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1 INTRODUCTION 
Classical theories for a point source in air above a surface with an impedance having an imaginary 
part much larger than the real part (such as that of a thin porous layer over a hard boundary) predict 
the occurrence of an airborne surface wave near grazing incidence [1]. Raspet and Baird [2] 
demonstrated that the surface wave arising from a point source above an impedance plane is an 
independently propagating wave.  
 
The propagation of audio-frequency sound waves over hard surfaces is affected significantly if they 
are rough. Tolstoy [3,4] and Twersky [5] have derived theories for surface wave generation above 
randomly and periodically rough boundaries. Consistent with the expected behaviour, surface waves 
due to a point source in air over a rough surface are characterised by cylindrical spreading with 
increasing range in the horizontal plane, exponential decay with increasing height above the plane, 
and a reduced phase velocity v < c, where c is the speed of sound in air. 
 
Airborne surface waves have been measured over arrays of thin aluminium strips mounted on a rigid 
sheet of plywood [6], lattices of square cavities constructed from overhead lighting panels mounted 
on a wooden board [7], rectangular strips on a hard surface [8] and a comb-like structure [9,10]. 
Allard, Lauriks, and Kelders [11-13] investigated ultrasonic surface wave generation over triangular-
grooves, rectangular grooves, a doubly periodic grating, and honeycomb surfaces.  Tolstoy [3] and 
Twersky [5] produced models for effective impedance of semi-cylindrical elements placed on a rigid 
flat surface. Boulanger et al [14] extended these models to roughness shapes other than semi-
cylindrical cross section by including a hydraulic shape factor and compared resulting predictions with 
measurements. While there was agreement between the model predictions and measurements for 
semi-cylindrical elements, comparisons of predictions with data for other shapes (triangular and 
rectangular elements) were less satisfactory. Also, the influence of roughness in the form of low walls 
and lattice arrangements on outdoor propagation has been investigated in the context of using 
deliberately introduced roughness for surface transport noise control [15].  So far, neither propagation 
over arrays of cylinders on a hard plane nor the way in which surface waves are generated over 
periodically rough surfaces have been investigated to any extent. 
 
In this study we simulate the propagation of short acoustic pulses above evenly spaced cylinders on 
a rigid plane and study the nature of the predicted waveform following the main pulse arrival to 
investigate the possible generation of surface waves. Here we use the formulation of Boulanger et al 
[14] to determine the spatial dependence of the acoustic pressure waveforms produced by cylinder 
arrays on a rigid plane, and present results for the influence of source-array-receiver geometries and 
of configurations and sizes of cylinders both in the time and frequency domain.  
 
We show that in the time domain, this field comprises a direct contribution and a separate delayed 
“tail” as a result of scattering from the cylinders and reflection from the plane boundary, its persistence 
depending upon the arrangement (spacing and size) of the cylinders. Fourier analysis of this tail 
shows that, for loosely distributed cylinders, it is composed of a series of spectral peaks resulting 
from constructive interference consistent with Bragg diffraction theory and amplitudes depending on 
the number density and size of the cylinders. For compactly distributed cylinders, the lowest 
frequency peak is consistent with a quarter wavelength “organ pipe” resonance between the 
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cylinders. We also show that at the resonance frequencies the total field is confined to a region just 
above the cylinder array. It also demonstrates the characteristics of a surface wave.  
 
In Section 2 we present a brief description of the multiple scattering theory used in this study for the 
spatial dependence of the acoustic pressure waveforms produced for different source-receiver 
geometries and different configurations and sizes of cylinders on in a rigid plane. Using this theory, 
we explore, in Section 3, how such irregular surfaces affect the propagation of acoustic pulses - and 
in this case, the propagation of delta pulses of infinitely short length corresponding to a flat, infinitely-
wide, frequency spectrum. Specifically, we analyse the pulse tails i.e., the parts of the waveform after 
the main arrival at the receiver resulting from the interaction of the pulse with the cylinders and rigid 
surface. Finally, Section 4 discusses this study in the light of previous work on acoustic propagation 
over periodically-rough surfaces. 
 
