
Universidade de Évora
Instituto de Investigação e Formação Avançada

Distributed Knowledge Bases: A Proposal

for Argumentation-based Semantics
with Cooperation

Iara Carnevale de Almeida

orientador: Prof. Doutor José Júlio Alferes

co-orientador: Prof. Doutor Luis Arriaga da Cunha

Janeiro de 2011

Doutoramento/Ramo de Conhecimento em Informática.

Autor Iara Carnevale de Almeida
T́ıtulo Distributed Knowledge Bases: A Proposal

for Argumentation-based Semantics
with Cooperation

Orientador Prof. Doutor José Júlio Alferes
Co-Orientador Prof. Doutor Lúıs Arriaga da Cunha

Instituição Universidade de Évora
Departamento de Informática

Palavras Chave Artificial Intelligence,
Extended Logic Programming,
Knowledge Representation,
Distributed Knowledge Bases,
Paraconsistency,
Incomplete knowledge,
Cooperation,
Negotiation Argument-based Semantics.

Endereço Departamento de Informática

Universidade de Évora
Rua Romão Ramalho, 59

7000-671 Évora, Portugal
E-mail ica@di.uevora.pt

Copyright Universidade de Évora

Local Évora
Data Janeiro de 2011

i

ii

Acknowledgments

In writing this dissertation, I have received the help and encouragement of many
people. I would certainly fail in trying to enumerate them all. Therefore, I will
only mention a few that have had a particular impact on my work, directly or
indirectly.

I want to thank particularly:

• my supervisor José Júlio Alferes, for all the support given throughout the
elaboration of this dissertation, for his critical and objective views during
the discussions we had, and for particularly his careful and critical reading
of the final version;

• my co-supervisor Lúıs Arriaga, for all the support given throughout the
elaboration of this dissertation;

• CAPES in Brazil, for the funding of my research activity during its first
years;

• the University of Évora, for all institutional support, logistic and scientific
support. For all my colleagues from University of Évora, for their encour-
agement. Special thank you to Paulo Quaresma and Luis Rato;

• For all my colleagues at FCT/UNL, especially those from the CENTRIA
research group. Special thank you to Lúıs Moniz Pereira and Carlos Damásio;

• Special thank you to Vasco Pedro for reviewing both English and formalism
of this dissertion;

• Laura Semini and Stephan Reiff-Marganiec for their omnipresent optimism;

• Patŕıcia Moita, Pedro Madureira and the lovely Tiago for the reinvigorating
meetings;

• Paulo and Cati Quaresma, for the great support they gave me during my
stay in Portugal;

iii

• Fernando Moura Pires, a very special colleague who I had the chance to work
with, for the privilege of his friendship and for his wise advice.

Last, but not the least to:

• Teresa and Antonio, Constança, Isabel, Fernanda and Anjo, Paula, and
Maria José for giving me a great support outside of the University;

• Mariana and Vasco, very special children. I feel very sorry for being absent
for some important periods of their lives;

• Grandma Ermelinda, for the example of strength and perseverance (perhaps
it would better to say, “stubbornness”) in her life, although she is not with
us any more, she will always be present in my heart;

• Grandma Juracy, for her care and attention during my infancy. I am grateful
for her example of the desire to keep on living, in spite of her 93 years. I feel
very sorry that our “old lady” wasn’t able to wait a little longer to witness
the conclusion of this extra stage in my life;

• Grandpas Eurico and Manuel, for the love they always have offered me during
my infancy and my rebellious adolescence;

• my parents Rita and Paulo, for the education and guidance in the my career
choices and for their constant encouragement;

• my sisters and brother, Isabela, Júlio and Jussara, for every interesting talk
that we have had about choices that we have made in both personal and
professional life. Quite different from each other;

• the remaining family for all the support, love and care that they have always
shown towards me;

• Finally, to my daughter Helena, an adorable 2-years old child who has taught
me how life can be beautiful with simple and small things.

Évora, Janeiro de 2011
Iara Carnevale de Almeida

iv

Abstract

“Distributed Knowledge Bases: A Proposal for

Argumentation-based Semantics with Cooperation”

The main objective of this dissertation is to define an argumentation-based nego-
tiation framework for distributed knowledge bases. Knowledge bases are modelling
over a multi-agent setting such that each agent possibly has an independent or
overlapping knowledge base. The minimum requirement for a multi-agent setting
negotiation is that agents should be able to make proposals which can then either
be accepted or rejected. A higher level of sophistication occurs when recipients do
not just have the choice of accepting or rejecting proposals, but have the option
of making counter offers to alter aspects of the proposal which are unsatisfactory.
An even more elaborate kind of negotiation is argumentation-based.

The argumentation metaphor seems to be adequate for modelling situations
where different agents argue in order to determine the meaning of common beliefs.
In an argumentation-based negotiation, the agents are able to send justifications
or arguments along with (counter) proposals indicating why they should be ac-
cepted. An argument for an agent’s belief is acceptable if the agent can argue
successfully against attacking arguments from other agents. Thus, agent’s beliefs
are characterized by the relation between its “internal” arguments supporting its
beliefs and the “external” arguments supporting the contradictory beliefs of other
agents. So, in a certain sense, argumentative reasoning is based on the “external
stability” of acceptable arguments in the multi-agent setting.

This dissertation proposes that agents evaluate arguments to obtain a consen-
sus about a common knowledge by both proposing arguments or trying to build
opposing arguments against them. Moreover, this proposal deals with incomplete
knowledge (i.e. partial arguments) and so a cooperation process grants arguments
to achieve knowledge completeness. Therefore, a negotiation of an agent’s belief is
seen as an argumentation-based process with cooperation; both cooperation and
argumentation are seen as interlaced processes. Furthermore, each agent Ag has
both set Argue of argumentative agents and set Cooperate of cooperative agents;

v

every Ag must reach a consensus on its arguments with agents in Argue, and Ag
may ask for arguments from agents in Cooperate to complete its partial arguments.

The argumentation-based negotiation proposal allows the modelling a hierar-
chy of knowledge bases representing, for instance, a business’s organization or a
taxonomy of some subject, and also an MAS where each agent represents “acquired
knowledge” in a different period of time. Furthermore, any agent in an MAS can
be queried regarding the truth value of some belief. It depends on from which
agent such a belief is inferred, and also what the specification in both Argue and
Cooperate is, given the overall agents in the MAS. However, such an answer will
always be consistent/paraconsistent with the agents’ knowledge base involved.

This dissertation proposes a (declarative and operational) argumentation se-
mantics for an agent’s knowledge base. Furthermore, it proposes a declarative
argumentation-based negotiation semantics for a multi-agent setting, which uses
most of the definitions from the former semantics.

vi

Resumo

“Bases de Conhecimento Distribúıdas: Uma proposta para Semânticas

baseadas em Argumentação com Cooperação”

O objectivo principal desta dissertação é definir um ambiente de negociação,
baseada em argumentação, para bases de conhecimento distribúıdas. As bases
de conhecimentos são modeladas sobre um ambiente multi-agente tal que cada
agente possui uma base de conhecimento própria. As bases de conhecimento dos
diversos agentes podem ser independentes ou podem incluir conhecimentos co-
muns. O requisito mı́nimo para haver negociação num ambiente multi-agente é
que os agentes tenham a capacidade de fazer propostas, que poderão ser aceites
ou rejeitadas. Numa abordagem mais sofisticada, os agentes poderão responder
com contra-propostas, com o intuito de alterar aspectos insatisfatórios da pro-
posta original. Um tipo ainda mais elaborado de negociação será o baseado em
argumentação.

A metáfora da argumentação parece ser adequada à modelação de situações em
que os diferentes agentes interagem com o propósito de determinar o significado
das crenças comuns. Numa negociação baseada em argumentação, as (contra-
)propostas de um agente podem ser acompanhadas de argumentos a favor da sua
aceitação. Um agente poderá, então, ter um argumento aceitável para uma sua
crença, se conseguir argumentar com sucesso contra os argumentos, dos outros
agentes, que o atacam. Assim, as crenças de um agente caracterizam-se pela
relação entre os argumentos “internos” que sustentam suas crenças, e os argumen-
tos “externos” que sustentam crenças contraditórias de outros agentes. Portanto,
o racioćınio argumentativo baseia-se na “estabilidade externa” dos argumentos
aceitáveis do conjunto de agentes.

Neste trabalho propõe-se uma negociação baseada em argumentação em que,
para chegarem a um consenso quanto ao conhecimento comum, os agentes con-
stroem argumentos que sustentam as suas crenças ou que se opõem aos argumentos
dos agentes que as contradizem. Além disso, esta proposta lida com conhecimento
incompleto (i.e. argumentos parciais) pela definição de um processo de cooperação
que permite completar tal conhecimento. Assim, a negociação entre agentes é um

vii

processo argumentativo-cooperativo, em que se podem alternar os argumentos con-
tra e a favor das crenças de um agente. Para a formação das suas crenças, a cada
agente Ag está associado um conjunto Cooperate de agentes com quem coopera e
um outro Argue de agentes contra quem argumenta.

A negociação proposta permite a modelação de bases de conhecimento hierárquicas,
representando, por exemplo, a estrutura de uma organização ou uma taxonomia
nalgum domı́nio, e de ambientes multi-agente em que cada agente representa o
conhecimento referente a um determinado peŕıodo de tempo. Um agente também
pode ser inquirido sobre a verdade de uma crença, dependendo a resposta do
agente em questão e de quais os agentes que com ele cooperam e que a ele se
opõem. Essa resposta será, no entanto, sempre consistente/paraconsistente com
as bases de conhecimento dos agentes envolvidos.

Esta dissertação propõe semânticas (declarativa e operacional) da argumentação
numa base de conhecimento de um agente. Partindo destas, propõe, também,
semântica declarativa da negociação baseada em argumentação num ambiente
multi-agente.

viii

Contents

Acknowledgments iii

Abstract v

Resumo vii

Contents ix

List of Figures xi

List of Tables xii

1 Introduction 1
1.1 Main Contributions of this thesis 4
1.2 Thesis Structure . 5

2 Background on Defeasible Argumentation 9
2.1 Extended Logic Programming with Denials 15
2.2 Fixpoint Approach of Argumentation 21
2.3 Argumentation for Logic Programs 25

2.3.1 Dung’s Argumentation Framework 26
2.3.2 Prakken and Sartor’s Argumentation Framework 27

3 A Proposal for Self-Argumentation 35
3.1 “Privacy and Personal Life”, an example 37
3.2 Declarative Semantics . 41
3.3 Proof for an Argument . 76
3.4 On the implementation of the proposed semantics 85

4 A Proposal for Argumentation-Based Negotiation 87
4.1 From Centralized to Distributed Argumentation 89
4.2 “Reaching a Verdict”, an example 92

ix

4.3 Declarative Semantics . 96
4.4 Properties . 112
4.5 Other Illustrative Examples . 115

4.5.1 Representing Hierarchy of Knowledge 116
4.5.2 Obtaining Conclusions at Different Periods of Time 119

4.6 On the implementation of the proposed semantics 123

5 Related Work 139
5.1 Semantics of Abstract Argument Systems 140
5.2 Defeasible Reasoning . 143
5.3 Argument-based Negotiation . 149
5.4 Some conclusions . 161

6 Conclusions and Future Work 163
6.1 Future Work . 167

Bibliography 170

x

List of Figures

2.1 Attacking relation of Example 6 . 28
2.2 Defeating and Strictly defeating relation in Args 31

3.1 The knowledge of agent Ag about “Privacy of Personal Life” 39
3.2 The conclusions over the set of rules PPL 40
3.3 Proponent strong arguments and opposing weak arguments of Ex-

ample 13 . 49
3.4 Proposed weak arguments and opposing strong arguments of Ex-

ample 13 . 56
3.5 Acceptablew,w arguments in Argsw(P) 62
3.6 Acceptablew,w arguments in Argsw(PPL) 63
3.7 Acceptables,w arguments in Args(P) 65
3.8 Acceptables,w arguments in Args(PPL) 66
3.9 Acceptables,s arguments in Argss(P) 67
3.10 Acceptables,s arguments in Argss(PPL) 68
3.11 DT s,s

Ap
in {p ← not a; a ← not b, not c; a ← not d; b; d ←

not e; c← not g; g} . 80
3.12 Some DT s,s

AL
in {p← not a; a← not b, not c; b← not c;

c← not g; g; m← not l; l ← not m} 82
3.13 DTw,w

AL
in {a← not b; ¬a; b; ¬b; c; ⊥ ← c} 83

3.14 DT s,w
AL

in {a← not b; ¬a; b; ¬b; c; ⊥ ← c} 84
3.15 A Dialogue Tree DT s,w

hp(P) from Example 9 86

4.1 An example of a Multi-agent Setting 91
4.2 A = {< pa,Kbpa, {pa}, {pa} >,< pr,Kbpr, {pr}, {pr, pa} >} 92
4.3 “The inconvenient witness” . 94
4.4 “Business Process Management” . 117
4.5 Hamlet’s knowledge in periods of time 120
4.6 An Architecture for Argumentation-based Negotiation 130
4.7 PullPushAdapter . 137
4.8 Interprolog as a middleware for Java and Prolog 138

xi

xii

List of Tables

3.1 Ways of interacting arguments . 48
3.2 The status of arguments w.r.t Args(PPL) and Argss(PPL). 71
3.3 The status of arguments w.r.t Argsw(PPL) 72
3.4 The truth value of PPL’s conclusions 73

xiii

xiv

Chapter 1

Introduction

Negotiation is a key mechanism of interaction in a multi-agent setting. In such
environments, agents often have no inherent authority over each other, and the
only way they can influence the behavior of others is to persuaded them to act in
particular ways. In some cases, the persuade may require little or no be convinced
to effort to act in the way desired by the persuader. However, in other cases, the
persuaded may be unwilling to accept the proposal initially and must be persuaded
into changing its beliefs, goals, or preferences so that the proposal is accepted. In
either case, the minimum requirement for negotiation is for the agents to be able
to make proposals to each other which can then either be accepted or rejected.
Another level of sophistication occurs when recipients do not just have the choice
of accepting or rejecting proposals, but have the option of making counter offers to
alter aspects of the proposal which are unsatisfactory. An even more elaborate kind
of negotiation is argumentation-based. In argumentation-based negotiation, the
agents are able to send justifications or arguments along with (counter) proposals
indicating why they should be accepted. In fact,

“While negotiation can be viewed as a process to find a solution, argu-
mentation is needed to justify a proposed solution. Hence, it is clear
that there is no negotiation without argumentation. In other words,
argumentation is an integral part of negotiation” [Dun95].

The goal of argumentation-based negotiations semantics for a multi-agent set-
ting is to deal with situations where different agents argue in order to determine
the meaning of common beliefs. A belief of an agent is acceptable if the agent
can argue successfully against attacking arguments from other agents. In other
words, whether or not an agent believes in a proposition depends on whether or
not at least one argument supporting this proposition can be successfully defended
against the counter-arguments. Thus, the agent’s beliefs are characterized by the

1

2 CHAPTER 1. INTRODUCTION

relations between its “internal” arguments supporting its beliefs and the “external”
arguments supporting the contradictory beliefs of other agents. So argumentative
reasoning can be viewed as based on the “external stability” of acceptable argu-
ments in a multi-agent setting. If one views the distributed knowledge as coming
from various agents in a multi-agent setting, it may happen that:

• Agents negotiate by exchanging parts of their knowledge (i.e. arguments) to
obtain a consensus concerning their beliefs. In other words, in an argumenta-
tion-based negotiation, the agents evaluate arguments to obtain a consensus
about a common knowledge by both proposing arguments and trying to
build opposing arguments against them. Moreover, a set S of agents’ knowl-
edge bases is very often inconsistent if we consider the ‘overall knowledge’ of
S. So, an argumentation-based negotiation should deal with contradictory
arguments and also with the presence of falsity in S.

• An argumentation-based negotiation should deal with incomplete knowledge
(i.e. partial arguments), and so a cooperation process is necessary to grant
arguments to achieve knowledge completeness. Moreover, cooperation could
be ‘direct’ between cooperative agents or ‘indirect’ between argumentative
agents. The latter presumes that a proposed argument could be used to built
a counter-argument against it.

• If we assume that every agent argues and cooperates with all agents in an
argumentation-based negotiation process, the results of such a process and
of the argumentation-based process (over the set of all agent’s knowledge
bases) should coincide. However, there are cases where these proposals do
not coincide because an agent does not need to argue and/or to cooperate
with all agents. This is the case, for instance, when a multi-agent setting
represents a kind of hierarchy of knowledge where each agent has a partial
knowledge of the overall process.

In logic programming, several ways to formalize argumentation-based seman-
tics have been studied for a single logic program (e.g. [GDS09, arg10], and scientific
events such as “Conference on Computational Models of Argument (COMMA)”,
“Conference on Principles of Knowledge Representation and Reasoning” (KR),
“Argument, Dialog and Decision” at the International workshop on Non-Monotonic
Reasoning (NMR), and the “Workshop Argumentation and Non-Monotonic Rea-
soning” (ArgNMR)). Intuitively, argumentation-based semantics treat the evalua-
tion of a logic program as an argumentation process, i.e. a goal G is true if at least
one argument for G cannot be successfully attacked. The ability to view logic pro-
gramming as a non-monotonic knowledge representation language, in equal stand-
ing with other non-monotonic logics, brought to light the importance of defining

3

clear declarative semantics for logic programs, for which proof procedures (and
implementations) are then defined (e.g. [Dun93, Dun95, PS97, BDKT97, Vre97,
Lou98, SS02b, DMT02a, Pol01, DMT02b, GS04, Pra09]).

Note that a precise meaning (or semantics) must be associated with any logic
program, in order to provide a declarative specification. Declarative semantics
provide a mathematically precise definition of the meaning of a program, which
is independent of its procedural executions, and is easy to manipulate and reason
about. In contrast, an operational semantics is usually defined as a procedural
mechanism that is capable of providing answers to queries. The correctness of
such a mechanism is evaluated by comparing its behavior with the specification
provided by the declarative semantics. Without the former, the user needs an
intimate knowledge of the procedural aspects in order to write correct programs.

The main goal of the proposal presented in this dissertation is to define a declar-
ative semantics for Argumentation-based Negotiation for “distributed knowledge
bases”, following the work in progress [dAA06, dAMA98a, dAMA98b, dAMA99,
SdAMA97, dAMAS97, dAMA97]. The set of knowledge bases is viewed as a
multi-agent setting (MAS) where each agent has an independent or overlapping
knowledge in the MAS. Moreover, every agent Ag in an MAS argues and cooper-
ates with a subset of the agents in the MAS, i.e. Ag has a set of argumentative
agents and a set of cooperative agents. In general, little is assumed about these
sets. We only impose that every agent argues and cooperates with itself because
it would make little sense for an agent neither to access its own knowledge nor to
obtain a consensus based upon its own knowledge. Moreover, argumentation and
cooperation are viewed as “interlaced processes”. The argumentation imposes the
restriction that every agent should argue with other agents to evaluate its knowl-
edge. The cooperation allows an agent to handle its incomplete knowledge with
the ‘help’ of other agents.

The ability of associating argumentative and cooperative sets to each agent
provides a flexible framework which, besides reflecting the possibly existing phys-
ical network, may serve for different purposes from the ones above. For example,
for modelling knowledge over a hierarchy where each node of the hierarchy is rep-
resented by an agent that cooperates with all its inferiors, and must argue with
all its superiors. Another example is modelling knowledge that evolves. Here, the
“present” can use knowledge from the “past” unless this knowledge from the past
is in conflict with later knowledge. This can be modelled by allowing any present
node to cooperate with its past nodes, and forcing any past node to argue with
future nodes. In both cases, it is important that the knowledge is not flattened, as
in the union of all knowledge bases, and that the semantics is parametric on the
specific Kb. I.e. it may happen that an argument is acceptable in a given (agenti)
Kbi, and not acceptable in another (agentj) Kbj of the same system. Therefore,

4 CHAPTER 1. INTRODUCTION

a truth value of an agent’s belief depends on which agent such a belief is inferred
from, and also what the specification of both sets of cooperative and argumentative
agents is, given the overall agents in the MAS.

Besides this distributed nature, the Argumentation-based Negotiation seman-
tics also allows for paraconsistent forms of argumentation. In fact, we also have
the goal to be able to deal with mutually inconsistent, and even inconsistent,
knowledge bases. Moreover, when in presence of contradiction we want to obtain
ways of agent reasoning, ranging from consistent (in which inconsistencies lead
to no result) to paraconsistent. For achieving this, we focus on the properties
of declarative semantics in what regards paraconsistency which are interesting by
themselves, and independent from its distributed nature.

With this purpose, we first restrict our attention to the special case of the
distributed semantics where only a single logic program is in the set of programs,
i.e. we propose a semantics for an extended logic program with denials (ELPd)
which represents the knowledge base of an agent. This semantics is argumentation-
based, in the line of the work developed by [Dun95, PS97] for defining semantics
of single extended logic programs. We propose two kind of arguments, strong
argument and a weak version of the strong argument. To distinguish between
them, a strong argument for a literal L will be denoted by As

L and its weak version
by Aw

L. The weak version Aw
L is built by adding default literals to the rules of As

L,
thus making the rules weaker (more susceptible to being contradicted/attacked).
Intuitively, if there is a potential inconsistency then the weak argument is attacked,
whereas the strong one is not. As such, the semantics succeeds in detecting conflicts
in a paraconsistent ELPd, i.e. it deals with contradictory arguments. We also
improve the notion of [PS97]’s status of an argument, and so an argument of an
agent Ag is deduced as justified, overruled or defensible with respect to the Ag’s
set of arguments. Since the semantics deals with paraconsistency, if there exist
contradictory arguments in a set of justified arguments S, a justified argument can
in turn be contradictory, based on contradiction or non-contradictory w.r.t. S.

1.1 Main Contributions of this thesis

• We define a declarative semantics for Argumentation-based Negotiation for a
multi-agent setting (MAS). Every agent Ag in a MAS argues and cooperates
with a subset of agents in the MAS, i.e. Ag has a set of argumentative agents
and a set of cooperative agents. The semantics for Argumentation-based
Negotiation is composed by argumentation and cooperation. The former
imposes the restriction that every agent should argue with other agents to
evaluate its knowledge. The latter allows an agent to handle its incomplete
knowledge with the ‘help’ of other cooperative agents.

1.2. THESIS STRUCTURE 5

• We extend [PS97]’s argumentation-based semantics for extended logic pro-
grams to deal with denials. We further propose two kind of arguments, strong
arguments and weak arguments. Then, the declarative semantics for (Self-)
argumentation succeeds in detecting conflicts in a paraconsistent extended
logic program with denials, i.e. it deals with contradictory arguments.

• We improve the notion of [PS97]’s status of an argument, so that an argument
of an agent Ag is justified, overruled or defensible with respect to the Ag’s set
of arguments. Since our argumentation proposal deals with paraconsistency,
if there exist contradictory arguments in a set of justified arguments S, a
justified argument can in turn be contradictory, based on contradiction or
non-contradictory w.r.t. S.

• The truth value of an agent’s belief may not always be the same depending
on which kind of interaction between (strong and weak) arguments is chosen.
According to the choice of interaction, we may obtain different well-founded
semantics, viz. WFSXp semantics [ADP95], Grounded extension [Dun95],
WFSX [PA92], or WFS semantics [Prz90]. Since our argumentation is pa-
rameterized by the kind of interaction between arguments, we obtain results
from a consistent way of reasoning to a paraconsistent way of reasoning.

• We develop a proof procedure for both declarative and operational (Self-)
argumentation semantics.

1.2 Thesis Structure

Besides the present chapter, this dissertation comprises the following parts:

• Chapter 2 presents background material on the usage of defeasible argumen-
tation for logic programming. This background is essential to understand our
argumentation-based semantics with cooperation. We briefly present the
Extended Logic Programming with denials language (denoted by ELPd),
since it is the representation language for modelling the knowledge bases
that we use in the remainder of the dissertation, and recall the work of
[Dun95, PS97]’s argumentation semantics as a basis for attributing a mean-
ing to the language. Since their work follows a fixpoint approach [Pol87], we
first present the definitions of such an approach applied to argumentation.
Then, both argumentation semantics for logic programming are presented.

• Chapter 3 presents an argumentation semantics which involves a “single”
extended logic program, named self-argumentation semantics. We focus on
the properties of a declarative semantics in what regards paraconsistency

6 CHAPTER 1. INTRODUCTION

which are interesting by themselves, and independent from its distributed
nature. With this purpose, we restrict our attention to the special case
of the distributed semantics, where only a “single” extended logic program
with denials (ELPd) is in the set of programs. The self-argumentation se-
mantics is inspired by two well known argumentation semantics, viz. [Dun95]
and [PS97]. We redefine [PS97]’s definition of argument and other [PS97]’s
definitions are simplified, the goal being to obtain a semantics for extended
logic program with denials which represents the knowledge base of an agent.
Furthermore, we propose a parameterized characteristic function so that our
argumentation semantics obtains different levels of acceptability of an ar-
gument. With such a differentiation, we go through the properties of both
conflict-free and contradictory sets of acceptable arguments. Therefore, we
obtain both paraconsistent and consistent ways of reasoning. According
to [PS97]’s definition of the status of an argument, the argument may be
justified, overruled or defeasible. On top of that, we propose that a justified
argument can be contradictory, based on contradiction, or non-contradictory.
We then present a definition of the truth value of a conclusion G such that
G is true (and contradictory, based-on-contradiction, or non-contradictory),
false or undefined. Finally, we present a proof procedure for such a declara-
tive semantics.

• Chapter 4 presents the main contribution of the dissertation: an argumenta-
tion-based negotiation semantics for distributed knowledge bases represented
as extended logic programs. Such a semantics extends the argumentation se-
mantics presented in the previous chapter by considering sets of (distributed)
logic programs, rather than single ones. For specifying the ways in which
the various logic programs may combine their knowledge we make use of
concepts that have been developed in the areas of defeasible reasoning and
multi-agent settings. In particular, we associate to each program P a coop-
eration set (the set of programs that can be used to complete the knowledge
in P) and an argumentation set (the set of programs with which P has to
reach a consensus). In this chapter, we first define a declarative semantics
for argumentation-based negotiation. Then, some illustrative examples are
presented. Finally, we present a general architecture for implementing the
semantics.

• Chapter 5 compares related work in the areas of Defeasible Reasoning and
Argumentation-based Negotiation.

• Finally, Chapter 6 goes back to the objectives drawn in the introduction,
synthesizing the way how the work which unfolded throughout this disserta-
tion has fulfilled them. Then, it outlines some future research aspects that

1.2. THESIS STRUCTURE 7

emerged from the work presented herein.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background on Defeasible
Argumentation

This chapter presents background material on the usage of defeasible argumen-
tation for logic programming. This background is essential to understand our
argumentation-based semantics with cooperation. We briefly present the Extended
Logic Programming with denials language (denoted by ELPd), since it is the repre-
sentation language for modelling the knowledge bases that we use in the remainder
of the dissertation, and recall the work of [Dun95, PS97]’s argumentation seman-
tics as a basis for atributting a meaning to the language. Since their work follows
a fixpoint approach [Pol87], we first present the definitions of such an approach
applied to argumentation. Then, both argumentation semantics for logic program-
ming are presented.

“When a rule supporting a conclusion may be defeated by new infor-
mation, it is said that such reasoning is defeasible. When we chain
defeasible reasons to reach a conclusion, we have arguments, instead of
proofs. It makes sense to require defeasible reasons for argumentation.
Arguments may compete, rebutting each other, so a process of argu-
mentation is a natural result of the search for arguments. Adjunction
of competing arguments must be performed, comparing arguments in
order to determine what beliefs are justified. Since we arrive at conclu-
sions by building defeasible arguments, and since mathematical argu-
mentation has so often called itself argumentation, we sometimes call
this kind of reasoning defeasible argumentation.”[CML00]

9

10 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

The field of defeasible argumentation is relatively new 1 and researchers disagree
on many issues, while the formal meta-theory is still in its early stages.

A much-discussed issue is whether logics for non-monotonic reasoning should
have a model-theoretic semantics or not. Traditionally, model theory has been used
in logic to define the meaning of logical languages. Formulas of such languages
were regarded as telling us something about reality (however defined). Model-
theoretic semantics defines the meaning of logical symbols by defining what the
worlds looks like if an expression with these symbols is true, and it defines logical
consequence, entailment, by looking at what else must be true if the premises are
true. For defaults, this means that their semantics should be in terms of what the
world normally, or typically, looks like when defaults are true. Logical consequence
should, in this approach, be determined by looking at the most normal worlds,
models or situations that satisfy the premises.

However, [Pol91, Vre93, Lou98] have argued that the meaning of defaults
should not be found in a correspondence with the reality, but in their role in di-
alectical inquiry. Then “a relation between premises and conclusions is defeasible”
means that a certain burden of proof is induced. In this approach, the central
notions of defeasible reasoning are notions like attack, rebuttal, and defeat among
arguments, and these notions are not ‘propositional’, for which reason their mean-
ing is not naturally captured in terms of correspondence between a proposition and
the world. This approach, instead, defines ‘argumentation-theoretic’ semantics for
such notions. The basic idea of such a semantics is to capture sets of arguments
that are as large as possible, and adequately defend themselves against attacks on
their members. [PV02] states that systems for defeasible argumentation contain
the following five elements (although sometimes implicitly): an underlying logical
language L, definitions of how to build arguments over L, of conflicts between
arguments, and of defeat among arguments and, finally, a definition of the status
of arguments which can be used to define a notion of defeasible consequence. The
notions of underlying logic and argument still fit with the standard picture of what
a logic system is. The remaining three elements are what makes an argumentation
system a framework for defeasible argumentation.

Argumentation systems are defined on top of an underlying logical language
and an associated notion of logical consequence, defining the way an argument is
built. The idea is that this consequence notion is monotonic: new premises cannot
invalidate arguments as arguments, but only give rise to counter-arguments. Some
argumentation systems assume a particular logic (e.g. Fuzzy logic [SS02a] and Ex-
tended Logic Programming [PS97, SdAMA97, dAMAS97, dAMA98a, dAMA98b]),

1The argumentation-based approach which was the first logical formalization of defeasible ar-
gumentation was initiated by the philosopher John Pollock, see [Pol87, Pol92]. Pollock’s proposal
was initially applied to the philosophy of knowledge and justification (epistemology) [Pol74]. The
first artificial intelligence paper on argumentation systems was proposed in [Lou87].

11

while other systems leave the underlying logic partly (e.g. [BDKT97]2 and [Pol95]3)
or wholly unspecified (e.g. [Dun95]). These later systems can be instantiated with
various alternative logics, which became frameworks rather than systems.

The notion of an argument corresponds to a proof in the underlying logic lan-
guage. As for the layout of arguments, in the literature of argumentation systems,
three familiar basic formats can be distinguished. Sometimes arguments are de-
fined as a tree of inferences grounded in the premises (e.g. [Nut94, Vre97]), and
sometimes as a sequence of such inferences (e.g. [PS97, dAMA98b, SS02a]), i.e. as
a deduction. Some systems simply define an argument as a premises–conclusion
pair [BDKT97], leaving implicit that the underlying logic validates a proof of the
conclusion from the premises. The argumentation system proposed by [Dun95]
leaves the internal structure of an argument completely unspecified. Dung treats
the notion of an argument as a primitive, and exclusively focuses on the ways
arguments interact. Thus, Dung’s framework is the most abstract.

In the literature, the notion of a conflict between arguments (the terms “attack”
and “counter-argument” are also used) is discussed referring to three types. The
first type is when arguments have contradictory conclusions, as in the well known
example of Tweety: “Tweety flies because it is a bird” and “Tweety does not fly
because it is a penguin”. Clearly, this form of attack, which is often called rebutting
an argument, is symmetric. The other two types of conflict are not symmetric.
One is where one argument makes a non-provability assumption (as in default
logic) and another argument proves what was assumed unprovable by the first.
For example, an argument “Tweety flies because it is a bird, and it is not provable
Tweety is a penguin”, is attacked by any argument with the conclusion “Tweety
is a penguin”. This kind of attack is called assumption attack. The third type of
conflict (proposed by [Pol87]) is when one argument challenges not a proposition,
but a rule of inference of another argument. After Pollock, this is usually called
undercutting an inference. Moreover, such type of conflict occurs only if the rule
of inference is not deductive. To consider an example, the argument “raven101 is
black since the observed ravens raven1, . . . , raven100 were black” is undercut by
an argument “I saw raven102 which was white”.

Furthermore, all these kinds of attack have a direct and an indirect version:
an indirect attack is directed against a ‘sub-conclusion’ or a ‘sub-step’ of an argu-
ment A (also known as sub-argument of A). The notion of conflicting or attacking
arguments does not embody any form of evaluation; evaluating conflicting pairs
of arguments or, in other words, determining whether an attack is successful,
is another element of argumentation systems. It has the form of a binary re-

2They propose to reformulate existing non-monotonic logics in their general framework, for
instance, in applications of preferential entailment or default logic.

3The underlying logic is standart first-order logic.

12 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

lation between arguments, standing for ‘attacking and not weaker’ (in a weaker
form) or ‘attacking and stronger’ (in a strong form). The terminologies vary.
Some terms that have been used are: ‘defeat’ [Nut94, Pol95, PS97, SS02a], ‘at-
tack’ [Dun95, dAMA98b, BDKT97], and ‘inference’ [SL92a, Lou98]. Moreover,
[PS97] uses ‘defeat’ for the weak notion and ‘strict defeat’ for the strong, asym-
metric notion; [Dun95] uses ‘reduction ad-absurdum attack’ and ‘ground attack’,
respectively. Other systems do not explicitly name this notion of conflict but leave
it implicit in the [BDKT97]’s definitions. Unless indicated otherwise, we will use
the term ‘defeat’ in this section.

The several forms of attack, rebutting vs. assumption vs. undercutting, and
direct vs. indirect have their counterparts for defeat. The notion of defeat is a
binary relation on a set S of arguments. It is important to note that this relation
does not yet tell us which arguments are acceptable with respect to S; it only tells
us something about the relative strength of two individual conflicting arguments.

The ultimate status of an argument depends on the interaction between all
arguments of S. In the following, three examples from the literature of semantics of
argumentation systems viz. “Reinstatement”, “Even Cycle” and “Self Defeating”
are presented. These examples illustrate typical cases under which conditions
of acceptability of an argument should be defined. For the moment, we do not
specify the structure of an argument nor the precise definition of defeat4. Assume,
as background, a set of arguments with a binary relation of defeat defined over
it such that “A defeats B” means “A conflicts with B and A is not weaker than
B”. Moreover, in some cases it may happen that A defeats B and B defeats A.
Assume that arguments are either ‘acceptable’ or ‘not acceptable’: an argument
is acceptable if all arguments defeating it (if any) are not acceptable; otherwise,
such an argument is not acceptable.

Example 1 (Reinstatement) Consider three arguments A, B and C such that
B defeats A and C defeats B. C is acceptable since it is not defeated by any
other argument. This makes B not acceptable, since B is defeated by C. This in
turn makes A acceptable: although A is defeated by B, A is reinstated by C. The
figure below illustrates the above description; a round node represents an acceptable
argument and a square node represents a not acceptable argument.

A B C
defeats defeats

reinstates

4For simplicity we use the terminology of [PS97]’s proposal. As remarked above, [Dun95] uses
‘attack’ instead ‘defeat’.

13

The key observation is that an argument that is defeated by another argument
can only be acceptable if it is reinstated by a third argument, i.e by an acceptable
argument that defeats its defeater. In case of ‘undecided conflicts’, a situation may
be circular or ambiguous. It is not clear which argument should remain undefeated,
especially when arguments of equal strength interfere with each other.

Example 2 (Even Cycle) Consider the arguments A and B such that A defeats
B and B defeats A. Intuitively, A is acceptable if B is not acceptable. However,
B can also be acceptable if A is not acceptable. Thus, both cannot be acceptable at
the same time.

A B
defeats

Finally, there is the problem of self-defeating arguments, i.e. arguments that
defeat themselves.

Example 3 (Self Defeating) Consider an argument A such that A defeats itself.
If we assume that A is not acceptable, then all arguments defeating A are not
acceptable, and thus it should be acceptable. This is a contradiction. If we assume
that A is acceptable, then A is defeated by an acceptable argument. This is another
contradiction.

