Considerations for a cloud-based system for IoT data acquisition from heterogeneous sensors

Daniel Coutinho¹, Pedro Salgueiro¹, José Saias¹, Luís Rato¹, Vitor Nogueira¹, Jorge Silva², Pedro Lucas², Filipe Araújo², Catarina Silva², Paulo Gil², Alberto Cardoso², Joel Arrais², Bernadete Ribeiro²

¹LISP - Laboratory of Informatics, Systems and Parallelism, University of Évora, Portugal ²CISUC - Center for Informatics and Systems, Dep. of Informatics Engineering, University of Coimbra, Portugal

Introduction

- Motivation
 - Air pollution is a rising concern
 - ► There is a need for low cost air quality monitoring systems
- NanoSen-AQM project
 - Collect data from heterogeneous air quality sensors
 - Process collected air quality data
 - Make data available to the public
 - Make data available to other AQM platforms
 - Manage sensor nodes

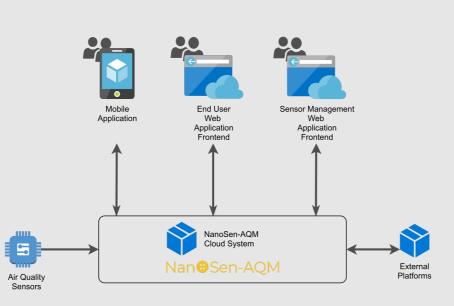
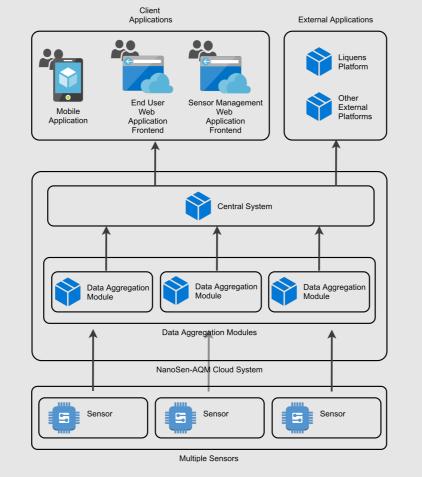


Figure 1: NanoSen-AQM Cloud System

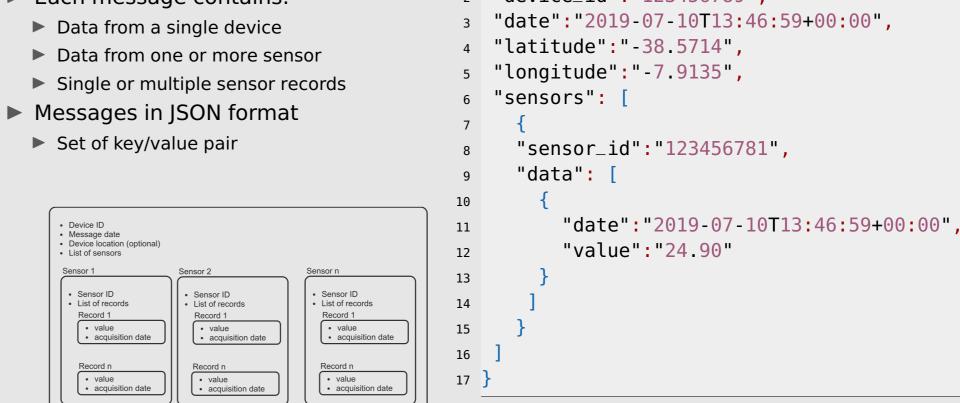

Data Upload Protocols

► MQTT

- Machine-to-machine (M2M)/"Internet of Things" connectivity protocol
- Lightweight publish/subscribe messaging transport
- Specific client to publish values
- Can be a problem for micro-controllers very low resources: Arduino Uno
- ► RESTFul Web Service
 - Web service architecture
 - "Provide interoperability between computer systems"
 - ► No need for specific clients HTTP Client
 - ► HTTP Client

System Overview

Collection of Sensors

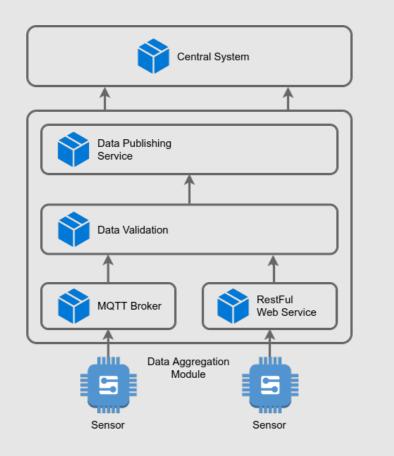


Data messages

- ▶ We assume that:
- A device can be made of one or more sensors
- Each message contains:
- 2 "device_id":"123456789",

- Data Aggregation Modules
- Central System
- Client Applications
 - End User (Mobile and Web) Application
 - Sensor Management Web Application
- External Applications
 - Liquens Platform
 - Others (future)

Figure 2: System Overview



1 {

Listing 1: Example of message Figure 5: Data message contents

Data Aggregation Module

- Collect data from sensors
- One or more instances
- Components
- Data collection: MQTT (VerneMQ)
- Data validation
- Data publisher: to Central System

Figure 3: System Overview

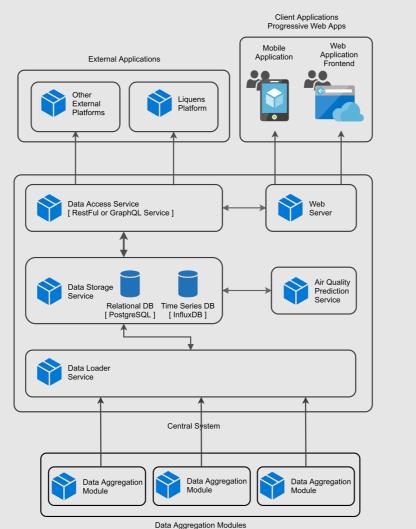
Security aspects

- Messages are authenticated
 - Not encrypted
 - Mechanims based on Message Authentication Code (MAC)
 - Easy to implement on low resource devices, e.g.: Arduino Uno
 - Prevents unauthorized users to upload (fake) data
- Data messages are signed together with a secret key
 - Secret key is shared between client (sensor) and server (cloud system)
- Message signature
 - signature = md5sum(sensor data + secret key)

Conclusions

- Multiple mechanisms to upload sensor data
- Same data message

System Components:


- Data Processing Module:
 - Data loader: Loads raw sensor values into data bases:
 - Sensor Calibration: Calibrates sensor values;
 - Air Quality Prediction: Predicts AQ based on previous sensor values

► Data Storage:

- Time Series DB from sensor data (raw and calibrated)
- Relational DB for system data (e.g.: user data, etc...)

► Data Access:

- RESTFul or GraphQL service
- Primary data access method (and also data upload)
- ► Web Server:
 - Web and Mobile Application (progressive) web app)
 - Sensor management web application

► Heterogeneous sensors

- Independent of the sensor type
- Low resource devices (very low cost sensors)
- High resource devices (reference/official sensors)
- "Operating system" independent
- Upload single data records or set of data records
- Upload data from single or multiple sensors
- Simple security mechanisms
 - Authenticity of the data is ensured

Acknowledgments

This work has received funding from the Program Interreg-Sudoe of the European Union under grant agreement SOE2/P1/E0569 (NanoSen-AQM) and was partially financed by national funds through the FCT - Foundation for Science and Technology, I.P..

LISP - Laboratory of Informatics, Systems and Parallelism, University of Évora, Portugal