 
2 THEORY 
The characteristics of sound propagating over cylinders on a rigid plane has been explored here using 
a treatment similar to that of Boulanger et al [14] who considered the propagation of cylindrical waves 
over finite impedance semi-cylinders on a smooth acoustically hard surface. This treatment, using a 
semi-analytical Multiple Scattering Theory (MST) and based on the work of Linton et al [16], 
demonstrated success in modelling such systems proving good agreement with experimental 
measurements. 
 
Consider a cylindrical wave incident on an array of rigid cylinders placed on a flat hard plane and 
arranged perpendicularly to the direction of propagation - see Figure (1). The polar coordinates of the 
field point in the Cartesian reference frame (𝑂𝑥, 𝑂𝑦) are represented by (𝑟, 𝜃), and the polar 
coordinates of the field point in the reference frame )𝑂*𝑥, 𝑂*𝑦+ centred at the jth cylinder centre, 
𝑂*)𝑥*, 𝑦*+, are represented by )𝑟*, 𝜃*+. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Geometry used for theoretical development. 
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The total field at the receiver is the sum of a direct field contribution, a contribution from the plane 
boundary and a contribution from the cylindrical scatterers and must satisfy the Helmholtz equation 
 

∇-𝑃 + 𝑘1-𝑃 = 0 (1) 

 
Assuming a direct field represented by a Hankel function  𝐻1(𝑘1𝜌)  where 𝑘1 is the wave-number 
exterior to the cylinders and 𝜌 is the source-receiver distance, a plane boundary reflected wave  
𝐻1(𝑘1𝜌′)  taken into account by assuming an image source, a scattered field decomposed into a sum 
of the contributions from the N cylinders and N cylinder images, the following expression can be 
developed for the total field above the array of cylinders 
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(2) 

 
 
Provided that 𝑟* < 𝑆* and 𝑟* < 𝑆*E . Here 𝐽9 are Bessel functions of order n and 𝐻9

(:) are Hankel functions 
of the first kind and order n. 𝐴9

*  are unknown amplitudes and  𝛼*K is 0 or p depending on the relative 
positions of the jth and sth cylinders.  
 
For acoustically rigid cylinders of radii a the term 𝑍9

*  is defined as 
 

𝑍9
* =

𝐽9E (𝑘1𝑎)
𝐻9E (𝑘1𝑎)

 

 

(3) 

 
where 𝐽9E () and  𝐻9E () are derivatives of the Bessel and Hankel functions, respectively. The application 
of Graf’s addition theorem for Bessel functions has also been used to express 𝐻9

(:))𝑘1𝑟*+ and 
𝐻9
(:))𝑘1𝑟*E+ in terms of the coordinates )𝑟*, 𝜃*+ and )𝑟*E, 𝜃*E+..  

 
The application of boundary conditions leads to an infinite system of equations for unknown 
coefficients A: 
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with 𝑚 ∈ 𝑍 and  𝑆 = 1,… ,2𝑁. The summation includes cylinders and their images thus taking the total 
number of elements to 2N. The source terms on the right-hand side are the source and its image 
below the rigid plane. To determine the coefficients 𝐴9

* , the infinite summation is truncated to -M to M 
resulting in a system of 2𝑁(2𝑀 + 1) equations. The value of M is set to 6 (for further details see [14]). 
The procedure for determining the total field at a certain point using this multiple scattering approach 
requires solving the system of equations (4) and determining the pressure by summation using 
equation (2) together with direct and boundary-reflected terms. This procedure has been implemented 
using MatLab. 
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3 NUMERICAL PREDICTIONS 
The scattering of acoustic pulses of infinitely short length, corresponding to a flat, infinitely-wide, 
frequency spectrum, from the cylinder array is determined from the convolution of P with the Dirac 
delta function 
 

𝑃abc(𝑡) = e 1, 𝑡 = 0	
										0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (5) 

 
The advantage of using such a pulse in simulations is that the response in the frequency domain is 
independent of frequency content of the input pulse. 
 