A
defeats

What is also needed is a definition of the status of arguments on the basis of
all the ways in which they interact. Besides reinstatement, this definition must
also capture the ‘compositional principle’ [Vre97], in which an argument cannot be
acceptable unless all its sub-arguments are acceptable. There is a close relationship
between these two notions, since reinstatement often proceeds by indirect attack,
i.e. attacking a sub-argument of the attacking argument. The definition of the
status of arguments by [Dun95] produces the output of an argumentation system,
which typically divides arguments in to at least two classes: acceptable arguments,
and arguments defeated by at least one acceptable argument. Sometimes a third
intermediate category is also distinguished, e.g. the arguments that leave the
acceptability undecided [PS97]. The terminology varies here also: terms that have
been used are justified vs. defensible vs. defeated (or overruled) [PS97, dAMA98b,

14 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

SS02a], defeated vs. undefeated [Pra93, Pol95, Vre97, Lou98], preferred vs. not
preferred [BDKT97, PS97], etc.

Furthermore, the status of arguments might be obtained by either a consistent
or a paraconsistent way of reasoning. When faced with an unresolvable conflict
between two arguments, a ‘consistent reasoner’ would refrain from drawing any
conclusion, while a ‘paraconsistent reasoner’ would choose one conclusion at ran-
dom (or both alternatively) and further explore its consequences. The consistent
approach is often defended by saying that, since in an unresolvable conflict, no
argument is stronger than another, neither of them can be justified; the para-
consistent approach has sometimes been defended by saying that the practical
circumstances often require a decision about which conclusion is the best for the
moment. Thus, a paraconsistent reasoner might deal with contradictory conclu-
sions through an argumentation process. For instance, consider the arguments
from the well-known “Nixon Diamond” problem: “Nixon was a pacifist because
he was a quaker” and “Nixon was not a pacifist because he was a republican”. A
consistent reasoner neither concludes that “Nixon was a pacifist” nor that “Nixon
was not a pacifist”; a paraconsistent reasoner may choose one of them at random.

The general features of argumentation-based systems can be organized along
two main approaches: unique-status-assignment and multiple-status-assignment.
The unique-status-assignment basically comes in two variants. The first variant
defines status assignment in terms of a fixpoint operator which for each set of
arguments returns the set of all arguments that are acceptable to it, e.g. [Pol87,
Pol92, SL92a, Vre97, Dun95, dAMA98b]. The second variant involves an explicitly
recursive definition of justified arguments, reflecting the basic intuition that an
argument cannot be justified if not all its sub-arguments are justified, e.g. [Nut94,
Pra93]. The multiple-status-assignment deals with competing arguments of equal
strength by letting them induce two alternative status assignments, in both of
which one is justified at the expense of the other(e.g. [Dun95, Pol95]); in this
approach, an argument is ‘genuinely’ justified iff it receives this status in all status
assignments. A full discussion of these approaches is beyond the scope of this work
— see details in e.g. [PV02].

We are in line with the proposals of [Dun95] and [PS97]. Since both work with
the fixpoint approach, we have paid special attention to it. In a declarative form
with fixpoint definitions, certain sets of arguments are just declared as accept-
able (given a set of premises and evaluation criteria) without defining a procedure
for testing whether an argument is a member of this set. The procedural form
amounts to defining such a procedure. Thus, the declarative form of an argumen-
tation system can be regarded as its (argumentation-theoretic) semantics, and the
procedural form as its proof theory.

2.1. EXTENDED LOGIC PROGRAMMING WITH DENIALS 15

In the remainder of this chapter, we briefly present Extended Logic Program-
ming (ELP) and so an extension of ELP, viz. Extended Logic Programming with
denials (ELPd). The ELPd is the representation language for modelling the knowl-
edge bases that we use in the remainder of this dissertation. Then, we present the
definitions of fixpoint approach applied to argumentation. Finally, both [Dun95]’s
and [PS97]’s argumentation semantics for logic programming are presented.

2.1 Extended Logic Programming with Denials

Due to its declarative nature, as well as its procedural implementations, logic
programming is a good language for knowledge representation. In fact, much
work has been devoted to the use of logic programs for knowledge representation5,
and their relation to other well-known non-monotonic formalisms for knowledge
representation and defeasible reasoning, such as default logics [Rei80] and auto-
epistemic logics [Moo85]. Default logics draw plausible inferences in the absence
of information, it is like arguing with Nature where a conclusion supported by
argument can be drawn in the absence of any counterargument. Auto-epistemic
logics reasoning about one’s own knowledge or beliefs, which is much like arguing
with oneself.

Normal logic programs use a non-monotonic form of “default negation”6 whose
major distinction from the classical negation is that it can be assumed in the
absence of evidence to the contrary. Default negated literals are viewed as hy-
potheses which, under certain conditions, can be assumed. For instance, we can
express default-statements of the form

Normally, unless something abnormal holds, then A implies B

A typical example for such a statement is “Birds, not shown to be abnormal,
fly” and it can be represented by the following rule:

fly(X)← bird(X), not abnormal(X)

We can further represent “Let’s go swimming if it is not known to be raining
and the water is not known to be cold” as follows

swimming ← not raining, not coldWater

5See either proceedings of the “International Conference on Principles of Knowledge Repre-
sentation and Reasoning” (KRR) (in http://www.kr.org/) or “International Conference on Logic
Programming and Non-monotonic Reasoning”(LPNMR).

6Or “negation as failure” as it is also usually called in the literature of logic programming.

16 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

Although default negation is quite useful in various domains and application
frameworks, it is not the only type of negation that is required in non-monotonic
formalisms. Indeed, while default negation not p of an atom p is always assumed
‘by default’, we often need to be more careful before jumping to negative con-
clusions. For example, it would make little sense to say guilty ← not innocent
to express the fact that being guilty is the opposite of being innocent, because
it would imply that people could be considered guilty ‘by default’. Moreover, in
normal logic programs, the negative information is implicit, i.e. it is not possible
to explicitly state falsity; propositions are assumed false if there is no reason to
believe they are true. Though this is what is required in some cases, having this
single form of (implicit) negation is a serious limitation in other cases. In fact, in
various situations one may want to explicitly declare that something is false. In
the example of being guilty we can say that “Everyone is not guilty by default”.
Furthermore, “Someone is guilty if there is evidence for it (e.g. the crime has been
witnessed)”. There is no way of doing this with normal logic programs. This is
the main reason for the generalization of language of logic programs to include
an explicit form of negation. An extended logic program, which is introduced
by [GL90], distinguishes the two types of negation, viz. default and explicit, and
enable us to deal with negation as well as default negation in program. The gener-
alized language used is called Extended Logic Programming [PA92]. In Extended
Logic Programming, we can express the above example by

¬guilty ← not guilty.
guilty ← seenDoing.

The above rules illustrate that explicit negation is useful to represent negative
information, in such a case by having a rule with explicit negation at its head.
However, explicit negation may also be needed in the body of a rule. To illustrate
more about the use of extended logic programming we will now present some
examples extracted from [GL90, AP96].

Consider the statement “A school bus may cross railway tracks under the con-
dition that there is no approaching train”. It would be wrong to express this
statement by the rule cross← not train. The problem is that this rule allows the
bus to cross the tracks when there is no information about either the presence or
the absence of a train. The situation is different if explicit negation is used, i.e.

cross← ¬train.

Then the bus is only allowed to cross the tracks if the bus driver is sure that there
is no approaching train.

The difference between not L and ¬L in a logic program is essential whenever
we cannot assume that available positive information about L is complete, i.e. we

2.1. EXTENDED LOGIC PROGRAMMING WITH DENIALS 17

cannot assume that the absence of information about L clearly denotes its falsity.
Moreover, the use of explicit negation in combination with the existing default
negation allows for greater expressivity. As an illustration of this improvement,
consider the following rule for representing statements like “If the driver is not
sure that a train is not approaching, then he should wait”; in a natural way it is
depicted as

wait← not ¬train.
Furthermore, general conflicts can be caused by non-complementary informa-

tion, i.e. neither L and not L nor L and ¬L. Consider the following statements
“Let’s go hiking if it is not known to be raining. Let’s go swimming if it is not
known to be raining and the water is not known to be cold. We cannot go both
swimming and hiking”. These statements can be represented as follows:

hiking ← not raining.
swimming ← not raining, not coldWater.
⊥ ← hiking, swimming.

such that the symbol ⊥ denotes falsity. In such a case, if it is neither raining
nor the water is cold, it might possible to do both activities, i.e to swim and
to hike. Nevertheless, it causes a conflict because both cannot be done at the
same time. Thus, if both hiking and swimming hold, then falsity follows. We
choose to represent this kind of contradiction by using the notion of integrity con-
straints. The basic idea on integrity constraints is that only some program states
are considered acceptable, and the constraints are meant to enforce these accept-
able states. Integrity constraints can be of two types, viz. static and dynamic. In
static constraints, the enforcement of these constraint depends only on the current
state of the program, independently of any prior state. The example above of
hiking/swimming is one such an example. In dynamic constraints, these depend
on two or more program states. One example is “employee’s salaries can never
decrease”. Since it is not a purpose of this work to deal with the evolution of a
program in time, dynamic integrity constraints are not addressed. We only want
to deal with the problem of conflicts caused by differences between conclusions.
Therefore, it is enough consider only static constraints in the form of denials.

In the remainder of this section we present the language’s definition for normal
logic program in order to present both definitions of Extended Logic Program and
Extended Logic Program with denials.

Definition 1 (Language) An alphabet B of a language L is a finite disjoint set
of constants and predicate symbols. Moreover, the symbol ⊥ /∈ B. An atom over
B is an expression of the form p(t1, . . . , tn) where p is a predicate symbol of B and
the ti’s are terms. A term over B is either a variable or a constant. An objective

18 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

literal over B is either an atom A or its explicit negation ¬A. A default literal
over B is of the form not A where A is an objective literal. A literal is either an
objective literal or a default literal. By not {L1, . . . , Ln} we mean the set of default
literals {not L1, . . . , not Ln}. By (negative) hypothesis of an objective literal L we
mean not L. By explicit complement of an objective literal L we mean ¬L if L is
an atom, or A if L = ¬A. A term (resp. atom, literal) is called ground if it does
not contain variables. By the Extended Herbrand Base H of B, H(B), we mean
the set of all ground objective literals of B.

The purpose of logic programming semantics is to determine from a program
P the set of literals which should hold or not, according to some logical, intu-
itive, or commonsensical principles. These sets of literals form interpretations. An
interpretation expresses the intended meaning of the program P . For the above
language, several declarative semantics have been defined, e.g. the answer-sets
semantics [GL90] (which is a generalization of the stable models semantics of nor-
mal logic programs), the well-founded semantics with explicit negation (WFSX)
[PA92], and the well-founded semantics with “classical” negation [Prz90]. WFSX ,
unlikeWFS with classical negation, considers the so-called coherence requirement
relating the two form of negation: “if L is explicitly false then L must be assumed
false by default”. In other words, in extended logic programs, default literals can
be viewed as hypotheses, where an objective literal L inhibits the hypothesis not L
and ¬L makes the assumption of hypothesis not L imperative.

A paraconsistent extension of WFSX (WFSXp) has been defined in [ADP95]
for Extended Logic Programs, presented below. In WFSXp, unlike in the others
mentioned above, contradictory information is accepted and dealt with by the
semantics. The main idea of WFSXp is to obtain, always in keeping with co-
herence, all consequences of the program, even those leading to contradiction, as
well as those arising from contradiction. Then, an WFSXp interpretation of an
extended logic program P is a set of literals of the form T ∪ not F , where T and
F are subsets of H(P), and such an interpretation is coherent iff for every L in
T we have ¬L in F . Moreover, objective literals and their explicit negation are
viewed as independent identities, except for the fundamental notion of coherent
interpretation. This allows a pair of default contradictory literals L and ¬L to
belong simultaneously to T . In this case it is said that such an interpretation is
contradictory or inconsistent.

Definition 2 (Extended Logic Program) An extended logic program (ELP)
over a language L is a (finite) set of (ground) rules of the form

L0 ← L1, . . . , Ll, not Ll+1, . . . , not Ln (0 ≤ l ≤ n)

2.1. EXTENDED LOGIC PROGRAMMING WITH DENIALS 19

where each Li (0 ≤ i ≤ n) is an objective literal of L. A rule is ground if all
literals are ground. As usual L0 is called the head, and L1, . . . , not Ln the body
of the rule. If n = 0 the rule is called a fact and the arrow symbol is omitted

The usual reading of an extended logic program rule is that, whenever the body
is true, then the head must be true. The comma “,” in the body of the rule has
a conjunctive flavor. For simplicity, we use non-grounded rules in the remainder.
Variables are denoted with letters X , Y and Z, and constants with any other letter
or with words. These rules simply stand for the ground version, i.e. ground rules
are obtained by substituting in all possible ways each of the variables by elements
of the Herbrand Universe.

Definition 3 (Extended Logic Program with Denials) Let L be a language
over an alphabet B. A denial (or integrity rule) is a rule of the form

⊥ ← L1, . . . , Ll, not Ll+1, . . . , not Ln (0 ≤ l ≤ n)

where each Li (1 ≤ i ≤ n) is an objective literal of L, and the symbol ⊥ stands for
falsity. An extended logic program with denials (ELPd) over L is a (finite) set of
(ground) rules of the form L ← Body such that L is either an objective literal or
the symbol ⊥, and Body is a finite set of literals.

Let P be an ELPd over L. The Extended Herbrand Base H of P is

H(P) = H(B) ∪ {⊥}

Because more adequate for our purposes, here we presentWFSX andWFSXpin
a distinctly different manner with respect to its original definition. This presenta-
tion is based on alternating fixpoints of Gelfond–Lifschitz Γ–like operators [GL90],
and follows the presentation of [ADP95]. We begin by recalling the definition of
the Γ operator:

Definition 4 (The Γ–operator) Let P be an extended program, I an interpre-
tation, and let P ′ (resp. I ′) be obtained from P (resp. I) by denoting every literal
¬A by a new atom, say ¬ A. The GL–transformation P ′

I′
is the program obtained

from P ′ by removing all rules containing a default literal not A such that A ∈ I ′,
and by then removing all the remaining default literals from P . Let J be the least
model of P ′

I′
. ΓI is obtained from J by replacing the introduced atoms ¬ A by ¬A.

To impose the coherence requirement [ADP95] introduces:

Definition 5 (Semi-normal version of a program) The semi-normal version
of a program P is the program Ps obtained from P by adding to the (possibly empty)
Body of each rule LlBody the default literal not ¬L, where ¬L is the complement
of L wrt. explicit negation.

20 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

Below we use Γ(S) to denote ΓP (S), and Γs(S) to denote ΓPs
(S).

Definition 6 (Partial stable model) A set of objective literals T generates a
partial stable model (PSM) of an extended program P iff:

1. T = ΓΓsT ; and

2. T ⊆ ΓsT .

The partial stable model generated by T is the interpretation

T ∪ not (H(P)− ΓsT)

Programs without partial stable models are said contradictory. It turns out
that non-contradictory programs always have a least PSM. The WFSX semantics
is determined by that least PSM:

Theorem 1 (WFSX semantics) Every non-contradictory program P has a least
(wrt. ⊆) partial stable model, the well-founded model of P (WFM(P)).

To obtain an iterative “bottom-up” definition for WFM(P) we define the fol-
lowing transfinite sequence {Iα}:

I0 = {}
Iα+1 = ΓΓsIα

Iδ =
⋃ {Iα | α < δ} for limit ordinal δ

There exists a smallest ordinal λ for the sequence above, such that Iλ is the
smallest fixpoint of ΓΓs, and

WFM(P) = Iλ ∪ not (H(P)− ΓsIλ)

WFSXp generalises the WFSX semantic for the case of contradictory pro-
grams. WFSX is not defined for contradictory programs because such programs
have no PSMs. By definition of PSM, a program has none if either it has no fix-
points of ΓΓs or if all fixpoints T of ΓΓs do not comply with T ⊆ ΓsT . The next
theorem shows that the first case is impossible, i.e. all programs (contradictory or
otherwise) have fixpoints of ΓΓs.

Theorem 2 The operator ΓΓs is monotonic, for arbitrary sets of literals.

Consequently every program has a least fixpoint of ΓΓs. If, for some program
P , the least fixpoint of ΓΓs complies with condition (2) of definition 6 then the
program is non-contradictory and the least fixpoint is the WFM. Otherwise the
program is contradictory. Moreover, the test for knowing whether a program is
contradictory, given its least fixpoint of ΓΓs, can be simplified to: “the program
is non-contradictory iff its least fixpoint of ΓΓs has no pair of ¬-complementary
literals”.

2.2. FIXPOINT APPROACH OF ARGUMENTATION 21

Theorem 3 Let T be the least fixpoint of ΓΓs for a program P . Then:

T 6⊆ ΓsT iff ∃L ∈ H, {L,¬L} ⊆ T

So, if one is interested only in the WFM, the condition T ⊆ ΓsT can be
replaced by testing whether T has ¬-complementary literals. Note that, in fact
this condition guarantees that literals cannot be both true and false by default.
By removing the condition this guarantee is no longer valid. But this is precisely
what is wanted in the definition of the paraconsistent WFSX.

Accordingly, the definition of WFSXp is one where the construction of the
WFM given by the least fixpoint of ΓΓs is kept, condition T ⊆ ΓsT is removed,
and where contradictory programs are those that contain a pair of complementary
literals in the WFM:

Definition 7 (Paraconsistent WFSX) Let P be an extended program whose
least fixpoint of ΓΓs is T . Then, the paraconsistent well-founded model of P is

WFMp(P) = T ∪ not (H− ΓsT)

This definition is a generalisation of WFSX in the following sense:

Theorem 4 (Generalisation of WFSX) Let P be such that WFMp(P) = T ∪
not F . P is non-contradictory iff for no objective literal L, {L,¬L} ⊆ T . More-
over, if P is non-contradictory then WFMp(P) = WFM(P).

2.2 Fixpoint Approach of Argumentation

The fixpoint approach applied to argumentation, followed by e.g. [Pol87, Pol92,
SL92a, Dun93, Dun95, PS97], can be best explained with the idea of reinstatement
(cf. Example 1): if an argument A is defeated by an argument B, A can still be
acceptable if and only if B is defeated by an argument that is already known to be
acceptable. Such an idea is captured by [Dun95]’s notion of acceptability 7, which
defines how an argument that cannot defend itself can be protected from attacks
by a set of arguments:

Definition 8 (Acceptable Argument) An argument A is acceptable with re-
spect to a set S of arguments iff each argument defeating A is defeated by an
argument in S

7Unless indicated otherwise, the other definitions in this section follow from [Dun95].

22 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

[Dun95] also defines a characteristic function that returns, for each set S of
arguments, the set of all arguments that are acceptable with respect to S. More-
over, the intuitive idea of the characteristic function is that the set of acceptable
arguments is constructed step-by-step. First, an empty set is assumed to be the
initial set of acceptable arguments. Then, all arguments which are directly accept-
able are collected into a set, S1, by their own strength: these are the ones which
are not defeated by any argument. After that, all arguments that are reinstated
by arguments in S1 are added in S2. More generally, each defeated argument is
added in Si+1 if it is reinstated by an argument in Si. This step is repeated until
a set Sλ is obtained to which no new argument can be added.

Definition 9 (Characteristic function) Let Args be a set of arguments, and
S ⊆ Args. The characteristic function F is

F (S) = {A ∈ Args | A is acceptable w.r.t. S}

[Dun95] proves that the characteristic function F is monotonic, and so it has
a least fixpoint. In such a case, if an argument is acceptable with respect to S,
it is also acceptable with respect to any superset of S. Furthermore, the even
cycle (illustrated in Example 2) is avoided by stating that the set of acceptable
arguments is the least fixpoint of F . In Example 2, the sets {A} and {B} are
fixpoints of F but none of them is a least fixpoint of F , which is the empty set. In
general, we might say that F (∅) = ∅, if all arguments in the set of arguments are
defeated. Based on the notion of the least fixpoint, [Dun95] proposes a skeptical
semantics as follows:

Definition 10 (Grounded Extension) The Grounded extension is the least fix-
point of F

The idea of the least fixpoint is also captured by [PS97] and justified arguments
are defined as follows:

Definition 11 (Justified Argument) An argument is justified iff it is a mem-
ber of the least fixpoint of F

Proposition 5 Consider the following sequence of arguments.

• F 0 = ∅

• F i+1 = {A ∈ Args | A is acceptable with respect to F i}

Then the following observations holds [Dun95]:

2.2. FIXPOINT APPROACH OF ARGUMENTATION 23

1. All arguments in
⋃∞

i=0(F
i) are justified

2. If each argument is defeated by at most a finite number of arguments, then
an argument is justified iff it is in

⋃∞
i=0(F

i)

A peculiarity of Definition 11 is that a distinction between arguments that are
non justified is allowed. Then, [PS97] also defines two intermediate statuses for
non-justified arguments.

Definition 12 (Overruled and Defensible Arguments) An argument is over-
ruled iff it is not justified, and it is defeated by a justified argument. An argument
is defensible iff it is neither justified nor overruled

The decision on how to deal with defeasible arguments is quite controversial.
The well-known semantics for non-monotonic reasoning [PP90, vRS91, PA92] con-
clude that a self-defeating argument (and every argument defeated by it) is de-
fensible. In Example 4, argument B is defeated by A which is a non-justified
argument because it is defeated by B (i.e. there is an even cycle between A and
B). Since there is no justified argument defeating one of them, both arguments are
defeasible. Furthermore, C is defeasible because it is defeated by a non-justified
argument. Other solutions are possible, e.g. both [PS97] and [Vre97] distinguish
a special ‘empty’ argument which is not defeated by any other argument and, by
definition, defeats any self-defeating argument. In such a case, the argument C of
Example 4 is justified because an empty argument reinstates it; A and B are still
defensible.

Example 4 (Zombie arguments) Consider three arguments, A, B and C such
that A defeats B, B defeats A, and B defeats C. Neither of the three are justified.
B is considered a zombie argument because B is neither ‘alive’ (i.e. justified) nor
‘fully dead’ (i.e. overruled); it has an intermediate status (i.e. defensible) in which
it can still influence the status of other arguments.

A B
defeats

C
defeats

So far, we have presented the fixpoint approach and the grounded (skeptical)
extension proposed by [Dun95]. Our proposal is based upon such a grounded exten-
sion. However, Dung has also defined three other extensions, viz. stable extension,
preferred extension and complete extension. Since such extensions are very well

24 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

accepted by the scientific community, we briefly present them here. These exten-
sions are based on the notion of admissible set. Intuitively, such a set represents
an admissible, or defendable, point of view. It means that the set of all arguments
accepted is a set S of arguments which can defend itself against all attacks on it.
Furthermore, it is based on the presumption that S is conflict-free:

Definition 13 (Conflict-free Set) A set of arguments S is conflict-free iff there
is no argument in S that defeats an argument in S

Definition 14 (Admissible Set) A conflict-free set S of arguments is admissi-
ble if each argument in S is acceptable w.r.t. S

In Example 1, the sets ∅, {C} and {A,C} are admissible but all other subsets
of {A,B,C} are not.

Definition 15 (Stable Extension) A conflict-free set S of arguments is a stable
extension iff every argument that is not in S, is defeated by some argument in S

In Example 1, the set of arguments {A,C} is the only stable extension. Since
a stable extension is conflict-free, it reflects in some sense a coherent point of view,
i.e. each possible argument is either accepted or rejected. In fact, a stable extension
defeats every argument not belonging to it, whether or not that argument is hostile
to the extension. Thus, Dung concludes that stable extension does not capture
the intuitive semantics of every meaningful argumentation system. However, the
preferred extension exists for every argumentation framework:

Definition 16 (Preferred Extension) A preferred extension is a maximal (w.r.t.
set inclusion) admissible set of arguments

Example 5 Consider three arguments, A, B and C such that A defeats B and
vice-versa, and C defeats B. The admissible sets w.r.t. {A,B,C} are ∅, {A},
{B}, {C} and {A,C}. The only preferred extension is {A,C}.

A B
defeats

C
defeats

The stable extension is more skeptical than the grounded extension, the pre-
ferred extension is more credulous than the grounded extension, and the complete
extension provides a link between credulous and skeptical semantics, i.e. between
preferred and ground extensions. [Dun95] proves that each preferred extension is
a least complete extension, and the grounded extension is a least (w.r.t. set of
inclusion) complete extension.

2.3. ARGUMENTATION FOR LOGIC PROGRAMS 25

Definition 17 (Complete Extension) An admissible set S of arguments is a
complete extension iff each argument which is acceptable w.r.t. S, belongs to S

Preferred and stable extensions are an instance of the multiple-status-assignment
approach. The unique-status-assignment approach is also explored with the notion
of a grounded extension, already presented above. [DMT02a] has understood non-
monotonic reasoning as extending theories in some monotonic language by means
of sets of assumptions, provided they are ‘appropriate’ with respect to some re-
quirements. These are expressed in argumentation-theoretic terms, as follows. Ac-
cording to the semantics of admissible extensions, a set of assumptions is deemed
‘appropriate’ iff it does not attack itself and it attacks all sets of assumptions which
attack it. According to the semantics of preferred extensions, a set of assumptions
is deemed ‘appropriate’ iff it is maximally admissible, with respect to a set of in-
clusion. According to the semantics of stable semantics, a set of assumptions is
deemed ‘appropriate’ iff it does not attack itself and it attacks every assumption
which it does not belong. Given any such semantics of extensions, credulous and
skeptical non-monotonic reasoning are defined as follows. A given sentence in the
underlying monotonic language is a credulous non-monotonic consequence of a
theory iff it holds in some extension of the theory that is deemed ‘appropriate’ by
the chosen semantics. It is a sceptical non-monotonic consequence iff it holds in all
extensions of the theory that are deemed ‘appropriate’ by the chosen semantics.

2.3 Argumentation for Logic Programs

[Dun95] and [PS97] use argumentation to give a declarative semantics for logic pro-
grams. Dung says that logic programming with negation as failure can be viewed
as a special form of argumentation. The results of his proposal show that logic
programming is a good tool for implementing argumentation systems, e.g. [AP96,
PS97, BDKT97, dAMAS97, dAMA98a, SPR98, SS02b, PV02, DMT02b]. [PS97]
follows Dung’s idea but the declarative semantics is refined and a status for ar-
guments is defined, viz. justified, overruled or defensible. The basic idea of both
proposals is, based on a logic program, to build the set of arguments and so
to define the attack relation between those arguments. [Dun95] also shows that
argumentation itself can be “viewed” as logic programming by introducing a gen-
eral method for generating meta-interpreters for argumentation systems. Instead,
[PS97] has a proof proposal for such a semantics based on “dialogue trees”. The
former is a generalized proposal, but the latter goes into detail and so it is easier
to develop a prototype of self-argumentation. We will present only the latter.

26 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

2.3.1 Dung’s Argumentation Framework

This section presents [Dun95]’s grounded semantics. The general idea is that an
argument for a certain proposition is a defeasible proof of that proposition in the
logic of an underlying language. In this case, the proposition is seen as an objective
literal in an extended logic program P (see Def. 2).

Definition 18 (Defeasible Proof) A defeasible proof of an objective literal L
is a sequence r0; r1; . . . ; rn of ground rules of an extended logic program P such
that

• head(rn) = L

• for all i, 0 ≤ i ≤ n, if L′ is an objective literal in the body of ri, then there
is a j < i such that L′ = head(rj)

The set of default literals supporting a proof for an objective literal L is defined
as an argument for L.

Definition 19 (Argument) An argument is a set of ground default literals. Let
L be an objective literal and r0; . . . ; rn be a defeasible proof for L. A set A ⊆
{not L′ | not L′ ∈ Body(ri)} is an argument for L

Definition 20 (Support) An argument A is a support for an objective literal L
iff all default literals in a defeasible proof of L are contained in A

Furthermore, every ground literal L has an argument of the form ({not L}, not L),
which captures the idea that L would be concluded false if there is no acceptable
argument supporting L; otherwise, L is true. Finally, the set of all arguments of
P is called Argumentation set of P .

Definition 21 (Argumentation set) Let P be an ELP and L an objective lit-
eral, then

AR(P) = {(A,L) | A is an argument for L} ∪
{({not L}, not L}) | L is a ground atom}

is the argumentation set of P

An argument A is sound if there is no objective literal L such that A supports
both L and ¬L; otherwise, it is self-defeating. Based on such notions, viz. sound
and self-defeating, two kinds of attack are defined: RAA-attack (or Reductio Ad
Absurdum-attack) and g-attack (or ground -attack). An argument attacks another
argument via RAA-attack if both arguments together support an objective literal
and its explicit negation. Stronger than this is a g-attack because it refutes a given
argument directly: an argument A1 is g-attacked by an argument A2 if A2 is an
argument for L and there is a default literal not L in A1.

2.3. ARGUMENTATION FOR LOGIC PROGRAMS 27

Definition 22 (RAA- and g-attack) Let A1 and A2 be sound arguments. The
argument A2 is a RAA-attack against A1 (and vice-versa) if A1 ∪ A2 is self-
defeating; and A2 is a g-attack against A1 if there is an assumption ‘not L’ in A1

such that L is supported by A2.

The argumentation framework of program P is presented in the following def-
inition. Then, Example 6 illustrates [Dun95]’s argumentation proposal.

Definition 23 (Argumentation framework) Let P be an ELP, AR be the set
of arguments of P , and attacks ⊆ AR × AR, then AF (P) =< AR, attacks > is
called an argumentation framework.

Example 6 Let P = {a ← not b; b ← not a; c ← not b; ¬a; d ← not e; e}.
The sequence ‘a← not b’ is a defeasible proof for a, and {not b} is an argument
for a. Since ¬a is a fact in P , a defeasible proof for ¬a is the fact itself and so
the empty set is an argument for ¬a. The argumentation set of P is

AR(P) = { (∅,¬a), ({not a}, b), ({not b}, a), ({not b}, c), ({not e}, d), (∅, e) } ∪
{ ({not ¬a}, not ¬a), ({not b}, not b), ({not a}, not a),

({not c}, not c), ({not d}, not d), ({not d}, not d) }

Figure 2.1 illustrates the attacking relation between arguments in AR(P). Con-
forming to definitions of Fixpoint operator F of the argumentation framework
AF (P) and Grounded Extension (Def. 9 and Def. 10 in Section 2.2, respectively),
we obtain the following:

• S0 = ∅

• S1 = F (S0) = {(∅, e)}

• S2 = F (S2) = {(∅, e), ({not d}, not d)}

• S3 = F (S2)

So, S3 is the least fixpoint of F , and the set of acceptable arguments of AR(P).
The arguments in S3 are then justified (cf. Def. 11 in Section 2.2). Moreover, e
is true and d is false.

2.3.2 Prakken and Sartor’s Argumentation Framework

[PS97]’s proposal is somewhat different from the previous one. An argument is
seen as a sequence of rules that can be chained together, and it is grounded on the
facts.

28 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

({not d}, not d)

({not e}, d)

({not e}, not e)

(∅, e)

({not c}, not c)

({not b}, c) ({not b}, not b)

({not a}, b)
({not b}, a)

(∅,¬a) ({not a}, not a)

({not ¬a}, not ¬a)

g-attack g-attack

g-attack

g-attackg-attack

g-attack

RAA-attack g-attack

g-attack

g-attack

Figure 2.1: Attacking relation of Example 6

2.3. ARGUMENTATION FOR LOGIC PROGRAMS 29

Definition 24 (Argument and Sub-argument) Let P be an ELP. An argu-
ment for a conclusion L is a finite sequence A = [rn; . . . ; rm] of rules ri ∈ P such
that

• for every i (n ≤ i ≤ m), and for every objective literal Lj in the body of ri
there is a k < i such that Lj is the head of rk

• L is the head of some rule of A

• No two distinct rules in the sequence have the same head

An argument A′ (for some conclusion L′) is a sub-argument of the argument A
(possibly for some other conclusion L) iff A′ is a subset of A.

An argument attacks another argument via rebut or undercut. The difference
depends on whether the attacking argument contradicts a conclusion or an as-
sumption of another argument.

Definition 25 (Undercut, Rebut, Attack) Let A1 and A2 be arguments, then

• A1 undercuts A2 iff (i) A1 is an argument for L and (ii) A2 is an argument
with assumption not L, i.e. there is an r : L0 ← L1, . . . , Ll, not Ll+1, . . . ,
not Lm ∈ A2 and a j (l + 1 ≤ j ≤ m) such that L = Lj;

• A1 rebuts A2 iff (i) A1 is an argument for L and (ii) A2 is an argument for
¬L;

• A1 attacks A2 iff A1 undercuts or rebuts A2.

The notions of coherent argument and conflict-free set of arguments deal with
the self-defeating problem:

Definition 26 (Coherent, Conflict-free) An argument is coherent if it does
not contain sub-arguments attacking each other. A set of arguments Args is called
conflict-free if no two arguments in Args attack each other.

Defeat of an argument can be direct, or indirect, by defeating one of its sub-
arguments. In particular, any incoherent argument is defeated by an empty argu-
ment.

Definition 27 (Defeat, Strictly Defeat) Let A1 and A2 be two arguments. A1

defeats A2 iff (i) A1 is empty and A2 incoherent, or (ii) A1 undercuts A2 or A1

rebuts A2 and A2 does not undercut A1. A1 strictly defeats A2 iff A1 defeats A2

but not vice versa.

30 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

Note that restriction (ii) of the above definition allows that an undercutting
attack is stronger than a rebutting attack. For instance, consider the following
two rules:

innocent← not ¬innocent.
¬innocent.

Although argument A = [innocent ← not ¬innocent] rebuts B = [¬innocent],
A does not defeat B since B undercuts A. So, B strictly defeats A. [PS97]
imposes such a restriction motivated by the legal principle that “the law should
be interpreted as coherently as possible”.

The definition of acceptable argument is quite different from Definition 8 in
Section 2.2:

Definition 28 (Acceptable) An argument A is acceptable w.r.t. a set of argu-
ments Args iff each argument defeating A is strictly defeated by an argument in
Args.

This proposal follows the fixpoint operator [Dun93], which captures the set of
acceptable arguments:

Definition 29 (Characteristic Function) Let P be an ELP and S be a subset
of arguments of P . The characteristic function of P and S is

FP (S) = {A ∈ S | A is acceptable w.r.t. S}

The conclusion of the status of arguments is based on the ways in which they
interact. The characteristic function takes as input the set Args of all possible
arguments and their mutual relations of defeat, and produces as output the set of
acceptable arguments w.r.t. Args. Then all arguments in Args split into three
classes:

Definition 30 (Justified, Overruled, Defensible) Let P be an ELP and FP

be the characteristic function of P then A is justified iff A is in the least fixpoint
of FP (called JustArgs); A is overruled iff A is not justified and it is attacked by
a justified argument; and A is defensible iff A is neither justified nor overruled.

The proposal requires that JustArgs is conflict-free; otherwise, every argument
(including the empty argument) attacks itself.

Proposition 6 The set of justified arguments is conflict-free. Otherwise, every
argument is defensible for any FP .

2.3. ARGUMENTATION FOR LOGIC PROGRAMS 31

Definition 31 (Conclusion) For any literal L, L is a justified conclusion iff it
is a conclusion of a justified argument; a defensible conclusion iff it is not justified
and it is a conclusion of some defensible argument; and an overruled conclusion
iff it is not justified nor defensible, and is a conclusion of an overruled argument.

Example 7 illustrates [PS97]’s argumentation framework.

Example 7 Let P = {a ← not b; b ← not a; c ← not b; ¬a; d ← not e; e}.
The argumentation set Args of P is

Args = { [a← not b], [b← not a], [c← not b], [¬a], [d← not e], [e] }

or Args = {Aa, Ab, Ac, A¬a, Ad, Ae}. The Figure 2.2 illustrates both defeat and

[d← not e]

[b← not a]

[c← not b]

[e]

[a← not b]

[¬a]

undercuts/strictly defeats

undercuts/strictly defeats rebuts/defeats

undercuts

Figure 2.2: Defeating and Strictly defeating relation in Args

strictly defeat relation between arguments in Args. We then obtain the following
results from FP (∅):

• S0 = ∅

• S1 = F (S0) = {Ae}

• S2 = F (S1)

32 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

S2 is the least fixpoint of FP (∅) and so it is the set of acceptable arguments w.r.t.
Args. Thus, Ae is a justified argument, Ad is an overruled argument and the
defensible arguments are Ab, Ac, Aa and A¬a. Furthermore, e is a justified con-
clusion, d is an overruled conclusion and the defensible conclusions are b, c, a and
¬a.

[PS97] also formalises an argumentation process using extended logic programs
augmented with priorities, by extending [Dun93]’s grounded semantics to incor-
porate such a priorities. In alternative, [PS97] defines a more credulous semantics
in which defensible arguments can be defended together. In both proposals, it is
assumed that there is a fixed and undisputed ordering of the rules. Since we will
not deal explicitly with preferences rules, we do not present that proposal.

