conditions (Schönhart et al., 2011); however,

these models do not usually take fertility factors directly into account

because they are based on observations and measurements made under a con-

ventional agriculture point of view (Dury et al., 2012). Only some of these

models consider the inclusion of legumes in these systems as a positive fac-

tor with respect to nitrogen fixation, which is essential for crop rotations

(Dogliotti et al., 2003).

Crop rotations were classified into different categories depending on the

length and the rotation order (Castellazzi et al., 2008). There are four var-

iants: (1) fixed duration and fixed rotation; (2) fixed duration and flexible

rotation; (3) flexible duration and fixed rotation; and (4) flexible duration

and flexible rotation. In those variants, crops with different nutritional

requirements, root systems, and allelopathic qualities should be alternated

(Hilton et al., 2013).

This action modifies the soil microbiota mainly due to changes in carbon

concentrations, since it tends to improve fertility in crop rotations (Ferrari
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et al., 2015). Although soil organic stability is also improved, soil compo-

nents exhibit less variation and greater resilience (Venter et al., 2015).

Moreover, this management practice is related to an increase in soil phospha-

tase activity, which influences the concentration of phosphorus available to

plants (Jahan et al., 2016).

One of the most commonly used crop rotations is the maize/soybean

association (Riedell et al., 2009; Karlen et al., 2013; Souza et al., 2013;

Tomer and Liebman, 2014; Sindelar et al. 2015), although, this legume has

also been combined with other monocotyledonous crops, such as wheat

(Riedell et al., 2009; Souza et al., 2013), oat (Merlin et al., 2013), or rice

(Hokazono and Hayashi, 2015). However, the use of soybean presents two

disadvantages: Soybean is a summer crop and the biological nitrogen fixa-

tion taking part in its nodules is subjected to the presence of endosymbionts.

Those endosymbionts do not exist naturally in Europe or America, thus this

crop is usually replaced with Pisum, Trifolium, Vicia, or Lupinus (Espinoza

et al., 2012; N’Dayegamiye et al., 2015; Pandiaraj et al., 2015), these two

last legumes being those that give the best results (Angus et al., 2015).

Multiannual legume crops such as alfalfa are also used, although in this case

it is important to implement long rotations of over 8 years, being the nitro-

gen supply to soil is very significant (Triberti et al., 2016).

The so-called double-up legume rotation is also used to improve soil fer-

tility; this rotation is based on cultivate leguminous crops in two successive

years and later, concatenated with an exigent crop, such as maize (Smith

et al., 2016).

Within nonleguminous crops used in rotations, the most attractive for

farmers are those that develop pivotal and powerful root systems, such as

rapeseed or sorghum (Hilton et al., 2013; Rosolem and Calonego, 2013).

These crops are also useful for the acquisition of other nutrients because

their root systems allow nutrient uptake from lower levels and mobilize them

to agricultural horizons (Götze et al., 2016), as well as breaking of the con-

solidation structures in the soil, which allows for better distribution of the

crop roots (Kumar et al., 2014).

Many studies focus on the implications of crop rotations in the nitrogen

soil stock; however, other elements that should be as important as nitrogen,

such as phosphorus and potassium, usually remain unnoticed.

Nonleguminous crops play an important role due to differences in root sys-

tems with leguminous crops (Arroyo-Garcia et al., 2013). Another crop that

might be of interest is ruzzi grass (Brachiaria ruziziensis), which facilitates

an increase in the concentration of labile phosphorus in the soil (Merlin

et al., 2013; Almeida and Rosolem, 2016). However, the main tendency is

not the inclusion of other kinds of crops, it is to include these nutrients

through amendments of different types (Cavigelli et al., 2013; Maltais-

Landry et al., 2016).
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Another rotation employed in organic farming, which can increase yields

is canola with wheat or potato. This is applied in conventional agriculture or

organic farming with good results in temperate climates. The results are

related to high root system development and biofumigation effects (Bernard

et al., 2014; Angus et al., 2015; Turinek et al., 2016).

Crop residues play an important role in the supply of micronutrients.

Mobilization of essential nutrients is carried out through the action of previ-

ous crops, and they are stored temporally associated to organic matter. This

affects positively the concentration in the soil and its availability, although

the nutrient losses usually have to be compensated with external inputs

(Jahan et al., 2016).

9.2.3 Cover Crops

The use of different crops, whose main objective is not production but main-

tenance of the land surface covered, is a concept that began to be considered

from the beginning of the 20th century. Traditional agriculture has always

eliminated other plants in order to maximize the use of resources by the crop

of interest, leading to a massive use of herbicides. Therefore, we must first

define the concept of cover crops to differentiate it from crop rotation sys-

tems. This is a short-term rotation that happens when the principal crop is

not sowed (Robacer et al., 2016).

The main purpose of cover crops is the prevention of the loss of edaphic

resources by erosion. These crops reduce the kinetic energy of water or

wind, decreasing the aggression that they cause on the agricultural systems

(Reeves, 1994). In this sense, it is possible to prevent erosion, and also

reduce losses of soluble nutrients by runoff (Klodd et al., 2016).

The application of cover crops is considered by some relevant institu-

tions, such as the USDA in its National Organic Program (USDA, 2010),

which provides the actions, recommendations, and bases, highlighting the

importance and determination that this kind of practice might have in organic

farming. The document gathers evidence on the benefits of cover crops, such

as elimination of weeds, soil compaction, or erosion reduction, and it also

exposes possible contributions to mineral and organic content and, by exten-

sion, to crop nutrition (Scholberg et al., 2010).

In terms of soil fertility, the most notable advantages of the use of cover

crops is the reduction in nitrogen losses (Novara et al., 2013), as well as the

stabilization and recycling of other nutrients such as phosphorus, potassium,

and magnesium, ensuring their permanence in the upper horizon of the soil

for a longer time (Rosolem and Calonego, 2013). In addition, crops with piv-

otal or highly developed root systems are often used in order to reach deeper

horizons, being beneficial for the transportation of nutrients from deep to

superficial horizons and providing available nutrients for crops with superfi-

cial root systems like wheat (Pedraza et al., 2015). For this reason, some
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species of the genus Brassica are widely used; their pivotal root systems

explore deeper into the horizon, making available soil nutrients to other

crops and reducing soil compaction (Maltais-Landry et al., 2016). Cover

crops can be divided according to their periodicity into winter, summer, or

annual crops (Snapp et al., 2005), the latter being applicable only to multi-

annual and mainly woody crops. Summer cover crops are usually rapidly

growing legumes, such as soybeans, which incorporate nitrogen to other

crops or cereals (Raphael et al., 2016). In this case sorghum sudan grass is

also widely used because of its extremely broad root system, which is capa-

ble of exploring a large volume of substrate per plant. This crop also shows

several adaptations to environments with high temperatures, offering remark-

able productivity. In this respect, the species used must be resistant to

drought and heat, so that the cited sorghum sudan grass, and legumes such

as soybean or cowpea are used in hot areas (Blanco-Canqui et al., 2012).