Figure 2 shows the results of time and frequency domain simulations for two different cylinder array 
configurations. In the first, cylinders are positioned regularly and symmetrical about the point of 
specular reflection at a cylinder centre-to-centre spacing of 5 cm, corresponding to 20 cylinders 
between source and receiver. In the second, 20 cylinders are arranged irregularly between source 
and receiver. The source-receiver separation is 1 m and both the source and receiver heights are 5 
cm. In both configurations, a main pulse arrival at 2.9 ms (corresponding to a sound speed of 343 
m/s) is followed by a "tail" which persists for some time after the main pulse. In the regular 
arrangement, this persistence is for some 5 to 10 ms. The spectrum of this tail is dominated by a peak 
at 2.7 kHz and three other peaks at 5.8 kHz, 9.6 kHz and 13.6 kHz with much lower magnitudes.  This 
contrasts with the simulations for the irregular array: the tail dies out within some 2 ms and its 
spectrum, although containing a peak (albeit at a lower magnitude) equivalent to the peak at 2.7 kHz 
in the regular arrangement, does not have any of the peaks at higher frequencies.  
 
Clearly, the regularity of the cylinder array has an impact on the frequency content of the pulse tail 
and must consequently be generating a coherent field in the vicinity of the array. To understand better 

Figure 2 Example pulses and tail spectra calculated for propagation over cylinder 
array (20 cylinders, diameter 1.5 cm) for an input delta pulse. Source-receiver 
separation = 1.0 m, source and receiver heights hs = hr = 5 cm: (a) and (b) regular 
arrangement, cylinder centre-to-centre spacing 5 cm, (c) and (d) irregular 
arrangement.  
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what mechanisms are generating this field, let us consider the effects of altering cylinder centre-to-
centre spacing and cylinder size.  
 
Figure 3 shows pulse tail spectra as a function of cylinder centre-to-centre spacing for a fixed cylinder 
diameter (1.5 cm). It can be seen that with decreasing cylinder-to-cylinder separations (i.e., 
increasing the number of cylinders between the source and receiver), the spacing between the peaks 
in the spectra increases so much so that for compact cylinder array (2 cm cylinder-to-cylinder 
spacing) the spectrum is dominated by only one peak. In general, these peaks approximately 
correspond to the Bragg interference frequencies (the dotted lines) given by 
 

𝑓mn =
𝑐1𝑛

2𝑅 sin 𝛾 , 𝑛 = 1, 2, 3, … (6) 
 
where 𝑐1 is the speed of sound in air, R is the cylinder centre-to-centre spacing and 𝛾 is the angle of 
incidence (angle with the normal of surface reflected wave at point of specular reflection. This 
assumes the scattering elements to be of infinitesimal size and, therefore, that the Bragg frequency 
is independent of the size of the scattering elements.  
 
However, this is not the case for the first peak and it is proposed here that for small cylinder-to-
cylinder spacings, a different mechanism starts to dominate the spectra at approximately the same 
frequency as the first order Bragg diffraction maxima.  
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Figure 3 Spectra of pulse tails calculated over a cylinder array (cylinder diameter 1.5 
cm) for cylinder centre-to-centre spacings (a) 8 cm, (b) 6 cm, (c) 4 cm and (d) 2 cm for 
an input delta pulse. The source-receiver separation = 1.0 m, source and receiver 
heights hs = hr = 5 cm. Also shown for each array is the 1st organ-pipe resonance 
frequency (solid line) and the 1st and subsequent order Bragg diffraction frequencies 
(dashed lines).  
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The gaps between the cylinders may be considered to act as “organ pipes”, closed at one end. A 
cylindrical organ pipe of length L and diameter d has (quarter wavelength) resonances given by 
 

𝑓vw =
𝑐1𝑛

4(𝐿 + 0.4𝑑) , 𝑛 = 1, 3, 5, … (7) 
 
With the length of the “organ pipe” taken to be 𝐿 = 2𝑎, where a is the cylinder radius of the array and 
its effective diameter taken to be 𝑑 = 𝑅, where R is the cylinder centre-to-centre spacing then the 
frequency of the first “gap” resonance is 
 

𝑓vw: =
𝑐1

4(2𝑎 + 0.4𝑅). 
 