A proof for an argument

A proof for an argument is a dialogue tree where the root of the tree is an argument
for L, and each branch of the tree is a dialogue between a proponent P and an
opponent O. A move in a dialogue consists of an argument attacking the last
move of the other player. The required strength of a move depends on who states
it. Since the proponent wants a conclusion to be justified, a proponent’s argument
has to be strictly defeating. The opponent simply wants to prevent the conclusion
from being justified. Thus there is no need for its move to be strictly defeating; it
is enough for it to be defeating.

Definition 32 (Dialogue) A dialogue is a finite nonempty sequence of moves
movei = (P layeri, Ai)(i > 0), such that

1. P layeri = P iff i is odd; and P layeri = O iff i is even

2. If P layeri = P layerj = P and i 6= j, then Ai 6= Aj

3. If P layeri = P (i > 1), then Ai is a minimal (w.r.t. set inclusion) argument
strictly defeating Ai−1

4. If P layeri = O, then Ai defeats Ai−1

The first condition says that P begins and the players take turns. The second
condition prevents the proponent from repeating its attacks. The remaining two
conditions form the core of the definition: they state the burdens of proof for P
and O. The minimally condition on P ′s move makes it impossible to make argu-
ments trivially different by combining them with some other, irrelevant argument.

A dialogue tree considers all possible ways in which an opponent can attack an
argument:

2.3. ARGUMENTATION FOR LOGIC PROGRAMS 33

Definition 33 (Dialogue Tree) A dialogue tree is a finite tree of movesmovei =
(P layeri, Ai), P layeri ∈ {P,O} such that

1. Each branch is a dialogue

2. If P layeri = P then the children of movei are all defeaters of Ai

A player wins a dialogue tree iff it wins all branches (i.e. dialogues) of the tree
and a player wins a dialogue if the other player cannot move (i.e. counter-argue).

This definition also marks dialogues tree candidates for being proofs: it says
that the tree should consider all possibly ways in which O can attack an argument
P .

Definition 34 An argument is provably justified argument iff there is a dialogue
tree with A as its root, and won by the proponent. And a strong literal L is provably
justified conclusion iff it is a conclusion of a provably justified argument.

Proposition 7 All provably justified arguments are justified.

Proposition 8 For finitary ordered theories each justified argument is provably
justified.

Proposition 9 If all argument is provably justified, then all its subarguments are
provably justified.

Example 8 Let P be the program in Example 7. The figure below illustrates a
dialogue tree DT for [c← not b]. The proponent player does not win DT because
there is a last movement (O, [b ← not a]) in the first dialogue (from left to right
side) that cannot be counter-attacked. Thus, [c ← not b] is not justified. We
should then evaluate (O, [b ← not a]) to determine if it is justified or not. Note
that the argument [b← not a] occurs twice in the first dialogue as the opponent’s
moves. We can say the second move is to reinstate the argument itself. So, the
argument for c is not justified.

34 CHAPTER 2. BACKGROUND ON DEFEASIBLE ARGUMENTATION

P : [c← not b]

O : [b← not a]

P : [a← not b] P : [¬a]

O : [b← not a]

Chapter 3

A Proposal for
Self-Argumentation

This chapter presents an argumentation semantics which involves a “single” ex-
tended logic program, named self-argumentation semantics. We focus on the prop-
erties of a declarative semantics in what regards paraconsistency which are interest-
ing by themselves, and independent from its distributed nature. With this purpose,
we restrict our attention to the special case of the distributed semantics, where only
a “single” extended logic program with denials (ELPd) is in the set of programs.
The self-argumentation semantics is inspired by two well known argumentation
semantics, viz. [Dun95] and [PS97], overviewed in the previous chapter. We rede-
fine [PS97]’s definition of argument and other [PS97]’s definitions are simplified.
The goal being to obtain a semantics for extended logic program with denials which
represents the knowledge base of an agent. Furthermore, we propose a parameter-
ized characteristic function so that our argumentation semantics obtains different
levels of acceptability of an argument. With such a differentiation, we go through
the properties of both conflict-free and contradictory sets of acceptable arguments.
Therefore, we obtain both paraconsistent and consistent ways of reasoning. Ac-
cording to [PS97]’s definition of the status of an argument, the argument may be
justified, overruled or defeasible. On top of that, we propose that a justified argu-
ment can be contradictory, based on contradiction, or non-contradictory. We then
present a definition of the truth value of a conclusion G such that G is true (and
contradictory, based-on-contradiction, or non-contradictory), false or undefined.
Finally, we present a proof procedure for such a declarative semantics.

35

36 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

In logic programming, several ways to formalize argumentation-based seman-
tics have been studied for a single logic program (e.g. [RS09, arg10], and scientific
events such as “Conference on Computational Models of Argument (COMMA)”,
“Conference on Principles of Knowledge Representation and Reasoning” (KR),
“Argument, Dialog and Decision” on International workshop on Non-Monotonic
Reasoning (NMR) and “Workshop Argumentation and Non-Monotonic Reason-
ing” (ArgNMR)). Intuitively, argumentation-based semantics treat the evaluation
of a logic program as an argumentation process, i.e. a goal G is true if at least
one argument for G cannot be successfully attacked. The ability to view logic pro-
gramming as a non-monotonic knowledge representation language, in equal stand-
ing with other non-monotonic logics, brought to light the importance of defining
clear declarative semantics for logic programs, for which proof procedures (and at-
tending implementations) are then defined (e.g. [Dun93, Dun95, PS97, BDKT97,
Vre97, Lou98, SS02b, DMT02a, Pol01, DMT02b, GS04, Pra09]), as overviewed in
the previous chapter.

The main goal of the thesis is to propose an argumentation-based semantics for
sets of logic programs that are able to cooperate and argue with each other, named
distributed semantics. In it each program relies on a set of other programs with
which it has to agree in order to accept an argument, and a set of programs with
which it can cooperate to build arguments. Besides this distributed nature, the
distributed semantics also allows for paraconsistent forms of argumentation. In
fact, it is also a goal of this proposal to be able to deal with mutually inconsistent,
and even inconsistent, knowledge bases. Moreover, when in presence of contra-
diction, we want to obtain ways of agent reasoning, ranging from consistent (in
which inconsistencies lead to no result) to paraconsistent. For achieving this, we
consider strong and weak arguments. The paraconsistency in the argumentation
also yields a refinement of the possible status of arguments: besides the justified,
overruled, and defensible arguments as in [PV02], justified arguments may now
be contradictory, based on contradiction, or non-contradictory. Moreover, in some
applications it might be interesting to change easily from a paraconsistent to a
consistent way of reasoning (or vice-versa).

In this chapter we focus on the properties of that declarative semantics in what
regards paraconsistency which are interesting by themselves, and independent from
its distributed nature. With this purpose, we restrict our attention to the special
case of the distributed semantics where only a single logic program is in the set of
programs, i.e. we propose a semantics for an extended logic program with denials
(ELPd) (see Def. 3) which represents the knowledge base of an agent. The seman-
tics is argumentation-based, in the line of the work developed by [Dun95, PS97] for
defining semantics of single extended logic programs. As described in Chapter 2,
in these argumentation-based semantics, the rules of a logic program are viewed

3.1. “PRIVACY AND PERSONAL LIFE”, AN EXAMPLE 37

as encoding arguments of an agent. Therefore, the basic notion of argumentation
systems is not that of a defeasible conclusion, but that of a defeasible argument
for this conclusion. By defeasible conclusion (or argument) we mean that it “is
reasonable” and it is supported by some sort of argumentation process. Although
the construction of arguments is monotonic, i.e. arguments remain if more rules
are added to the program, in practice, the defeasibility is explained in terms of the
interactions between conflicting arguments. Non-monotonicity arises from the fact
that new conclusions may give rise to stronger counter-arguments, which might
defeat previously built arguments. Moreover, the truth value of a conclusion is
determined by whether its arguments, depending on the specific semantics, can or
cannot defend themselves from the attacks of other arguments. In the remainder
of this chapter we first motivate and illustrate our proposal with an example. Then
we define a declarative semantics for self-argumentation and, after that, we present
a proof procedure for such a declarative semantics. Finally, some conclusions are
presented.

3.1 “Privacy and Personal Life”, an example

We are going to motivate and illustrate our proposal of self-argumentation for an
ELPd with the help of the following example. It describes, in an informal way,
how arguments are built from an ELPd that models a knowledge base of an agent.

Example 9 (Privacy of Personal Life – PPL) Usually, any person deserves
privacy with respect to her personal life. However, when such a person behaves in
a way that is not acceptable (e.g. selling drugs), she will suffer the consequences.
The first consequence is the focus of media attention on her personal life and
consequent loss of privacy. The personal life of such a person might be exposed by
the “results” of media attention (e.g. photos, reports, and so on) when there is
no law that protects her against it. The above description can be expressed by the
following extended logic programming rules.

focusOfMediaAttention(X)← person(X), ¬acceptableBehavior(X).
¬acceptableBehavior(X) ← event(X, Y), againstSociety(Y).
¬hasPrivacy(X)← focusOfMediaAttention(X).
personalLifeExposed(X)← ¬hasPrivacy(X), not protectedByLaw(X).
hasPrivacy(X)← person(X), not ¬hasPrivacy(X).

In contrast, it is considered an absurdity that someone may lose her privacy
when she is involved in some event for which there is no evidence that it should be
made public (e.g. someone starting a long-term treatment for drugs dependency).

38 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

The absurdity in the rule below is represented as a denial, and the symbol ⊥ denotes
it (cf. Def. 3).

⊥ ← ¬hasPrivacy(X), event(X, Y), not publicEvent(Y).

Moreover, modern society normally tries to protect children, and so their pri-
vacy is guaranteed until evidence appears of some unusual behavior (e.g. by having
unacceptable behavior).

hasPrivacy(X)← child(X), not unusualChild(X).
unusualChild(X)← child(X),¬acceptableBehavior(X).
person(X)← child(X).

However, famous persons are inherently the focus of media attention:

focusOfMediaAttention(X)← famousPerson(X).
person(X)← famousPerson(X).

Assume an agent Ag with the knowledge above, plus some facts about three
persons: Apuã, Poti, and Ivoti 1 such that Ag knows that Poti is a famous child,
Apuã was seen selling drugs — a criminal behavior against society —, and Ivoti
is a famous soccer player in treatment for drugs dependency:

child(poti).
famousPerson(poti).
person(apua).
event(apua, sellsDrugs).
againstSociety(sellsDrugs).
famousPerson(ivoti).
event(ivoti, treatmentForDrugsDependency).

Figure 3.1 illustrates, with obvious abbreviations, the set of rules PPL which
will be used for illustration in the remainder of this chapter. Figure 3.2 simply
clarifies the notation of the objective literals over PPL.

Following [PS97]’s definition, an argument for an objective literal A is a se-
quence of rules that “proves” A if all default literals (of the form not B) in the
body of those rules are assumed true. For instance, the following sequences of rules
are arguments of Ag for conclusions related to Poti over PPL. Each argument
is presented in the form “L − AL : [rL′ ; . . . ; rL]”, which means “a conclusion L is
supported by an argument AL composed by the sequence of rules [rL′; . . . ; rL]”.
Furthermore, “L−AL : AL′′ +[rL′; . . . ; rL]” means “an argument AL is built based
on some previous argument AL′′”.

1The following names are from Native South Americans, more specifically from the Tupi-
Guarani family. Apuã [apu’a] means “typhoon”, and Poti and Ivoti [poty and yvoty] both mean
“flower”. For details see http://en.wikipedia.org/wiki/Tupi people.

3.1. “PRIVACY AND PERSONAL LIFE”, AN EXAMPLE 39

PPL =

fOMA(X)← pe(X),¬acB(X);
¬acB(X)← ev(X, Y), aS(Y);
¬hP (X)← fOMA(X);
pLE(X)← ¬hP (X), not pBL(X);
hP (X)← pe(X), not ¬hP (X);
⊥ ← ¬hP (X), ev(X, Y), not pE(Y);
hP (X)← ch(X), not uC(X);
uC(X)← ch(X),¬acB(X);
pe(X)← ch(X);
fOMA(X)← fP (X);
pe(X)← fP (X);
ch(p); fP (p);
pe(a); ev(a, sD); aS(sD);
fP (i); ev(i, tFDD)

Figure 3.1: The knowledge of agent Ag about “Privacy of Personal Life”

Poti is a child – Ach(p) : [ch(p)]

Poti is a famous person – AfP (p) : [fP (p)]

Poti is a person –
Ape(p) : Ach(p) + [pe(p)← ch(p)]
A′

pe(p) : AfP (p) + [pe(p)← fP (p)]

Poti is the focus of media attention –
AfOMA(p) : AfP (p) + [fOMA(p)← fP (p)]

Poti has no privacy – A¬hP (p) : AfOMA(p) + [¬hP (p)← fOMA(p)]

Poti has her personal life exposed –
ApLE(p) : A¬hP (p) + [pLE(p)← ¬hP (p), not pBL(p)]

Poti has privacy –
AhP (p) : Ape(p) + [hP (p)← pe(p), not ¬hP (p)]
A′

hP (p) : Ach(p) + [hP (p)← ch(p), not uC(p)]

[PS97]’s argumentation semantics determines the acceptability of arguments
based on certain definitions, viz. attack, defeat, strictly defeat and acceptable ar-
gument (for details, see Section 2.3.2). Differently, we introduce a new kind of
argument and so simplify some of these definitions. We call the above arguments
strong arguments, and we propose a weak version of a strong argument. To distin-
guish them, a strong argument for L will be denoted by As

L and its weak version by

40 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

ch(p) “Poti is a child”
pe(p) “Poti is a person”
hP (p) “Poti has privacy”
fP (p) “Poti is a famous person”
¬hP (p) “Poti has no privacy”

fOMA(p) “Poti is the focus of media attention”
pLE(p) “Poti has her personal life exposed”
pe(a) “Apuã is a person”

ev(a, SD) “Apuã is involved in selling drugs”
¬acB(a) “Apuã has unacceptable behaviour”
fOMA(a) “Apuã is the focus of media attention”
¬hP (a) “Apuã has no privacy”
pLE(a) “Apuã has his personal life exposed”
aS(SD) “Selling drugs is against society”
hP (a) “Apuã has privacy”
fP (i) “Ivoti is a famous person”

fOMA(i) “Ivoti is the focus of media attention”
¬hP (i) “Ivoti has no privacy”
pLE(i) “Ivoti has his personal life exposed”

ev(i, tFDD) “Ivoti is in treatment for drugs dependency”
pe(i) “Ivoti is a person”
hP (i) “Ivoti has privacy”

Figure 3.2: The conclusions over the set of rules PPL

3.2. DECLARATIVE SEMANTICS 41

Aw
L. For every rule for L (denoted by rL) from As

L, A
w
L is built by adding not ¬L

and not ⊥ in rL, thus making the rules weaker (more susceptible to being contra-
dicted/attacked). Intuitively, if there is a potential inconsistency, be it by proving
the explict complement of a rules head or by proving ⊥, then the weak argument
is attacked, whereas the strong is not. For instance, the arguments below are the
weak version of As

¬hP (p), A
s
hP (p) and A′s

hP (p), respectively.

Poti has no privacy –
Aw

¬hP (p) : A
w
fOMA(p) + [¬hP (p)← fOMA(p), not hP (p), not ⊥]

Poti has privacy –
Aw

hP (p) : A
w
pe(p) + [hP (p)← pe(p), not ¬hP (p)2, not ⊥]

A′w
hP (p) : A

w
ch(p) + [hP (p)← ch(p), not uC(p), not ¬hP (p), not ⊥]

For simplicity, not every argument involved is show, viz. Aw
fOMA(p), A

w
pe(p) and

Aw
ch(p). Assume they are built in the same way as the above arguments.
Finally, we showed that an argument of an agent Ag for L is

• a sequence of ground rules started by a rule r with L in its head (i.e. r =
L← Body);

• the rules are chained together and based on facts; and

• all negative literals not L′ in the rules of the resulting sequence are hypotheses
that there is no evidence for L′ in Ag

Therefore, every not L′ in the sequence can be attacked by some argument for
L′, i.e. the hypothesis not L′ is attacked by the evidence of L′. For instance, the
weak arguments for “Poti has privacy” can be attacked by both strong and weak
arguments for “Poti has no privacy”, i.e. both As

¬hP (p) and Aw
¬hP (p) can attack the

hypothesis not ¬hP (p) in Aw
¬hP (p). A similar reasoning, by both As

hP (p) and Aw
hP (p),

they can attack not hP (p) in Aw
¬hP (p).

3.2 Declarative Semantics

We illustrated and motivated our self-argumentation proposal on the previous
section. Now, we present the formal definitions. First, assume that the knowledge
base of an agent Ag is an Extended Logic Program with denials P over a language
(cf. Def. 3 and Def. 1, respectively), and an atom L of an agent3 Ag is in the
Extended Herbrand Base of the program P (cf. Def. 3).

2We suppress the other not ¬hP (p) because it is already in the original rule for hP (X).
3To simplify the notation, we will refer, in the sequel, to the logic program that represents an

agent’s knowledge base simply as an “agent”.

42 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

As already mentioned in the previous section, both strong and weak arguments
are sequences of rules. Nevertheless, it is implicit that these sequences of rules
should be complete and well-defined. By complete we mean that all required rules
are in the sequence. By well-defined sequence we mean a (minimal) sequence of
rules for some L. Since a well-defined sequence is based on a set of rules of an
agent Ag, we first define what we mean by sets of rules of Ag. A strong set of
rules is defined for building strong arguments, and it is the set of rules of Ag. The
definition of a weak set of rules is slightly different. For every rule of L (denoted
by rL) within the set of Ag’s rules, a ‘weak version’ of rL is built by adding not L
and not ⊥ in the body of rL. The resulting set of rules is used for building weak
arguments.

Definition 35 (Strong and Weak Sets of Rules) Let L be a language, and P
be an ELPd over L. The strong set of rules of P is

Rs
P = P

and the weak set of rules of P is

Rw
P = { L← Body, not ¬L, not ⊥ | L← Body ∈ P }

We say RP is a set of rules, if it is either a strong or a weak set of rules of P .

Remark 10 In the remainder, whenever the language is clear from the context,
we omit it, and simply say “Let P be an ELPd” instead of “Let L be a language,
and P be an ELPd over L”.

Instead of using an example where rules and predicates have “real meaning”,
as in Example 9 for motivating the proposal, here we use an example tailored to
illustrate the technical details of some of definitions.

Example 10 Let P be an ELPd as follows

{ a; ¬a; b← a; c← not a; d← not a, not e; e← not f ;
e← not g; f ; g; g ← not c; h← not g; i← not j; j ← not i }

Then Rs
P = P and Rw

P is

{ a← not ¬a, not ⊥; ¬a← not a, not ⊥;
b← a, not ¬b, not ⊥; c← not a, not ¬c, not ⊥;
. . .
i← not j, not ¬i, not ⊥; j ← not i, not ¬j, not ⊥ }

The Rw
P presented above has a subset of the rules of P , since the aim is simply

to exemplify the method of rule-building.

3.2. DECLARATIVE SEMANTICS 43

A well-defined sequence for an objective literal L is then built as follows: the
last rule is a rule for L (i.e. L← Body) and the previous are rules for the objective
literals Li in Body. This procedure is recursive, i.e. for each literal Li there must
exist a rule r for Li (and so a sequence of rules for each objective literal in the
body of r). Furthermore, the sequence is built by chaining rules together, only
using those that are strictly necessary and ignoring default literals. Moreover, the
sequence must not be circular. Finally, the first rule in the sequence for a complete
well-defined sequence should be either a fact or a rule whose body only has default
literals.

Definition 36 (Well-defined and Complete Sequence) Let P be an ELPd,
and L ∈ H(P). A well-defined sequence for L over a set of (ground) rules S is a
finite sequence [r1; . . . ; rm] of rules ri from S of the form Li ← Bodyi such that

1. L is the head of the rule rm, and

2. an objective literal L′ is the head of a rule ri (1 ≤ i < m) only if L′ is not
in the body of any rk (1 ≤ k ≤ i) and L′ is in the body of some rule rj
(i < j ≤ m).

We say that a well-defined sequence for L is complete if for each objective
literal L′ in the body of the rules ri (1 ≤ i ≤ m) there is a rule rk (k < i) such
that L′ is the head of rk.

Example 11 Assume Rs
P and Rw

P of Example 10, a (non-complete) well-defined
sequence for the objective literal b over Rs

P (resp. Rw
P) is [b ← a] (resp. [b ←

a, not ¬b, not ⊥]). A complete well-defined sequence for b over Rs
P (resp. Rw

P) is
[a; b← a] (resp. [a← not ¬a, not ⊥; b← a, not ¬b, not ⊥]). [d← not a, not e]
is a complete well-defined sequence for the objective literal d over Rs

P , and it is
only composed by the rule for d (rd) since there is no objective literal in the body of
rd. A similar situation arises in a complete well-defined sequence for the objective
literal a over Rs

P , which is [a]. The objective literal e has two complete well-defined
sequences over Rs

P , viz. [e ← not f] and [e ← not g]; a similar situation for the
objective literal g is [g] and [g ← not c].

Definition 37 (Strong and Weak Arguments) Let P be an ELPd, L ∈ H(P),
and Rs

P (resp. Rw
P) be the strong (resp. weak) set of rules of P . A strong (resp.

weak) argument of P for L, As
L (resp. Aw

L), is a complete well-defined sequence
for L over Rs

P (resp. Rw
P).

Let Aw
L and As

L be two arguments of P . Aw
L is the weak argument corresponding

to As
L, and vice-versa, if both use exactly the same rules of the original program P

(the former by having instances of rules Rw
P and the latter from Rs

P).

44 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

We say that AL is an argument of P for L if it is either a strong argument or
a weak one of P for L. We also say that Ak

L is a k-argument of P for L (where k
is either s, for strong arguments, or w, for weak ones).

Remark 11 Since this chapter proposes self-argumentation, which always involves
a single agent alone, we will say “argument for L” instead of “argument of Ag for
L”. Furthermore, we also say “weak argument for L” instead of “weak argument
corresponding to a strong argument for L”.

Example 12 Following Example 11, the strong (resp. weak) argument for the
objective literal b is the complete well-defined sequence for b over Rs

P (resp. Rw
P).

Since the objective literal e has two complete well-defined sequences over Rs
P (resp.

Rw
P), the literal e has two strong (resp. weak) arguments.

The set of arguments of an agent Ag is obtained by building every strong
argument, and the corresponding weak one, for every L in Ag’s knowledge base
(cf. Def. 3). Note that if some objective literal L does not appear in the head of
some rule, the well-defined sequence for L is empty and so there is no argument
for L.

Definition 38 (Set of Arguments) Let P be an ELPd. The set of k-arguments
of P is

Argsk(P) =
⋃

Li ∈ H(P)

Ak
P (Li)

where As
P (Li) (resp. A

w
P (Li)) denotes the set of all strong (resp. weak) arguments

of P for Li. We denote by Args(P) the set of all s-arguments and w-arguments
of P , i.e.

Args(P) = Argss(P) ∪ Argsw(P).

Example 13 Assume the Rs
P and Rw

P of Example 10. The set of s-arguments of
P is

Argss(P) = { [a], [¬a], [a; b← a], [c← not a], [d← not a, not e],
[e← not f], [e← not g], [f], [g], [g← not c], [h← not g],
[i← not j], [j ← not i] }

i.e. {As
a, A

s
¬a, A

s
b, A

s
c, A

s
d, A

s
e, A

′s
e , A

s
f , A

s
g, A

′s
g , A

s
h, A

s
i , A

s
j}. The set of w-arguments

of P is

Argsw(P) = { [a← not ¬a, not ⊥], [¬a← not a, not ⊥],
[a← not ¬a, not ⊥; b← a, not ¬b, not ⊥],
[c← not a, not ¬c, not ⊥], [d← not a, not e, not ¬d, not ⊥],
[e← not f, not ¬e, not ⊥], [e← not g, not ¬e, not ⊥],
[f ← not ¬f, not ⊥], [g ← not ¬g, not ⊥],
[g ← not c, not ¬g, not ⊥], [h← not g, not ¬h, not ⊥],
[i← not j, not ¬i, not ⊥], [j ← not i, not ¬j, not ⊥] }

3.2. DECLARATIVE SEMANTICS 45

i.e. {Aw
a , A

w
¬a, A

w
b , A

w
c , A

w
d , A

w
e , A

′w
e , Aw

f , A
w
g , A

′w
g , Aw

h , A
w
i , A

w
j }. Finally,

Args(P) = Argss(P) ∪Argsw(P)

At this point we have defined how arguments are built. We now move on
to defining the attacking relation between these arguments. Instead of [PS97]’s
definition of attack, with undercut and rebut (see Def. 25), our definition is as
follows. If an argument for an objective literal L (denoted by AL) has a default
negation not L′ in it, any argument for L′ attacks (by undercut) AL. The other
attacking relation (named rebut) states that an argument also attacks another
one when both arguments have complementary conclusions (i.e. one concludes L
and the other ¬L). With strong and weak arguments, rebut can be reduced to
undercut. So, we can say informally that “an argument for a conclusion L attacks
an argument with an assumption not L”. Such a “notion of attack” shows that
we need to make both the conclusions and the assumptions of an argument precise
before defining an attack.

Definition 39 (Conclusions and Assumptions) Let AL be an argument for
L. The conclusions of AL, Conc(AL), is the set of all objective literals that appear
in the head of rules in AL. The assumptions of AL, Assump(AL), is the set of all
default literals appearing in the bodies of rules in AL.

Example 14 Assume the Rs
P and Rw

P of Example 10. The strong and the weak ar-
gument for b are, respectively, As

b = [a; b← a] and Aw
b = [a← not ¬a, not ⊥; b←

a, not ¬b, not ⊥]. The conclusions and assumptions for both arguments are as
follows

Conc(As
b) = Conc(Aw

b) = {a, b}
Assump(As

b) = ∅
Assump(Aw

b) = not {¬a,¬b,⊥}

Intuitively, both strong and weak arguments can be attacked in the same way.
Since a (weak or strong) argument may make assumptions, other arguments for
the complement of one such assumption may attack it. In other words, an argu-
ment with not L can be attacked by arguments for L. This definition of attack
encompasses two cases:

• arguments that are directly conflicting, e.g. an argument for L (with not ¬L)
can be attacked by an argument for ¬L, and

• any weak argument Aw
L (and also a strong argument As

L which verifies not ⊥ ∈
Assump(As

L)) can be attacked by every argument for ⊥.

46 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

However, it does not make sense to attack arguments for objective literals if they
do not lead to falsity. By “an objective literal L leads to falsity” we mean that
there is an argument AL such that A⊥ is built based on such an argument, e.g.
A⊥ : AL + [⊥ ← L, not L′]4 . However, this proposal considers only the objective
literals that are in the body of the rule for ⊥ (called r⊥) because these literals
immediately lead to falsity. We assume the involvement of other objective literals
is not so strong as those in the body of r⊥. To clarify the above description,
see Example 15. (We further assume they can be detected in a process of “belief
revision”, e.g. [DP97, DPS97]. A full discussion of this issue is beyond the scope of
this proposal.) We define objective literals directly conflicting with A⊥ as follows:

Definition 40 (Directly Conflict with A⊥) Let A⊥ be an argument for ⊥, ‘⊥ ←
Body’ be the rule for ⊥ in A⊥, and {L1, . . . , Ln} be the set of all objective literals
in Body. The set of objective literals directly conflicting with A⊥ is

DC(A⊥) = {⊥} ∪ {L1, . . . , Ln}.

Definition 41 (Attack) Let P be an ELPd. An argument AL of P for L attacks
an argument AL′ of P for L′ iff

• L is the symbol ⊥, not ⊥ ∈ Assump(AL′), and L′ ∈ DC(AL); or

• L is an objective literal different from ⊥, and not L ∈ Assump(AL′).

Example 15 Consider the program {a; b← c; c; d; e← not ⊥; ⊥ ← a, b}. The
strong argument for ⊥ is As

⊥ = [c; b← c; a;⊥ ← a, b] and so DC(As
⊥) = {⊥, a, b}.

Although a rule for c belongs to the sequence of As
⊥, its involvement is not so strong

as a and b. Furthermore, d does not lead to falsity. Despite of the fact that ‘not ⊥’
is in the sequence of Ae, the literal e /∈ DC(As

⊥). Thus, As
⊥ can attack both Aw

a

and Aw
b , but may not attack Aw

c , A
w
d , A

s
e, and Aw

e .

Based on the simplifications that we have performed in Prakken’s definitions,
we can further say that the evaluation of a strong argument for an objective literal
L does not consider the existence of arguments for ¬L, nor the presence of falsity.
However, a weak argument for L is evaluated by looking at both of them. Moreover,
if a strong argument is attacked, then the weaker version of it is also attacked.
Given that Args(P) contains strong arguments for a given objective literal and
also contains the weak corresponding arguments for it (cf. Def. 38), the following
holds:

4‘A+B’ means to concatenate the arguments ‘A’ and ‘B’ in terms of well-defined sequences.
Since the operator ‘+’ is only refereed in examples, we do not define it yet. The next chapter
has a formal definition of such an operator (see Def. 58).

3.2. DECLARATIVE SEMANTICS 47

Proposition 12 Let As
L be an argument, and Aw

L be its weak corresponding ar-
gument. If a (strong or weak) argument AL′ attacks As

L, then AL′ also attacks
Aw

L.

Proof. Assume, by contradiction, that there is an argument AL′ that attacks
As

L and does not attack Aw
L . If AL′ attacks As

L then there exists a not L′ ∈
Assump(As

L). Given that Assump(As
L) ⊆ Assump(Aw

L) then there also exists
not L′ ∈ Assump(Aw

L). So AL′ also attacks Aw
L, and we have a contradiction

Note that the converse is not necessarily true. I.e. it may happen that an
argument attacks Aw

L and does not attack As
L.

Since attacking arguments can in turn be attacked by other arguments, com-
paring arguments is not enough to determine their acceptability w.r.t. the set
of overall arguments. What is also required is a definition that determines the
acceptable arguments on the basis of all the ways in which they interact. In other
words, the acceptability of arguments is obtained through the interaction of ar-
guments, by proposing arguments and opposing them. A subset S of proposed
arguments of P is acceptable only if the set of arguments of P , Args(P), does
not have some valid opposing argument attacking the proposed arguments in S.
As in [Dun93, PS97], we demand acceptable sets to contain all such arguments.
Two questions remain open: how to obtain opposing arguments and, among these,
which are valid?

An opposing argument for a proposed argument which makes an assumption,
say not L, is simply an argument for conclusion L in Args(P). For an opposing
argument Ao to be valid for attacking a proposed argument Ap in S, S should
not have another argument that, in turn, attacks Ao (i.e. another argument that
reinstates5 Ap). In this case, we say that S cannot defend itself against Ao. This
motivation points to a definition of acceptable sets of arguments in P such as a set
S is acceptable if it can attack all opposing arguments from Args(P). So, we can
say that

A proposed argument Ap is acceptable w.r.t. a set S of acceptable
arguments if and only if each opposing argument Ao attacking Ap is
(counter-)attacked by an argument in S.

This notion of acceptable argument has been introduced without considering
two of [PS97]’s definitions, viz. defeat and strictly defeat, because both of them
are based on definitions of undercut and rebut. However, it is still necessary to
determine how strong arguments and weak arguments should interact w.r.t. such a
set S of arguments. Based on the idea of reinstatement, both attacked and counter-
attacking arguments should be of the same kind. For instance, if a proposing

5For details, see Example 1.

48 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

argument is strong (resp. weak) then every counter-attack against its opposing
argument should be strong (resp. weak). A similar reasoning can be applied to
opposing arguments. Therefore, proposed (resp. opposing) arguments should be
of the same kind.

Remark 13 In the remainder of this dissertation we will use the notation p and
o to distinguish the proposed argument from the opponent one, i.e. p (resp. o) is
a (strong or weak) proposed (resp. opponent) argument.

In what concerns the kind of arguments, there are four possibilities of interac-
tion between a proposed argument Ap and an opposing argument Ao as represented
in Table 3.1. The first mode of interaction considers a set of weak arguments only.
The second mode considers a set with strong arguments. The third/fourth consider
a set with both strong and weak arguments. (In the following, these interactions
are discussed in detail.) Then the definition of arguments’ acceptability (and the
corresponding characteristic function) is generalized by parameterizing with the
possible kinds of arguments, viz. strong arguments and weak arguments.

Ap\Ao s w
s s, s s, w
w w, s w, w

Table 3.1: Ways of interacting arguments

Definition 42 (Acceptable Argument) Let P be an ELPd, p (resp. o) be the
kind (strong or weak) of the proposed (resp. opposing) argument of P , and S ⊆
Argsp(P).

An argument AL ∈ Argsp(P) is an acceptablep,o argument w.r.t. S iff each
argument AL′ ∈ Argso(P) attacking AL is attacked by an argument AL′′ ∈ S.

Example 16 Following Example 13, Figure 3.3 illustrates the attacking relation
between proposed strong arguments and opposing weak arguments (see Remark 14
to understand better the notation used in the figure). Acceptables,w arguments
w.r.t. Args(P) are As

b, A
s
d, A

s
c, A

s
g, A

′s
g , A

s
f , A

s
¬a and As

a.

Remark 14 (Notation used in the Figures) Let A and B be arguments of an
ELPd P. Arguments are represented as nodes. A solid line from A to B means
“A attacks B”, a dotted line from A to B means “A is built based on B”, and a
line with dashes means “A reinstates B”. A round node means “it is an acceptable
argument” and a square node means “it is not an acceptable argument”, which are
w.r.t. the set of arguments of P.

3.2. DECLARATIVE SEMANTICS 49

As
j

As
i

Aw
j

Aw
i

As
c

As
d

As
e

Aw
a

Aw
e

A′w
e

Aw
f

As
¬a

As
f

As
g

A′s
g

As
h

A′s
e

As
b

Aw
c

A′w
g

Aw
g

As
a

Figure 3.3: Proponent strong arguments and opposing weak arguments of Exam-
ple 13

50 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

[PS97]’s proposal is in accordance with the ‘Compositional Principle’ of [Vre97]:
“If an argument AL′ is a sub-argument of argument AL, and AL′ is not acceptable
w.r.t. a set of arguments S, then AL is also not acceptable w.r.t. S ”. Furthermore,
[PS97] imposes the rule that an argument and its sub-arguments have the same
rules in their sequence of rules (cf. Def. 24). However, we could define sub-
arguments based on definitions of both conclusions and assumptions. Nevertheless,
[Vre97]’s principle is respected by our proposal, and the following holds:

Proposition 15 Assume two arguments Ap
L and Ap

L′ such that

Conc(Ap
L′) ⊆ Conc(Ap

L) and Assump(Ap
L′) ⊆ Assump(Ap

L)

If Ap
L′ is not acceptablep,o w.r.t. a set of arguments S then Ap

L is also not acceptablep,o
w.r.t. S.

Proof. Assume, by contradiction, that there is an argument Ao
L′′ in S that attacks

Ap
L′ and does not attack Ap

L. If Ao
L′′ attacks Ap

L′ then not L′′ ∈ Assump(Ap
L′).

Given that Assump(Ap
L′) ⊆ Assump(Ap

L) then not L′′ ∈ Assump(Ap
L). So Ao

L′′

also attacks Ap
L. Contradiction

The acceptability of an argument is local to Ag, since this argument depends
on the set P of rules of Ag from which the argument is built. Even when handling
the presence of falsity in Ag (i.e. A⊥) or contradictory arguments (e.g. AL and
A¬L), these arguments are always built over P . Similarly to [Dun93, Dun95],
we formalize the concept of acceptable arguments with a fixpoint operator. The
intuitive idea of the characteristic function is that the set of acceptable arguments
is constructed step-by-step. First, an empty set is assumed to be the initial set of
acceptable arguments. Then, all proposed arguments which are acceptable w.r.t.
to the empty set (i.e. which are not attacked by any opposing argument) are
collected into a set, S1. After that, all proposed arguments that are acceptable
w.r.t. arguments in S1 are added in S2. More precisely, each argument that
has attacking opposing arguments is added if all those opposing arguments are
attacked by an argument already in Si. The resulting set is Si+1. This step is
repeated until a set Sλ is obtained to which no new proposed argument can be
added.

Definition 43 (Characteristic Function) Let P be an ELPd, and p (resp. o)
be the kind (strong or weak) of the proposed (resp. opposing) argument of P , and
S ⊆ Argsp(P). The characteristic function p o of P and over S is:

F p,o
P : 2Args(P) → 2Args(P)

F p,o
P (S) = {Arg ∈ Args(P) | Arg is acceptablep,o w.r.t. S}

3.2. DECLARATIVE SEMANTICS 51

Furthermore, if an argument Ap
L is acceptablep,o w.r.t. S, then Ap

L is also
acceptablep,o w.r.t. any superset of S. In fact:

Proposition 16 F p,o
P is monotonic.