The second option is the use of winter cover crops. This option is applied

to crops with spring and summer cycles, such as soybean, corn, peanut, or

cotton. In addition, during the stage where the cover crop is active, there are

often times of great rainfall that can trigger the loss of nutrients due to leach-

ing and erosion (Lourenzi et al., 2015). A great solution to this problem is

winter cover crops, like cereals or legumes, alone or in combination

(Campiglia et al., 2014). In this regard, sowing legumes must be done care-

fully to avoid frost during the time of seed emergence. In this way, a double

dividend is obtained on the nutrient pools, reducing the loss of nutrients and

increasing it by means of the contribution of nitrogen carried by the legumes.

The most commonly employed species from the genus Vicia include V. villo-

sa (Campiglia et al., 2014; Pedraza et al., 2015) and V. sativa (Duval et al.,

2016; Gabriel et al., 2016). Some species like Avena sativa (Duval et al.,

2016), Triticum aestivum (Balota et al., 2014), or Secale cereale (Higashi

et al., 2014) are widely employed due to this frozen resistance.

Cover crops might also be applied to woody crops, such as orchards or

vineyards, recycling nutrients through part of the cover crop biomass

(Novara et al., 2013). The use of well-adapted and rustic legumes can

improve the concentration of N, P, and K in these soils by up to 30%

(Gómez-Muñoz et al., 2014). Nevertheless, a correct analysis of the water

crop is needed, as it can produce reductions in production due to the high

demand on water (Klodd et al., 2016). Therefore, the inclusion of fast-

growing legumes in monoculture or mixed with a cereal is important to

improve the consolidation of C stocks in the soil and favor the retention of

nutrients (Lee et al., 2013).

Generally, any use of cover crops usually triggers an improvement in soil

osmotic potential due to an increase in organic carbon concentration

(Sánchez de Cima et al., 2015). The increase in the available nitrogen is usu-

ally caused by the legumes in crop rotations. In this management, the elec-

tion of the correct winter legumes, like the species of the genus Vicia, is

276 Organic Farming



determinant for ensuring correct development (Gabriel et al., 2016). This

genus can substitute any other external nitrogen contribution with available

quantities of 100 kg N/ha (Robacer et al., 2016). The results are similar with

summer cover crops, with the choice varieties having later maturity, which is

essential to avoid the mobilization of nitrogen fixed to the seeds and to

reduce the input of this element (Blanco-Canqui et al., 2012).

9.2.4 Green Manures

One of the difficulties that farmers face in is the maintenance of an optimum

level of productivity during successive campaigns, with nitrogen being the

most sensitive and determinant element to reach optimal production. There is

an intense nitrogen flow from the soil to the product. In many cases, a reduc-

tion in nitrogen supply is compensated by the application of different inputs

derived from livestock activity; however, this type of application may have

some limitations (Paredes et al., 2014). The application of green manure pre-

sents itself as a useful farming practice to avoid those limitations.

Green manure can be applied in two different ways: one in which the

green manure crop and the main crop are cultivated in the same plot in dif-

ferent seasons, and another in which the green manure crop is cultivated in a

different place and transported to the main crop plot (Skuodienė et al.,

2012).

Green manures involve several crops, mainly legumes, which are culti-

vated after the main crop harvest or during its standard growing season.

These crops are described in Table 9.1, where we can distinguish between

legume and nonlegume crops in temperate and tropical weathers. Crops used

as green manures are planted with the objective of being incorporated back

to the land without proceeding to the collection of the vegetal matter or at

least of the aerial biomass (Talgre et al., 2012).

European farmers adopt this management practice due to its easiness and

potential benefits, which not only improve soil fertility, but also prevent soil

erosion, help with weed management, and maintain soil structure, features

shared with the application of cover crops (Løes et al., 2016). Under normal

conditions it is easy to reach an average yield of 100 kg N/ha, considerable

values that ensure a good yield of the following crop. If it is carried out in

short cycles or winter periods, the total productivity of the crop will be

reduced, on account of reducing nitrogen fixation (Cookson et al., 2002).

The selection of crops for green manure is another relevant aspect; sev-

eral studies have reported the use of different crops in temperate and tropical

regions (Egodawatta et al., 2012; Raphael et al., 2016). In temperate regions,

there are intrinsic variations depending on when the sowing happens. Thus,

selected crops have to present further adaptations and the farmer must adhere

to the sowing times for best results (Ferreira et al., 2013)
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TABLE 9.1 Green Manures Applied in Temperate and Tropical Weathers

Climates

Crop

Type

Climate

Region

Species Season Authors

Legumes Temperate Astragalus
sinicus

Winter Lee et al. (2010);
Kim et al. (2012)

Glycine max Summer Northupl and Rao (2015)

Lablab
purpureus

Summer Northupl and Rao (2015)

Lens
culinaris

Winter Cicek et al. (2014b);
Vaisman et al. (2014)

Medicago
media

Annual Talgre et al. (2009)

Medicago
sativa

Annual Skuodienė et al. (2012)

Melilotus
officinales

Annual Bruning et al. (2015)

Pisum
sativum

Winter Cicek et al. (2014a);
Olesen et al. (2009)

Trifolium
pratense

Annual Talgre et al. (2009);
Skuodienė et al. (2012);
Sharifi et al. (2014)

Trifolium
repens

Annual Skuodienė et al. (2012)

Vicia faba Winter Olesen et al. (2009)

Vicia villosa Winter Cicek et al. (2014b);
Hwang et al. (2015);
Vaisman et al. (2014);
Tarui et al. (2013)

Temperate
and tropical

Crotalaria
juncea

Summer Miyazawa et al. (2014);
Subaedah et al. (2016)

Lupinus
angustifolius

Winter Olesen et al. (2009)

Lotus
corniculatus

Summer Talgre et al. (2009)

Lathyrus
sativus

Winter Vaisman et al., (2014)

Tropicalwarm Albizia
lebbeck

Annual Kareem et al. (2014)

(Continued )
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TABLE 9.1 (Continued)

Crop

Type

Climate

Region

Species Season Authors

Arachis
pintoi

Seasonal de Araujo Neto et al.
(2014); Wang et al.
(2015b)

Cajanus
cajan

Seasonal Ferreira et al. (2013);
Nascimento et al. (2016)

Canavalia
ensiformis

Annual Ferreira et al. (2013); de
Araujo Neto et al. (2014)

Crotalaria
spectabilis

Seasonal de Araujo Neto et al.
(2014)

Crotolaria
ochroleuca

Seasonal Ferreira et al. (2013)

Gliricidia
sepium

Annual Egodawatta et al. (2012)

Glycine
ussuriensis

Seasonal Dabin et al. (2015)

Mucuna
pruriens

Seasonal Ferreira et al. (2013);
Poku et al. (2014)

Phaseolus
radiatus

Seasonal Dabin et al. (2015)

Pueraria
phaseoloides

Seasonal de Araujo Neto et al.
(2014)

Sesbania
aculeata

Annual Premi et al. (2013)

Non
legumes

Temperate Avena sativa Winter Cicek et al. (2014a),

Brassica
napus

Winter Sánchez de Cima et al.
(2015)

Brassica
rapa

Winter Cicek and Entz (2014)

Hordeum
vulgaris

Winter Hwang et al. (2015)

Lolium
multifloru

Annual Sánchez de Cima et al.
(2015)

Lolium
perenne

Winter Kim et al. (2012)

Phleum
pratense

Annual Skuodienė et al. (2012)

(Continued )
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Nowadays, the use of green manures is growing in importance and farm-

ers are considering the employment of crops adapted to adverse conditions.