(8) 

 
The solid line in Figure 3 shows this frequency and demonstrates good agreement over the range of 
cylinder-to-cylinder spacings.  
 
Further confirmation of the latter effect can be made if we consider the predicted tail spectra as a 
function of cylinder diameter for a fixed cylinder centre-to-centre spacing. Figure 4 shows that with 
increasing cylinder diameters, the first peak in the spectra migrates to lower frequencies which is in 
fact reflected in the changing frequency of the organ-pipe resonance. As the Bragg diffraction 
frequency are not cylinder size dependent, their frequencies (indicated as the dotted lines in the 
figures) do not alter.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

0 5 10 15 20
Frequency (kHz)

M
ag

ni
tu

de

0 5 10 15 20
Frequency (kHz)

M
ag

ni
tu

de

0 5 10 15 20
Frequency (kHz)

M
ag

ni
tu

de

(c) (d) 

0 5 10 15 20
Frequency (kHz)

M
ag

ni
tu

de

Figure 4 Spectra of pulse tails calculated over a cylinder array with cylinder centre-to-
centre spacing of 5 cm for cylinder diameters (a) 1.0 mm, (b) 5 mm, (c) 10 mm, (d) 15 
mm for an input delta pulse. The source-receiver separation = 1.0 m, source and 
receiver heights hs = hr = 5 cm. Also shown for each array is the 1st organ-pipe 
resonance frequency (solid line) and the 1st and subsequent order Bragg diffraction 
frequencies (dashed lines). 
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Finally, let us the total field generated at points in the vicinity of the cylinder array at the frequency of 
the first spectral peak. Figure 5 shows a map of the total pressure magnitude up to 10 cm above an 
array of 20 1.5 cm cylinders with centre-to-centre spacing of 5 cm for the frequency 2782 Hz 
(corresponding to the frequency of first peak in the tail spectrum for this configuration. It also shows 
a map for double the number of cylinders (4). 
 
In both cases, the “organ-pipe” gap resonance effect increases the pressure magnitude between the 
cylinders. There also seems to be some kind of “standing-wave” envelope, could confined to a region 
just above the cylinders. This effect however is not present in the more compact configuration. 
Furthermore, test have shown that the field decreases exponentially with height above the array. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4 DISCUSSION 
Using predictions of a multiple scattering theory for propagation from a cylindrical source close to an 
array of cylinders on a rigid plane, we have shown that pulses received, also close to the surface, are 
composed of a main arrival and a tail. A spectral analysis of the tail demonstrates that it is composed 
of regularly-spaced frequency components that correspond to plane-wave Bragg diffraction. 
However, at small cylinder centre-to-centre spacings, these components are weak in comparison to 
a strong low frequency component related to the quarter wavelength “organ pipe” or “gap” resonance 
in the spacing between the cylinders and which, in turn, is enhanced with increasing cylinder 
diameter. Pressure maps show resonances between neighbouring cylinders and an interaction 
between the gap resonances just above the cylinder array.  
 
In their study of the propagation of pulses over lattices, Daigle et al [17] and found that, at source-
receiver separations greater than 1.5 m, there is a clear time lag between the main arrival and the tail 
of ~10-15 ms. In the present study of the propagation of pulses over cylinders on a rigid surface, 
albeit a rather different type of irregular rough surface, we have not been able to demonstrate a 
separation of the pulse tail from the main arrival, using the multiple scattering theory. This implies that 
the surface wave created by the cylinders on a hard plane has a speed rather close to the speed of 
sound in air. Given the tail’s dependence upon interference and resonance effects for its generation, 

Figure 5 Pressure maps calculated above cylinder array with cylinder centre-to-centre 
spacing of (a) 5 cm (20 cylinders) for frequency 2782 Hz and (b) 2.5 cm (40 cylinders) 
for frequency 3169 Hz, cylinder diameter 1.5 cm for an input delta pulse. The source-
receiver separation = 1.0 m, the source height hs = 5. 
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it cannot be considered an independently propagating wave. As such, can this wave be considered 
a surface wave, in the same sense as a Rayleigh wave observed in elastic media? 
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