Proof. Assume that S1 and S2 are subsets of Args(P). We have to prove that
∀S1, S2 : if S1 ⊆ S2 then F p,o

P (S1) ⊆ F p,o
P (S2). I.e. if, assuming S1 ⊆ S2, an

argument AL ∈ F p,o
P (S1) then AL ∈ F p,o

P (S2). If AL is acceptablep,o w.r.t. S1 then
(i) AL has no argument in Args(P) that attacks it; or (ii) there is an argument
AL′ ∈ Args(P) that attacks AL but there is an argument AL′′ in S1 that attacks
AL′. If AL is acceptablep,o w.r.t. S1 because of (i), then AL is also acceptablep,o
w.r.t. S2 because there is still no argument in Args(P) that attacks AL. If AL is
acceptablep,o w.r.t. S1 because of (ii), then AL′′ ∈ S2, since S1 ⊆ S2, and so AL is
also acceptablep,o w.r.t. S2

Being monotonic, it is guaranteed that F p,o
P always has a least fixpoint (accor-

ding to the set inclusion ordering over sets of arguments):

Proposition 17 Define for any P the following sequence of sets of arguments:

• S0 = ∅

• Si+1 = F p,o
P (Si)

Given that F p,o
P is monotonic, there must exist a smallest λ such that Sλ is a

fixpoint of F p,o
P , and Sλ = lfp(F p,o

P).

Proof. The result follows immediately from the monotonicity of F p,o
P , given the

well-known Knaster-Tarski Theorem [Tar55]

The following example shows that lfp(F p,o
P) is well-behaved, i.e. arguments in

it are acceptablep,o w.r.t. the set of all arguments of P . By definition lfp(F p,o
P)

is minimal, which guarantees that it does not contain any argument of which
acceptance is not required.

Example 17 Assume the Args(P) presented in Example 13. The iterative con-
struction of the set of acceptables,w arguments w.r.t. Args(P) is as follows:

• S0 = ∅

• S1 = F s,w
P (S0) = {As

g, A
s
f , A

s
a, A

s
¬a, A

s
b}

• S2 = F s,w
P (S1) = {As

g, A
s
f , A

s
a, A

s
¬a, A

s
b, A

s
d, A

s
c, A

′s
g }

52 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

• S3 = F s,w
P (S2) = S2 = lfp(F s,w

P)

Similarly to [PS97], we formalize the status of an argument. By knowing the
set of all acceptablep,o arguments of P , the arguments from Args(P) are split
into three classes, viz justifiedp,o

P , overruledp,o
P and defensiblep,oP . Nevertheless, our

definition of overruled is different from [PS97]’s proposal. In their proposal, the
restriction applies that overruled arguments cannot be also justified (see Def. 30)
and so [PS97]’s argumentation semantics is always consistent. Since we aim to
obtain a paraconsistent way of reasoning, the status of an argument is defined as
follows:

Definition 44 (Justified, Overruled or Defensible Argument) Let P be an
ELPd, p (resp. o) be the kind (strong or weak) of an argument of P , and F p,o

P be
the characteristic function p o of P and over Args(P). An argument Ap

L is

• justifiedp,o
P iff Ap

L is in lfp(F p,o
P)

• overruledp,o
P iff the Ao

L corresponding to it is attacked by a justifiedp,oP argument

• defensiblep,oP iff it is neither a justifiedp,oP nor an overruledp,oP argument.

Remark 18 (JustArgsp,oP) We denote the lfp(F p,o
P) by the set of justifiedp,o

P ar-
guments, JustArgsp,oP .

We may deduce overruled arguments of Args(P) based on the greatest fixpoint
of the characteristic function. We obtain the greatest fixpoint in a similar way to
the least fixpoint, i.e. constructed step-by-step. However, Args(P) is assumed to
be the initial set of arguments. Then, all proposed arguments which are acceptable
w.r.t. Args(P) are collected into a set, S1. After that, all proposed arguments
that are acceptable w.r.t. S1 are added in S2. In other words, every proposed
argument which is attacked by opposing arguments in Si and is not reinstated by
arguments in Si, is not added into set Si+1. This step is repeated until a set Sλ

is obtained to which no proposed argument can be deduced, i.e every attacked
argument in Sλ is reinstated by an argument in Sλ. Intuitively, we can assume
that all acceptable arguments in Sλ are either justified or defensible arguments.
Thus, every argument which does not belong to Sλ is an overruled argument.

Since F p,o
P always has a greatest fixpoint (according to the set inclusion ordering

over sets of arguments), the following holds:

Proposition 19 Define for any P the following sequence of sets of arguments:

• S0 = Argsp(P)

• Si+1 = F p,o
P (Si)

3.2. DECLARATIVE SEMANTICS 53

1. Given that F p,o
P is monotonic, there must exist a smallest λ such that Sλ is

a fixpoint of F p,o
P , and Sλ = gfp(F p,o

P).

2. Moreover, gfp(F p,o
P) = F p,o↓ω .

Proof. The result follows immediately from the monotonicity of F p,o
P , again given

the well-known Knaster-Tarski Theorem [Tar55]

Then we relate both greatest fixpoint and least fixpoint as follows. The gfp(F o,p
P)

contains both justifiedo,p
P and defensibleo,pP arguments w.r.t. Args(P), and the

lfp(F p,o
P) contains the justifiedp,o

P arguments w.r.t. Args(P).

Lemma 20 gfp(F o,p
P) = {Ao

L1
: ¬(∃Ap

L2
∈ lfp(F p,o

P) | Ap
L2

attacks Ao
L1
)}.

Proof. Let S = {Ao
L1

: ¬(∃Ap
L2
∈ lfp(F p,o

P) | Ap
L2

attacks Ao
L1
)}. We prove that

(1) S is a fixpoint of F o,p
P , and that (2) S is the greatest fixpoint of F o,p

P .

1. F o,p
P (S) = S. By definition, Ao

L1
is acceptableo,p w.r.t. S iff it is not attacked

or it is attacked by Ap
L2

and ∃Ao
L3
∈ S attacking Ap

L2
. So, Ao

L1
is acceptableo,p

w.r.t. S if for ∀Ap
L′ that attacks Ao

L1
then ∃Ao

L′′ ∈ S attacking Ap
L′ . By

definition of Ao
L1
, if Ap

L′ attacks Ao
L1

then Ap
L′ /∈ lfp(F p,o

P). Therefore, Ap
L′ is

attacked by Ao
L′′ that is not attacked by any argument in lfp(F p,o

P). But in
this case, by definition of S, Ao

L′′ ∈ S. Thus, Ao
L1

is acceptableo,p w.r.t. S. We
have proven that S ⊆ F o,p

P (S). Now, we have to prove that S ⊇ F o,p
P (S). Let

Ao
L ∈ F o,p

P (S). We must show that ¬(∃Ap
L2
∈ lfp(F p,o

P) | Ap
L2

attacks Ao
L).

Assume, by contradiction, ∃Ap
L2
lfp(F p,o

P) such that Ap
L2

attacks Ao
L. By

hypothesis, Ao
L is acceptableo,p w.r.t. S so there exists an Ao

L3
∈ S attacking

Ap
L2
. Given that Ao

L3
∈ S, ¬∃Ap

L4
∈ lfp(F p,o

P) attacking Ao
L3
. So, Ap

L2
/∈

lfp(F p,o
P) q.e.d.

2. If S ′ = F o,p
P (S ′) then S ′ ⊆ S. We have to prove that ∀Ao

L ∈ S ′ : ¬(∃Ap
L2
∈

lfp(F p,o
P) | Ap

L2
attacks Ao

L), assuming that S ′ = F o,p
P (S ′). In other words,

we have to prove that, for every Ao
L ∈ S ′, every argument Ap

L2
attacking

Ao
L does not belong to lfp(F p,o

P). Since lfp(F p,o
P) can be obtained by the

iteration of F p,o
P , we prove this by induction on the iteration. More precisely,

let Ao
L ∈ S ′ and C = {Ap

L′ | Ap
L′ attacks Ao

L}. We prove by induction that
∀iF p,o ↑i

P ∩ C = ∅.
Base: Trivial, since ∅ ∩ C = ∅.
Induction: Assume that F p,o ↑i

P ∩ C = ∅. F p,o ↑i+1
P = {Ap

L′ : ifAo
L′′ attacks

Ap
L′ then ∃Ap

L′′′ ∈ F p,o ↑i
P that attacks Ao

L′′}. We have to prove that any such
Ap

L′ /∈ C, i.e. Ap
L′ does not attack any Ao

L ∈ S ′. If Ap
L′ attacks some Ao

L ∈ S ′

54 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

then there exists an Ao
L′′ ∈ S ′ attacking Ap

L′ . But, in this case, there does
not exist Ap

L′′′ ∈ F p,o ↑i
P attacking Ao

L′′ because, by induction hypothesis,
F p,o ↑i
P ∩ C = ∅.

Lemma 21 lfp(F p,o
P) = {Ap

L1
: ¬(∃Ao

L2
∈ gfp(F o,p

P) | Ao
L2

attacks Ap
L1
)}.

Proof. Let S = {Ap
L1

: ¬(∃Ao
L2
∈ gfp(F o,p

P) | Ao
L2

attacks Ap
L1
)}. We prove that

(1) S is a fixpoint of F p,o
P , and that (2) S is the least fixpoint of F p,o

P .

1. F p,o
P (S) = S. By definition, Ap

L1
is acceptablep,o w.r.t. S iff it is attacked

by Ao
L2

and ∃Ap
L3
∈ S attacking Ao

L2
. So, Ap

L1
is acceptablep,o w.r.t. S

if for ∀Ao
L′ that attacks Ap

L1
then ∃Ap

L′′ ∈ S attacking Ao
L′ . By definition

of Ap
L1
, Ao

L′ /∈ gfp(F o,p
P). So, if Ao

L′ attacks Ap
L1

then Ao
L′ /∈ gfp(F o,p

P).
Therefore, Ao

L′ is attacked by Ap
L′′ that is not attacked by any argument

in gfp(F o,p
P). But in this case, by definition of S, Ap

L′′ ∈ S. Thus, Ap
L1

is
acceptablep,o w.r.t. S. We have proven that S ⊆ F p,o

P (S). Now, we have
to prove that S ⊇ F p,o

P (S). Let Ap
L ∈ F p,o

P (S). We should also prove that
¬(∃Ao

L2
∈ gfp(F o,p

P) | Ao
L2

attacks Ap
L). Assume, by contradiction, Ao

L2
∈

gfp(F o,p
P) and Ao

L2
attacks Ap

L. By induction hypothesis, if Ap
L is acceptablep,o

w.r.t. S then there exists an Ap
L3
∈ S attacking Ao

L2
. Given that Ap

L3
∈ S,

¬∃Ao
L4
∈ gfp(F o,p

P) attacking Ap
L3
. So, Ao

L2
/∈ gfp(F o,p

P) q.e.d.

2. If S ′ = F p,o
P (S ′) then S ⊆ S ′. We have to prove that ∀Ap

L /∈ S ′ : ∃Ao
L2
∈

gfp(F o,p
P) | Ao

L2
attacks Ap

L, assuming that S ′ = F p,o
P (S ′). In other words, we

have to prove that for every Ap
L /∈ S ′ there exists an argument Ao

L2
attacking

Ap
L belonging to gfp(F o,p

P). Since gfp(F o,p
P) can be obtained by the iteration

of F o,p
P , we prove this by induction on the iteration. More precisely, let

C = {Ao
L′ | Ao

L′ attacks A
p
L}. We prove by induction that ∀iF o,p↓i

P ∩ C 6= ∅.
Base: Clearly, Args(P)∩ C = C. Since S ′ is a fixpoint of F p,o

P and Ap
L /∈ S ′

then there must exist some argument attacking Ap
L, i.e. C cannot be empty.

Induction: Assuming that F o,p ↓i
P ∩ C 6= ∅. F o,p ↓i+1

P ∩ C = {Ao
L′ :

if Ap
L′′ attacks Ao

L′ then ∃Ao
L′′′ ∈ F o,p ↓i

P that attacks Ap
L′′}. We have to prove

that Ao
L1
∈ C, i.e. ∃Ao

L1
attacking Ap

L. If ∀i (∃Ao
L1
∈ F o,p ↓i+1

P | Ao
L1

attacks

Ap
L) then (∃Ao

L3
∈ F o,p ↓i

P | Ao
L3

attacks Ap
L2
) because, by induction hypothe-

sis, F o,p ↓i
P ∩ C 6= ∅

Then, the following holds:

Theorem 22 Ap
L is overruledp,oP iff the corresponding Ao

L is not in gfp(F o,p
P).

3.2. DECLARATIVE SEMANTICS 55

Proof. If Ap
L1

is overruledp,o
P then there exists an Ap

L2
∈ lfp(F p,o

P) attacking the
corresponding Ao

L1
to Ap

L1
. Based on Lemma 20, Ao

L1
/∈ gfp(F o,p

P). If Ao
L1

/∈
gfp(F o,p

P) then, based on Lemma 21, there exists an Ap
L2
∈ lfp(F p,o

P) attacking
Ao

L1
. So, by Definition 44, Ap

L1
is overruledp,o

P

Example 18 Assume Argss(P) = {As
a, A

s
¬a, A

s
b, A

s
c, A

s
d, A

s
e, A

′s
e , A

s
f , A

s
g, A

′s
g , A

s
h, A

s
i ,

As
j} from Example 13, and lfp(F s,w

P) = {As
a, A

s
¬a, A

s
b, A

s
c, A

s
d, A

′s
g , A

s
g, A

s
f} from E-

xample 17. Figure 3.4 illustrates the attacking relation between proposed weak
arguments and opposing strong ones (see Remark 14 to understand better the no-
tation used in the figure). Then, the gfp(Fw,s

P) is obtained as follows:

• S0 = Argsw(P)

• S1 = Fw,s
P (S0) = {Aw

g , A
′w
g , Aw

f , A
w
i , A

w
j }

• S2 = Fw,s
P (S1) = {Aw

g , A
w
f , A

w
i , A

w
j }

• S3 = Fw,s
P (S2) = S2 = gfp(Fw,s

P)

Both As
g and As

f are justifieds,wP arguments, and both As
i and As

j are defensibles,wP

arguments. The overruleds,wP arguments are As
e, A

′s
e and As

h. The other arguments
in Args(P) are both justifieds,wP and overruleds,wP , viz. As

a, A
s
¬a, A

s
b, A

s
c, A

s
d and

A′s
g .

Not all sets of justified arguments have the same “level of acceptability”. It
depends on the kind of both proposed and opposing arguments. Most of these
sets do not have a justified argument attacking another justified one, i.e. they
do not accept conflicts between justified arguments. On the other hand, some
of them might have contradictory arguments, i.e. they may have an argument
for L and another for ¬L. So, we first define what we mean by conflict-free and
by contradictory sets of arguments. Then establish the relation between justified
arguments and a contradiction: every justified argument is either contradictory,
based on contradiction, or non contradictory w.r.t. Args(P).

Definition 45 (Conflict-free Set of Arguments) A set of arguments S is con-
flict-free iff there is no argument in S that attacks an argument in S.

Definition 46 (Contradictory Set of Arguments) A set of arguments S is
contradictory w.r.t. L iff

• L is the symbol ⊥, and there exist an argument for falsity in S; or

• L is an objective literal different from ⊥, and there exists both an argument
for L and an argument for ¬L in S.

56 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

Aw
c

Aw
¬a

Aw
d

Aw
e

As
f

As
a

As
e

A′s
e

Aw
i

As
j

Aw
f

Aw
g

A′w
g As

c

Aw
j

Aw
h

A′w
e

Aw
b

Aw
a

As
i

A′s
g

As
g

As
¬a

Figure 3.4: Proposed weak arguments and opposing strong arguments of Exam-
ple 13

3.2. DECLARATIVE SEMANTICS 57

We say that S is non contradictory iff there is no literal L in S such that S is
contradictory w.r.t. L.

We define three sub-statuses for relating justified arguments with contradiction
— contradictory, based-on-contradiction, or non-contradictory — as follows:

• Intuitively, justified arguments are contradictory if they are related to a
contradictory set of arguments, i.e. if a set S of justified arguments is con-
tradictory w.r.t. an objective literal L, then every justified argument for
such L is contradictory w.r.t. S.

Another condition is based on objective literals directly conflicting with Ap
⊥,

which means that if Ap
⊥ is a justified argument then, by the first condition, it

is also contradictory. Thus, every justified argument for an objective literal
in DC(Ap

⊥) is contradictory because it immediately causes falsity.

• An argument is based on contradiction if one of the following conditions is
satisfied: (i) Ap

L is reinstated by a contradictory argument or a based-on-
contradiction argument, or (ii) Ap

L is built based on a contradictory argu-
ment.

• An argument is non contradictory otherwise, i.e. if it is not involved at all
with any contradiction.

We say that an argument that reinstates another argument is its counter-attack :

Definition 47 (Counter-Attack) Let P be an ELPd, S ⊆ Args(P), AL be an
argument in S, and AL′ be an argument in Args(P) attacking AL. A counter-
attack for AL against AL′ is an argument in S that attacks AL′. CAAL

(AL′ , S) is
the set of all counter-attacks for AL against AL′ in S.

Definition 48 (Relation to Contradiction) Let P be an ELPd. A justifiedp,oP

argument Ap
L is

• contradictoryp,oP iff

– JustArgsp,oP is contradictory w.r.t. L, or

– there exists an p,o
P argument Ap

⊥ in Justargsp,oP and L ∈ DC(Ap
⊥);

• based-on-contradictionp,o
P iff

– for all Ao
L′ attacking Ap

L there exists a contradictoryp,oP or based-on-
contradictionp,o

P argument in CAAL
(Ao

L′ , JustArgs
p,o
P), or

58 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

– there exists an L′ ∈ Conc(Ap
L), different from L and ⊥, such that

JustArgsp,oP is contradictory w.r.t. L′;

• non-contradictoryp,oP iff

it is neither contradictoryp,oP nor based-on-contradictionp,o
P .

Proposition 23 Let L be an objective literal different from ⊥. A justifiedp,oP

Ap
L argument is non-contradictoryp,oP if and only if there does not exist an L′ ∈

Conc(Ap
L) such that JustArgsp,oP is contradictory w.r.t. L′, and every counter-

attack for Ap
L is a non-contradictoryp,oP argument.

Proof. We have to prove that Ap
L is non-contradictoryp,oP iff (1) ¬∃L′ ∈ Conc(Ap

L)
such that JustArgsp,oP is contradictory w.r.t. L′, and (2) ∀Ao

L′ attacking Ap
L, every

Ap
L′′ ∈ CAAL

(Ao
L′, JustArgs

p,o
P) is a non-contradictoryp,oP argument.

1. We assume, by absurdum, thatAp
L is non-contradictoryp,oP and ∃L′ ∈ Conc(Ap

L)
such that JustArgsp,oP is contradictory w.r.t. L′. If L = L′ then, by def-
inition, Ap

L is contradictoryp,oP ; otherwise, Ap
L is based-on-contradictionp,o

L .
Absurdum.

2. We assume, by absurdum, that Ap
L is non-contradictoryp,oP and ∃Ao

L′ at-
tacking Ap

L | ∃Ap
L′′ ∈ CAAL

(Ao
L′, JustArgs

p,o
P) such that Ap

L′′ is not a non-
contradictoryp,oP argument. If Ap

L′′ is either a contradictoryp,oP or a based-on-
contradictionp,o

P argument then, by definition, Ap
L is based-on-contradictionp,o

P .
Absurdum

Example 19 Following Example 18, since JustArgss,wP is contradictory w.r.t. ¬a
and a. Then As

¬a and As
a are contradictorys,wP arguments. Arguments As

b, A
s
c, A

s
d,

A′s
g are based-on-contradictions,w

P .
Note that As

b is built based on the contradictory argument As
a, i.e. a ∈ Conc(As

b).
As

¬a is in both sets of counter-attack:

CAAs
c
(Aw

a , JustArgs
s,w
P) and CAAs

d
(Aw

a , JustArgs
s,w
P)

Figure 3.3 illustrates that both arguments As
d and As

c are reinstated by As
¬a

against Aw
a . Similar to the previous case, A′s

g is reinstated by As
a.

In the following we present properties of the resulting set of acceptable ar-
guments, i.e. JustArgsp,oP . Given that there are four possibilities of interactions
between proposed and opposing arguments, the following holds:

3.2. DECLARATIVE SEMANTICS 59

Theorem 24 Let P be an ELPd, L ∈ H(P), p (resp. o) be the kind — i.e. strong
or weak — of a proposed (resp. opposing) argument of P , and Sp,o be a set of
arguments such that ∀Ap

L : Ap
L ∈ lfp(F p,o

P). The sets Sp,o (of justified arguments)
have pre-fixpoint relations:

i. Sw,s ⊆ Sw,w

ii. Sw,s ⊆ Ss,s

iii. Sw,w ⊆ Ss,w

iv. Ss,s ⊆ Ss,w

Proof. Given that (i) and (iv), and also (ii) and (iii), have similar kinds of
proposed arguments and opposing arguments (i.e. p and o, respectively), we prove
(i–iv) by proving that:

1. Sk,s ⊆ Sk,w

2. Sw,k ⊆ Ss,k

for k ∈ {s, w}.

1. Let S = lfp(F k,s
P). We first prove, by contradiction, that S is a pre-fixpoint6

of F k,w
P , i.e. for every L if Ak

L ∈ S then Ak
L ∈ F k,w

P (S). Assume, by contradic-
tion, that Ak

L ∈ S and Ak
L is not acceptablek,w w.r.t. S, i.e. Ak

L /∈ F k,w
P (S).

So there exists an argument Aw
L′ attacking Ak

L that it is not attacked by any
argument in S. But in this case there also exists an As

L′ attacking Ak
L that,

based on Prop. 12, is not attacked by any argument in S. Thus Ak
L is not

acceptablek,s w.r.t. S, i.e. Ak
L /∈ S. Contradiction. So S is a pre-fixpoint of

F k,w
P (S). Given that F k,w

P is monotonic (cf. Prop. 16), and that, as is well
known, pre-fixpoints of monotonic operators are included in all fixpoints,
S ⊆ lfp(F k,w

P), i.e. lfp(F k,s
P) ⊆ lfp(F k,w

P).

2. Let S be the set of the strong arguments corresponding to the arguments in
lfp(Fw,k

P), As
L be an argument in S, and Aw

L be its weak corresponding argu-
ment. Given that Assump(As

L) ⊆ Assump(Aw
L) and that Aw

L is acceptablew,k

w.r.t. lfp(Fw,k
P), clearly also As

L is acceptables,k w.r.t. S. So, if As
L ∈ S,

As
L also belongs to F s,k

P (S), i.e. S is a pre-fixpoint of F s,k
P . So, similarly to

point (1), S ⊆ lfp(F s,k
P). Accordingly, if there is an argument for L in S (i.e.

L ∈ Sw,k) then there is also an argument for L in lfp(F s,k
P) (i.e. L ∈ Ss,k)

6A set S is a pre-fixpoint of a function ϕ iff S ⊆ ϕ(S).

60 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

The resulting set of acceptable arguments from an argumentation process over
a set S of arguments with just weak arguments is always consistent. I.e. neither
weak arguments for ⊥ (called Aw

⊥) nor contradictory arguments (i.e. both weak
arguments for ¬L and L) are considered acceptable w.r.t. S. Intuitively, if there
is an argument Aw

⊥ (with a rule ⊥ ← Body) such that L is in Body, we can
deduce that Aw

⊥ was built based on Aw
L . If we accept Aw

L , we also accept Aw
⊥, then

falsity follows. Therefore, both arguments Aw
L and Aw

⊥ are not acceptable. So, the
following holds:

Proposition 25 JustArgsw,w
P is conflict-free.

Proof. Given that JustArgsw,w
P = lfp(Fw,w

P), we prove that lfp(Fw,w
P) is conflict-

free. Let Fw,w
P (S0) ⊆ . . . Fw,w

P (Si) ⊆ . . . ⊆ Fw,w
P (Sω) = lfp(Fw,w

P). We prove, by
induction, that all Si in the sequence are conflict-free.

Base: Clearly, since S0 = ∅, S0 is conflict-free.
Induction: Assume that Si is conflict-free. By contradiction, further assume

that Si+1 is not conflict-free, i.e. there exists {Aw
L1
, Aw

L2
} ⊆ Si+1 such that Aw

L1

attacks Aw
L2
. Since Aw

L1
attacks Aw

L2
then, given that Aw

L2
is acceptablew,w, w.r.t.

Si (i.e. Aw
L2
∈ Si+1), there must exist Aw

L3
∈ Si such that Aw

L3
attacks Aw

L1
. Given

that, by induction hypothesis, Si is conflict-free, no argument in Si attacks Aw
L3
.

So Aw
L1

is not acceptablew,w, w.r.t. S
i, i.e. Aw

L1
/∈ Si+1. Contradiction

Proposition 26 JustArgsw,w
P is non-contradictory.

Proof. Given that JustArgsw,w
P = lfp(Fw,w

P), we prove that lfp(Fw,w
P) is non-

contradictory. Let Fw,w
P (S0) ⊆ . . . Fw,w

P (Si) ⊆ . . . ⊆ Fw,w
P (Sω) = lfp(Fw,w

P). We
prove, by induction, that all Si in the sequence are non-contradictory.

Base: Clearly, since S0 = ∅, S0 is non-contradictory.
Induction: Assuming that Si is non-contradictory, we must prove that (1)

Aw
⊥ /∈ Si+1 and (2) there exists no L such that {Aw

L , A
w
¬L} ⊆ Si+1.

1. By induction hypothesis, Aw
⊥ /∈ Si. If there is no argument in Si attacking

Aw
⊥ and since Aw

⊥ attacks itself, Aw
⊥ is not acceptablew,w w.r.t. Si and so

Aw
⊥ /∈ Si+1. If there is an argument Aw

L ∈ Si attacking Aw
⊥, and since Si is

conflict-free (cf. proof of proposition 25), Aw
⊥ is not acceptablew,w w.r.t. Si,

i.e. Aw
⊥ /∈ Si+1.

2. Since, by induction hypothesis, Si is non-contradictory, then for every literal
L either there exists an argument for Aw

L ∈ Si and no argument for Aw
¬L ∈ Si,

or there are no arguments in Si for neither Aw
L nor Aw

¬L:

3.2. DECLARATIVE SEMANTICS 61

(a) Aw
L ∈ Si and Aw

¬L /∈ Si. Since Aw
L attacks Aw

¬L and, by proof of propo-
sition 25, Aw

L is not attacked by any argument in Si, then Aw
¬L is not

acceptablew,w w.r.t. Si, i.e. Aw
¬L /∈ Si+1; or

(b) Aw
L /∈ Si and Aw

¬L /∈ Si. If there is no argument in Si attacking neither
Aw

L nor Aw
¬L then none of them is acceptablew,w w.r.t. Si because they

attack each other. So Aw
L /∈ Si+1 and Aw

¬L /∈ Si+1. If there is one such
argument Aw

L1
∈ Si attacking say Aw

L then Aw
L is not acceptablew,w w.r.t.

Si because it is attacked by Aw
L1

which in turn is not attacked by any
argument in Si (cf. proof of proposition 25). Thus Aw

L /∈ Si+1.

In any of these two cases, (2.a) and (2.b), at least one of Aw
L or Aw

¬L does
not belong to Si+1 and so, since this was proven for every L, Si+1 is non-
contradictory

To better understand the properties of JustArgsp,oP consider the following ex-
ample (a smaller P example than that of Example 10, tailored to illustrate the
properties):

Example 20 Assume the extended logic program

P = {a← not b; ¬a; b; ¬b; c; ⊥ ← c}
The weak arguments of P are as follows:

Aw
a : [a← not b, not ¬a, not ⊥]

Aw
¬a : [¬a← not a, not ⊥]
Aw

b : [b← not ¬b, not ⊥]
Aw

¬b : [¬b← not b, not ⊥]
Aw

c : [c← not ¬c, not ⊥]
Aw

⊥ : Aw
c + [⊥ ← c, not ¬⊥, not ⊥]

The argument Aw
a (resp. Aw

b) attacks Aw
¬a (resp. Aw

¬b), and vice-versa. Moreover,
Aw

⊥ is self-defeating. Finally, Aw
a (resp. Aw

c) is attacked by Aw
b (resp. Aw

⊥) and
there is no argument to reinstate it. Thus, no argument belongs to JustArgsw,w

P .
Figure 3.5 illustrates the above description based upon the acceptability argument.
See Remark 14 to understand better the notation used in the figure.

The acceptability of arguments of “Privacy of Personal Life” (PPL) is illus-
trated in Figure 3.6. See Remark 14 on page 48 to understand better the notation
used in the figure. Every argument from Argsw(PPL) is in the figure. The figure
depicts the attacking relation between those arguments and also the building de-
pendency7 of such arguments. Some comments about the attacks in Argsw(PPL)
are as follows:

7By “building dependency” we mean that an argument is built based on other arguments.

62 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

[¬a← not a, not ⊥] [¬b← not b, not ⊥]

[a← not b, not ¬a, not ⊥] [b← not ¬b, not ⊥]

Aw
c + [⊥ ← c, not ⊥, not ¬⊥]

[c← not ¬c, not ⊥]

Figure 3.5: Acceptablew,w arguments in Argsw(P)

• the arguments Aw
hP (i) and Aw

¬hP (i) (resp. Aw
hP (a) and Aw

¬hP (a)) attack each
other. Every weak argument for hP (p) is attacked by Aw

¬hP (p), and vice-
versa. Moreover, none of those arguments is reinstated by other argument
in Argsw(PPL);

• both conclusions ¬hP (i) and ev(i, tFDD) lead to falsity in PPL. Then, the
weak argument for ⊥ attacks both arguments Aw

¬hP (i) and Aw
ev(i,tFDD). More-

over, Aw
⊥ attacks itself. Thus, none of the these arguments is acceptablew,w

PPL

(w.r.t. Argsw(PPL));

• the arguments for pLE(i), pLE(a) and pLE(p) are built based on a previous
argument that is not acceptablew,w

PPL which is Aw
¬hP (i), A

w
¬hP (a), or Aw

¬hP (p),
respectively. So, the former arguments are also not acceptablew,w

PPL because
they are attacked by exactly the same attacking argument as the latter ar-
guments;

• finally, the other arguments in the figure are acceptablew,w
PPL.

Given that JustArgsw,s
P ⊆ JustArgsw,w

P (cf. Theorem 24), the following holds:

Proposition 27 JustArgsw,s
P is conflict-free and non-contradictory.

Proof. Since lfp(Fw,s
P) ⊆ lfp(Fw,w

P) (cf. Theorem 24) and that lfp(Fw,w
P) is

conflict-free and non-contradictory (cf. Propositions 25 and 26, respectively), then
JustArgsw,s

P is conflict-free and non-contradictory

Note that Fw,s
P does not consider [ADP95]’s ‘Coherence Principle’: “If L is

explicitly false then L must be assumed false by default”. Given that every op-
posing argument is a strong one, it cannot be attacked by any argument for its
explicit negation. In Example 20, the argument Aw

a is attacked by both As
b and

3.2. DECLARATIVE SEMANTICS 63

Aw
ch(p)

Aw
fP (p)

Aw
pe(a)

Aw
ev(a,SD)

Aw
aS(SD)

Aw
fP (i)

Aw
pe(p)

A′w
pe(p)

Aw
fOMA(p)

Aw
¬acB(a)

Aw
fOMA(i)

Aw
pe(i)

A′′w
hP (p)

Aw
hP (p)

A′w
hP (p)

Aw
¬hp(p)

Aw
fOMA(a)

Aw
ev(i,tFDD)

Aw
¬hP (i)

Aw
hP (i)

Aw
pLE(p)

Aw
hP (a)

Aw
¬hP (a)

Aw
⊥

Aw
pLE(i)

Aw
pLE(a)

Figure 3.6: Acceptablew,w arguments in Argsw(PPL)

64 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

As
¬a and so it is not acceptablew,s

P w.r.t. Args(P). However, there are arguments
in Args(P) that could reinstate such an argument, viz. arguments for both a and
¬b. Furthermore, we can say that Fw,w

P has more defensible arguments than Fw,s
P .

In other words, Fw,s
P has more overruled arguments than Fw,w

P .

Proposition 28 gfp(Fw,s
P) ⊆ gfp(Fw,w

P).

Proof. Let S = gfp(Fw,w
P). We first prove, by contradiction, that S is a pos-

fixpoint8 of Fw,s
P , i.e. for every L if Aw

L ∈ Fw,s
P (S) then Aw

L ∈ S. Assume, by
contradiction, that Aw

L /∈ S and Aw
L is acceptablew,s w.r.t. S , i.e. Aw

L ∈ Fw,s
P (S).

So there exists an argument As
L′ attacking Aw

L that it is attacked by an argument
in S. But, in this case, there also exists an Aw

L′ (corresponding to As
L′) attacking

Aw
L that, based on Prop. 12, is also attacked by an argument in S. Thus Aw

L ∈ S.
Contradiction. So S is a pos-fixpoint of Fw,s

P . Given that Fw,w
P is monotonic (cf.

Prop. 16), and that, as is well known, pos-fixpoints of monotonic operators include
all fixpoints, gfp(Fw,s

P) ⊆ S, i.e. gfp(Fw,s
P) ⊆ gfp(Fw,w

P)

At this point we have illustrated that the resulting set of acceptable arguments
w.r.t. a set of weak arguments is always consistent. To handle paraconsistency,
the set of arguments should have both strong and weak arguments. To evaluate
the acceptability of arguments without considering the presence of inconsistency,
the proposed arguments should be the strong ones. The weak arguments are
used to attack, and so, to guarantee the rebuttal. Note that strong arguments also
counter-attack (or reinstate evaluating strong arguments). By defining this attack-
ing relation between strong arguments and weak arguments, we respect [ADP95]’s
‘Coherence Principle’. Given that every opposing argument is a weak one, it can
be attacked by any argument for its explicit negation. Figure 3.7 illustrates the
possible attacks of arguments in Args(P). Consider Example 20: As

a is attacked
by Aw

b but it is reinstated by As
¬b. Thus, every argument is acceptables,wP w.r.t.

Args(P).
Figure 3.8 illustrates the possible attacks of arguments in Args(PPL). The

argument As
hP (a) is not acceptable

s,w
PPL (w.r.t. Args(PPL)) because it is attacked

by Aw
¬hP (a) and the only counter-attack is As

hP (a) (in such a case the argument
cannot reinstate itself). Moreover, the argument Aw

¬hP (p) attacks two arguments
for hP (p), viz. A′s

hp(p) and As
hp(p). However, A′′s

hp(p) reinstates both arguments by
attacking Aw

¬hP (p). Thus, the three strong arguments for hP (p) are acceptables,wPPL

while As
¬hP (p) is not. The other strong arguments are acceptables,wPPL because they

are not attacked by any argument in Args(PPL).
Finally, it is possible to have an argumentation process with just (attacking

and counter-attacking) strong arguments. Looking at Figures 3.9 and 3.10, it is

8A set S is a pos-fixpoint of a function ϕ iff ϕ(S) ⊆ S.

3.2. DECLARATIVE SEMANTICS 65

[¬b]

[b← not ¬b, not⊥]

[a← not b] [b]

As
c + [⊥ ← c]

[¬a]

[c]

Figure 3.7: Acceptables,w arguments in Args(P)

possible to verify that some arguments are not acceptable because there is no
argument to reinstate them.

Given that JustArgsw,w
P and JustArgsw,s

P are non-contradictory sets (by Prop. 27
and Prop. 26, respectively), every argument in both of them is non-contradictory.
Nevertheless, JustArgss,wP and JustArgss,sP may have contradictions.

We may conclude that a justifieds,w
P argument is based-on-contradictions,w

P if
the following holds:

Proposition 29 An argument As
L, with L different from ⊥, is based-on-contradic-

tions,w
P iff As

L is justifieds,wP , there does not exist a justifieds,wP argument for ¬L and
As

L is also overruleds,wP .

Proof. ⇒ Assuming As
L is based-on-contradictions,w

P . We have to prove that (1)
As

L is justifieds,w
P , (2) 6 ∃As

¬L ∈ JustArgss,wP and (3) As
L is also overruleds,w

P

1. By definition, any based-on-contradictions,w
P argument is justifieds,w

P .