Moreover, they should consider longer periods of application (more than

2�3 years), in order to increase the amount of available nutrients (Skuodienė

et al, 2012). Several legumes might be applied as green manure following

these new trends; i.e., red clover (Trifolium pratense), which improves avail-

able concentrations of N, P, and K in the soil, or vetch (Vicia sativa/villosa),

which provides between 140�180 kg N/ha (Snapp et al., 2005).

The use of green manures in orchards is an extended practice with good

results, since it improves nutrient retention and tree availability, compared to

conventional production systems (Garcia-Franco et al., 2015; Park et al.,

2015). In this sense, most of the studies reported the use of Vicia, Cajanus,

Arachis, or Avena as green manure crops (Lim et al., 2012; Park et al., 2015;

Millan et al., 2016).

The use of green manures is also widespread in cereal production systems

such as wheat, barley, or rye, due to the global demands for these types of

crops and the nutritional requirements, mainly of nitrogen. It is common

practice in temperate latitudes, where it has been carried out continuously

for hundreds of years, even allowing for areas with low productivity.

However, the use of other nonleguminous green manure, such as radish

(Raphanus sativum), which has a significant pivotal root, is useful in the

extraction and incorporation of K and P into the agricultural system from

lower edaphic horizons (Cicek et al., 2014a).

TABLE 9.1 (Continued)

Crop

Type

Climate

Region

Species Season Authors

Raphanus
sativus

Winter Cicek and Entz (2014)

Sinapis alba Winter Bogužas et al. (2015)

Sorghum
bicolor

Summer Miyazawa et al. (2014)

Tropicalwarm Pennisetum
glaucum

Seasonal Nascimento et al. (2016)

Sorghum
drummondii

Seasonal Mkhathini and Modi
(2012)

Tithonia
diversifolia

Seasonal Partey et al. (2014)

Urochloa
ruziziensis

Seasonal Nascimento et al. (2016)
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9.2.5 Intercropping

Intercropping consists of the simultaneous cultivation of two or more plant

species acting in synergy and avoiding competition at the foliar, root, and

nutritional levels (Andrew and Kassam, 1976). Intercropping is not a simple

mix of crops, where the competition for space and nutrients is common. The

use of this management practice was common in European countries in past

centuries and is recently raising importance in commercial agriculture. This

practice is also widely used in tropical farming systems.

Intercropping has many advantages, such as the easiness and efficiency

of its application and reversion of the loss of soil biodiversity caused by the

application of monocultures. Moreover, there is maximization of land use

and benefits, and harvest yields are increased. However, it also presents a

number of negative points compared to other techniques used in organic

farming, such as a lower contribution of nitrogen and other nutrients to soils

or difficulties in harvesting both crops at the same time, it being necessary

for post-processing to separate yields.

Despite the disadvantages, this is an extremely versatile technique that

can be applied to annual, perennial, arbustive, or mixed crops. The most

common associations are cereals and legumes, i.e., corn/soybean association.

In recent years, tuber crops have been used, due to the potential advantages

that this kind of crops might have (Weerarathne et al., 2016). This practice

has a very important effect on the soil nitrogen balance, reducing nitrogen

losses that are not used by the crop, as well as reducing the needed for nitro-

gen (Tribouillois et al., 2016). Moreover, this practice can be applied

together with green manures. In this case, pulse shoots are cut and incorpo-

rated into the main crop, usually a cereal; thus, the main crop will have a

constant nitrogen contribution (Hödtke et al., 2016), However, the election

of both crops should be done correctly; some authors described the associa-

tion of oat and pea, which was used in certain regions of Europe, may not

have the desired effect in nodulation and nitrogen fixation rates (Jannoura

et al., 2014).

Although the results are endorsed by good yields, the cycle of nutrients

such as phosphorus and potassium is not clear, and the influence of this

activity on micronutrients such as iron, magnesium, or manganese are unde-

fined. Only a few relationships have tested, for example, maize and peanut

(Guo et al., 2014).

The association of wheat/chickpea generates an increase in the availabil-

ity of phosphorus in the rhizosphere of both plants with respect to them as

monocultures (Betencour et al., 2012). In tropical areas, Gliricidia sepium,

an arboreal legume, is used in intercropping with maize, improving the avail-

ability of potassium and nitrogen supply (Beedy et al., 2010). Other authors

suggest that the use of trees (Acer sp. and Juglans sp.) improves microbial
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populations of both bacteria and mycorrhizae, improving nutrient absorption

and production (Lacombe et al., 2009).

The incorporation of nonleguminous plants may also have an effect on

nitrogen cycles, generating rapid reabsorption, as observed in Festuca rubra

intercropped with maize (Manevski et al., 2015). Nevertheless, despite most

of the studied systems having good results in practice, the new associations

need to be tested in order to avoid associations that produce allelopathic

problems.

9.3 APPLICABLE AMENDMENTS

The application of management practices, such as those described above,

does not always meet the necessary conditions to ensure proper agricultural

production. In organic farming, the applications of diverse inputs of natural

origin are allowed, including the application of minerals such as rock phos-

phate, potassium salts, or natural sulfates (Regulation (EC) No 889/2008). In

this section, we will focus on the application of inputs other than those

described above, which might present novel application forms or be novel

itself.

9.3.1 Manures

Manure is a byproduct generated during livestock activity that has been used

since ancient times as a fertilizer to enhance field productivity. Usually, it is

mixed with crop residues or straw to increase water retention and facilitate

its subsequent fermentation (Castellanos-Navarrete et al., 2014; Omari et al.,

2016). The fermentation of this type of byproduct is air-filled, producing a

change in the chemical composition of the product to less soluble but more

stable forms, resulting in a loss of ammonium nitrogen (Gustafson et al.,

2003). The application of manure depends on its composition, the crop

needs, and the soil characteristics. This is a product that will undergo impor-

tant transformations in the soil after its application, occurring before sowing

(Yue et al., 2016).

The use of manure is still widespread because it is a source of fast-

absorbing nutrients with proven effects for decades, with variable doses to

obtain optimum yields in crops such as cereals (Borugă et al., 2016). This is

due to the fact that nutrient concentrations have a wide variation, depending

on the producer species, the animal nutrition, and the manure post-

processing (Poku et al., 2014; Chaudhary et al., 2017).

Phosphorous is one of the most important elements to guarantee proper

agricultural production; an adequate concentration of available phosphorus in

the soil can be maintained by the application of manure (Shen et al., 2014).