2. Assume, by contradiction, that As
L is based-on-contradictions,w

P and ∃As
¬L ∈

JustArgss,wP . By definition, As
L ∈ JustArgss,wP . Given that {As

L, A
s
¬L} ⊆

JustArgss,wP , JustArgss,wP is contradictory w.r.t. L. Therefore, As
L is contra-

dictorys,wP . Contradiction.

3. We have to prove that As
L is overruleds,w

P . From Theorem 22, As
L is overruleds,w

P

if the corresponding Aw
L does not belong to gfp(Fw,s

P). By Lemma 20,
Aw

L /∈ gfp(Fw,s
P) when ∃As

L1
∈ lfp(F s,w

P) that attacks Aw
L .

By definition, an argument As
L is based-on-contradictions,w

P iff (a) ∀Aw
L′ at-

tacking As
L there exists a contradictorys,wP or based-on-contradictions,w

P As
L′′

argument in CAAL
(Aw

L′ , JustArgs
s,w
P), or (b) ∃L′ ∈ Conc(As

L), different from
L, such that JustArgss,wP is contradictory w.r.t. L′.

66 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

As
ch(p)

As
fP (p)

As
pe(a)

As
ev(a,SD)

As
aS(SD)

As
fP (i)

As
pe(p)

A′s
pe(p)

As
fOMA(p)

As
¬acB(a)

As
fOMA(i)

As
pe(i)

A′′s
hP (p)

As
hP (p)

A′s
hP (p)

As
¬hp(p)

As
fOMA(a)

As
ev(i,tFDD)

As
¬hP (i)

As
hP (i)

Aw
¬hP (i)

Aw
¬hP (p)

As
pLE(p)

As
hP (a)

As
¬hP (a)

As
⊥

As
pLE(i)

Aw
¬hP (a)

As
pLE(a)

Figure 3.8: Acceptables,w arguments in Args(PPL)

3.2. DECLARATIVE SEMANTICS 67

[¬b] [a← not b] [b]

As
c + [⊥ ← c]

[¬a]

[c]

Figure 3.9: Acceptables,s arguments in Argss(P)

(a) Cf. Prop. 12, if ∃Aw
L′ attacking As

L then Aw
L′ attacks the correspond-

ing Aw
L . Moreover, As

L′ corresponding to Aw
L′ also attacks Aw

L. We
have to prove that As

L′ ∈ lfp(F s,w
P). By definition, Assump(Aw

L′) −
Assump(As

L′) = S = not{⊥,¬L′,¬L1, . . . ,¬Lj} such that Li ← Body ∈
As

L′ (1 ≤ i ≤ j). Assuming that As
L′′ is contradictory

s,w
P , then ∃¬Li ∈ S

such that L′′ = ¬Li. So, there does not exist any Aw
L′′ attacking As

L′ .
Consequently, As

L′ ∈ lfp(F s,w
P). Thus, Aw

L /∈ gfp(Fw,s
P) and so As

L is
overruleds,w

P . If As
L′′ is based-on-contradiction

s,w
P then we use the previ-

ous deduction the necessary number of times q.e.d.

(b) Assume, by hypothesis,

∃L′ ∈ Conc(As
L) such that JustArgss,wP is contradictory w.r.t. L′

Accordingly, {As
L′ , As

¬L′} ⊆ JustArgss,wP . By definition, there is a rule
‘L′ ← Body, not ¬L′, not ⊥’ in Aw

L. Therefore, As
¬L′ ∈ lfp(F s,w

P) such
that As

¬L′ attacks Aw
L , and so As

L is overruleds,w
P q.e.d.

⇐ Assume that there does not exist a justifieds,w
P argument for ¬L, and As

L

is both justifieds,w
P and overruleds,w

P . We have to prove that As
L is based-on-

contradictions,w
P . By definition, As

L′′ is either contradictorys,wP or based-on-
contradictions,w

P . If As
L′′ is contradictorys,wP then ∃As

¬L ∈ lfp(F s,w
P) attack-

ing Aw
L′′ . Aw

L /∈ gfp(Fw,s
P) and so As

L is overruleds,w
P . If As

L′′ is based-on-
contradictions,w

P then we use the previous deduction the necessary number of
times q.e.d.

As in [PS97], we may also define the truth value of a conclusion as follows:

Definition 49 (Truth Value of a Conclusion) Let P be an ELPd, and L ∈
H(P). A literal L over P is

68 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

As
ch(p)

As
fP (p)

As
pe(a)

As
ev(a,SD)

As
aS(SD)

As
fP (i)

As
pe(p)

A′s
pe(p)

As
fOMA(p)

As
¬acB(a)

As
fOMA(i)

As
pe(i)

A′′s
hP (p)

As
hP (p)

A′s
hP (p)

As
¬hp(p)

As
fOMA(a)

As
ev(i,tFDD)

As
¬hP (i)

As
hP (i)

As
pLE(p)

As
hP (a)

As
¬hP (a)

As
⊥

As
pLE(i)

As
pLE(a)

Figure 3.10: Acceptables,s arguments in Argss(PPL)

3.2. DECLARATIVE SEMANTICS 69

• falsep,oP iff every p-argument for L is overruledp,oP ;

• truep,oP iff there exists a justifiedp,oP argument for L;

• undefinedp,o
P iff L is neither truep,oP nor falsep,oP (i.e. there is no justifiedp,oP

argument for L and at least one p-argument for L is not overruledp,oP).

First let us define the status of a literal w.r.t. contradiction, something that
follow in the obvious way that of arguments (cf. Definition 48).

Definition 50 (Literals’ relation to contradiction) Let P be an ELPd, and
let L ∈ H(P) be a truep,oP . We say that:

• L is contradictoryp,oP iff there is an argument Ap
L which is contradictoryp,oP ;

• L is based-on-contradictionp,o
P iff it is not contradictoryp,oP and there is an

argument Ap
L which is based-on-contradictionp,o

P ;

• L is non-contradictoryp,oP , otherwise.

Given that every JustArgsw,w
P and JustArgsw,s

P arguments are non-contradictory
(cf. Prop 26 and 27), if L is truew,k

P (k ∈ {s, w}) then L is non-contradictory. The
same does not hold for JustArgss,wP and JustArgss,sP . However,in the case of
JustArgss,wP , it is easy to check when a literal is contradictory, based on contra-
diction, or non-contradictory.

Proposition 30 A literal L over P is

• contradictorys,wP if L is the symbol ⊥ or ¬L is trues,wP ;

• based-on-contradictions,w
P if it is also falses,w;

• non-contradictorys,wP , otherwise.

Proof.

contradictorys,w
P

The case for L = ⊥ is trivial, by definition. If L is trues,wP and ¬L is also
trues,wP , then by definition of truep,oP and of contradictoryp,oP arguments, there exists
an argument AP

L which is contradictoryp,oP q.e.d..

based-on-contradictions,w
P

If L is trues,wP then As
L is justifieds,wP , by definition. If, furthermore, L is

falses,wP , then, by definition, every As
P is overruleds,wP . Since, by assumption in

70 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

this proposition L is not contradictorys,wP then ¬∃As
¬L ∈ JustArgss,wP . So, we are

in the conditions of Proposition 29, and can conclude that there is an As
L which

is based-on-contradictions,w
P , and so L is based-on-contradictions,w

P , by definition.
q.e.d.

non-contradictorys,w
P

Otherwise, L can only be non-contradictorys,wP

Example 21 Following both Examples 17 and 19, which present the status of
arguments in Args(P) and the relation to contradiction of the justified arguments,
respectively, the objective literals a, ¬a, b, c, d, f and g are trues,wP . Moreover, a
and ¬a are contradictorys,wP , b, c and d are based-on-contradictions,w

P , and f and
g are non-contradictorys,wP . Since every argument for a, ¬a, h, e, c, d, and b is
overruleds,wP , these objective literal are falses,wP . The undefineds,wP objective literals
are i and j.

If we look at Figures 3.6, 3.8 and 3.10 we get both the status of the arguments
and the truth value of the conclusions of PPL. The results obtained from this
proposal are presented in Tables 3.2, 3.3 and 3.4 (see Remarks 31 and 32).

Remark 31 (Notation for Tables 3.2 and 3.3) Let p (resp. o) be the kind
(strong or weak) of proposed (resp. opposing) arguments. C, BC, NC, OV and
D denote, respectively, the status of an argument A: ‘contradictory’, ‘based on
contradiction’, ‘non-contradictory’, ‘overruled’ and ‘defensible’. By “Ap

L is Np
o ”

we mean “the status of Ap
L is N in a set of p- proposed arguments and o-opposing

arguments”.

Remark 32 (Notation for Table 3.4) Let p (resp. o) be the kind (strong or
weak) of proposed (resp. opposing) argument. C, BC, NC, F , and U denote
the truth value of a conclusion L: ‘true and contradictory’, ‘true and based on
contradiction’, ‘true and non contradictory’, ‘false’, and ‘undefined’, respectively.
By “L is Np

o ” we mean “the truth value of L is N in a set of p- proposed arguments
and o- opposing arguments”. Since columns Us

w and Us
s would have no elements,

we omit them from the table.

In the remainder of this section, we relate our semantics to WFSXp [ADP95],
the grounded (skeptical) extension [Dun95], WFSX [PA92], and WFS [Prz90].

A paraconsistent way of reasoning is obtained through F s,w
P and we proceed by

deducing the same truth value of objective literals as the WFSXp semantics:

3.2. DECLARATIVE SEMANTICS 71

Cs
w BCs

w NCs
w OV s

w Ds
w Cs

s BCs
s NCs

s OV s
s Ds

s

As
fP (i)

√ √

As
pe(i)

√ √

As
fOMA(i)

√ √

As
hP (i)

√ √

As
¬hP (i)

√ √

As
⊥

√ √
As

ev(i,tFDD)

√ √

As
pLE(i)

√ √ √

As
aS(SD)

√ √

As
ev(a,SD)

√ √

As
pe(a)

√ √

As
¬acB(a)

√ √

As
fOMA(a)

√ √

As
pLE(a)

√ √

As
¬hP (a)

√ √

As
hP (a)

√ √

As
hP (p)

√ √

As
hP ′(p)

√ √

As
hP ′′(p)

√ √

As
fP (p)

√ √

As
ch(p)

√ √

As
fOMA(p)

√ √

As
pe(p)

√ √

A′s
pe(p)

√ √

As
¬hP (p)

√ √

As
pLE(p)

√ √ √

Table 3.2: The status of arguments w.r.t Args(PPL) and Argss(PPL).

72 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

Cw
w BCw

w NCw
w OV w

w Dw
w

Aw
fP (i)

√

Aw
pe(i)

√

Aw
fOMA(i)

√

Aw
hP (i)

√

Aw
¬hP (i)

√

Aw
⊥

√
Aw

ev(i,tFDD)

√

Aw
pLE(i)

√

Aw
aS(SD)

√

Aw
ev(a,SD)

√

Aw
pe(a)

√

Aw
¬acB(a)

√

Aw
fOMA(a)

√

Aw
pLE(a)

√

Aw
¬hP (a)

√

Aw
hP (a)

√

Aw
hP (p)

√

Aw
hP ′(p)

√

Aw
hP ′′(p)

√

Aw
fP (p)

√

Aw
ch(p)

√

Aw
fOMA(p)

√

Aw
pe(p)

√

A′w
pe(p)

√

Aw
¬hP (p)

√

Aw
pLE(p)

√

Table 3.3: The status of arguments w.r.t Argsw(PPL)

3.2. DECLARATIVE SEMANTICS 73

Cs
w BCs

w NCs
w F s

w Cs
s BCs

s NCs
s F s

s Uw
w NCw

w

fP (i)
√ √ √

pe(i)
√ √ √

fOMA(i)
√ √ √

hP (i)
√ √ √ √

¬hP (i)
√ √ √ √

⊥ √ √ √ √
ev(i, tFDD)

√ √ √ √
pLE(i)

√ √ √ √

aS(SD)
√ √ √

ev(a, SD)
√ √ √

pe(a)
√ √ √

¬acB(a)
√ √ √

fOMA(a)
√ √ √

¬hP (a)
√ √ √

hP (a)
√ √ √

pLE(a)
√ √ √

hP (p)
√ √ √ √

fP (p)
√ √ √

ch(p)
√ √ √

fOMA(p)
√ √ √

pe(p)
√ √ √

¬hP (p)
√ √ √ √

pLE(p)
√ √ √ √

Table 3.4: The truth value of PPL’s conclusions

74 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

Theorem 33 (WFSXp semantics vs F s,w
P) Let P be an ELP such that ⊥ /∈

H(P), and let L be an objective literal in H(P).

• L ∈ WFSXp(P) iff L is trues,wP ;

• not L ∈ WFSXp(P) iff L is falses,wP ;

• {L, not L} ∩ WFSXp(P) = ∅ iff L is undefineds,wP .

Proof. We have to prove that (1) L ∈ WFSXp(P) iff L is trues,wP , and (2)
not L ∈ WFSXp(P) iff L is falses,wP .

1. We prove, by induction on the iteration of both ΓΓs and F s,w
P , that

∀n : L ∈ ΓΓ ↑n
s (∅)⇔ ∃As

L ∈ F s,w ↑n
P (∅)

Base: Clearly, since n = 0, there does not exist neither an L ∈ ΓΓ↑0
s nor

As
L ∈ F s,w ↑0

P .

Induction: Assume there exists a rule L ← not L1, . . . , not Lj in P and

∀m≤n : L ∈ ΓΓ ↑n
s (∅) iff As

L = [L← not L1, . . . , not Lj] ∈ F s,w ↑n
P (∅).

⇒ Assume further that L ∈ ΓΓ ↑m+1
s (∅). We have to prove that As

L ∈
F s,w ↑m+1
P (∅). If L ∈ ΓΓ ↑m+1

s (∅) then there does not exist any Li ∈ ΓΓ ↑m
s (∅)

(1 ≤ i ≤ j), i.e. there does not exist a rule Li ← Body ∈ P such that
Body ⊆ ΓΓ ↑m

s (∅). If L ∈ ΓΓ↑m
s (∅) then As

L ∈ F s,w ↑m
P (∅). So, there does not

exist any As
Li
∈ F s,w ↑m

P (∅). Therefore, As
L ∈ F s,w ↑m+1

P (∅)
⇐ Assume further that As

L ∈ F s,w ↑m+1
P (∅). We have to prove that L ∈

ΓΓ ↑m+1
s (∅). If As

L ∈ F s,w ↑m+1
P (∅) then (1) there does not exist any Aw

Li
∈

Args(P), i.e. there is no rule Li ← Body in P , or (2) there exists an
Aw

Li
∈ Args(P) attacking As

L that it is attacked by an argument As
L′ ∈

F s,w ↑m
P (∅), i.e. there is an not L′ ∈ Assump(Aw

Li
). If As

L ∈ F s,w ↑m
P (∅)

then L ∈ ΓΓ ↑m
s (∅). So, there does not exist any Li ∈ ΓΓ ↑m

s (∅). Therefore,
L ∈ ΓΓ ↑m+1

s (∅).

2. By definition not L ∈ WFSXp(P) iff L /∈ Γs(lfp(ΓΓs)). Since, as proven
in point(1), the lfp(ΓΓs) exactly corresponds to F s,w

P , this amounts to prove
that L is falses,wP iff there is an argument in F s,w

P attacking As
L. But this

means that As
L is overruleds,w

P , and so, by definition L is falses,wP

A consistent way of reasoning is obtained through Fw,w
P . When considering a

consistent logic program, Fw,w
P coincides with both WFSX semantics [PA92] and

[Dun95]’s grounded (skeptical) extension.

3.2. DECLARATIVE SEMANTICS 75

Corollary 34 Let P be a consistent program resulting from a union of extended
logic programs. Since WFSX coincides with WFSXp for consistent programs,
then WFSX also coincides with the results of Fw,w

P

To show that Fw,w
P and [Dun95]’s grounded (skeptical) extension coincide, we

first relate [Dun95]’s definitions of both RAA-attack and g-attack to our definition
of attack as follows:

Lemma 35 Let P be an ELP such that ⊥ /∈ H(P), {(AL, L), (AL′, L′), (A¬L,¬L)} ⊆
Args(P) be such that not L ∈ AL′, and {Aw

L, A
w
L′, Aw

¬L} ⊆ Args(P) be such that
not L ∈ Assump(AL′). If (AL, L) g-attacks (AL′, L′) then Aw

L attacks Aw
L′. If

(A¬L,¬L) RAA-attacks (AL, L) then Aw
¬L attacks Aw

L.

Proof. This results follows directly from the construction of weak arguments

Theorem 36 (Grounded extension vs Fw,w
P) Let P be an ELP such that ⊥ /∈

H(P), and let L be an objective literal in H(P).

• an argument (AL, L) ∈ lfp(F) iff ∃Aw
L ∈ lfp(Fw,w

P);

• an argument ({not L}, L) ∈ lfp(F) iff ¬∃Aw
L ∈ gfp(Fw,w

P).

Proof. We have to prove that (1) an argument (AL, L) ∈ lfp(F) iff ∃Aw
L ∈

lfp(Fw,w
P), and (2) an argument ({not L}, L) ∈ lfp(F) iff ¬∃Aw

L /∈ gfp(Fw,w
P). We

prove, by induction on the iteration of both F and Fw,w
P , that

1. ∀n : L ∈ F ↑n ⇔ ∃Aw
L ∈ Fw,w ↑n

P .

Base: Clearly, since n = 0, there does not exist neither an L ∈ F ↑0(∅) nor
an Aw

L ∈ Fw,w ↑0
P (∅).

Induction: Assume that there exists a rule L ← not L1, . . . , not Lj ∈ P
and ∀n : (A,L) = ({not L1, . . . , not Lj}, L) ∈ F ↑n(∅) iff Aw

L = [L ←
not ¬L, not ⊥, not L1, . . . , not Lj] ∈ Fw,w ↑n

P (∅).
⇒ Assume further that (A,L) ∈ F ↑n+1(∅). We have to prove that Aw

L ∈
Fw,w ↑n+1
P (∅). If (A,L) ∈ F ↑n(∅) then there does not exist any (Ai, Li) ∈

F ↑n(∅) (1 ≤ i ≤ j), i.e. there does not exist any (Ai, Li) attacking (A,L)
because (1) there is no rule Li ← Bodyi ∈ P or (2) there is an (Ai, Li) ∈
AR(P) that it is attacked by an argument in F ↑n(∅). If (A,L) ∈ F ↑n(∅) then
Aw

L ∈ Fw,w ↑n
P (∅). So, there does not exist any Aw

Li
∈ Fw,w ↑n

P (∅). Therefore,
Aw

L ∈ Fw,w ↑n+1
P (∅)

76 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

⇐ Assume further that Aw
L ∈ Fw,w ↑n+1

P (∅). We have to prove that (A,L) ∈
F ↑n+1(∅). If Aw

L ∈ Fw,w ↑n+1
P (∅) then there does not exist any Aw

Li
∈ Fw,w ↑n

P (∅)
because (1) there is no rule Li ← Body ∈ Args(P) or (2) there exist an
Aw

Li
∈ Fw,w ↑n

P (∅). If Aw
L ∈ Fw,w ↑n

P (∅) then (A,L) ∈ F ↑n(∅). So there does
exist any (Ai, Li) ∈ F ↑n(∅). Therefore, (A,L) ∈ F ↑n+1(∅).

2. Given the results of Lemmas 20 and 21, relating greatest and least fixpoints
of F p,o

P , and given that in the case p = o = w, the result follows similarly to
the proof in point (1)

Finally, F s,s
P coincides with WFS with “classical negation” [Prz90].

Theorem 37 (WFS semantics vs F s,s
P) Let P be an ELP such that ⊥ /∈ H(P),

and let L be an objective literal in H(P).

• L ∈ WFS(P) iff L is trues,sP

• not L ∈ WFS(P) iff L is falses,sP

• {L, not L} ∩ WFS(P) = ∅ iff L is undefineds,sP .

Proof. This proof is similar to that of Theorem 33. Note that the construction of
WFS is obtained by the iteration of the operator ΓΓ, where no semi-normality
(i.e. weak arguments) comes in place

3.3 Proof for an Argument

“Something is proved (a literal, an argument, or something else) if
there exists at least one proof that succeeds. Something is not proved
if every proof fails. In other words, a proof of something fails if every
proof fails.” [PS97].

Event though the declarative semantics just exposed relies on an iterative pro-
cedure, its usage for computing arguments may not always be appropriate. This is
especially the case when we are only interested in the proof for a (query) argument,
rather than all acceptable arguments, as is obtained by the iterative process. Such
a query oriented proof procedure can be viewed as conducting a “dispute between
a proponent player and an opponent player” in which both proponent and oppo-
nent exchange arguments. In its simplest form, the dispute can be viewed as a
sequence of alternating arguments:

PR1, OP2, PR3, . . . , PRi, OPi+1, PRi+2, . . .

3.3. PROOF FOR AN ARGUMENT 77

The proponent puts forward an initial argument PR1. For every argument PRi

put forward by the proponent, the opponent responds with an attacking argument
OPi+1 against PRi. For every attacking argument Oi, put forward by the oppo-
nent, the proponent attempts to counter-attack with a proposing argument Pi+1.
To win the dispute, the proponent needs to have a proposed argument against
every opposing argument of the opponent. Therefore, a winning dispute can be
represented as a dialogue tree, which represents the top-down, step-by-step con-
struction of a proof tree. We follow [PS97]’s proposal, which defines a proof for an
argument AL as a dialogue tree for AL. However, our definition of dialogue tree is
in accordance with the acceptability of the arguments of an ELPd P (see Def. 42):

A proposed argument AL ∈ Argsp(P) is acceptable if all of its opposing
arguments in Argso(P) are attacked by acceptable arguments from
Argsp(P).

To define a dialogue tree for an argument AL we first need a definition of
dialogue for an argument. A dialogue for AL is a sequence of PR and OP moves
of proposed and opposing arguments, such that the first PR move is the argument
AL. Each OP (resp. PR) move of a dialogue consists of an argument from
Argso(P) (resp. Argsp(P)) attacking the previous proposed (resp. opposing)
argument. Intuitively, we can say that every PR move wants the conclusion of AL

to be acceptable, and each OP move only wants to prevent the conclusion of AL

from being acceptable. In the case of PR moves, we can further say that if we
impose the restriction that proposing arguments cannot be used more than once
in a dialogue, then the dialogue will have a finite sequence of PR and OP moves.
While none of the proposed arguments can be used more than once in the same
dialogue, any of the opposing arguments can still be repeated as often as required
to attack proposed arguments.

Definition 51 (dialoguep,oAL
) Let P be an ELPd, p (resp. o) be the kind (strong

or weak) of a proposed (resp. an opposing) argument of P , and Argsp(P) and
Argso(P) be the set of p-arguments and o-arguments of P , respectively. A dialogue
p o (in P) for an argument AL ∈ Argsp(P), denoted dialoguep,oAL

, is a finite non-
empty sequence of m moves movei = ALi

(1 ≤ i ≤ m) such that

1. move1 = AL;

2. for every 1 < i ≤ m, ALi
attacks ALi−1

and

• if i is odd then ALi
∈ Argsp(P) and there is no odd j < i such that

ALj
= ALi

, or

• if i is even then ALi
∈ Argso(P).

78 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

We say that movei is odd if i is odd; otherwise, movei is even.

A dialogue for AL succeeds if its last move is a PR move. In this proposal, we
want to guarantee that a dialogue tree for an argument AL is finitary, i.e. that the
iterative process above is guaranteed to terminate after an enumerable number
of steps. Note that we only consider grounded finite ELPd in the declarative
semantics (presented in the previous section). By considering this, every dialogue
in a dialogue tree finishes because there will always be a last move PR (resp. OP),
so no opposing (resp. proposed) argument against it exists.

Definition 52 (Completed, Failed and Successful Dialogue)
Let P be an ELPd. A dialogue p o (in P) for an argument AL ∈ Argsp(P) is

completed iff its last move is m, and

• if m is odd then there is no argument in Argso(P) attacking ALm
, or

• if m is even then there is no argument in Argsp(P) − Sp attacking ALm
,

where Sp is the set of all ALj
in the sequence such that j is odd.

A completed dialogue is failed iff its last move is odd; otherwise, it succeeds.

Remark 38 From now on, and unless otherwise stated, we refer to ‘completed
dialogue’ simply as ‘dialogue’.

Note that a dialoguep,oAL
in P and the lfp(F p,o

P) “grow” in different ways. In the
former, an argument A in the last move, movem, is not attacked by any argument
in Args(P). Since A attacks the previous move, movem−1, we can say that the
argument B in movem−2 was reinstated by A. Thus, each movei (1 ≤ i < m−1) is
reinstated by movei+2. The latter evaluates argument A as acceptable in the first
iteration of the characteristic function F p,o

P . In the second iteration, A reinstates
an argument B, so that B is acceptable and may reinstate other arguments in all
following iterations. We can further say that dialoguep,oAL

decreases (in a top-down
way) and lfp(F p,o

P) increases (in a bottom-up way) the set of evaluated arguments.

Proposition 39 Let movem = AL be the last move of a succeeded dialoguep,oAL′
in

P . Then, AL ∈ F p,o
P (∅).

Proof. We have to prove that AL of the last move of a succeeded dialoguep,oAL′
is an

acceptablep,o argument with respect to Args(P). Obvious, if AL is the argument
of the last move of a succeeded dialoguep,oAL′

, then AL is a p-argument and there
is no o-argument attacking it. If AL is a p-argument and there is no o-argument
attacking it, then AL ∈ F p,o

P (∅)

3.3. PROOF FOR AN ARGUMENT 79

A dialogue tree DT for AL considers all possible ways in which AL can be
attacked. The tree has root AL and each branch of DT is a dialogue for AL.
Furthermore, every single dialogue for AL has a corresponding branch in the tree
because we must consider all the arguments in Args(P) to deduce the status of
AL. The dialogue tree DT for an argument AL succeeds if every dialogue of DT
succeeds.

Definition 53 (DT p,o
AL

) Let P be an ELPd, p (resp. o) be the kind (strong or
weak) of the proposed (resp. opposing) argument of Args(P), and Argsp(P) (resp.
Argso(P)) be the set of p-arguments (o-arguments) of P . A dialogue tree p o (in
P) for AL ∈ Argsp(P), denoted DT p,o

AL
, is a finite tree of m moves movei = ALi

(1 ≤ i ≤ m) such that

1. each branch is a dialoguep,oAL
, and

2. for all i, if movei is

• even then its only child is a p-argument attacking ALi
∈ Argso(P);

• odd then its children are all o-arguments attacking ALi
∈ Argsp(P)

A branch of the tree succeeds if it corresponds to a succeeded dialogue. A DT p,o
AL

succeeds iff all branches (i.e. all dialoguep,oAL
) of the tree succeed.

According to the second condition of Definition 53, we may obtain more than
one dialogue tree for an argument. This occurs because only one proponent’s move
is considered for each opponent’s move of a dialogue tree. The following Example
illustrates this.

Example 22 Let P be an ELPd as follows

{p← not a; a← not b, not c; a← not d; b; d← not e; c← not g; g}

Figure 3.11 presents the two possible DT s,s
Ap

in P . The first dialogue tree succeeds,
and the second one does not succeed because there is a failed dialogue (i.e. there is
a last move with an o-argument: move4 = Ao

g = [g]).

At this point we can relate the results from a DT p,o
AL

to the status of the argu-
ment AL (see Def. 44), as follows:

Proposition 40 An argument Ap
L in P is

• justifiedp,oP iff there exists a successful DT p,o
AL

;

• overruledp,oP iff for all DT p,o
AL

there exists a move2 = Ao
L′ such that DT o,p

AL′

succeeded;

80 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

P : [p← not a]

O : [a← not b, not c] O : [a← not d]

P : [b] P : [d← not e]

P : [p← not a]

O : [a← not b, not c] O : [a← not d]

P : [c← not g] P : [d← not e]

O : [g]

Figure 3.11: DT s,s
Ap

in {p← not a; a← not b, not c; a← not d; b; d← not e; c←
not g; g}

• defensiblep,oP iff it is neither justifiedp,oP nor overruledp,oP .

Proof. Below we need a notion of size of dialogue tree. The size of a dialogue
tree DT p,o

AL
, size(DT p,o

AL
), is the maximum of the sizes of its dialogues. The size of

a dialogue is determined by the number of odd moves.
In the remainder of the proof, we denote by DTAL

(resp. size(DTAL
), AL, A⊥,

FP) the DT p,o
AL

(resp. size(DT p,o
AL

), Ap
L, A

p
⊥, F

p,o
P).

Justified arguments for L

The proof for justifiedp,oP arguments for L follows by induction on the size of
DTAL

and the number of iterations of FP starting from ∅, needed to obtain AL.
Formally, we prove by induction on n that:
(1) AL ∈ F ↑n

P iff there exists a successful DTAL
such that

size(DTAL
) ≤ n

Base: AL ∈ F ↑1
P iff there is no Ao

L′ attacking AL. So, (by Definition 53) there
exists a DTAL

that has just one move, move1 = AL, DTAL
is succeeded, and

size(DTAL
) = 1.

Induction: ⇒ Assume that AL ∈ F ↑n+1
P , i.e. AL is acceptablep,o w.r.t. F ↑n

P .

Then for every Ao
L′ attacking AL there is a justifiedp,oP argument Ap

L′′ in F ↑n
P

3.3. PROOF FOR AN ARGUMENT 81

attacking Ao
L′. By induction hypothesis, all such Ap

L′′ have at least a successful
dialogue tree DTAL′′ with size(DTAL′′) ≤ n. So there is a successful DTAL

with
size(DTAL

) ≤ n+ 1.
⇐Assume now that there is a successful dialogue treeDTAL

with size(DTAL
) ≤

n + 1. This means that each argument that attacks AL is attacked by some Ap
L′′ ,

each one with a successful DTAL′′ with size(DTAL′′) ≤ n. By induction hypothesis,

all such Ap
L′′ belong to F ↑n

P . So AL is acceptablep,o w.r.t. F ↑n
P , i.e. AL ∈ F ↑n+1

P .
Clearly, where the fixpoint of FP is obtained in an enumerable number of

interactions, (1) implies that AL ∈ lfp(FP) iff there exists a successful DTAL
.

Justified arguments for ⊥
The proof for justifiedp,oP arguments for ⊥ also follows by induction on the

size of the tree for A⊥ and the number of iterations of FP starting from ∅, needed
to obtain A⊥.

Formally, we prove by induction on n that:
(1) A⊥ ∈ F ↑n

P (n > 1) iff there exists a successful DTA⊥
such that

size(DTA⊥
) ≤ n

Base: Let S be the result of F ↑0
P . Assume that there are no default literals not L

in A⊥, i.e. Assump(A⊥) = ∅. A⊥ ∈ FP (S) iff all objective literals Li ∈ Body(A⊥)
(i > 0) are in S, i.e. seen that all Li ∈ Body(A⊥) are acceptablep,o w.r.t. F ↑n

P and

as Assump(A⊥) = ∅ then A⊥ is acceptablep,o w.r.t. F ↑1
P .

Induction: ⇒ Assume that A⊥ ∈ F ↑n+1
P , i.e. A⊥ is acceptablep,o w.r.t. F ↑n

P .
Then for every argument Ao

L attacking A⊥, there is a justifiedp,oP argument Ap
L′ in

F ↑n
P attacking Ao

L. By induction hypothesis, all such Ap
L′ have at least a successful

dialogue tree DTAL′ with size(DTAL′) ≤ n. So there is a successful DTA⊥
with

size(DTA⊥
) ≤ n+ 1.

⇐ Assume now that there is a successful DTA⊥
with size(DTA⊥

) ≤ n+1. This
means that each argument that attacks A⊥ is attacked by some Ap

L′ , each one with
a successful DTAL′ and size(DTAL′) ≤ n. By induction hypothesis, all such Ap

L′

belong to F ↑n
P . So A⊥ is acceptablep,o w.r.t. F ↑n

P , i.e. A⊥ ∈ F ↑n+1
P .

Clearly, where the fixpoint of FP is obtained in an enumerable number of
iterations, (1) implies that A⊥ ∈ lfp(FP) iff there exists a successful DTA⊥

.

Overruled arguments for L

By Def. 42, there is a justifiedo,p
P argument Ao

L′ attacking AL iffAL is overruledp,o
P .

As shown above in the proof for justifiedp,o
P arguments for L′, for each such justifiedp,o

P

argument AL′ there is a successful DTAL′ . So, if in the failed DTAL
, one of the

moves below AL (i.e. one of the arguments attacking AL) has a successful dialogue
tree (i.e. it is justifiedo,p

P), then AL is overruledo,p
P q.e.d.

82 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

The following two examples illustrate the concepts presented in Proposition 40.

Example 23 Let P1 = {p ← not a; a ← not b, not c; b ← not c; c ←
not g; g; m ← not l; l ← not m}. Figure 3.12 presents some of the possible
dialogue trees in P1.

The last move of DT s,s
Ap

(in the centre right of the figure) is the p-argument
As

g. Since DT s,s
Ag

succeeds, As
g is justifieds,sP1. Therefore, DT s,s

Ac
does not succeed

because it is attacked by the o-argument As
g. Thus, As

p is justifieds,sP1 and As
c is

overruleds,sP1. Note that As
m and As

l are both defensibles,sP1 because they are attacked
by a non-justifieds,sP1 argument (in this case because they attack each other).

P : [l ← not m]

O : [m← not l]

P : [m← not l]

O : [l ← not m]

P : [p← not a]

O : [a← not b, not c]

P : [c← not g]

O : [g]

P : [p← not a]

O : [a← not b, not c]

P : [b← not c]

O : [c← not g]

P : [g]

P : [c← not g]

O : [g] P : [g]

Figure 3.12: Some DT s,s
AL

in {p← not a; a← not b, not c; b← not c;
c← not g; g; m← not l; l ← not m}

Example 24 Let P2 = {a← not b; ¬a; b; ¬b; c; ⊥ ← c}. Figure 3.13 illustrates
the possible DTw,w

AL
in P2. Note that each dialogue tree does not succeed because its

last move is an o-argument. Nevertheless, all arguments are defensiblew,w
P2 because

none of these last moves are justifiedw,w
P2 .

3.3. PROOF FOR AN ARGUMENT 83

P : [a← not b, not ¬a, not ⊥]

O : [b← not ¬b, not ⊥] O : [¬a← not a, not ⊥]

P : [¬b← not b, not ⊥]

O : [b← not ¬b, not ⊥]

P : [c← not ¬c, not ⊥]

O : Aw
c + [⊥ ← c, not ⊥, not ¬⊥]

P : Aw
c + [⊥ ← c, not ⊥, not ¬⊥]

O : Aw
c + [⊥ ← c, not ⊥, not ¬⊥]

P : [b← not ¬b, not ⊥]

O : [¬b← not b, not ⊥]

P : [¬b← not b, not ⊥]

O : [b← not ¬b, not ⊥]

P : [¬a← not a, not ⊥]

O : [a← not ¬a, not ⊥]

Figure 3.13: DTw,w
AL

in {a← not b; ¬a; b; ¬b; c; ⊥ ← c}

84 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

Figure 3.14 illustrates the possible DT s,w
AL

in P2. In this case, all arguments
are justifieds,wP2 .

P : [b]

P : [¬b]

P : [c]

P : [¬a]

P : [a← not b]

O : [b← not ¬b, not ⊥]

P : [¬b]

P : [c; ⊥ ← c]

Figure 3.14: DT s,w
AL

in {a← not b; ¬a; b; ¬b; c; ⊥ ← c}

For justifiedw,w
P arguments there are no contradiction. But for justifieds,k

P ar-
guments there migth be. As in the previous section, here also it is easy to detect
the status of a literal w.r.t. contradiction for the case of justifieds,w

P literals:

Proposition 41 A justifieds,wP argument As
L in P is either

• contradictorys,wP iff L is the symbol ⊥, or different from ⊥ and there exists
at least a successful DT s,w

A¬L
;

• based-on-contradictions,w
P iff As

L is not contradictorys,wP and

– there exists a contradictorys,wP As
L′ with a rule L′ ← . . . , L, . . ., or

– there exists an L′ ∈ Conc(As
L) such that As

L′ is contradictory
s,w
P , or

– for all dialogues,wAL
in a successful DT s,w

AL
: the argument of the last move

is not non-contradictorys,wP ; or

• non-contradictorys,wP , otherwise.

Proof. Follows directly from Proposition 40, Definition 48, and Proposition 29

To conclude about the truth value of an objective literal L we evaluate more
than one dialogue tree of each argument for such L:

Proposition 42 An objective literal L is

3.4. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 85

• truep,oP iff there exists a successful DT p,o
AL

. Thus, L is

– contradictorys,wP iff for all successful DT s,w
AL

: As
L is contradictorys,wP , or

– based-on-contradictions,w
P iff for all successful DT s,w

AL
: As

L is based-on-
contradictons,w

P , or

– non-contradictorys,wP iff there exists a successful DT s,w
AL

such that As
L is

non-contradictorys,wP ;

• falsep,oP iff ∀ DT p,o
AL

: Ap
L is overruledp,oP ;

• undefinedp,oP iff ∀ DT p,o
AL

: Ap
L is neither justifiedp,oP nor overruledp,oP .

Proof. Follows easily from the results above in the section

Example 25 The truth value of literals of P1 from Example 23 is as follows:
g and p are trues,sP1, c is falses,sP1, and m and l are both undefineds,sP1. Following
Example 24, all literals of P2 are justifieds,wP2 . However, all literals of P2 are
undefinedw,w

P2 .

3.4 On the implementation of the proposed se-

mantics

For this proposal we have made two implementations, both in the XSB System (by
resorting to tabling) [SW07]. One is a bottom-up implementation of the semantics,
following closely its declarative definition, and the other implements query-driven
proof procedure for the semantics. The proof procedure has also been imple-
mented by using the toolkit Interprolog [Cal04], a middleware for Java and Prolog
which provides method/predicate calling between both. Since we also describe an
Argumentation-based Negotiation System, more complex than those implementa-
tion, we prefer to explain both XSB and Interprolog in the next Chapter.

The procedure can be viewed as building a dialogue tree in which a pro-
ponent and an opponent exchange arguments. In its simplest form, each dia-
logue in such a dialogue tree is viewed as a sequence of alternating arguments:
P1, O2, P3, . . . , Pi, Oi+1, Pi+2, The proponent puts forward some initial argu-
ment P1. For every argument Pi put forward by the proponent, the opponent
attempts to respond with an attacking argument Oi+1 against Pi. For every at-
tacking argument Oi, put forward by the opponent, the proponent attempts to
counter-attack with a proposing argument Pi+1. For the proponent to win a di-
alogue, the dialogue sequence has to end with a proposing argument. To win a

86 CHAPTER 3. A PROPOSAL FOR SELF-ARGUMENTATION

Figure 3.15: A Dialogue Tree DT s,w
hp(P) from Example 9

dialogue tree, the proponent must win every dialogue on it. The operational se-
mantics has been implemented by also using the toolkit Interprolog. Figure 3.15
presents a dialogue tree DT s,w

PPL for hP (p).

Chapter 4

A Proposal for
Argumentation-Based
Negotiation

This chapter presents the main contribution of the dissertation: an argumentation-
based negotiation semantics for distributed knowledge bases represented as extended
logic programs. Such a semantics extends the argumentation semantics presented
in the previous chapter by considering sets of (distributed) logic programs, rather
than single ones. For specifying the ways in which the various logic programs may
combine their knowledge we make use of concepts that have been developed in the
areas of defeasible reasoning and multi-agent settings. In particular, we associate
to each program P a cooperation set (the set of programs that can be used to
complete the knowledge in P) and an argumentation set (the set of programs with
which P has to reach a consensus). In this chapter, we first define a declarative
semantics for argumentation-based negotiation. Then, some illustrative examples
are presented. Finally, we present a general architecture for implementing the
semantics.

In this chapter we propose an argumentation-based negotiation semantics for
sets of knowledge bases distributed through a multi-agent setting (MAS). In it
different agents may have independent or overlapping knowledge basesKb, eachKb
being represented by an extended logic program with denials (ELPd) over a language
(cf. Def. 3). If all agents have complete access to the knowledge bases of all other
agents, then they should be able to build arguments using rules from others (i.e.

87

88CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

to cooperate) and would have to defend their arguments against arguments build
by others (i.e. to argue). In this case, the semantics of argumentation-based
negotiation framework should coincide with the semantics of the union of the
knowledge bases, viewed as a single one. Here we want to deal with cases where
the semantics of multi-agent setting does not necessarily coincide with the union.
The basis of our proposal is that agents negotiate by exchanging parts of their
knowledge to obtain a consensus concerning the inference of an agent’s beliefs.

Moreover, a multi-agent setting A might have an agent’s knowledge base phys-
ically distributed over a computer network. Thus, an agent Ag of A does not need
to, and sometimes cannot, argue and/or cooperate with all agents in A. In our
proposal, every agent Ag in A has associated two sets of agents: the set of agents
with which it can cooperate in order to build arguments, and the set of agents from
whose attacks it must defend itself (i.e. argue) in order to reach some consensus.
In general, little is assumed about these sets: we only impose that every agent
argues and cooperates with itself because it would make little sense for an agent
neither to access its own knowledge nor to obtain a consensus based upon its own
knowledge.

The ability of associating these sets to each agent provides a flexible framework
which, besides reflecting the possibly existing physical network, may serve for other
purposes than the ones above:

• For modelling knowledge over a hierarchy where each node of the hierarchy
is represented by a Kb that cooperates with all its inferiors, and must argue
with all its superiors.

• For modelling knowledge that evolves. Here the “present” can use knowledge
from the “past” unless this knowledge from the past is in conflict with later
knowledge. This can be modelled by allowing any present node to cooperate
with its past nodes, and forcing any past node to argue with future nodes.

In these cases, it is important that the knowledge is not flattened, as in the union
of all knowledge bases, and that the semantics is parametric on the specific Kb.
I.e. it might happen that an argument is acceptable in a given (agenti) Kbi, and
not acceptable in another (agentj) Kbj of the same system.

As with other argumentation based frameworks (e.g. [Dun95, PS97, BDKT97,
Vre97, SS02b, Pol01, GS04]) the semantics is defined based on a notion of ac-
ceptable arguments, this notion being itself based on an attacking relation among
arguments. Moreover, as in Chapter 3, based on these acceptability, all arguments
are assigned a status: justified argument are those that are always acceptable;
overruled arguments are those that are attacked by a justified argument; other
arguments (which may or may not be acceptable but which are not attacked by a
justified one) are called defensible.

4.1. FROM CENTRALIZED TO DISTRIBUTED ARGUMENTATION 89

It is also a goal of the proposed framework to be able to deal with mutually
inconsistent, and even inconsistent, knowledge bases. Moreover, when in presence
of contradiction, we want to obtain ways of multi-agent setting reasoning, ranging
from consistent (in which inconsistencies lead to no result) to paraconsistent. For
achieving this, the agents may exchange strong or weak arguments, as it is made
clear in the following. This also yields a refinement of the possible status of
arguments: justified arguments may now be contradictory, based on contradiction
or non-contradictory.

In the remainder of this chapter, we first present what it is necessary to extend
the Self-argumentation semantics from Chapter 3 to this Argumentation-based Ne-
gotiation proposal. Some definitions from the former will have to be reset from a
centralized point of view to a distributed one. We then illustrate our ideas/proposal
with a multi-agent setting that models a trial which clearly represents the argumen-
tative dependency between a prosecuting lawyer (the prosecution) and a defending
lawyer (the defense), and a cooperative dependency between a lawyer and her/his
witness. After that we define the declarative semantics of the argumentation-based
negotiation framework. Then we show some properties of the framework, namely
properties that relate it to extant work on argumentation and on other semantics
for logic programs. Finally, a couple of illustrative examples.

4.1 From Centralized to Distributed Argumen-

tation

In the centralized proposal1, a (strong or weak) argument of Ag for some objective
literal L is a complete well-defined sequence for L over the set of rules of Ag’s
knowledge base (cf. Def. 37, Def. 36 and Def. 35, respectively). Since we are con-
cerned with modelling knowledge bases distributed through several agents, (strong
and weak) partial arguments of Ag for L will also considered in the distributed
proposal. By partial argument of Ag for L we mean a non-complete well-defined
sequence for L, called SeqL, over the set of rules of Ag’s knowledge base. It occurs
if there is no rule for at least one objective literal Li in the body of some rule in
SeqL. Therefore, even if an agent Ag has a rule for L in its knowledge base, a
complete well-defined sequence for L may not be built by Ag alone, and so Ag has
only a partial argument for L. The (complete or partial) arguments of Ag built
only on its own knowledge base are called local arguments of Ag. Since we want to
deal with local partial arguments, an argumentation-based semantics with coop-

1For simplicity, in the remainder of this chapter we will say “centralized proposal” instead
of “self-argumentation proposal” and “distributed proposal” instead of “argumentation-based
negotiation proposal”.

90CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

eration is proposed. By argumentation, we mean the evaluation of arguments to
obtain a consensus about common knowledge; by cooperation, we mean obtaining
arguments to achieve knowledge completeness.

Intuitively, the distributed proposal coincides with the centralized one if every
agent argues and cooperates with all agents in a multi-agent setting (MAS). As has
already been said, we want to deal with cases where these proposals do not coincide,
i.e. when an MAS represents a kind of hierarchy of knowledge. Moreover, the
MAS might have the agent’s knowledge base physically distributed in a computer
network. Therefore, an agent Ag does not need to argue and/or to cooperate
with all agents in an MAS. We associate with every agent in an MAS an unique
identifier α and two sets of agents’ identifiers, corresponding to its argumentative
and cooperative agents (the former is denoted Argueα and the latter Cooperateα).
We further impose that every agent argues and cooperates with itself because it
would make little sense for an agent neither to access its own knowledge nor to
obtain a consensus based upon its own knowledge. Local partial arguments of agent
Ag can be completed with arguments from Cooperateα, and completed arguments2

of Ag are evaluated with respect to arguments from Argueα . Furthermore, the
evaluation of Ag’s arguments is only with respect to arguments from agents from
both Argueα and Cooperateα.

Remark 43 For simplicity, we will say “(a local partial argument is completed)
via cooperation with Cooperateα” instead of “(a local partial argument is completed)
given a set of arguments from agents in Cooperateα” and “an argument is evaluated
by Argueα” instead of “an argument is evaluated with respect to arguments from
agents in Argueα”.

A multi-agent setting is seen as a set of agents such that each agent Ag is a
tuple

< α,Kbα,Argueα, Cooperateα >

with Ag’s identity in the MAS (denoted by Id(Ag)), an extended logic program
with denials which represents the Ag’s knowledge base (denoted by KbId(Ag)), and
the sets of argumentative and cooperative agents (denoted by ArgueId(Ag) and
CooperateId(Ag), respectively). For instance, let A be a multi-agent setting with
three agents: Ag1, Ag2, and Ag3, such that Ag1 argues with Ag2 and Ag3, and
both Ag1 and Ag2 cooperate with Ag3. The multi-agent setting for the above
description is written as follows:

A = { Ag1 =< 1, Kb1, {1, 2, 3}, {1, 3} >,
Ag2 =< 2, Kb2, {2}, {2, 3} >,
Ag3 =< 3, Kb3, {3}, {3} > }

2Here, we also consider local partial arguments that have been completed through cooperation.

4.1. FROM CENTRALIZED TO DISTRIBUTED ARGUMENTATION 91

where 1 (resp.2 and 3) is the identity of agent Ag1 (resp.Ag2 and Ag3). For
faster understanding, the argumentation and cooperation relations are depicted in
a directed graph such as the one in Figure 4.1, representing agents Ag1, Ag2, and
Ag3 from A.

Ag3

Ag2Ag1 Arg

ArgCoop Coop

Figure 4.1: An example of a Multi-agent Setting

Remark 44 [Directed graph illustrating an MAS] Each node in a directed graph
illustrating an MAS represents an agent Ag. A dashed loop represents the fact
that an agent argues and cooperates with itself. Furthermore, a directed arc with
label Arg, Coop, or ArgCoop links an agent to its argumentative, cooperative, and
argumentative/cooperative agents, respectively. A link Coop (resp. Arg) from Ag1
to Ag2 means that Ag1 asks for cooperation (resp. to argue) with Ag2.

The centralized proposal defines the status of an argument as justified, over-
ruled, or defensible based on its acceptability (see Def. 44). Moreover, a justified
argument can be attacked by the agent’s arguments, but such arguments are ei-
ther overruled or defensible (i.e. “non-justified” arguments). This makes sense in
such a proposal, because it considers a knowledge base Kb of just one agent Ag,
and so any argument over Kb is evaluated only by Ag itself. In the distributed
proposal, arguments of an agent Ag can be built by Ag alone or via cooperation
with Cooperateα. However, it would make little sense for an agent to cooperate
with another one by giving the latter arguments that are overruled in the former.

We thus impose the idea that every argument Arg of an agent Ag can be
used in a cooperation process if and only if Arg is initially evaluated by Argueα.
However, we consider that Argueα can evaluate Arg as defensible, and such an
argument might be evaluated as justified by other set of argumentative agents.
In other words, Ag has a defensible argument Arg with respect to Argueα, Arg
could be used by another agent Ag′ (by considering that α ∈ Cooperateα′) and so
this argument might be justified with respect to Argueα′. Therefore, an agent can
cooperate with both justified and defensible arguments.

92CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

As presented in the centralized proposal, the truth value of an agent’s belief
could be true (and either contradictory, based on contradiction, or non-contradic-
tory), false, or undefined (see both Definition 49 and Proposition 30). However,
in the distributed proposal, an agent’s belief should only be deduced with respect
to both sets of argumentative and cooperative agents. Intuitively, we can deduce
that different truth values of a given literal L over a multi-agent setting A may be
obtained. It happens because it depends on which agent the literal L is inferred
from, and also on what the specification of both sets of cooperative and argumen-
tative agents is, given all the agents in A. For instance, assume a multi-agent
setting where each agent represents “acquired knowledge” in a different period
of time, namely past and present, such that Kbpa = {wait ← not ¬train} and
Kbpr = {¬train}, respectively, are the agents knowledge bases. Intuitively, present
may ask for cooperation with past but not vice-versa. Figure 4.2 illustrates such a
description. The literal wait is true in past because the assumption ‘not ¬train’
is true. Since present asks for cooperation with past, the literal wait might also
be true in present. However, such a result is different in present because it has
new knowledge (i.e. ¬train) which causes the assumption ‘not ¬train’ to be false.
Note that, if we want to obtain the same truth value of such a belief in both past

past presentCoop

Figure 4.2: A = {< pa,Kbpa, {pa}, {pa} >,< pr,Kbpr, {pr}, {pr, pa} >}

and present, then present should argue with past (but not vice-versa). This, how-
ever, will cause the truth value of any belief in A to correspond to its truth value
in present, i.e. in the “latest period of the time”.

Finally, as in the centralized proposal, the distributed proposal may also define
ways of multi-agent reasoning ranging from consistent to paraconsistent. Since
these two approaches have been fully discussed in the centralized version, we will
focus our attention on the details related to distributed knowledge bases.

4.2 “Reaching a Verdict”, an example

The following example, The Inconvenient Witness, was extracted from a thriller.
We use this narrative to model a trial as a multi-agent setting when each agent
represents the knowledge of a trial of a different participant: a defending lawyer
(the defense), a prosecuting lawyer (the prosecution), and both the witness for the

4.2. “REACHING A VERDICT”, AN EXAMPLE 93

prosecution (prosecuting witness) and the witness for the defense (defense witness).
For the sake of simplicity, we assume the accused is represented by his defense,
not being present at the trial.

Example 26 (The Inconvenient Witness) It was well after 3 a.m. when Emi-
ly Brown woke up, frightened. Oh, no. That nasty nightmare again. John Thorn,
her lover, was still fast asleep. She looked out of the window at the enchanting full
moon. Suddenly she noticed two men, apparently arguing in the garden outside,
just a few metres under John’s first floor window. From behind the curtains she
could clearly see the menacing face of one of them, the one holding a long, shining
knife against the elegant overcoat of the other. Suddenly, there was a suffocated
scream and the elegant man fell to the ground, stabbed twice. The other quickly
opened a car, threw the body in, and sped off down the lane. She could read the
registration number. In her head, the twisted face of the victim, a face she already
knew, but who? John was still peacefully at rest.

“It’s him!”, Emily mumbled, while a sharp shiver went up her spine when,
two days later, she saw the photo under the Morning Tribune headline: “Body of
Ronald Stump, king of media, found stabbed to death in stone-pit! Chinese suspect
identified by Police.” But she had seen the killer. He was not Chinese! But how
could she explain being an eyewitness. Any testimony would cost her marriage,
and her privileged lifestyle. She was faced with a dilemma!

“Tell me, Mr. Thorn”, asked Dr. William Watson, the prosecution attorney,
“do you sleep with your contact lenses in”? “No”, replied Paul. “I sincerely hope
you know what perjury means. Do you want us to believe that you put your lenses
in, and take them out again, just to quench your thirst when you wake up in the
middle of the night?”, queried Dr. Watson. An uproar spread in the crowded
Wimbledon Court, when the judge brandished his wooden hammer . . .

In any trial, the prosecution and the defense argue with each other, and both
prosecution and defense witnesses cooperate with, respectively, the prosecution and
the defense. Based on The Inconvenient Witness description, John is the defense
witness because Emily cannot be in Court. Emily provides (i.e. cooperates with)
John with the necessary statement for his testimony. Therefore, the multi-agent
setting

T rial = {defence, prosecution, policeman, john, emily}
represents the trial described in Example 26. Figure 4.3 illustrates both the arguing
and the cooperating dependency between the agents.

In the following, we present every agent’s knowledge base, as an extended
logic program, and the corresponding tuple. Emily saw the murder and knows
that the culprit is not a Chinese man. The rules seen(murder, culprit) and
¬Chinese(culprit) model her moral duty to testify.

94CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

prosecutor

policeman

defender

john

emily

Arg

CoopCoop

Coop

Figure 4.3: “The inconvenient witness”

emily =< em, {se(mu, cu); ¬ch(cu)}, {em}, {em} >

The simplest agent in T rial is John. He was sleeping when the murder oc-
curred, and so he has no knowledge himself about the crime. However, John is the
defense witness and so he needs cooperation from Emily.

john =< jo, ∅, {jo}, {jo, em} >

The prosecution witness is a policeman who identifies a Chinese man as respon-
sible for the crime. Since the description does not specify how the man was iden-
tified, we model such knowledge as identifiedResponsibleFor(culprit,murder).

policeman =< po, {idRF (cu,mu)}, {po}, {po} >

Both prosecution and defense should have acceptable arguments to support
their allegations. Under criminal law, people are presumed innocent until proven
guilty of criminal action. To incriminate a culprit, the prosecution should have an
allegation of his criminal action and at least one piece of evidence to support it.
Evidence makes the culprit seem guilty of a crime. In this case, the evidence is
based on the identification of the person assumed to be responsible for the murder3.

3For simplicity, we use P , E, C, and R instead of ‘Person’, ‘Event’, ‘Culprit’, and ‘Reason’ in
the remaining rules in this section. Moreover, we do not make explicit the witness in the rules
because both defense and prosecution have only one each. Furthermore, to the right of each rule
is the element in the trial which has such ‘knowledge’.

4.2. “REACHING A VERDICT”, AN EXAMPLE 95

guilty(P,E)← allegation(P,E). [prosecution]
allegation(P,E)← occurs(E), evidence(P,E). [prosecution]
occurs(murder). [prosecution]
evidence(P,E)← identifiedResponsibleFor(P,E), chinese(P). [prosecution]
chinese(culprit). [prosecution]

As has already been said, a culprit person is presumed innocent until proven
guilty. Since we want to deal with contradictory conclusions, we use ¬guilty
instead of innocent. So ¬guilty ← not guilty expresses the idea that some person
is explicitly not guilty of a crime if there is no evidence that she/he is guilty of it.
For simplicity, we consider such a rule as part of the defense’s knowledge, i.e. we
do not consider it as the prosecution’s knowledge.

¬guilty(P,E)← not guilty(P,E). [defence]

Even if there is evidence against her client, the defense may state the absurdity
of her client being guilty when the evidence is not admissible. In this case, the
inadmissibility is based on a testimony clarifying that the evidence was forged,
because the culprit is not a Chinese man.

⊥ ← guilty(P,E),¬admissibleEvidence(P,E,R). [defence]
¬admissibleEvidence(P,E,R)← evidence(P,E), forgedEvidence(E,R). [defence]
forgedEvidence(E,C)← seen(E,C),¬chinese(C). [defence]

On the other hand, the prosecution may defeat such a testimony by pointing
out the absurdity of accepting it, because the witness of the defense forged the
evidence and so is committing perjury. As described in Example 26, John has not
seen the culprit4.

⊥ ← forgedEvidence(E,R), perjury(E,R). [prosecution]
perjury(E,C)← ¬seen(E,C). [prosecution]
¬seen(murder, culprit). [prosecution]

Then the prosecution and the defense agents are as follows:

prosecution = < pr,Kbpr, {pr, de}, {pr, po} >
defence = < de,Kbde, {de, pr}, {de, jo} >

4For simplicity, we do not represent the reasons for this conclusion, and so the prosecution’s
knowledge about it is a fact.

96CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

such that Kbpr and Kbde are

Kbpr = { gu(P,E)← al(P,E); al(P,E)← oc(E), ev(P,E); oc(mu); ch(cu);
ev(P,E)← idRF (P,E), ch(P); ⊥ ← fE(E,R), pe(E,R);
pe(E,C)← ¬se(E,C); ¬se(mu, cu) }

Kbde = { ¬gu(P,E)← not gu(P,E); ⊥ ← gu(P,E),¬aE(P,E,R);
¬aE(P,E,R)← ev(P,E), fE(E,R); fE(E,C)← se(E,C),¬ch(C) }

4.3 Declarative Semantics

As motivated in the introduction, in our framework the knowledge bases of agents
are modelled by logic programs. More precisely, we use Extended Logic Programs
with denials over a language L (cf. Def. 3 and Def. 1, respectively), themselves an
extension of Extended Logic Programs [GL90], for modelling the knowledge bases.

As already motivated in the introduction we propose an argumentation-based
semantics with cooperation. By argumentation, we mean the evaluation of argu-
ments to obtain a consensus about common knowledge, and by cooperation, we
mean the granting of arguments to achieve knowledge completeness. Then, be-
sides the knowledge base, in our framework each argumentative agent Ag in a
multi-agent setting A must have a unique identity α in A, and two sets of agents’
identifiers corresponding to argumentative and cooperative agents with Ag. More-
over, the identity of Ag is in both sets of argumentative and cooperative agents
with Ag:

Definition 54 (Argumentative Agent) An argumentative agent (or agent, for
short) over a language L and a set of identifiers Ids is a tuple

Ag =< α, Kbα, Argueα, Cooperateα >

where α ∈ Ids, Kbα is an ELPd over L, Argueα ⊆ Ids and Cooperateα ⊆ Ids
such that α ∈ Argueα and α ∈ Cooperateα.

We denote by Id(Ag) (resp. KbId(Ag), ArgueId(Ag) and CooperateId(Ag)), the
1st (resp. 2nd, 3rd, and 4th) position of the tuple Ag, and by H(Id(Ag)) (cf.
Def. 1) the Extended Herbrand Base of KbId(Ag).

Hereafter, we say ‘arguments from CooperateId(Ag) (or ArgueId(Ag))’ instead of
‘arguments from agents whose identities are in CooperateId(Ag) (or ArgueId(Ag))’.

Definition 55 (Multi-agent Argumentative Setting) Let L be a language,
and Ids be a set of identifiers. A Multi-Agent argumentative setting (or Multi-
Agent setting, for short) A is a set of agents

A = {Ag1, . . . , Agn}

4.3. DECLARATIVE SEMANTICS 97

such that all of the Agis are agents over L and Ids, and no two Agis have the
same identifier. The Extended Herbrand Base of A, H(A), is the union of all
H(αi) such that αi ∈ Ids.

The (complete or partial) arguments of an agent Ag are built by Ag alone.
These are considered local arguments of Ag. Definitions of both local complete
argument and local partial argument of an agent Ag for a literal are very similar to
the definition of an argument of an ELPd for a literal from the centralized proposal
(cf. Def. 37). Furthermore, we use the definitions of Set of Rules and Well-defined
Sequence from that proposal (cf. Def. 35 and Def. 36, respectively).

Since we are concerned with modelling knowledge bases distributed over a
multi-agent setting, partial arguments of Ag for L must be considered. In fact, an
agent alone may not have in its knowledge base enough rules to form a complete
argument, but may have part of an argument (a partial argument) that can be
completed with knowledge from other agents with which it is able to cooperate.
By a partial argument of Ag for L we mean a non-complete well-defined sequence
for L, called SeqL, over the set of rules of Ag’s knowledge base. The complete and
partial arguments of Ag built only with its own rules are called local arguments of
Ag.

Definition 56 (Local (Partial or Complete) Argument) Let A be a MAS,
Ag be an agent in A, α = Id(Ag), Kbα be the ELPd of Ag, Rs

α (resp. Rw
α) be the

strong (resp. weak) set of rules of Kbα, and L ∈ H(A).
A strong (resp. weak) local partial argument of α for L is a pair (α, SeqL)

such that SeqL is a well-defined sequence for L over Rs
α (resp. Rw

α). A strong
(resp. weak) local complete argument of α for L is any strong (resp. weak)
partial local argument (α, SeqL) such that SeqL is complete and non-empty. We
say that (α, SeqL) is a k-local argument of α for L, LAk

α(L), if it is either a local
partial argument or a local complete argument over Rk

L of α for L (where k is
either s, for strong arguments, or w, for weak ones).

The set of local arguments of Ag contains all possible local (complete and
partial) arguments over Ag’s knowledge base.

Definition 57 (Set of Local Arguments) Let A be a MAS, α be an agent’s
identity in A, and k ∈ {s, w}. The set of k-local arguments of α is

LAk
A(α) =

⋃

L ∈ H(A)

LAk
α(L)

where LAk
α(L) is the set of all (strong or weak) local arguments of α for L. The

Set of Local Arguments of α in A is

LAA(α) = LAs
A(α) ∪ LAw

A(α)

98CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

and we denote by LA(A) the union of all local arguments of agents in A.

An agent Ag in a multi-agent setting A may be able to build a (partial or
complete) argument for any objective literal L in H(A) even though Ag has no
knowledge about such an L (i.e. there is no rule L ← Body in KbId(Ag)). This
may be done through the introduction of an argument with an empty well-defined
sequence in the set of local arguments of Ag. From Definition 56, a local partial
argument for any L ∈ H(A) of Ag is a pair (Id(Ag), SeqL), such that SeqL is a
well-defined sequence for L over the set S of rules of KbId(Ag). If there is no rule
for such an L in S, then SeqL = []. Thus, [] is a well-defined sequence for any
literal L ∈ H(A) and (Id(Ag), []) might be completed with the “help” of some set
of (complete and partial) arguments from CooperateId(Ag). Example 27 illustrates
how the set of local arguments of Ag is built. After the example, we present the
way in which every local partial argument of Ag may be completed.

Example 27 Let A = {Ag1, Ag2} be a MAS such that

Ag1 = < 1, {b← not f ; c← b}, {1}, {1, 2} >
Ag2 = < 2, {b; a← b, c, not d}, {2}, {1, 2} >

and which is represented by the following directed graph (for details, see Remark 44).

Kb1 = {b← not f ; c← b}

Kb2 = {b; a← b, c, not d}
Coop

The set of local arguments of agent 1 is

LAA(1) = { (1, [b← not f]), (1, [b← not f, not ¬b, not ⊥]),
(1, [c← b]), (1, [c← b, not ¬c, not ⊥]),
(1, [b← not f ; c← b]), (1, []),
(1, [b← not f, not ¬b, not ⊥; c← b, not ¬c, not ⊥]) }

and the set of local arguments of agent 2 is

LAA(2) = { (2, [b]), (2, [b← not ¬b, not ⊥]),
(2, [a← b, c, not d]), (2, [a← b, c, not d, not ¬a, not ⊥]),
(2, [b; a← b, c, not d]), (2, [])
(2, [b← not ¬b, not ⊥; a← b, c, not d, not ¬a, not ⊥]) }

The set of local arguments of A is LA(A) = LAA(1) ∪ LAA(2).

4.3. DECLARATIVE SEMANTICS 99

To complete a local partial argument of an agent Ag with (partial or complete)
arguments from CooperateId(Ag), we need first to define an operator to concatenate
these arguments in terms of well-defined sequences.

Definition 58 (+ Operator) Let 1 ≤ i ≤ n, Seqi be a well-defined sequence for
an objective literal Li, and Ri be the set of all rules in Seqi.

The concatenation Seq1 + . . .+ Seqn is the set of all well-defined sequences for
Ln over

⋃n
i=1Ri.

In short, several distinct well-defined sequences are obtained when concatenat-
ing two or more well-defined sequences. Furthermore, we can obtain well-defined
sequences that are not in fact complete. The operator + comprises all such ob-
tained sequences, as illustrated in the example below:

Example 28 Following Example 27, Ag1 has a local complete argument (1, Seqc)
and Ag2 has a local partial argument (2, Seqa) such that Seqc = [b← not f ; c← b]
and Seqa = [b; a ← b, c, not d]. By concatenating Seqc and Seqa we have the
following set of well-defined sequences for the objective literal a over the set of
rules

{b← not f ; b; c← b; a← b, c, not d}
S = Seqc + Seqa = { [], [a← b, c, not d], [b; a← b, c, not d],

[b← not f ; a← b, c, not d], [c← b; a← b, c, not d],
[b← not f ; c← b; a← b, c, not d],
[b; c← b; a← b, c, not d] }

and so Ag2 might have two complete local arguments for the literal a (i.e. the last
two well-defined sequences for a in S).

We introduce cooperation by defining a set of available arguments of an agent
Ag given a set S of (complete or partial) arguments. Every (complete or partial)
argument of Ag in S is considered an available argument of Ag. Moreover, if a
partial argument for an objective literal L of Ag may be further completed with
arguments in S belonging to CooperateId(Ag), this further completed argument is
also available.

Definition 59 (Set of Available Arguments) Let A be a MAS and α be an
agent’s identity in A. The set of available arguments given a set S of arguments,
Av(S), is the least set such that:

• if (α, SeqL) ∈ S then (α, SeqL) ∈ Av(S), and

• if ∃{(β1, SeqL′), . . . , (βi, SeqL)} ⊆ Av(S) and {β1, . . . , βi} ⊆ Cooperateα then
for any NSeqL ∈ SeqL′ + . . .+ SeqL, (α,NSeqL) ∈ Av(S)

100CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

where β1, . . . , βi are agent’s identifiers in A. Let LA(A) be the set of local argu-
ments of A. We denote by Args(A) the set of available arguments of A given
LA(A), and dub it the set of all available arguments in A. Members of Args(A)
will, as usual, be called arguments.

As in the centralized proposal, also here we are concerned with obtaining ways
of reasoning, ranging from consistent to paraconsistent. For this, the agents co-
operate and argue by exchanging strong and weak arguments. Similarly to the
centralized proposal, we assume that every proponent (resp. opponent) agent in
a given multi-agent setting exchanges arguments in the same way, i.e. every pro-
posed (resp. opposing) argument is a strong or weak argument. The following
two propositions reinforce such an assumption. According to the first proposition,
every available argument is of the same kind, strong or weak, as the given set
of arguments. From the second proposition, we see that an agent might have all
arguments from its cooperative agents.

Proposition 45 If S is a set of strong (resp. weak) arguments, then Av(S) is
also a set of strong (resp. weak) arguments

Proof. Trivial, since S contains only strong (resp. weak) arguments, we only
have a set of strong (resp. weak) rules and so we only build strong (resp. weak)
arguments

Proposition 46 Any available argument (β, SeqL) of β for L is an available ar-
gument (α, SeqL) of α for L if β ∈ Cooperateα

Proof. By Definition 57, (α, []) is an available argument of α for any literal in
H(B). Assume (β, SeqL) is an available argument of β such that β ∈ Cooperateα.
By Definition 58, we have SeqL ∈ []+SeqL and so we obtain the available argument
(α, SeqL) of α for L

The following example illustrates how available arguments are built via opera-
tor +. This example also depicts available arguments built by agents that are not
directly interrelated, i.e. there is an “indirect cooperation” between such agents.

Example 29 Consider the following graph representing a multi-agent setting A.
Note that agent 1 may use arguments from agent 3 because 3 ∈ Cooperate2 and
2 ∈ Cooperate1.

4.3. DECLARATIVE SEMANTICS 101

Kb1 = {a← b}

Kb2 = {c← not b}
Kb3 = {b; d← not a}

Coop

Coop

The set of strong local arguments of A is

LAs(A) = {(1, []), (1, [a← b]), (2, []), (2, [c← not b]), (3, []), (3, [b]), (3, [d← not a])}

For simplicity, we call LAs(A) as S. Based on the first condition of Def. 59, every
argument in S is an available argument, i.e. S ⊆ Av(S). Based on the second
condition of Def. 59, we further obtain the following available arguments:

• (1, [c← not b]) because {(2, [c← not b]), (1, [])} ⊂ Av(S);

• since {(3, [b]), (2, [])} ⊂ Av(S), (2, [b]) ∈ Av(S); similarly (2, [d← not a]) ∈
Av(S), because {(3, [d← not a]), (2, [])} ⊂ Av(S);

• consequently, (1, [b]) and (1, [d ← not a]) are available arguments because
{(2, [b]), (1, [])} ⊂ Av(S) and {(2, [d← not a]), (1, [])} ⊂ Av(S), respectively;

• because {(1, [a← b]), (1, [b])} ∈ Av(S), (1, [b; a← b]) ∈ Av(S) 5.

The least set of available arguments of A given LAs(A) is

Av(LAs(A)) = LAs(A) ∪ { (1, [c← not b]), (2, [b]), (2, [d← not a]),
(1, [b]), (1, [d← not a]), (1, [b; a← b]) }

From Definition 59, Args(A) contains all available arguments of an agent Ag
built via cooperation with agents in CooperateId(Ag). However, some of these ar-
guments might not be acceptable with respect to arguments in Args(A) from
ArgueId(Ag). We now describe how a negotiation process should be performed,
where cooperation and argumentation are interleaved processes. Initially, assume
that an available argument A of Ag is acceptable w.r.t. a set of arguments S if
every argument against A from ArgueId(Ag) is attacked by an argument in S. In-
tuitively, if an agent Ag builds an available argument A by concatenating its local
partial argument with arguments from CooperateId(Ag), then A must be evaluated

5(1, [b; a← b]) can also be obtained from the set of available arguments {(1, [a← b]), (2, [b])}.
Both ways to complete the local partial argument (1, [a← b]) of agent Ag1 are correct.

102CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

by every argumentative agent in ArgueId(Ag). It means that each argumentative
agent Aga should try to build an available argument CA against A. Two situations
may occur:

1. Aga argues and cooperates only with itself. If Aga cannot build a complete
argument CA by itself, and since there is no other agent to cooperate with
Aga, Aga cannot argue against A. On the other hand, if CA is built by Aga,
Aga does not need evaluation of CA by any agent other than itself, and so
Aga may use its argument against A; or

2. Aga argues and/or cooperates with other agents. In such a case, building
CA may require the concatenation of arguments from CooperateId(Aga) and
then the evaluation of CA by agents in ArgueId(Aga). The argumentative
process for CA of Aga finishes when the acceptability of CA with respect to
arguments from ArgueId(Aga) is established.

Independently of which situation occurs for each Aga ∈ ArgueId(Ag), if there exists
at least one acceptable argument CA from ArgueId(Ag) against the available argu-
ment A of Ag, then A is not acceptable (with respect to ArgueId(Ag)); otherwise,
A is an acceptable argument. The following example illustrates the above informal
description.

Example 30 Assume the multi-agent setting

A = {Ag1, Ag2, Ag3, Ag4, Ag5, Ag6}

and the figure below which represents the cooperative and argumentative relations
between such agents. For simplicity, we do not include in the graph the dashed
loops showing that each agent argues and cooperates with itself.

Kb1 = {a← not b, c; c}

Kb2 = {b← not d, f}

Kb3 = {b← d}

Kb4 = {f}

Kb5 = {d← not g}

Kb6 = {g}

Arg

Arg

Coop

Arg

Arg

4.3. DECLARATIVE SEMANTICS 103

To know about the acceptability of arguments for a in Ag1: Ag1 should have
an argument for the objective literal a that must be acceptable w.r.t. Argue1 =
{1, 2, 3}; since Ag1 has an argument As

1(a) = (1, [c; a ← not b, c]) we must check
whether Ag2 or Ag3 have an argument against As

1(a).

• Ag3 does not have any argument against As
1(a) because it has only a partial

argument for b and there is no argument from Cooperate3 to complete it.

• Ag2 has a partial argument for b that can be completed by Ag4’s argument
for f , i.e. As

2(b) = (2, [f ; b← not d, f]) ∈ (2, [b← not d, f]) + (4, [f]). Still
Ag5 may have an argument against As

2(b):

– Ag5 has the argument As
5(d) = (5, [d← not g]), but now agent Ag6 has

an argument against As
5(d).