Cow manure is one of the most commonly used manures, due to the

hydrolytic action of its microbiota on plant fibers, allowing better processing
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in small-scale conditions and improving its integration into the soil. Also,

the low water content and its volume allow easy storage and use of this kind

of manure (Wang et al., 2015a).

Other manures produced by hens and chickens have highly desirable

characteristics for agriculture, such as high nitrogen, phosphorus, and potas-

sium contents (Li et al., 2016). These manures have proven useful for

demanding crops, such as rice or sugarcane (Showler, 2015). In addition, this

type of product has begun to be commercialized by being pelletized, facili-

tating its transport, reducing the geographic dependence and ceasing to be a

purely local product (Burnett et al., 2015; Fernandez et al., 2016).

Many authors suggest that the application of manures of different species,

such as horse, rabbit, or sheep, has short-term efficacy, which is usually

associated with the chemical form in which the nutrients are present

(Fernández-Hernández et al., 2014; Islas-Valdez et al., 2015). In some cases

the concentrations of P are noteworthy, with high concentrations of P and K

available (Jannoura et al., 2013). This fact is determined by the presence of

readily available nonsoluble phosphorus (Vanden Nest et al., 2016).

9.3.2 Compost and Vermicompost

9.3.2.1 Compost

Compost is a versatile product generated by the fermentation of different

residues, such as green or dry vegetation, manures from diverse origins, or

urban waste (Zhao et al., 2017). The origin of the raw materials, mainly

waste or remnants of other activities, has an important effect, increasing the

concentration of carbon, usable nitrogen, and/or phosphorus (Castán et al.,

2016; Meena et al., 2016).

Some efforts have been made to maximize the use of different residues

through composting, such as food remains and urban solid waste, allowing

the recirculation of outputs in the agricultural system (Papafilippaki et al.,

2015; Pandey et al., 2016a,b). Residues of low potential or that are incom-

patible for agricultural use may become a product with homogeneous proper-

ties to be applied in different crops due to their concentrations of N, P, K,

and micronutrients (Trivedi et al., 2015). Mature composts must have an

acceptable C/N ratio of less than 20, acidic or slightly acidic pH, and discrete

concentrations of soluble P or K (Showler, 2015; Cavoski et al, 2016;

Pandey et al., 2016a,b).

The use of compost might represent the transition from conventional agri-

culture to organic agriculture. The use of high doses allows a high mainte-

nance of the fertility, reaching a balance between soil and agricultural

production (Hernández et al., 2015). However, an excess may lead to envi-

ronmental problems similar to those occurring when there is an excessive

use of inorganic fertilizers, such as nitrate losses (Papafilippaki et al., 2015).
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Moreover, the use of compost often leads to an increase in diversity and

microbial activity, like most organic amendments; however, the structure of

these populations is not affected by their application, in contrast, the soil

type influences the microbial population (Hernández et al., 2015; Allard

et al., 2016).

In general, after the composting process, the concentration of certain ele-

ments, such as nitrogen or carbon, tends to be similar in composts of differ-

ent origins. The elements that do not produce volatile compounds show a

great dependence on the initial product, such as Cu, Zn, Cd, or Pb, with Cd

and Pb usually being present in urban waste (Meena et al., 2016). However,

the use of compost derived from residues from agricultural activities does

not present high concentrations of metal elements (Scotti et al., 2016).

The amounts of phosphorus derived from compost amendments are vari-

able but usually have relatively low values (below 10 g/kg) compared to

other organic amendments (Evanylo et al., 2008; Hall and Bell, 2015). This

element has a recovery rate of 30%, since it has not undergone intense pro-

cesses of oxidation or mineralization (Christel et al., 2014); however, it usu-

ally decreases with application in soil (Jorgensen et al., 2010). In some

cases, the addition of rock phosphate, allowed in organic farming, may be of

interest in order to improve phosphate availability (Bustamante et al., 2016;

Moharana and Biswas, 2016).

Potassium is also of special interest in agriculture, as its concentration in

compost is higher than phosphorus (2- or 10-fold; McLaughlin et al., 2015;

Strik, 2016). However, it is a very soluble element that can be lost during

compost processing; thus, its concentration is variable and depends on the

compost raw material (Madejón et al., 2016).

Micronutrients will show great variability depending on the raw material,

although they usually present concentrations that can be consumed by the

crop fields, always within normal values (Morales-Corts et al., 2014). The

application rates vary and will depend on the elemental composition of

the applied compost, but are considered between 10 and 300 t/ha, although

the optimum values are usually between 20 and 40 t/ha (Papafilippaki et al.,

2015). Although many of the studies carried out cover a relatively short

period of 2�4 years (Castán et al., 2016; Debiase et al., 2016), there are

some works performed in long-term trials which can help us to understand

its effects (Vanden Nest et al., 2016; Xin et al., 2016).

The application of composts has benefits in other parameters related indi-

rectly to soil fertility, such as porosity and particle size, giving lower density

and smaller particle size, through an increase in the high-molecular-weight

carbon compounds. Additionally, this application helps to establish nutrient

solution and regulate the immobilization and mineralization of elements such

as N, P, or K (Showler, 2015; Xin et al., 2016).
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9.3.2.2 Vermicompost

Vermicompost is composed of the organic waste transformed through differ-

ent earthworm species’ digestive systems into a homogeneous product of

high nutritional value and with great possibilities for its application in agri-

culture (Suthar, 2009). This process allows the stabilization of solid residues,

showing great possibilities when the concentration in cellulose fibers is high

(Sahariah et al., 2014). In this case, different species of earthworms are used,

although the most frequently used species are Eisenia foetida, Eudrilus euge-

niae, and Perionyx excavatus (Pattnaik and Reddy, 2010; Soobhany et al.,

2015; Subbulakshmi and Thirunee, 2015).

One of the main advantages of the use of earthworms in the production

of compost is the production of a higher concentration of nutrients through

the biological activity of these worms, which might be compared to tradi-

tional composting and allow the reuse of residues of low fertilization poten-

tial (Soobhany et al., 2015; Swarnam et al., 2016). Starting from the same

raw material, the increase in the concentration of P, K, Ca, or Mg is usually

between 30% and 120%, obtaining a product that can be used in crops with

high nutritional requirements (Soobhany et al., 2015). However, this situation

does not occur with nitrogen, which is lost by volatilization in the form of

ammonium.

Interestingly, earthworms have the ability to remove toxic organic com-

pounds that may present problems in traditional composting systems, being

effective in the recovery of degraded agricultural soils with decreased nutri-

ent reservoirs (Lim et al., 2015; Hussain et al., 2016). Moreover, being a

pathogen-free end product and the high percentage of nutrients in available

forms makes composts extensively used in horticulture or extensive crops,

both in cereals and legumes (Baradari et al., 2013; John and Praba, 2013;

Joshi et al., 2014; Wang et al., 2014; Sreevidya et al., 2016).

9.3.3 Biochar

Biochar is a product generated through a thermochemical process called

pyrolysis, in which organic matter of low density and low caloric power and,

in the absence of oxygen and high temperatures (400�700�C), generates

three different byproducts: Syngas, bio-oil, and biochar, also called charcoal.