∗ Ag6 has the argument As
6(g) = (6, [g]), which is acceptable because

there is no argument from Argue6 against it.

Thus, As
5(d) is not acceptable because it is attacked by As

6(g).

Since Ag5 has no acceptable argument against As
2(b), A

s
2(b) is an acceptable

argument w.r.t. arguments from Argue2.
Finally, As

1(a) is not acceptable because there is at least one acceptable argument
from Argue1 against it, viz. As

2(b).

We proceed by exposing the required definitions supporting this informal de-
scription. First of all, it is necessary to determine the available arguments that
can be used to attack. As expected, only complete arguments in Args(A) should
be considered. These arguments are called attacking arguments.

Definition 60 (Attacking Argument) Let A be a MAS, α an agent’s identity
in A, and S ⊆ Args(A). (α, Seq) is an attacking argument given S iff it is a
complete argument and belongs to Av(S). If (α, Seq) is either an s-argument or a
w-argument, we refer to it by s-attacking or w-attacking argument, respectively.

Example 31 Consider the multi-agent setting A in Example 30. The least set of
available arguments of A given LAs(A) is
Av(LAs(A)) = { (1, []), (1, [c]), (1, [a← not b, c]), (1, [c; a← not b, c]),

(2, []), (2, [f]), (2, [b← not d, f]), (2, [f ; b← not d, f]),
(3, []), (3, [b← d]), (4, []), (4, [f]), (5, []), (5, [d← not g]),
(6, []), (6, [g]) }

and the set of attacking arguments given LAs(A) is
Atts = { (1, [c]), (1, [c; a← not b, c]), (2, [f]), (2, [f ; b← not d, f]),

(4, [f]), (5, [d← not g]), (6, [g]) }

104CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

Intuitively, both strong and weak arguments can be attacked in the same way.
Since a (weak or strong) argument makes assumptions, other arguments for the
complement of one such assumption may attack it. In other words, an argument
with not L can be attacked by arguments for L. This definition of attack encom-
passes the case of arguments that are directly conflicting, e.g. an argument for
L (with not ¬L) can be attacked by an argument for ¬L. Moreover, any weak
argument Aw

α (L) = (α, SeqwL) (and also a strong argument As
α(L) = (α, SeqsL)

which verifies not ⊥ ∈ Assump(SeqsL)) can be attacked by every argument for ⊥.
However, it does not make sense to attack arguments for objective literals if they
do not lead to falsity. By “an objective literal L leads to falsity” we mean that
there is an argument Aα(L) such that Aβ(⊥) is built based on such an argument,
e.g.

As
β(⊥) : As

α(L) + [⊥ ← L, not L′]

We only consider objective literals that are in the body of the rule for ⊥ because
these literals immediately lead to falsity and we say they are directly conflicting
with Aβ(⊥). We assume that the involvement of other objective literals is not as
strong as that of in the body of the denial6.

We adapt the definition of attack from the centralized proposal (see Def. 41)
by defining that an available argument of an agent Ag with an assumption not L
can be attacked by an argument for L, only if that argument is from ArgueId(Ag).
For the following definition, we use the centralized proposal’s definitions of Directly
Conflicting via A⊥ and Assumptions (cf. Def. 40 and Def. 39, respectively). These
sets are denoted by DC(SeqL) and Assump(SeqL), where SeqL is a well-defined
sequence for a literal L. We want to define attack in terms of both attacking
and available arguments. However, we still need to determine which attacking
arguments can be used to attack available ones. Care must be taken to prevent
cycles between these definitions.

Definition 61 (Attack) Let A be a MAS, α and β be agents identifiers in A,
and Argueα the α’s set of argumentative agents. An argument (β, SeqLβ

) [of β
for Lβ] attacks an argument (α, SeqLα

) [of α for Lα] iff

• β ∈ Argueα,

• SeqLβ
is a well-defined sequence over Rβ, or SeqLβ

∈ SeqLα
+ Seq′Lβ

where
Seq′Lβ

is a well-defined sequence for Lβ over Rβ, and

• Lβ is the symbol ⊥, not ⊥ ∈ Assump(SeqLα
) and Lα ∈ DC(SeqLβ

), or Lβ

is an objective literal different from ⊥ and not Lβ ∈ Assump(SeqLα
).

6We further assume they can be detected in a process of “belief revision”, e.g. [DPS97,
FKIS09]. However, a discussion of this issue is beyond the scope of this proposal.

4.3. DECLARATIVE SEMANTICS 105

Recall that, as with other argumentation based frameworks the semantics is
defined based on a notion of acceptable arguments, where a set of arguments is
acceptable if any argument attacking it is itself attacked by the set. Now, in
this distributed setting, care must be taken about which arguments can be used
to attack a set of arguments, and which arguments are available for being used
to defend the attacks. Before presenting the definition of acceptable arguments
we motivate for the definition in such a distributed setting. Moreover, note that
the above definition of attack has a condition that foresees cases where “indirect
cooperation” between argumentative agents is needed. The following example
illustrates such a situation.

Example 32 Consider the following graph representing a multi-agent setting A
and assume that every argument in LA(A) is a strong argument.

Kb1 = {c; a← c, not b}

Kb2 = {b← c; z ← not a}
Arg

The set of available arguments of A given LA(A) is

Args(A) = { As
1(c) = [c],

As
1(a) = [c; a← c, not b],

As
2(b) = [b← c],

As
2(z) = [z ← not a] }

Moreover, from Definition 61, the complete argument As
1(a) attacks A

s
2(z) and the

partial argument As
2(b) attacks A

s
1(a). However, we only want attacking arguments

(i.e. complete arguments) to be used to determine the acceptability of an argument
w.r.t. Args(A). Then, As

2(b) will not be used and, consequently, As
2(z) is not

acceptable. Nevertheless, As
1(a) has a rule for c that can be used to complete As

2(b).
If agent Ag2 may ‘use’ such a rule from As

1(a) to complete its partial argument
As

2(b), Ag2 has an argument
(2, [c; b← c])

that can be used against As
1(a). Therefore, As

2(z) is acceptable w.r.t. Args(A).

At this point, it is quite clear that we should evaluate available arguments of a
multi-agent setting A to conclude which of them are acceptable with respect to a
set S of arguments (that are already considered acceptable with respect to a set of
arguments from A). However, should an argument of an agent α be acceptable in

106CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

Argueα if such an argument is to be used in a cooperation process? For instance,
consider the following graph representing a multi-agent setting A and assume that
both proposed and opposing arguments in LA(A) are strong.

Kb1 = {q ← a; c}

Kb2 = {a← not b; b← not a, not c}
Coop

To have an acceptable argument for q, Ag1 must complete its available argu-
ment for q, viz. PAs

1(q) = (1, [q ← a]). Agent Ag2 has an available argument
for a, As

2(a) = (2, [a ← not b]). However, Ag2 has also an attacking argument
As

2(b) = (2, [b ← not a, not c]) against As
2(a). Two possible approaches can deal

with this situation:

1. since both arguments attack each other, neither As
2(a) nor A

s
2(b) are accept-

able in Argue2, and so As
2(a) cannot be used to complete PAs

1(q); or

2. since there is no acceptable argument in Argue2 attacking As
1(a), it is defen-

sible. Furthermore, As
1(a) is used to complete PAs

1(q) and so the resulting
available argument is

As
1(q) = (1, [a← not b; q ← a])

However, As
1(q) should be evaluated by Argue1. Via cooperation, Ag1 has

an attacking argument

As
1(b) = (1, [b← not a, not c])

against As
1(q). But Ag1 also has an attacking argument As

1(c) = (1, [c])
against As

1(b) which no argument attacks. Thus, As
1(c) = (1, [c]) is acceptable

and, consequently, As
1(b) is not acceptable (both with respect to arguments

from Argue1). Therefore, As
1(q) is acceptable with respect to arguments

from Argue1.
Intuitively, the second approach allows us to draw more acceptable arguments

than the first one. Therefore, we follow the latter and define that for a given
agent α in a multi-agent setting A, an agent β ∈ Cooperateα cooperates with an
available argument A under one of the following conditions: (i) A is not attacked by
any argument from Argueβ, or (ii) A is attacked, but every attacking argument
B against A is attacked by some argument from Argueβ. In both cases, A is
considered a defensible argument. The following operator defines which are the
defensible arguments, given a set of available arguments of a multi-agent setting.

4.3. DECLARATIVE SEMANTICS 107

Remark 47 As in the centralized version, we use the notation p and o to distin-
guish the proposed argument from the opposing one, i.e. p (resp. o) is a (strong
or weak) proposed (resp. opposing) argument.

Definition 62 (Operator Defp,o(S)) Let A be a MAS, Args(A) be the set of
available arguments of A, and S ⊆ Args(A) be a set of p-arguments. Defp,o(S)
is the set of all o-arguments of Args(A) that are not attacked by any attacking
argument given S. Arguments in Defp,o(S) are called defensible arguments.

Assume that arguments in the set of defensible arguments are opposing argu-
ments, and every argument in a set of available arguments is a proposed argument.
Now we can determine how available p-arguments are acceptable with respect to a
set S of p-arguments from Args(A), such that S is a pre-defined set of acceptable
arguments. In order to determine the set of acceptable arguments with respect to
S, the following steps must be performed:

1. obtain the opposing arguments via Def = Defp,o(S). This encompasses the
following two sub-steps:

(a) get the set Atts of p-attacking arguments given S, i.e. the complete
arguments in Av(S). This sub-step also allows p-partial arguments in
S to be completed by arguments in S and so new p-arguments are built;

(b) reject o-arguments in Args(A) that are attacked by arguments in Atts.

2. obtain the proposed (partial or complete) arguments given S, i.e. Av(S).
This sub-step also allows p-partial arguments to be completed by arguments
in S and so new p-arguments are built.

3. determine which are (i) the opposing arguments attacking some proposed
argument and (ii) the opposing arguments attacked by arguments in S.

Definition 63 (Acceptable Argument) Let A be a MAS, Args(A) be the set
of arguments of A, S ⊆ Args(A) be a set of p-arguments, and α, β, and γ be
agent’s identifiers in A. A p-argument (α, SeqL) for a literal L is acceptablep,o
w.r.t. S iff (i) it is either a local argument, or it belongs to the set of available
arguments given S; and (ii) for any o-attacking argument (β, SeqL′) for a literal
L′ given Defp,o(S): if (β, SeqL′) attacks (α, SeqL) then there exists a complete
p-argument (γ, SeqL′′) for a literal L′′ in S that attacks (β, SeqL′).

Similar to the centralized proposal, we formalize the concept of acceptable
arguments with a fixpoint approach and also define a characteristic function p o
of multi-agent setting A over a set of acceptable arguments S as follows:

108CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

Definition 64 (Characteristic Function) Let A be a MAS, Args(A) be the
set of available arguments of A, and S ⊆ Args(A) be a set of p-arguments. The
characteristic function p o of A over S is:

F p,o
A : 2Args(A) → 2Args(A),

F p,o
A (S) = {A ∈ Args(A) | A is acceptablep,o w.r.t. S}

We can see that, if an argument A is acceptablep,o w.r.t. S, A is also acceptablep,o
w.r.t. any superset of S. In fact, it can be shown that Defp,o(S) is anti-monotonic,
and so F p,o

A is monotonic.

Lemma 48 Defp,o(S) is anti-monotonic

Proof. Let S1 and S2 be two sets of arguments of a multi-agent setting A, such
that S1 ⊆ S2, and let Arg ∈ Defp,o(S

2). By definition of Defp,o, Arg is not
attacked by any attacking argument given S2, i.e. by any complete argument in
Av(S2). Clearly, Av(S2) ⊇ Av(S1), and so Arg is not attacked by any complete
argument in Av(S1), i.e. Arg ∈ Defp,o(S

1)

Proposition 49 F p,o
A is monotonic

Proof. Let Arg′ be an arbitrary argument that attacks Arg and belongs to
Defp,o(S

2), and S ′ ⊆ S2. By Lemma 48, Arg′ ∈ Defp,o(S
1) and so, since Arg

is acceptablep,o w.r.t. S1, there exists Arg′′ ∈ S1 attacking Arg′. Since, by hy-
pothesis, S1 ⊆ S2, Arg′′ ∈ S2. Thus, every argument in Defp,o(S

2) attacking Arg
is attacked by an argument in S2, i.e. Arg ∈ F p,o

A (S2)

Being monotonic, it is guaranteed that F p,o
A always has a least fixpoint (accord-

ing to the set inclusion ordering over sets of arguments):

Proposition 50 Define for any A the following sequence of sets of arguments:

S0 = ∅
Si+1 = F p,o

A (Si)

F p,o
A is monotonic, and so there must exist a smallest λ such that Sλ is a fixpoint

of F p,o
A , and Sλ = lfp(F p,o

A) = F p,o↑ω

A .

Proof. The result follows immediately from the monotonicity of F p,o
A , given the

well-known Knaster-Tarski Theorem [Tar55]

Example 33 Consider the following graph representing a multi-agent setting A.

4.3. DECLARATIVE SEMANTICS 109

Kb1 = {a← b; d← not b; e← not f}

Kb2 = {b← not c; f ← not g; g}

Kbs3 = {c← not b}
Coop

Arg

In this example we show how to obtain lfp(F s,s
A (∅)). First of all, we determine the

set of strong local arguments of A:

LAs(A) = { (1, []), (1, [a← b]), (1, [d← not b]), (1, [e← not f]),
(2, []), (2, [b← not c]), (2, [f ← not g]), (2, [g]),
(3, []), (3, [c← not b])}

and the set of available arguments of A given LAs(A):

Args(A) = LAs(A) ∪
{(1, [b← not c]), (1, [b← not c; a← b]), (1, [f ← not g]), (1, [g])}

• Let S0 = ∅. Since Atts0 = ∅, the set of opposing arguments is

Def 0 = Defs,s(S
0) = { (1, [d← not b]), (1, [e← not f]),

(1, [b← not c]), (1, [b← not c; a← b]),
(1, [f ← not g]), (1, [g]), (2, [b← not c]),
(2, [f ← not g]), (2, [g]), (3, [c← not b])}

i.e. all complete arguments in Args(A). The set of proposed arguments is
LAs(A), resulting from Av(S0). Then we determine the following attacks

opposing argument proposed argument
(1, [b← not c]) (1, [d← not b])
(1, [f ← not g]) (1, [e← not f])
(3, [c← not b]) (2, [b← not c])

(2, [g]) (2, [f ← not g])
(2, [g]

(2, [b← not c]) (3, [c← not b])
(1, [a← b])

(1, [])
(2, [])
(3, [])

So S1 = F s,s
A (S0) = {(2, [g]), (1, [a← b]), (1, []), (2, []), (3, [])};

110CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

• since Atts1 = {(2, [g])}, (2, [f ← not g]) ∈ Args(A) is rejected and so

Def 1 = Defs,s(S
1) = { (1, [d← not b]), (1, [e← not f]),

(1, [b← not c]), (1, [b← not c; a← b]),
(1, [f ← not g]), (1, [g]), (2, [b← not c]),
(2, [g]), (3, [c← not b])}

The set of proposed arguments is Av(S1) = S1 ∪ {(1, [g])}. There is no
argument in Def 1 against (1, [g]), so S2 = F s,s

A (S1) = S1 ∪ {(1, [g])};

• since Atts2 = {(2, [g]), (1, [g])},

Def 2 = Args(A)− {(2, [f ← not g]), (1, [f ← not g])}

The proposed arguments are obtained by Av(S2) = S2. Despite the fact the
opposing argument As

1(f) = (1, [f ← not g]) attacks the proposed argument
(1, [e ← not f]), As

1(f) is attacked by the acceptable argument (1, [g]). So
S3 = F s,s

A (S2) = S2 ∪ {(1, [e← not f])};

• since F s,s
A (S3) = S3, we can say that the acceptable arguments of A are in

lfp(F s,s
A (∅)) = { (2, [g]), (1, [a← b]), (1, []),

(2, []), (3, []), (1, [g]), (1, [e← not f])}

By knowing the set S of all acceptable arguments of A, we can split all com-
plete arguments from Args(A) into three classes: justified arguments, overruled
arguments or defensible arguments. An argument A is justified when A is in S. An
argument A is overruled when A is attacked by at least one argument in S. Finally,
an argument A is defensible when A is attacked by an argument B ∈ Args(A),
and neither A nor B are attacked by acceptable arguments.

Definition 65 (Justified, Overruled, or Defensible Argument) Let A be a
MAS, Args(A) be the set of available arguments of A, and F p,o

A be the character-
istic function p o of A. A complete p-argument for a literal L of an agent with
identity α is:

• justifiedp,o
A iff it is in lfp(F p,o

A);

• overruledp,o
A iff there exists a justifiedo,pA o-argument for a literal L′ of an agent

β in A attacking it;

• defensiblep,oA iff it is neither justifiedp,oA nor overruledp,oA .

We denote the lfp(F p,o
A) by JustArgsp,oA .

4.3. DECLARATIVE SEMANTICS 111

Example 34 Consider the following graph representing a multi-agent setting A.

Kb1 = {a← not b}

Kb2 = {b← not c}

Kbs3 = {c← not a}
Arg

Arg

In this example we show how to obtain lfp(F s,s
A). First of all, we determine the

set of strong local arguments of A:

LAs(A) =

(1, []), (1, [a← not b]),
(2, []), (2, [b← not c]),
(3, []), (3, [c← not a])

and the set of available arguments of A given LAs(A), i.e Args(A) = LAs(A)

• let S0 = ∅. Since Atts0 = ∅, the set of opposing arguments is

Def 0 = Defs,s(S
0) = {(1, [a← not b]), (2, [b← not c]), (3, [c← not a])}

The set of proposed arguments is LAs(A), resulting from Av(S0). Then we
determine the following attacks

opposing argument proposed argument
(2, [b← not c]) (1, [a← not b])
(3, [c← not a]) (2, [b← not c])

(3, [c← not a])
(1, []), (2, []), (3, [])

So S1 = F s,s
A (S0) = {(3, [c← not a]), (1, []), (2, []), (3, [])};

• since Atts1 = {(3, [c← not a])},

Def 1 = Defs,s(S
1) = {(1, [a← not b]), (3, [c← not a])}

The set of proposed arguments is Av(S1) = S1. Despite the fact that the
opposing argument As

2(b) = (2, [b ← not c]) attacks the proposed argument
(1, [a← not b]), As

2(b) is attacked by the acceptable argument (3, [c← not a]),
so

S2 = F s,s
A (S1) = S1 ∪ {(1, [a← not b])}

112CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

• since F s,s
A (S2) = S2, the set of justifieds,sA arguments is

JustArgss,sA = {(3, [c← not a]), (1, [a← not b]), (1, []), (2, []), (3, [])}.

Argument (2, [b← not c]) is overruleds,sA because it is attacked by the justifieds,sA

argument (3, [c← not a]). No argument in Args(A) is defensibles,sA .

4.4 Properties

Here we assume very little about the sets of argumentative and cooperative agents
of an agent. By imposing some restriction on these sets different properties of the
whole setting can be obtained. In particular, as expected, if all agents in a multi-
agent setting A argue and cooperate with all others, then the result is exactly the
same as having a single agent with the whole knowledge, i.e. we obtain the same
results of the centralized proposal:

Theorem 51 Let A be a MAS over L and Ids such that for every agent Ag ∈
A : CooperateId(Ag) = Ids and ArgueId(Ag) = Ids, and F p,o

A be the characteristic
function p o of A. Let P = {< β,Kbβ, {β}, {β} >} such that

Kbβ =
⋃

αi ∈ Ids

Kbαi

and F p,o
P be the characteristic function p o of P .

Then, for every agent αi ∈ Ids: (αi, Seq) ∈ lfp(F p,o
A) iff (β, Seq) ∈ lfp(F p,o

P).

Proof. The proof of this theorem follows easily from the very form of the defini-
tions. In fact, it is easy to see that all the definitions in this Chapter collapse into
the corresponding ones in the previous Chapter in case the agents only agree and
cooperate with themself

Corollary 52 If A is as in Theorem 51 then for any pair of agents in A, with
identifiers αi and αj :, (αi, Seq) ∈ lfp(F p,o

A) iff (αj, Seq) ∈ lfp(F p,o
A).

However, if not all agents cooperate and argue with other, the semantics at
one agent can be different from that of the union, as desired:

Example 35 Consider A = {Ag1, Ag2, Ag3} such that each agent is

Ag1 = < 1, { a← not b }, {1, 2, 3}, {1, 2, 3}} >
Ag2 = < 2, { b← not c}, {1, 2, 3}, {1, 2, 3} >
Ag3 = < 3, { c← not a }, {1, 2, 3}, {1, 2, 3}} >

4.4. PROPERTIES 113

Defs,s(∅) = { (1, []), (2, []), (3, []), (1, [a← not b]),
(2, [a← not b]), (3, [a← not b]), (1, [b← not c]), (2, [b← not c]),
(3, [b← not c]), (1, [c← not a]), (2, [c← not a]), (3, [c← not a])}

The arguments As(a), As(b), and As(c)) are attacked7. As there is no “counter-
attack” to any of those attacks, lfp(F s,s

A (∅)) = JustArgss,sA = ∅. No argument
in Args(A) is overruleds,sA , and all of arguments are concluded to be defensibles,sA .
However, we obtain a different result if we consider that

Ag1 = < 1, { a← not b }, {1, 2}, {1, 2}} >
Ag2 = < 2, { b← not c}, {2, 3}, {2, 3} >
Ag3 = < 3, { c← not a }, {3}, {3}} >

Defs,s(∅) = { (1, []), (2, []), (3, []), (1, [a← not b]), (1, [b← not c]),
(1, [c← not a]), (2, [b← not c]), (2, [c← not a]), (3, [c← not a])}

and lfp(F s,s
A (∅)) = JustArgss,sA = {As

2(c), A
s
3(c)}. Note here how the result differs

also from agent to agent.

In the centralized version, a justified p-argument might also be related to a
contradiction (cf. Def. 48). From such a definition, an argument can be con-
tradictory, based on contradiction, or non-contradictory with respect to the set
of justified arguments of an extended logic program with denials P , i.e. with
JustArgsp,oP = lfp(F p,o

P). However, both JustArgsw,w
P and JustArgsw,s

P are both
conflict-free8 and non-contradictory9 (see proof of propositions 25, 26 and 27).
Thus, every argument in both JustArgsw,w

P and JustArgsw,s
P is non-contradictory,

i.e. it is not related to a contradiction at all. Furthermore, Fw,w
P has more defensi-

ble arguments than Fw,s
P (cf. proof of Prop. 28). Therefore, we obtain a consistent

way of reasoning in a multi-agent setting A if we apply Fw,w
A over Args(A).

In contrast, JustArgss,sA and JustArgss,wA may be contradictory, i.e. they might
have arguments related to a contradiction. However, to evaluate the acceptability
of available arguments without considering the presence of falsity or both argu-
ments for L and ¬L, the proposed arguments should be strong ones, and every
opposing argument is a weak argument. Since F s,w

A respects the ‘Coherence Prin-
ciple’ of [PA92, ADP95], i.e. given that every opposing argument is a weak one,

7For simplicity, since every agent argues with every other, we omit agent identity of the
arguments.

8A set S of arguments is conflict-free if there is no argument in S attacking an argument in
S (cf. Def. 45).

9A set S of arguments is non-contradictory if neither an argument for falsity nor both
arguments for L and ¬L are in S (cf. Def. 46).

114CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

it can be attacked by any proposed argument for its explicit negation. Therefore,
we obtain a paraconsistent way of reasoning in a multi-agent setting A if we apply
F s,w
A over Args(A). Moreover, a justifieds,w

A argument of an agent in A is related
to a contradiction with respect to JustArgss,wA :

Definition 66 (Relation to a Contradiction) Let A be a MAS, α and β be
agents’ identity in MAS, β ∈ Argueα, and JustArgss,wA be the lfp(F s,w

A). A
justifieds,wA s-argument As

α(L) = (α, SeqL) is:

• contradictorys,wA if L is the symbol ⊥, or there exists a justifieds,wA s-argument
(β, Seq⊥) such that L ∈ DC(Seq⊥), or there exists a justifieds,wA s-argument
(β, Seq¬L); or

• based-on-contradictions,w
A if As

α(L) is justified
s,w
A , it does not exists a justifieds,wA

s-argument (β, Seq¬L) and As
α(L) is also overruleds,wA ; or

• non-contradictorys,wA , otherwise.

As already said, any agent’s belief should be concluded only with respect to
both sets of argumentative and cooperative agents with such an agent. Intuitively,
we can conclude that different truth values of a given literal L over a multi-agent
setting A might be obtained. It happens because it depends on which agent
the literal L is inferred from, and also on what the specification of both sets of
cooperative and argumentative agents is, given the overall agents in A. Then,
a truth value of an agent’s conclusion in a (consistent or paraconsistent) way of
reasoning is as follows:

Definition 67 (Truth Value of an Agent’s Conclusion) Let A be a MAS, α
is an agent’s identity of A, k ∈ {s, w}, and L be an objective literal or the symbol
⊥. L over A is:

• falsek,wα iff for all argument of α for L: it is overruledk,wA

• truek,wα iff there exists a justifiedk,wA argument of α for L. Moreover, L is

– contradictoryk,wα if L is the symbol ⊥ or there exists a justifiedk,wA argu-
ment of α for ¬L

– based-on-contradictionk,w
α if it is both truek,wα and falsek,wα

– non-contradictoryk,wα , otherwise.

• undefinedk,w
α iff L is neither truek,wα nor falsek,wα .

Note at this point that truth is defined parametric of the agent. So, it is only
natural that the truth value of a proposition may differ from agent to agent.

4.5. OTHER ILLUSTRATIVE EXAMPLES 115

Proposition 53 Let k ∈ {s, w}. L is undefinedk,wα iff there is no justifiedk,wA

argument of α for L and at least one argument of α for L is not overruledk,wA .

This paraconsistent semantics for multiple logic programs is in accordance with
the paraconsistent well-founded semantics WFSXp [ADP95]. In fact, both coin-
cide if there is a single program (or a set, in case all cooperate and argue with all
other, cf. Theorem 51):

Theorem 54 (WFSXp semantics vs F s,w
A) Let P be an ELP such that ⊥ /∈

H(P), and let L be an objective literal in H(P). L ∈ WFSXp(P) iff L is trues,wA ,
not L ∈ WFSXp(P) iff L is falses,wA , and {L, not L} ∩ WFSXp(P) = ∅ iff L is
undefineds,wA .

Proof. Follows directly from Theorem 51 and Theorem 33 above

Moreover, there is a relation between the consistent reasoning obtained with
Fw,w
A and [Dun95]’s grounded (skeptical) extension:

Theorem 55 (Grounded extension vs Fw,w
A) Let P be an ELP such that ⊥ /∈

H(P), L be an objective literal in H(P), B be the Ground Extension’s characteristic
function of P , (AL, L) be an argument for L, and α be an agent’s identity of A.

An argument (AL, L) ∈ lfp(B) iff ∃(α, SeqwL) ∈ lfp(Fw,w
A).

An argument ({not L}, L) ∈ lfp(B) iff ¬∃(α, SeqwL) ∈ gfp(Fw,w
A).

Proof. Follows directly from Theorem 51 and Theorem 36 above

4.5 Other Illustrative Examples

As put forth, the ability to associate argumentative and cooperative sets to each
agent provides a flexible framework which, besides reflecting the possibly existing
physical network, may serve for other purposes:

• For modelling knowledge over a hierarchy where each node of the hierarchy
is represented by a Kb that cooperates with all its inferiors, and must argue
with all its superiors.

• For modelling knowledge that evolves. Here the “present” can use knowledge
from the “past” unless this knowledge from the past is in conflict with later
knowledge. This can be modelled by allowing any present node to cooperate
with its past nodes, and forcing any past node to argue with future nodes.

116CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

In these cases, it is important that the knowledge is not flattened, as in the union
of all knowledge bases, and that the semantics is parametric on the specific Kb.
I.e. it might happen that an argument is acceptable in a given (agenti) Kbi, and
not acceptable in another (agentj) Kbj of the same system. This section shows
that our proposal allows the modelling of a multi-agent setting with those different
kinds of representation.

4.5.1 Representing Hierarchy of Knowledge

This example is derived from both the ADEPT project [JFJ+96] which devel-
oped negotiating agents for business process management and the argumentation
framework [Sch99].

Example 36 (Business Process Management) One process deals with the pro-
vision of customer quotes for networks adapted to the customer’s needs. Four
agents are involved in this process: (i) the customer service division (CSD), which
makes the initial contact with the customer and delivers the quote eventually, (ii)
the vet customer (VC) agent, which determines whether the customer is credit-
worthy, (iii) the design department (DD), which does the design and costing of
the requested network if it is not a portfolio item, and (iv) the surveyor department
(SD), which may have to survey the customer site for the design department.

Initially, a customer issues a request. The CSD gathers some data for this
request, such as requirements, the equipment already installed at the customer site,
and how important that client is. Before any action is taken, the CSD asks the
VC to vet the customer. If the customer is not found credit-worthy, the process
terminates and no quote is issued to the customer. If it is credit-worthy, the
CSD checks whether the required network is a portfolio item with a previous quote.
If positive, this quote is sent to the customer; otherwise, the design department is
contacted. The DD develops its design and costing based on the information of
given equipment held by the CSD. In many cases, this information may be out
of date or not available at all, so the site has to be surveyed. In this case, the
DD contacts the surveyors to do a survey. After the survey is done, the DD can
design and cost the network. Then CSD can finally provide the customer quote.

CSD must not quote if the customer is not credit-worthy, which should be
assumed by default. So, CSD should obtain an agreement with VC, which means
that VC may counter-argue and give evidence for the credit-worthiness of the
customer. In case credit is approved, if CSD does not have a portfolio item for
the solicited quote, it needs a quote for it from DD. DD might do this task if
SD does not argue that such a task is not important. If DD can do its task, it
needs information held by CSD. Figure 4.4 illustrates the arguing and cooperating
relation between such agents.

4.5. OTHER ILLUSTRATIVE EXAMPLES 117

DD

SD

CSD

VC

Coop

Arg

Arg Arg

Figure 4.4: “Business Process Management”

In the following we present the corresponding agents’ knowledge base as ex-
tended logic program with denials. Considering first the Customer Service Divi-
sion, it knows about the client’s equipment (called eq) and its requirements (called
req). However, the description is not explicit with reference to them, so we as-
sume that CSD has requirements 2 and 3, and equipment 2 and 3. Furthermore,
CSD knows the customer is important. These can be represented as facts:

req2. req3.
eq2. eq3.
important.

Besides these facts about a particular client, CSD has general rules such as
requirements 1, 2 and 3 together making up a portfolio and being quotable if a
previous quote exists (otherwise, the DD has to prepare a quote).

portofolio← req1, req2, req3.
quote← portfolio, previousQuote.

CSD does not provide a quote if the client is not credit-worthy, which is assumed
by default:

¬quote← not creditWorthy.

The Vet Customer knows the client is credit-worthy, i.e it has a fact

creditWorthy.

The Design Department knows that there is no need to survey the client site
if the client has equipments 1, 2 and 3. It can be represented by the rule

¬need2survey ← eq1, eq2, eq3.

In general, DD assumes that SD does a survey unless it is busy, which can be
represented by the rule

survey← not busySD

118CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

The quote of DD can be obtained by a simple design cost if there was no need to
survey; otherwise, it is obtained by a complex design cost:

quote← ¬need2survey, simpleDesignCost.
quote← survey, complexDesigCost.
simpleDesignCost.
complexDesignCost.

Finally, the knowledge of Surveyor Department is fairly simple, i.e. its domain
is its own business, and since it is lazy it derives that it is busy unless the customer
is important. The following rule represents such a belief:

busySD← not important.

The multi-agent setting presented in Example 36 is defined as follows

BPM = {CSD,DD, V C, SD}

and the agents of BPM are represented as follows, with obvious abbreviations,

CSD = < csd,Kbcsd, {csd, vc, dd}, {csd, dd} >
V C = < vc, {crWo}, {vc}, {vc} >
DD = < dd,Kbdd, {dd, sd}, {dd, csd} >
SD = < sd, {bSD← not imp}, {sd, dd}, {sd} >

where the knowledge bases of CSD and DD are

Kbcsd = { re(2); re(3); eq(3); eq(2); imp; por ← re(1), re(2), re(3);
¬quo← not crWo; quo← por, preQuo }

Kbdd = { ¬n2s← eq(1), eq(2), eq(3); sur ← not bSD; sDC; cDC;
quo← ¬n2s, sDC; quo← sur, cDC }

Since such a system must have consistent conclusions we illustrate the re-
sults in a consistent reasoning, i.e. with weak proposing and opposing arguments.
The truth value of the main conclusions are as follows: important is truew,w

csd ,
complexDesignCost and survey are truew,w

dd , ¬creditWorthy is truew,w
vc ; busySD

is falsew,w
sd ; both quote and ¬quote are undefinedw,w

csd .
Finally, [Sch99]’s argumentation framework determines that an agent is defined

by (i) a set of arguments, (ii) a set of predicate names defining the agent’s domain
of expertise, (iii) a flag indication whether the agent is credulous or skeptical, (iv)
a set of cooperation partners, and (v) a set of argumentation partners. The above
example illustrate a multi-agent setting similar to [Sch99]’s proposal, which means
that our agents have (i), (iv) and (v).

4.5. OTHER ILLUSTRATIVE EXAMPLES 119

4.5.2 Obtaining Conclusions at Different Periods of Time

We use an example model elaborated by [SPR98] based on the following contra-
diction found in the third act of Shakespeare’s Hamlet:

“Should Hamlet kill Claudius? Hamlet is unsure whether to kill Claudius
— the assassin of Hamlet’s father — or not. He argues that if he does
kill him, Claudius, who is praying at that very moment, goes to heaven,
and if he does not kill him, Hamlet’s father is not revenged. A contra-
diction.”

The model was developed in an argumentation framework, Ultima Ratio10,
which aims to formalize and to visualize agents’ argumentation. An agent is com-
posed of a set of arguments and assumptions. Facing a particular world, the
agent’s beliefs may be inconsistent, triggering a rational monologue to deal with
the situation. Formally, [SPR98] defines a framework for argumentation based
on extended logic programming under well-founded semantics. Given the specifi-
cation, Ultima Ratio unfolds a process of argumentation in which arguments and
counter-arguments are exchanged to detect conflicts and remove them. Ultima
Ratio uses extended logic programming with denials, such that the denials charac-
terize contradictory situations. There is also a definition of revisable assumptions
in order to remove inconsistencies. Furthermore, Ultima Ratio is based on [PS97]’s
proposal, and this system also distinguishes two kinds of attacks: on the conclu-
sion of an argument (rebut), or on the premises of an argument (undercut). The
system serves as decision support, and it is capable of detecting and removing
contradictions and of deriving conclusions from the agent’s arguments.

Our aim in this section is to show that we can also detect the conflicts and
derive conclusions from the agent’s set of arguments. This example illustrates
how we obtain conclusions from Hamlet’s knowledge in a particular point in, i.e.
the conclusions of his beliefs in the past, in the present, and further in a possible
future. How can we do it? By building a multi-agent setting, dubbed Hamlet,
where each agent represents a period of Hamlet’s lifetime and the respective ‘knowl-
edge’. Figure 4.5 illustrates the dependencies between those periods. To reach a
conclusion about something in past, it is necessary to ‘confirm’ the truth value
of such a conclusion in present, i.e. past should argue with present. However,
present might need some information from past to complete its incomplete knowl-
edge, i.e. present needs cooperation with past. The process of argumentation and
cooperation between present and future is the same as described above.

The following example is our proposal for modelling Hamlet’s conflict:

10See http://www.sabonjo.de/texts.html.

120CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

past

present

future

Coop Arg

Figure 4.5: Hamlet’s knowledge in periods of time

Example 37 (Hamlet Conflicts) Hamlet realizes that Claudius is praying. This
is represented by the fact

praying(claudius).

Hamlet has a belief that Claudius would go to heaven if he kills Claudius while
Claudius is praying:

inHeaven(X)← kills(Y,X), praying(X).

Hamlet states that killing Claudius satisfies his desire for revenge:

takesRevengeOn(X, Y)← goalRevenge(X, Y), kills(X, Y).

Hamlets starts another line of reasoning by mentioning the fact that Claudius killed
Hamlet’s father, when was the king:

killed(claudius, king).

Hamlet finds that he is not avenged if he sends Claudius to heaven:

¬takesRevengeOn(X, Y)← inHeaven(Y).