All these derivatives have a high calorific value, can be used as fuels, and

also allow the reuse and storage of organic waste with subsequent environ-

mental benefit.

The employment of biochar in agriculture began more than 40 years ago

but in the last 10 years, there has been a great increase due to its unique fea-

tures and the easiness of its production at a small scale (Galgani et al., 2014;

Kuppusamy et al., 2016). However, its production at an industrial scale
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allows for greater use of all its byproducts, not only biochar, in addition to

diversification in production methods (Li et al., 2016).

For several years, most studies have focused on the use of wood or city

waste as a raw material for the production of biochar, which has generated

some criticism due to the associated deforestation problems (Ahrends et al.,

2010; Gwenzi et al., 2015; Zhang et al., 2016a). However, this trend has

changed, especially in developing countries, where raw materials are more

diverse (Chidumayo and Gumbo, 2013; Jones et al., 2016; Khan et al.,

2016a,b; Gonzaga et al., 2017). Also, trends are changing in industrialized

countries, which are aware of the need to diversify raw materials for biochar

production (Manolikaki et al., 2016; Thakkar et al., 2016).

From the point of view of agriculture, biochar presents various character-

istics: basic pH between 8.5 and 10, high C/N ratio, moderate K and P con-

centrations, and high porosity (Joseph et al., 2015; Jeong et al., 2016; Plaza

et al., 2016; Pluchon et al., 2016). Most of these features are derived from

the raw material used, such as pruning, crop residues, logging residues, or

sewage sludge (Paneque et al., 2016).

Although biochar is characterized by a low concentration of N, it can

contribute to the soil with large amounts of other nutrients, such as K or P.

Biochar structure allows a gradual release of phosphorus, emphasizing to

some authors that its application can stimulate the transformation to labile

forms of these nutrients (Plaza et al., 2016; Dari et al., 2016). As in other

organic amendments, biochar structure will vary depending on the raw mate-

rial, i.e., wood-derived biochars tend to have a lower concentration of K and

P than those derived from pruning or crop residues (Gul et al., 2015; Buss

et al. 2016). However, their application does not show any improvement in

the N concentration alone (Hansen et al., 2016).

Due to the high percentage of organic carbon and its structure, the use of

biochar for sandy soil amendment is an option to take into account due to

the improvement of soil quality and water retention rate (Molnár et al., 2015;

Suliman et al., 2017). The effectiveness of biochar will depend on the type

of soil, climatic conditions, crop, and application (Obia et al., 2016).

However, its greatest impact will be found in the recovery of overexploited

soil (Novak et al., 2016; Paneque et al., 2016; Zhang et al., 2016b).

Therefore, the application of biochar can be a tool in the transition from con-

ventional to sustainable and ecological systems, allowing us to rapidly

increase the percentage of organic matter due to its high C/N ratio (Iqbal

et al., 2015; Plaza et al., 2016). The large specific surface area of the biochar

can be one of the keys to understanding the effect shown on microbial popu-

lations since it works by creating new spaces where bacteria can be estab-

lished (Kookana et al., 2011).

Despite all of the described benefits, biochar has some disadvantages,

mainly associated with its high pH, which increases the immobilization of

the trace elements of a range of metals (Bell and Worrall, 2011).
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Nevertheless, the high pH, together with its high porosity, makes the applica-

tion of charcoal a widespread strategy for sandy soils and tropical acid soils

with low organic matter concentration (Raboin et al., 2016). In addition, it

presents a high cation exchange capacity (CEC), which makes it possible to

retain soluble ions of the different nutrients in the soil (Xu et al., 2016).

Biochar can also be used to improve the qualities of other organic inputs

used in organic agriculture, such as compost or manure. Its application in the

animal composting process improves the fraction of humic�fulvic acid and

provides stability (Jindo et al., 2015). Although the biochar is supplied with

another product, such as compost, it has a synergistic effect on the absorp-

tion of this nutrient by the plant (Iqbal et al., 2015; Agegnehu et al., 2016)

The best results in terms of nutrient utilization are associated with com-

bined solutions, i.e., the use of biochar and compost mixed with the applica-

tion of phosphate-solubilizing bacteria, which can improve the efficiency in

the absorption of this nutrient (Sáez et al., 2016; Wei et al., 2016). It is also

described that biochar, in combination with vermicompost, green manure, or

other amendments, has synergistic effects, improving nutrient absorption,

contributing to the stability of humic�fulvic acid fraction, and slowing nutri-

ent release (Ponge et al., 2006; Iqbal et al., 2015; Jindo et al., 2015;

Agegnehu et al., 2016; Zhang et al., 2016c).

9.3.4 Other Amendments

Organic farming should explore all possible options to achieve better envi-

ronmental benefits, mainly through the re-utilization of different byproducts.

In this sense, the use of sewage sludge has been shown to be an effective

tool in the case of cereals, even in conservative cases such as minimum till-

age, where production similar to conventional treatments can be achieved

(Debiase et al., 2016).

The application of sewage sludge generates high yields due to the very

soluble chemical forms of its nutrients (Debiase et al., 2016). In many cases,

the generation of these soluble forms is produced after anaerobic digestion,

which is commonly called biogas, and also have some intermediate deriva-

tives (Weiland, 2010). Biogas and derivatives have many advantages, such

as easiness of application (on surfaces or by injection) and efficiency in

nutrient managing, avoiding the loss of nitrogen and, thus, reducing its

release to the atmosphere (Holm-Nielsem et al., 2009; Fangueiro et al.,

2015). The production of biogas from residues and wastes derived from agri-

cultural practices and livestock activities match perfectly with the holistic

view of organic farming, also allowing energy recycling while producing a

high-quality organic fertilizer (Siegmeier et al., 2015).

The separation of the different fractions is used to produce nutrient

enrichment in the solid fraction, resulting in better yield (Hou et al., 2015).

In spite of this enrichment, C/N ratios are high due to losses that occur
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during the digestion process (Lopedota et al., 2013). Nutrient levels are also

very varied, although in most cases high concentrations of K and P can be

obtained and nitrogen is relatively abundant (Nkoa, 2014). However, it is

necessary to monitor the application of sewage sludge in order to avoid an

overdose of certain elements, such as heavy metals (Debiase et al., 2016).

The use of sewage sludge and products from anaerobic digesters is feasi-

ble in extensive cereal production and also in intensive crops, such as horti-

cultural crops (Lopedota et al., 2013; Sieling et al., 2014; Alvarenga et al.,

2015). However, as expected, the excessive application of this type of prod-

uct can generate undesirable environmental effects; thus, it is recommended

not to exceed 120 kg N/ha (Duffková, et al., 2015).

Slurry is widely applied in conventional agriculture and with good pro-

spects in organic agriculture due to the elevated concentration of nutrients (N,

P, K) in easily assimilable forms (Saez et al., 2016). The contribution of slurry

to agricultural production should be considered due to the large amount of

organic nitrogen and other organic compounds that, together with their liquid

state, facilitate its application and dispersion in the soil (Penha et al., 2015).

The composition of pig slurry is highly variable depending on the type of

farm, use, feeding, and climatic region (Antezana et al., 2016). Its use, single

or combined, provides better soil qualities and reduces the toxicity of heavy

metals, such as Zn and Cu, which are found in high concentrations (Sáez

et al., 2016). However, excessive use of livestock slurries may adversely

affect soil microfauna populations (Murchie et al., 2015).

Another amendment that seems to have a promising future is the biomass

of Spirulina platensis, which is an alga that can be grown in sewage sludges

and slurries of different types (Aung, 2011). Its application is able to contrib-

ute up to 8% of nitrogen, and also varying concentrations of Fe and Mg.

This alga is able to recover nitrates and nitrites that are dissolved in those

wastes (Wuang et al., 2016).

Finally, there are infinite possible options for agriculture inputs that can

be applied as fertilizers in organic farming. Different climatic regions have

different residue types derived from agriculture. In this sense, Mediterranean

countries, such as Spain or Italy, have a potential source of fertilizers in the

residues generated from olive oil production, a solid waste commonly called

“alperujo,” which can be used in raw or composted crops (Proietti et al.,

2015; Russo et al., 2015). The composting process of this residue generates a

product with a high concentration of humic acids, slightly basic pH,

20�30 g/kg of nitrogen, 1�3 g/kg phosphorus, and varying concentrations of

potassium and other micronutrients (Roig et al., 2006; Tortosa et al. 2014).

Its use is common in woody crops, mainly olive orchards but also others,

such as poplar plantations (Madejón et al., 2016). These amendments have

demonstrated that they are able to perform a systematic improvement of the

production of olives in both the quantity and quality of the final product

(Fernández-Hernández et al., 2014).
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9.4 BIOFERTILIZERS

Organic farming is a practice that considers the maintenance of strong and

competent microbial populations as essential, being aware of the impact of

microorganisms on plant health (Bhardwaj et al., 2014). The interaction of

crops with other organisms occurs through the root, where dense microbe

populations live in a soil fraction called the rhizosphere (Mendes et al.,

2013; Zandi and Basu, 2016). Those microbes live in a close relationship

with plant roots and are suitable to be employed as biofertilizers. However,

not all microorganisms can be employed due to possible pathogenicity

issues, technological difficulties, or inadequate interaction capacity with dif-

ferent crops (Garcı́a-Fraile et al., 2012).

Microbial-based biofertilizers, with current global production estimated at

over US$5 trillion, are able to act directly and indirectly on plants, providing

nutrients through their own biological activity, such as biological nitrogen

fixation, phosphate mobilization, potassium solubilization, phytohormone

production, and biological control (Lugtenberg and Kamilova 2009; Garcia-

Fraile et al., 2015; Gupta et al., 2015; Velázquez et al., 2016). Therefore, the

selection of those microorganisms that present better features is the key to

agriculture improvement, although some have been sold and applied for dec-

ades, such as nitrogen-fixing bacteria.

Nitrogen-fixing bacteria, either free-living or associated with legumes,

have already been commercialized, as is the case of Azotobacter,

Azospirillum, Rhizobium, and related genera (Brockwell and Bottomley,

1995; Sivasakthivelan and Saranraj, 2013). Moreover, there are other kinds

of microorganisms that can be applied as biofertilizers, such as cyanobacter-

ia, mycorrhizae, potassium- and/or phosphate-solubilizing bacteria, biocon-

trollers, and other plant growth-promoting microorganisms (Berruti et al.,

2016; Velázquez et al., 2016). Genera such as Azoarcus, Exiguobacterium,

Methylobacterium, Paenibacillus, or Pantoea are also described as being

able to interact with multiple plant species, to tolerate elevated temperatures,

or to improve mycorrhizae interactions (Chauhan et al., 2015).

9.4.1 Carriers

One of the biggest challenges for industrial biofertilizer production is to

solve the problems related to the transport and maintenance of the

inocula during periods of storage and distribution. The formulation of a

biofertilizer must maximize the chances of inocula survival, providing a

suitable environment for the microbial component, as well as minimizing

environmental changes in order that the farmer employs less time and effort

to carry out the biofertilization. Unfortunately, the perfect formulation does

not exist and we will always find problems associated with population

decline or the type of inoculation.
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The loss of effectiveness due to the death of inocula produces a decay of

biological activity, an issue that can be solved with the inclusion of a proper

carrier material. In this sense, carriers have been developed based on sub-

strates that allow the transport of microorganisms in different presentations

(Bashan, 1998). There are four possible types of carrier used in the prepara-

tion of commercial biofertilizers: Powder, liquid, granules, and encapsulated

cells (Bashan et al., 2014).

Peat is the dominant solid carrier material in the market due to the easi-

ness of its sterilization, obtention, and relatively low price (Chandran et al.,

2014). Liquid formats based on aqueous solutions or oily suspensions are

also widely used and easy to apply; however, they have disadvantages in

storage and preservation, as well as the need for protectors (Pushpa et al.,

2014). Calcite or silica is used as granulated carriers, which might be

impregnated with a known concentration of microorganisms, favoring stor-

age and subsequent dispersion of the biofertilizer (Swapna et al., 2016). Last

but not least, cell encapsulation is possibly the most promising of all,

because it employs a polymer to integrate microbial cells/spores/hyphae into

a matrix that provides nutrients and protects against variations in pH, humid-

ity, or salinity. There are up to 1350 polymers that have possibilities as

carriers, although polyacrylamide and alginate are the most commonly used

(Vassilev et al., 2015).

9.4.2 Plant Growth-Promoting Microorganisms Used in
Formulations

Biofertilizers are used whilst taking into account the biological activities that

can develop the microorganisms that form them; thus, their design and appli-

cation can be conducted in a targeted manner, depending on the conditions

under which the crop is grown (Edi Husen et al., 2007). Due to the different

capacities that microorganisms exhibit, we can alleviate crop deficiencies by

attending to the microbes composing the biofertilizer ability to fix atmo-

spheric nitrogen, solubilize or mobilize nutrients, or to control biotic or

abiotic stresses.

9.4.2.1 Nitrogen Fixation

One of the most limiting elements for optimal agricultural production is

nitrogen. For this reason, it is necessary to replenish the nitrogen stock in the

soil by the application of external inputs. Some prokaryotes have the ability

to fix atmospheric nitrogen and provide it to the plant for the synthesis of

amino acids. This process can be carried out by endosymbiotic species, such

as those from the genera Rhizobium, Mesorhizobium, or Bradyrhizobium, the

latter being used with great assiduity in soybean crops (Vejan et al., 2016).

The nitrogen fixation process in leguminous crops occurs by establishing
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strict symbiotic relationships between plant and host that culminate in the

formation of specific structures called nodules where the nitrogen fixation

takes part (Haag et al., 2013). This process can contribute an average of

140 kg N per ha per year, which is higher than that from other inputs such as

vermicompost or green manures (Franche et al., 2009; Das and Singh, 2014;

Tyagi et al., 2014).

In addition, nitrogen fixation can also be performed by bacteria under

free-living conditions, being independent of the formation of nodules, as is

the case of cereals and other nonleguminous crops (Santi et al., 2013).

Formulations based on those free-living nitrogen-fixers are more attractive

for biofertilizer markets (Sivasakthivelan and Saranraj, 2013). Azotobacter,

Azospirillum, Bacillus, Beijerinckia, Clostridium, Enterobacter, and

Pseudomonas are the most popular bacterial genera (Zandi and Basu, 2016).

Azospirillum is one of the most widely used free-living nitrogen-fixing

microorganisms, both in legume and nonlegume crops, with a well-

developed technology for its production as an inoculant (Roy et al., 2015;

Lesueur et al., 2016). Azotobacter is a similar example, with its application

being made on legumes and other crops also (Aseri et al., 2008; Ansari

et al., 2015). The commercially propagated Azolla fern is also used in India

because of its association with cyanobacteria genus Anabaena, which is able

to fix atmospheric nitrogen (Mahdi et al., 2010). This strategy is more effec-

tive than the inoculation of free cyanobacteria, since symbiosis induces the

proliferation of heterocysts, where nitrogen fixation is carried out (Santi

et al., 2013).

9.4.2.2 Nutrient Mobilization and Solubilization

Phosphorus is another element with a special importance in agricultural pro-

duction; in this aspect, the application of microorganisms is able to maxi-

mize the use of the available phosphorus in the soil. The use of bacteria

produces better results than the application of fungi, except in the case of

mycorrhizae, being able to solubilize 50% of available phosphorus (Chen

et al., 2006; Mohammadi and Sohrabi, 2012).

The development of biofertilizers based on microbial consortia with com-

plementary activities—either bacterium�bacterium, bacterium�fungus, or

fungus�fungus—is the current trend (Vassilev et al., 2015). Those comple-

mentary activities will involve the synthesis of organic acids (lactic, citric,

glycolic, succinic, fumaric, malic, oxalic, tartaric), inorganic acids (sulfuric

acid), the production of specific enzymes (phosphatases), and chelating

agents (Rathi and Gaur, 2016). Amongst phosphate-solubilizing bacteria, the

common genera used as inoculants belong to the genera Lactobacillus,

Bacillus, Pseudomonas, Azotobacter, Beijerinckia, Burkholderia,

Enterobacter, Erwinia, Flavobacterium, Microbacterium, Rhizobium, and

Serratia (Edi Husen et al., 2007; Bhattacharyya and Jha, 2012; Bhattacharjee
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and Dey, 2014; Anand et al., 2016; Youssef and Eissa, 2016). In the case of

fungi, the genera most commonly used are Aspergillus, Penicillium,

Agaulosposra, Sclerotium, Trichoderma, Rhizophagus, Gigaspora, and

Glomus (Ogbo, 2010; Suja et al., 2012; Naher et al., 2013; Abd-Alla et al.,

2014; Saxena et al., 2014; Taktek et al., 2015; Anand et al., 2016; Li et al.,

2016). However, it is necessary to know more about the bacterial interactions

within biofertilizers and with plant hosts to avoid negative reactions, since

the combination of nitrogen fixers and phosphate solubilizers does not

always generate the desired result (Azimi et al., 2013).

In recent years, the use of microorganisms capable of solubilizing potas-

sium is growing in importance, mainly in the solubilization of micas that are

found in soil composition (Velázquez et al., 2016). The species

Acidothiobacillus ferrooxidans, Bacillus edaphicus, Bacillus mucilaginosus,

Burkholderia sp., Paenibacillus sp., and Pseudomonas sp. are used for this

purpose (Gupta et al., 2015, Saha et al., 2016a,b). However, this is not a

well-understood feature and its involvement in the production of biofertili-

zers went unnoticed until a few years ago (Parmar and Sindhu, 2013).

Microorganisms have also shown important qualities to solubilize ele-

ments, such as Zn, Cu, Ca, B, or Mo, indirectly through their metabolism,

making important quantities of these micronutrients available to plants. In

most cases, it is related to the synthesis of organic acids that modify the sol-

ubility of the elements. Glomus-based inoculant has been shown to have a

positive effect on the absorption of Zn or Cu, also reducing the absorption of

potentially hazadous elements, such as Pb or Cd (Baum et al., 2015).

9.4.2.3 Organic Compounds Synthesis

Microorganisms are able to produce different substances that improve crop

production or affect directly plant development; i.e., siderophores or phyto-

hormones (Lugtenberg and Kamilova, 2009). Whereas phytohormone pro-

duction is considered as a direct mechanism of plant growth promotion, the

production of siderophores has been considered as an indirect mechanism

because it limits the accessibility of the iron present in soil (Saha et al.,

2016a,b), nevertheless, currently siderophore production is also considered a

direct mechanism since it allows the mobilization of this element to plants

(Freitas et al., 2015).

Siderophores are organic compounds of varied nature that have the pecu-

liarity of chelating iron, making it available for plants. These compounds are

synthesized by both bacteria and fungi and play a prominent role in the bio-

control of phytopathogenic microbes (Chu et al., 2010). Amongst

siderophore-producing microbial genera are Rhizobium, Phyllobacterium,

Streptomyces, Pseudomonas, and Bacillus (Flores-Félix et al., 2013, 2015;

Sreevidya and Gopalakrishnan, 2015; Złoch et al., 2016).
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The production of phytohormones is an extended capacity amongst rhizo-

bacteria, in which the production of auxins, gibberellins (GAs), cytokinins

(CK), or abscisic acid (ABA) has been described (Mangmang et al., 2015;

Wong et al., 2015). The production of cytokinins, which promotes cell

division, has been described in bacterial genera such as Paenibacillus,

Methylobacterium, or Bacillus (Ahemad and Kibret, 2014) and the production

of phytohormones like gibberellins and abscisic acid in Rhizobium,

Azospirillum, and Bacillus (Gupta et al., 2015; Vejan et al., 2016). Nevertheless,

indole acetic acid (IAA) is perhaps the most studied phytohormone produced by

bacteria such as Rhizobium, Azospirillum, Bacillus, or Streptomyces that gener-

ate, amongst other effects, a greater development of the root system, being able

to interact with a larger volume of soil (Duca et al., 2014).

Biofertilizers can also act on the crop by enhancing their ability to cope

with stress situations. The synthesis of ACC-deaminase, which disrupts

the synthesis of ethylene that is synthesized in stress situations, helps to sup-

port the stress stages (Glick, 2014). This ability has been described in a wide

variety of genera, such as Acinetobacter, Achromobacter, Agrobacterium,

Alcaligenes, Azospirillum, Bacillus, Burkholderia, Enterobacter,

Pseudomonas, Ralstonia, Rhizobium, Serratia, or Stenotrophomonas

(Ahemad and Kibret, 2014).

Some strains of the genus Azotobacter, used as biofertilizers, are able to

synthesize vitamins of group B and contribute them to the plant (Mahdi

et al., 2010; Pal et al., 2015). This mechanism has also been observed in the

application of biofertilizers formulated based on cyanobacteria in wheat

(Bhardwaj et al., 2014). The synthesis of other substances such as antibiotics

can indirectly contribute to increased production by eliminating biofertilizers

and pathogens in the plant (Gupta et al., 2015).

9.5 CONCLUSION

Due to the demands of markets, the production of organic food must increase

to meet the needs of consumers. For this reason, farmers must begin to act to

improve crop production under organic farming. For this, there is no univer-

sal tool applicable to all systems, but the farmer must adapt to the environ-

mental conditions and crop needs through the use of various inputs, giving

priority to those whose geographical availability ensures the integration of

agricultural activity in the ecosystem. In addition, new technologies for the

digestion of livestock or urban byproducts allow the integration of agricul-

ture with the human environment.

We must emphasize that it is the mixed or integrated solutions that gener-

ate the best results, because as we have seen there is no perfect input, but the

deficiencies of some can be compensated for with the application of others.

In this sense, microorganisms play a fundamental role through various

mechanisms such as nitrogen fixation or solubilization and nutrient
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mobilization. In this way, the use of mixed inoculants of several bacterial

strains or mixtures of bacteria and fungi generates very attractive results.

The efficiency of the applied inputs is improved, favoring the recycling of

nutrients and the production of the crop. There are also products, such as

charcoal, with very interesting prospects because in addition to providing

nutrients to the soil, they can be used as carriers for the application of

microorganisms.

Cultivation techniques play a fundamental role in the development of

new strategies, especially crop rotations with nitrogen-fixing crops or phos-

phate mobilizers. Green manure also has a promising future, where an

improvement in nutrient availability can be achieved in addition to an

improvement in soil structure. Improvement of organic matter is another con-

sequence of management techniques, this will ensure a healthy microbial

population, improving crop yields. In these cases, knowing the characteristics

in depth of the agricultural system will help the farmer to carry out the

actions correctly, using adequate techniques and applying the appropriate

inputs.
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Madejón, P., Alaejos, J., Garcı́a-Álbala, J., 2016. Three-year study of fast-growing trees in

degraded soils amended with composts: Effects on soil fertility and productivity. J Environ

Manage 169, 18�26. Available from: https://doi.org/10.1016/j.jenvman.2015.11.050.

Mahdi, S.S., Hassan, G.I., Samoon, S.A., 2010. Bio-fertilizers in organic. Agriculture. J Phytol

2, 42�54.

Maltais-Landry, G., Scow, K., Brennan, E., 2016. Higher flexibility in input N: P ratios results

in more balanced phosphorus budgets in two long-term experimental agroecosystems. Agric

Ecosyst Environ 223, 197�210. Available from: https://doi.org/10.1016/j.agee.2016.03.007.

Manevski, K., Børgesen, C.D., Andersen, M.N., Kristensen, I.S., 2015. Reduced nitrogen leach-

ing by intercropping maize with red fescue on sandy soils in North Europe: A combined

304 Organic Farming

https://doi.org/10.1016/j.agee.2008.08.010
https://doi.org/10.1016/j.eja.2015.09.015
https://doi.org/10.1016/j.agee.2010.05.011
http://refhub.elsevier.com/B978-0-12-813272-2.00010-0/sbref121
http://refhub.elsevier.com/B978-0-12-813272-2.00010-0/sbref121
http://refhub.elsevier.com/B978-0-12-813272-2.00010-0/sbref121
http://refhub.elsevier.com/B978-0-12-813272-2.00010-0/sbref121
https://doi.org/10.1016/j.biombioe.2016.09.010
http://refhub.elsevier.com/B978-0-12-813272-2.00010-0/sbref123
http://refhub.elsevier.com/B978-0-12-813272-2.00010-0/sbref123
https://doi.org/10.1007/s13593-012-0099-4
https://doi.org/10.1002/jsfa.6849
https://doi.org/10.1007/s13165-016-0165-3
https://doi.org/10.1080/01904167.2012.748062
https://doi.org/10.1080/01904167.2012.748062
http://refhub.elsevier.com/B978-0-12-813272-2.00010-0/sbref128
http://refhub.elsevier.com/B978-0-12-813272-2.00010-0/sbref128
http://refhub.elsevier.com/B978-0-12-813272-2.00010-0/sbref128
https://doi.org/10.1016/j.jenvman.2015.11.050
http://refhub.elsevier.com/B978-0-12-813272-2.00010-0/sbref130
http://refhub.elsevier.com/B978-0-12-813272-2.00010-0/sbref130
http://refhub.elsevier.com/B978-0-12-813272-2.00010-0/sbref130
https://doi.org/10.1016/j.agee.2016.03.007


field and modeling study. Plant Soil 388, 67�85. Available from: https://doi.org/10.1007/

s11104-014-2311-6.

Mangmang, J.S., Deaker, R., Rogers, G., 2015. Inoculation effect of azospirillum brasilense on

basil grown under aquaponics production system. Org Agric 65�74. Available from: https://

doi.org/10.1007/s13165-015-0115-5.

Manolikaki, I.I., Mangolis, A., Diamadopoulos, E., 2016. The impact of biochars prepared from

agricultural residues on phosphorus release and availability in two fertile soils. J Environ

Manage 181, 536�543. Available from: https://doi.org/10.1016/j.jenvman.2016.07.012.

Mao, L., Zhang, L., Zhang, S., Evers, J.B., Van Der Werf, W., Wang, J., et al., 2015. Resource

use efficiency, ecological intensification and sustainability of intercropping systems. J.

Integr. Agric. 14, 1542�1550. Available from: https://doi.org/10.1016/S2095-3119(15)

61039-5.

Martı́nez, E., Fuentes, J.P., Pino, V., 2013. Chemical and biological properties as affected by no-

tillage and conventional tillage systems in an irrigated haploxeroll of central chile. Soil

Tillage Res 126, 238�245. Available from: https://doi.org/10.1016/j.still.2012.07.014.

Mathew, R.P., Feng, Y., Githinji, L., 2012. Impact of no-tillage and conventional tillage systems

on soil microbial communities. Appl Environ Soil Sci. Available from: https://doi.org/

10.1155/2012/548620.

McLaughlin, M.R., Brooks, J.P., Adeli, A., Miles, D.M., 2015. Using broiler litter and swine

manure lagoon effluent in sawdust-based swine mortality composts: Effects on nutrients,

bacteria, and gaseous emissions. Sci Total Environ 532, 265�280. Available from: https://

doi.org/10.1016/j.scitotenv.2015.05.119.

Meena, M.D., Joshi, P.K., Jat, H.S., 2016. Changes in biological and chemical properties of

saline soil amended with municipal solid waste compost and chemical fertilizers in a

mustard-pearl millet cropping system. Catena 140, 1�8. Available from: https://doi.org/

10.1016/j.catena.2016.01.009.

Mendes, T.D., Borges, W.S., Rodrigues, A., Solomon, S.E., Vieira, P.C., Duarte, M.C.T., et al.,

2013. Anti-Candida properties of urauchimycins from actinobacteria associated with

Trachymyrmex ants. Biomed Res. Int. 2013, 835081.
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