Besides this direct translation, further facts and rules are added which are men-
tioned throughout preceding scenes or which are given implicitly. The rule

goalRevenge(X, Y)← closeRelationship(X,Z), killed(Y, Z), not reason(killed(Y, Z)).

expresses that someone wants revenge: person X wants to take revenge on person
Y if Y killed person Z who was close to X, and there was no reason for Y to kill

4.5. OTHER ILLUSTRATIVE EXAMPLES 121

Z. Left implicitly in the play is the fact that Hamlet and his father had a close
relationship:

closeRelationship(myself, king).

In this scene, it is stated formally that Hamlet has a denial that he wants to take
revenge and he does not take it

⊥ ← goalRevenge(X, Y), not kills(X, Y).

Finally, Hamlet wants to kill Claudius, i.e. to assume the fact

kills(myself, claudius).

The decision will determine which kind of conflict Hamlet will have: a contradiction
between takesRevengeOn(myself, claudious) and ¬takesRevengeOn(myself, claudious),
or the presence of falsity.

The multi-agent setting presented in Example 37 is defined as

Hamlet = {past, present, future}

and each agent of Hamlet should have some of the rules above. We consider most
of the general rules as Hamlet’s knowledge acquired before his father died, i.e. in
the past. In the present, two events happen in a short period of time: Claudius
kills Hamlet’s father and Claudius is praying. After these events, Hamlet starts to
be in conflict: “Does he take revenge on Claudius?” or “Does he not take it?” We
consider such suppositions as events that might occur in the future. Nevertheless,
the future might have the fact kills(myself, claudius). Such a ‘decision’ will derive
different conclusions from Hamlet. So, we illustrate Example 37 with two versions
for the future’s knowledge base, viz. Kbkfu and Kbnkfu. The former version includes
the fact ki(m, c) and the latter does not.

Kbpa = { gR(X, Y)← cR(X,Z), ked(Y, Z), not re(ked(Y, Z)); cR(m, k);
⊥ ← gR(X, Y), not ki(X, Y); iH(X)← ki(Y,X), pra(X) }

Kbpr = { ked(c, k); pra(c) }

Kbkfu = { tRO(X, Y)← gR(X, Y), ki(X, Y);¬tRO(X, Y)← iH(Y); ki(m, c) }

Kbnkfu = { tRO(X, Y)← gR(X, Y), ki(X, Y);¬tRO(X, Y)← iH(Y) }

By consequence, we have two versions for Hamlet:

122CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

Hameltk = { < pa,Kbpa, {pa}, {pa, pr}},
< pr,Kbpr, {pr, pa}, {pr, fu} >},
< fu,Kbkfu, {fu, pr}, {fu} >} }

Hameltnk = { < pa,Kbpa, {pa}, {pa, pr} >},
< pr,Kbpr, {pr, pa}, {pr, fu} >},
< fu,Kbnkfu, {fu, pr}, {fu} >} }

We illustrated here a multi-agent setting where each agent argues (resp. co-
operates) with the next (resp. previous) agent. Nevertheless, it would possible to
obtain a conclusion in a period of time without considering what happens after
such a period. For instance, assume a multi-agent setting A = {T1, T2, . . . , Tn}
where each Ti (1 ≤ i ≤ n) represents a different period of time in A. In the case
that we illustrate, if agent Ti argues with agent Ti+1, a truth value of conclusion
L in the period Ti is obtained by considering what Ti+1 knows about L (perhaps a
counter-argument against an argument for L). On the other hand, if agent Ti does
not argue with agent Ti+1, the truth value of L is obtained until period Ti without
considering the fact that the arguments for L might be attacked by arguments in
Ti+1.

Finally, in the next example, taken from [ALP+00], note how the cooperation
is used to inherit rules from the past, and the argumentation to make sure that
previous rules in conflict with later ones are overruled.

Example 38 In this example we illustrate the usage of the proposed framework
to reason about evolving knowledge bases. Each argumentative agent represents
the knowledge (set of rules) added at a point of time. Moreover, each agent can
cooperate with all agents representing past states, and has to argue with all agents
representing future states. Consider agent Ag1:

sleep← ¬tv on.
tv on.
watch tv ← tv on.

It is easy to see that with this knowledge in Ag1, there is a justifiedw,w
A argument

for watch tv and there is only a partial argument for sleep. The knowledge is then
updated, in Ag2, by adding the rules:

¬tv on← power failure.
power failure.

4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 123

The reader can check that, for Ag2 the previous argument for watch tv is now
overruledw,w

A , and that the argument for sleep is justifiedw,w
A . Now if another up-

date comes, e.g stating ¬power failure, in Ag3 the argument for sleep is again
overruledw,w

A , and for watch tv justifiedw,w
A , as expected.

4.6 On the implementation of the proposed se-

mantics

Although the definition of a correct formal proof procedures for the declarative
semantics just exposed, and its corresponding implementation, is outside the scope
of this thesis, it is important at least to highlight how such a proof procedures
may be defined, and how an implementation for the semantics can be obtained.
In fact, we already have some preliminary results on the definition of the proof
procedures, and have made some experiments on the implementation of a system
for the semantics.

We start this section by providing some intuition on proof procedures for the
semantics just exposed, and continue with a sketch of an algorithm realizing such
a procedure. We then draw some consideration on the implementation that result
from the experiments made.

It is important to make clear from the beginning that we are interest in a
query-driven system in a multi-agent setting. The query should be any objective
literal L, and the system should return its truth value over a multi-agent system
A where each agent’s knowledge base is represented as an extended logic program.
Furthermore, when the literal L is true, the system should be able to provide the
argument that supports L.

For this distributed semantics, we do not follow the idea of the operational
semantics of the centralized proposal presented in Chapter 3, which defines a
dialogue as a sequence of p and o moves of proposed arguments and opposing
arguments, respectively. Instead, we must rely on a system which deals with
negotiation processes.

A negotiation process for an objective literal L of an agent α involves both argu-
mentative and cooperative processes. A cooperative process is started to complete
a local partial argument with arguments from cooperative agents. An argumenta-
tive process is started to evaluate the acceptability of a complete argument with
respect to arguments from argumentative agents. Both processes are interleaved,
i.e. an argument from a cooperative agent has to be evaluated in an argumentation
process, and a partial argument from an argumentative agent is completed by a
cooperation process. For doing so,

• we have to deal with the fact that an agent has both cooperative and argu-

124CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

mentative “behaviors” in a negotiation process. Moreover, the agent is either
a proponent or an opponent during the process. In other words, cooperative
agents have to complete either proponent or opponent partial arguments,
and argumentative agents have to evaluate both proponent and opponent
arguments;

• the (argumentative and cooperative) agents have to exchange messages and
so we have to define a communication protocol; and

• we have to define how to represent and control the negotiation process dis-
tributed through a set of agents.

For dealing with both argumentative and cooperative processes, we informally
define two kinds of agent’s dialogue, viz. argumentative dialogue and cooperative
dialogue, as follows:

• during an argumentative dialogue the agents exchange proposes, opposes, and
agreements. A cooperative dialogue involves asks and replies. A propose
(resp. an ask) is sent to every argumentative (resp. cooperative) agent.
However, the answer of such a message is only between the sender and a
recipient, i.e. between the proponent (resp. asking) agent and one of its
opponent (resp. cooperative) agent;

• an objective literal L is represented as a tree such that the root node is an
empty argument for L, and left nodes are (partial or complete) argument for
L resulting from cooperation process. The branches represent all possible
ways to build such arguments.

• an argumentative dialogue for an objective literal L is seen as a set of both
p and o trees for building proposed arguments and opposing arguments,
respectively; a cooperative dialogue for an objective literal L is seen as a set
of p (resp. o) trees for building proposed (resp. opposing) arguments.

Therefore, a cooperative process for a partial argument PA of an agent α is
a set of cooperative dialogues started in every α’s cooperative agent for every
“unknown” Li in PA; an argumentative process for a complete argument A of
an agent α is a set of argumentative dialogues started in every α’s argumentative
agent for every default literal in A. Moreover, a multi-agent negotiation process
is seen a forest of p and o trees distributed through the agents.

Given these general consideration, we can now start sketching an algorithm for
the negotiation process of an agent α. First, we present some definitions/operators
that we use in the algorithm:

4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 125

• A (resp. PA) denotes a local complete argument (resp. local partial argu-
ment) (α, SeqL) of agent α for L (cf. Def. 56 in Section 3.2)

• plus((α, SeqL), Seq) returns a set of (complete and partial) arguments of α
for L resulting from SeqL + Seq (cf. Def. 58 on Section 4.3);

• player ∈ {p, o} such that p denotes a proponent player whereas o denotes an
opponent player;

• k ∈ {s, w} such that s denotes a strong argument whereas w denotes a weak
argument;

• Kp(player) returns the player’s kind of argument, i.e. weak or strong argu-
ment. For simplification, we suppress the kind of the argument by assuming
that every argument of a player agent is Kp(player);

• Op(player) returns the player’s opposer, i.e. Op(p) returns o whereas Op(o)
returns p;

• Un(L, (α, Seq)) returns the set of “unknown conclusions” Li of (α, Seq), i.e.
every objective literal Li ∈ Conc(Seq) (cf. Def. 39 in Section 3.2) for which
there is no rule Li ← Body in Seq. {L} = Un(L, (α, []));

• Assump is a set of objective literals such that not Assump = Assump(SeqL).
Assump(SeqL) returns the set of all default literals appearing in the bodies
of rules in SeqL (cf. Def. 39 in Section 3.2);

• Atts((α, SeqL), player) returns the set of all possible “conclusions” against
the argument for L. If Kp(player) = s then Atts(A, player) = Assump else
Atts = {¬L, falsity} ∪Assump;

• an argument CA attacks an argument A (cf. Def.61 in Section 3.2);

• A is acceptablep,o w.r.t. Argueα (cf. Def. 63 in Section 3.2).

A negotiation process starts when an agent α receives an ask(L) for an ob-
jective literal L from an external agent11. If α has only a local partial argument
PA for L then α starts a cooperative process for PA, as proponent, by send-
ing the message ask(α, Li, p) for every objective literal Li ∈ Un(L, PA) to every
β ∈ Cooperateα. When α has a complete local argument A for L – built by itself
or via cooperative process for L – then α starts an argumentative process for
A, as proponent, by sending the message propose(α, L,A, p) to every β ∈ Argueα;

11An external agent does not belong to the Multi-agent Setting.

126CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

otherwise, α sends to the external agent a reply(L, none). If the argumentation
process succeeds then α sends to the external agent a reply(L,A); otherwise, it
sends a reply(L, none).

• Cooperative process (for a local partial argument PA for L in α as
player)

A cooperative process succeeds when α obtain a local argument A for L.
A cooperative process finishes when there are no more replies from agents
in Cooperateα. A cooperative process fails when the cooperative process
finished and the agent α does not built any local complete argument for L.

– On receipt of an ask(γ, L, player): γ is sign as the asking agent for
L. If α has only a local partial argument PA for L then α starts
a cooperative process for PA, as player, by sending the message
ask(α, Li, player) for every objective literal Li ∈ Un(L, PA) to every
β ∈ Cooperateα. When α has a complete local argument A for L then
α starts an argumentative process for A, as player, by sending to
every β ∈ Argueα the message propose(α, L,A, player).

– On receipt of a reply(βc, L, SeqL, player): The agent α tries to com-
plete the local partial argument PA (for L′), i.e. A ∈ plus(PA, SeqL).
If the cooperative process succeeds, α starts an argumentative pro-
cess for A, as player, by sending the message propose(α, L′, A, player)
to every βa ∈ Argueα. If the cooperative process fails, α sends to the
asking agent a reply(α, L′, none, player); otherwise, α waits for other
replies.

– On receipt of a reply(βc, L, none, player): If the cooperative process
fails, α sends to the asking agent a reply(α, L, none, player); otherwise,
α waits for other replies.

• Argumentative process (for a complete argument A in α as player)

An argumentative process succeeds when the argument A is acceptablep,o
w.r.t. Argueα. An argumentative process inishes when there are no more
answers from agents in Argueα. An argumentative process fails when the
argumentative process finished and the argument A is not acceptablep,o w.r.t.
Argueα.

– On receipt a propose(γ, L, A): γ is sign as proposing agent of A, and
kp = Kp(o). For every Li ∈ Atts(A, p): if α has only a local kp-
partial argument PA for Li then α starts a cooperative process for
PA, as opponent, by sending the message ask(α, Li, o) to every βc ∈

4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 127

Cooperateα. When the cooperative process succeeds for PA (and so α
has a argument CA for Li that attacks A) then α sends to the proposing
agent an oppose(α, Li, CA). If the argumentative process fails, α sends
to the proposing agent an agree(α, L,A).

– On receipt of an oppose(γ, L, A): γ is sign as opposing agent of A,
and kp = Kp(p). For every Li ∈ Atts(A, o): if α has only a local
kp-partial argument PA for Li then α starts a cooperative process
for PA, as proponent, by sending the message ask(α, Li, p) to every
βc ∈ Cooperateα. When the cooperative process succeeds for PA (and
so α has an argument CA for Li that attacks A) then α sends to the
opposing agent a propose(α, Li, CA). If the argumentative process fails,
α sends to the opposing agent an agree(α, L,A).

– On receipt an agree(γ, L, A): If the argumentative process fails, α
sends to the proposing agent an agree(α, L,A); otherwise, waits for
other answers.

As already said, a negotiation in a multi-agent setting A = {Ag1, . . . , Agn} is
seen as a forest F of trees, where each involved agent αi (1 ≤ i ≤ n) has its own
forest of trees Fi. Therefore, F = F1∪. . .∪Fn. Given the relation of our semantics
with the well-founded semantics, it is natural that the structure of these forests
are chosen to be similar to that of proof-procedures for the well-founded semantics
of normal logic program, that rely on tabling techniques [Swi99, APS04]. In these,
the nodes of the trees are either regular nodes of the form

NegotiableLiteral : −DelayList|LiteralList

or failure nodes of the form fail. A Negotiable Literal of an agent α for L as kp-
player is a tuple < α, kp, L, Seq > such that kp ∈ {p, o}, and Seq is an available
argument for L from α’s set of available arguments (cf. Def. 59). Elements of
DelayList and LiteralList are either objective or default literals. The literals in
the LiteralList are the ones that are yet left to be resolved in order to determine
the truth value of the NegotiableLiterals. The DelayList is used to deal with
loops, in a way similar to that of tabling. This list contain literals whose evaluation
has been delayed in order to avoid loops.

A negotiation of the truth value of an objective literal L started by an agent
α is then represented by a tree T with root node < α, kp, L, [] >: −|L where
kp ∈ {p, o} indicates if α is a proponent or an opponent agent. We then say that
T is a kp tree for L of α. The negotiable literal reflects no bindings to L then Seq
is an empty argument for it, the DelayList is empty, and the LiteralList is the
corresponding literal. Therefore, a single kp tree T in α sets up the negotiation
process for L where agent α is a kp−player.

128CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

To evaluate the truth value of the literal L in a NegotiableLiteral we must
evaluate all literals in both DelayList and LiteralList. The evaluation consists
of starting either an argumentative or a cooperative dialogue for every literal in
LiteralList. When a literal is selected that has been called before, we are in
presence of a potential loop. In this case, as in tabling procedures, the literal is
delayed (and added to the DelayList). Delayed literals can then either be solved
with solutions obtained in the corresponding tree with that literal as root, and
remain delayed until it is determined that no more solutions exist for that literals.
This determination can be obtained by so called “table completion algorithms”
that are well know for tabling procedures in logic programming [Swi99]. We rep-
resent a delayed literal as a tuple < β, L > such that β is the argumentative (resp.
cooperative) agent that will evaluate the truth value of the default literal (resp.
build an argument for the objective) L.

During the negotiation process, the agent α receives either opposes or agrees
(resp. replies) for each default (resp. objective) literal proposed (resp. asked) to
Argueα (resp. Cooperateα). In such cases, the answers will be evaluated and the
corresponding delay literal may be removed from DelayList. A regular leaf node
N with an empty LiteralList means that all literals were evaluated, and such a
node is called an answer. If the DelayList of N is also empty, meaning that all
delayed literals were evaluated, N is called an unconditional answer ; otherwise, N
is called a conditional answer. In case of being a conditional answer, each tuple
< β, L > on DelayList indicates that the argumentative (resp. cooperative) agent
β does not agree with (resp. reply) L and so the next node will be a failure node.

On the implementation of the system

For implementing a system for the above sketched procedures, we propose an
architecture which is based upon on three toolkits, viz. JGroups [Bea02], In-
terprolog [Cal04], and XSB Prolog [SW07]. Since we have two kinds of groups
in a multi-agent setting, viz. argumentative agents and cooperative agents, the
corresponding argumentation-based negotiation system should deal with the cre-
ation and the control of both groups and their membership. Furthermore, the ex-
change of messages between either argumentative and cooperative agents should
be reliable. We choose JGroups [Bea02], a toolkit for building reliable group
communication for Java applications. JGroups permits agents’ communication
in Local Area Networks (LAN) or Wide Area Networks (WAN), the delivery of
messages to every involved agent. New agents or crashed agents are handled re-
spectively in the sets of argumentative and cooperative agents. We implement
the argumentation-based negotiation framework in XSB Prolog [SW07]. XSB is
an open source logic programming system that extends Prolog with new semantic
and operational features, mostly based on the use of Tabled Logic Programming

4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 129

or tabling, see e.g. [CW96, Swi99]. The use of such a resource permits, during
a computation of a goal G, where G ← Body is a rule in a logic program, each
‘subgoal’ S ∈ Body to be registered in a table the first time it is called, and unique
answers to S to be added to the table as they are derived. When subsequent calls
are made to S, the evaluation ensures that answers on S are read from the table
rather than being re-derived using program clauses. Thus, a first advantage of
tabling is that it provides termination to a logic program; more details about such
a toolkit will be presented in the remainder of this chapter. Since Jgroups is im-
plemented in Java language, we need an intermediate level between JGroups and
XSB, to map Java objects to Prolog terms (and vice-versa). Interprolog [Cal04]
is a toolkit for developing Java + Prolog applications, which provides an applica-
tion program interface (API) for directly mapping Java objects to Prolog terms.
Furthermore, Interprolog supports a Prolog process through the API.

Therefore, the proposed architecture for the implementation of the argumenta-
tion-based negotiation system is composed of a network communication layer and
an inference engine. Figure 4.6 illustrates such an architecture. The network
communication layer is based on the toolkit JGroups for building reliable group
communication. The inference engine is based on the toolkit Interprolog, the
middleware for Java and Prolog, which provides method/predicate calling be-
tween both. Finally, the goal-interpreter is the XSB System, which computes the
argumentation-based negotiation’s Prolog implementation over an agent’s knowl-
edge base. In the remainder of this section we provide some details on the com-
munication layer, and its connection to the XSB inference engine.

A Network Communication Layer As already said, since the argumentation-
based negotiation system should deal with both groups of argumentative and co-
operative agents in a multi-agent setting, the network communication layer should
guarantee both creation and control of such groups. Furthermore, the exchange
of messages between group members should be reliable. We therefore propose a
communication network layer by using the toolkit JGroups. JGroups is a reliable
group communication toolkit written entirely in Java. It is based on IP multicast,
but extends it with reliability and group membership. Reliability includes (among
other things): (1) lossless transmission of a message to all recipients (with retrans-
mission of missing messages); (2) fragmentation of large messages into smaller
ones and reassemble at the receiver’s side; (3) ordering of messages (FIFO order);
(4) atomicity, i.e. a message will be received by all receivers or none. Group
Membership includes (1) knowledge of who the members of a group are, and (2)
notification when a new member joins, an existing member leaves, or an existing
member has crashed

130CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

Argumentation−based Negotiation’s Prolog rules

Goal−Interpreter

Network Communication Layer

User Interface

Application Program Interface

Agent

Inference Engine
Knowledge Base’s Prolog rules

Figure 4.6: An Architecture for Argumentation-based Negotiation

4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 131

Unreliable Reliable
Unicast UDP TCP
Multicast IP Multicast JGroups

In unicast communication, where one sender sends a message to one receiver,
there is UDP and TCP. UDP is unreliable, packets may get lost, duplicated, may
arrive out of order, and there is a maximum packet size restriction. TCP is also
unicast, but takes care of message retransmission for missing messages, weeds
out duplicates, fragments packets that are too big and present messages to the
application in the order in which they were sent. In the multicast case, where one
sender sends a message to many receivers, IP Multicast extends UDP: a sender
sends messages to a multicast address and the receivers have to join that multicast
address to receive them. Like in UDP, message transmission is still unreliable, and
there is no notion of membership (who has currently joined the multicast address).

JGroups extends reliable unicast message transmission (like in TCP) to multi-
cast settings. As described above it provides reliability and group membership on
top of IP Multicast. Since every application has different reliability needs, JGroups
provides a flexible protocol stack, which allows developers to adapt it to match
their application requirements and network characteristics exactly. Furthermore,
by mixing and matching the available protocols of JGroups, the requirements of
our argumentation-based negotiation system are satisfied. Moreover, since proto-
cols are independent of each other, they can be modified, replaced or new ones
can be added, improving the modularity and maintainability of our system. The
chosen protocol stack for the argumentation-based negotiation system is as follows:

• the transport protocol uses TCP (from TCP/IP) to send unicast and mul-
ticast messages. In the latter case, each message to the group is sent as
multiple unicast messages (one to each member). Due to the fact that IP
multicasting cannot be used to discover the initial members, another mech-
anism has to be used to find the initial membership. The TCPPING uses
a list of well-known group members that TCP solicits for initial member-
ship. So, TCPPING determines the initial membership and denotes it as
the coordinator of the group. Every request to join will then be sent to the
coordinator;

• to add loss-less transmission, we choose the “Negative Acknowledgement
Layer” protocol (NACKAC). NACKAC ensures message reliability and “First
In First Out”(FIFO). Message reliability guarantees that a message will be
received. If not, the receiver will request retransmission. FIFO guarantees
that all messages from sender P will be received in the order P sent them;

• the “Group Membership Service” (GMS) provides for group membership.

132CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

It allows the system to register a callback function that will be invoked
whenever the membership changes, e.g. a member joins, leaves or crashes;

• the “Failure Detector” (FD) and the “Distributed Message Garbage Collec-
tion” (STABLE) are needed by the GMS to announce crashed members.

The API of JGroups is very simple and is always the same, regardless of how
the underlying protocol stack is composed. To send/receive messages, an instance
of Channel has to be created. Channels are the means by which member processes
in a group can communicate with each other; they are used to send and receive
messages and views of a group. A channel represents a single member process;
at any point only a single process can be connected to a channel. When a client
connects to a channel, it indicates the group address (usually the name of the
group) it would like to join. Thus, a connected channel is always associated with
a particular group. The GMS takes care that channels with the same group name
find each other: whenever a client, given a group name, connects to a channel,
then the GMS tries to find existing channels with the same group name and joins
them; the result is a new view being installed (which contains the new member).

The channel’s properties are specified when creating it, and this causes the
creation of an underlying protocol stack. All protocol instances are kept in a linked
list (i.e. the protocol stack), where messages move up/down. The reliability of
a channel is specified as a string; we choose the transport protocol TCP with
TCPPING and so the channel’s properties should look like as follows:

"TCP(start_port=7800):" +

"TCPPING(initial_hosts=HostA[7800],HostB[7800];port_range=5;"+

"timeout=5000;num_initial_members=2;up_thread=true;"+

"down_thread=true):" + ...

which means that HostA and HostB are designated members that will be used by
TCPPING to look up the initial membership. The property start port in TCP
means that each member should try to assign port 7800 to itself. If this is not
possible, it will try the next higher port (7801) and so on, until it finds an unused
port. TCPPING will try to contact both HostA and HostB, starting at port 7800
and ending at port 7800 + port range (in the above example, it means ports 7800
- 7804). Assuming that at least HostA or HostB is up, a response will be received.
To be absolutely sure to receive a response, all the hosts on which members of the
group will be running should be added to the configuration string.

The state transition of a channel is described in the following. When a channel
is first created, it is in an unconnected state. An attempt to perform certain
operations which are only valid in a connected state (e.g. send/receive messages)
will result in an exception. After a successful connection by a client, the channel

4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 133

status moves to a connected state. Then channels will receive messages, views and
suspicions from other members; they may also send messages to other members
or to the group (getting the local address of a channel is guaranteed to be a valid
operation in this state). When the channel is disconnected, it moves back to an
unconnected state. Both connected and unconnected channel may be closed, which
makes the channel unusable for further operations. Any attempt at closure will
result in an exception. When the channel is closed directly from a connected state,
it will first be disconnected, and then closed. The basic methods to use a channel
is presented in the following:

To join a group, the method

public void connect(String groupName) throws ChannelClosed

should be called. It returns when the member has successfully joined the group,
or when it has created a new group (if it is the first member, it is denoted as
coordinator of such a group).

Then a message is sent using the method

public void send(Message msg) throws ChannelNotConnected,

ChannelClosed

such that msg contains a destination address, a source address and a byte buffer.
The destination should be either an address of the receiver (unicast) or null (mul-
ticast). When it is null, the message will be sent to all members of the group
(including itself12). If the source address is null, it will be set to the channel’s
address, and so every recipient may generate a response and send it back to the
sender. A String object is set to be the message’s contents and it is serialised into
the msg ’s byte buffer.

A channel receives messages asynchronously from the network and stores them
in a queue. When the method

public Object receive(long timeout) throws ChannelNotConnected,

ChannelClosed, Timeout

is called, the next available message from the top of the queue is removed and
returned. When there are no messages in the queue, the method will be blocked.
If timeout is greater than 0, it will wait the specified number of milliseconds for a
message to be received, and throw a Timeout exception if none is received during
that time. If the timeout is 0 or negative, the method will wait indefinitely for the
next available message.

The member disconnects from the channel by using the method

12Unless the channel option LOCAL is set to ‘false’.

134CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

public void disconnect()

and the consequence is that the channel removes itself from the group membership.
This is done by sending a leave request to the current coordinator (e.g. the first
member of the group). The coordinator will subsequently remove the channel’s
address from its local view, and send the new view to all remaining members of
the group.

Finally, to destroy a channel instance, the method

public void close()

is used. It moves the channel to a closed state, in which no further operations are
allowed.

The following code illustrates how to use such methods:

String props="UDP:FD:NAKACK:STABLE:GMS";

Message send_msg;

Object recv_msg;

Channel channel=new JChannel(props);

channel.connect("MyGroup");

send_msg=new Message(null, null, "Hello World");

channel.send(send_msg);

recv_msg=channel.receive(0);

System.out.println("Received " + recv_msg);

channel.disconnect();

channel.close();

Channel provides asynchronous message sending/reception, somewhat similar
to UDP. A message sent is essentially put on the network and the method send()
will return immediately. Conceptual requests, or responses to previous requests,
are received in an undefined order, and the application has to take care of matching
responses with requests. Also, an application has to retrieve messages actively from
a channel (pull-style), i.e. it is not notified when a message has been received. Note
that pull-style message reception often needs some form of event-loop, in which a
channel is periodically polled for messages. However, JGroups has a building blocks
package which provides more sophisticated APIs on top of a channel. Building
blocks either create and use channels internally, or require an existing channel to
be specified when creating a building block. Applications communicate directly

4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 135

with a building block, rather than with a channel. Therefore, an application
programmer does not need to write, for instance, a request-response correlation.

The PullPushAdapter belongs to the building blocks package, and it is a con-
verter between the pull-style of actively receiving messages from the channel and
the push-style where clients register a callback, which is invoked whenever a mes-
sage has been received. Clients of a channel do not have to allocate a separate
thread for message reception, they have to implement the interface MessageLis-
tener :

public interface MessageListener {

public void receive(Message msg);

byte[] getState();

void setState(byte[] state);

}

whose method receive() will be called when a message arrives. Both methods
getState() and setState() are used to fetch and set the group state (e.g. when
joining). Furthermore, clients interested in being called when a message is received
should register with the PullPushAdapter using the method

public void registerListener(java.io.Serializable identifier,

MessageListener l)

which sets a listener to messages with a given identifier; through this identifier,
the header will be routed to this listener. The MembershipListener interface is
similar to the above interface: every time a new view, a suspicion message, or
a block event is received, the corresponding method of the class implementing
MembershipListener will be called.

public interface MembershipListener {

public void viewAccepted(Viewnew_view);

public void suspect(Object suspected_mbr);

public void block();

}

When a client is interested in getting a view, suspicion messages and blocks, then
it must additionally register as a MembershipListener using the method

public void addMembershipListener(MessageListener l)

and whenever a view, suspicion or block is received, the corresponding method will
be called. Often, the only method containing any functionality will be viewAc-
cepted(), which notifies the receiver that a new member has joined the group

136CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

or that an existing member has left or crashed. The suspect() callback is in-
voked by JGroups whenever a member is suspected of having crashed. The block
method is called whenever the member needs to stop sending messages13. Fig-
ure 4.7 illustrates how pullPushAdapter runs with both application and channel.
It constantly pulls messages from the channel and forwards them to the regis-
tered listeners. Thus, an application does not have to actively pull for messages;
the PullPushAdapter does this for it. However, the application has to access the
channel directly if it wants to send a message.

Connection to the Inference Engine Interprolog is a middleware for Java and
Prolog, providing method/predicate calling between both. Interprolog’s innovation
is its mapping between (serialized) Java Objects and their Prolog specifications,
propelled by the Java Serialization API which does most of the work of the Java
side. The Prolog side is built upon a “Definite Clause Grammar”(DCG)14 that
analyses/generates (the bytes of) serialized objects (Figure 4.8 illustrates this).
Furthermore, InterProlog supports multiple Prolog threads and it is compatible
with ISO Prolog. Despite having such a feature, the proposed architecture for
argumentation-based negotiation has only one goal-interpreter and so only one
thread is needed.

Interprolog defines that each Prolog System has a specific PrologEngine where
most system-dependent knowledge is. The PrologEngine is the ‘heart’ of InterPro-
log, it represents a Prolog machine instance. Since PrologEngine is an abstract
class, we should choose one of its subclasses. NativeEngine is a XSB Prolog en-
gine implemented using Java Native Interface; this subclass depends on the XSB
Prolog package, and so the file path to the directory containing the Prolog binary
must be specified. The following fragment allows a Java Progammer to use XSB
Prolog, consult a Prolog file, and perform a simple query:

PrologEngine engine = new NativeEngine(xsbDir);

if(!engine.command("["+file+"]")){

System.out.println("ERROR: to read the Prolog program "+file);

} else try{

Object[] bindings =

engine.deterministicGoal(’’father(X,john)’’,’’[string(X)]’’);

if(bindings!=null){

13The block() callback is only needed by the Virtual Synchrony suite of protocols; otherwise,
it will never be invoked. For details see [Bea02].

14DCGs are a special notation provided in most Prolog systems which provide a convenient
way of defining grammar rules. The general form of each DCG clause is Head − − > Body
meaning “a possible form for Head is Body” such that both Head and Body are Prolog terms
and −− > is an infix operator.

4.6. ON THE IMPLEMENTATION OF THE PROPOSED SEMANTICS 137

Send

Receive

PullPushAdapter

Application

View

Channel

Protocol Stack

Figure 4.7: PullPushAdapter

138CHAPTER 4. A PROPOSAL FORARGUMENTATION-BASED NEGOTIATION

Java

Serialization

API

Prolog
Term

object(class(...),...data)Object

Grammar

Interprolog

Stream bytes

Object

Network in

Memory

Figure 4.8: Interprolog as a middleware for Java and Prolog

String X = (String) bindings[0];

System.out.println(’’The father of john is ’’+ X);

}

The method command() executes a Prolog predicate with no other result than suc-
cess/failure and the method deterministicGoal() is useful when we are constructing
objects from Prolog, but do not need to pass any information to Java.

Chapter 5

Related Work

According to The Uses of Computational Argumentation (2009), argumentation is
a form of reasoning in which explicit attention is paid to the reasons for the con-
clusions that are drawn and how conflicts between reasons are resolved. Explicit
consideration of the support for conclusions provides a mechanism, for example,
to handle inconsistent and uncertain information. Argumentation has been stud-
ied both at the logical level, as a way of modelling defeasible inference, and at
the dialogical level, as a form of agent interaction. Argumentation has long been
studied in disciplines such as philosophy, and one can find approaches in computer
science from the 1970s onwards that clearly owe something to the notion of an
argument. Work on computational argumentation, where arguments are explicitly
constructed and compared as a means of solving problems on a computer, first
started appearing in the second half of the 1980s, and argumentation is now well
established as an important sub-field within Artificial Intelligence. According to
Argument, Dialog and Decision (2010), since the work of John Pollock, Ronald
Loui and others in the eighties, argumentation has proven to be successful in non-
monotonic logic. In the nineties, Dung and others showed that argumentation
is also very suitable as a general framework for relating different nonmonotonic
logics. Finally, in recent years argument-based logics have been used to facili-
tate reasoning and communication in multi-agent systems. Argumentation can be
studied on its own, but it also has interesting relations with other topics, such as
dialogue and decision. For instance, argumentation is an essential component of
such phenomena as fact finding investigations, computer supported collaborative
work, negotiation, legal procedure, and online dispute mediation.

In the following we relate our work with proposals in semantics of abstract
argumentation systems, defeasible reasoning, and argumentation-based negotia-
tion. The section Semantics of Abstract Argumentation Systems evaluates some
extended-based semantics presented by a recent overview in [BG09]. The section
Defeasible Reasoning is related with work presented in Chapter 3. This section

139

140 CHAPTER 5. RELATED WORK

provides complementary information of Chapter 2, and our intention is to evaluate
approaches presented by [GDS09], a recent overview of Defeasible Reasoning and
Logic Programming. The last section, Argumentation-based Negotiation, is related
with work presented in Chapter 4 and we focus our attention in preference-based
argumentation frameworks.

5.1 Semantics of Abstract Argument Systems

An abstract argumentation system or argumentation framework, as introduced by
[Dun95], is simply a pair < A,R > consisting of a set A whose elements are called
arguments and of a binary relation R on A called attack relation. Moreover, an
abstract argument is not assumed to have any specific structure but it is anything
that may attack or be attacked by another argument. Similarly, the attack relation
has no specific meaning: if an argument b attacks another argument a, denoted by
(Ab, Aa), this means that if b holds then a cannot hold. Furthermore, given that
arguments may attack each other, it is clear that they cannot stand all together
and their status is subject to evaluation. The evaluation process (in abstract
argument systems) concerns the justification state of arguments. Intuitively, an
argument is justified if it has some way to “survive” the attacks it receives; it is
not justified (it is rejected), otherwise.

An argumentation semantics is the formal definition of a method (either declar-
ative or operational) ruling the argument evaluation process. Two main styles of
argumentation semantics definition can be identified in the literature: extension-
based and labelling-based. In an extension-based approach a semantics definition
specifies how to derive from an argumentation framework a set of extensions. An
extension E of an argumentation framework < A,R > is simply a subset of A
representing a set of arguments which are “collectively acceptable”. In a labelling-
based approach a semantics definition specifies how to derive from an argumenta-
tion framework a set of labellings. A labelling L is the assignment to each argument
in A of a label taken from a predefined set L, which corresponds to the possible
alternative states of an argument in the contex of a single labelling.

[BG09] shows that for a given argumentation framework one or more exten-
sions (labellings) may be prescribed by a given semantics. If a semantics S al-
ways prescribes exactly one extension (labelling) for any argumentation framework
(where the semantics is defined) then S is said to belong to the unique-status (or
single-status) approach; otherwise, it is said to belong to the multiple status ap-
proach. Furthermore, from an historical point of view, [BG09] distinguishes several
extension-based argumentation semantics as follows:

• Four “traditional” semantics, considered in [Dun95]’s argumentation pro-
posal, namely complete, grounded, stable, and preferred semantics. An over-

5.1. SEMANTICS OF ABSTRACT ARGUMENT SYSTEMS 141

view of them is done in Chapter 2.

• Subsequent proposals introduced by various authors in the literature, of-
ten to overcome some limitations or improve some undesired behavior of
a traditional approach, namely stage, semi-stable, ideal, CF2, and prudent
semantics.

Grounded, ideal, and prudent semantics belong to the unique-status approach.
Since our proposal follows the unique-status approach we will focus our attention
on these semantics.

Grounded Semantics As already said, we follow the grounded semantics. Our
results and comparison with such this proposal are presented in Chapter 3.
There, we relate our results to the grounded (skeptical) extension (cf. Theo-
rem 36).

Ideal Semantics The ideal semantics [DMT06] allows the acceptance of a set of
arguments possibly larger than is case with grounded semantics, as shown
by Example 39 (adapted from [BG09]). First, the definition of the semantics
is presented:

Definition 68 (Ideal Semantics) Let AF =< A,R > be an argumen-
tation framework, EPR(AF) be a set of preferred extensions1 of AF , and
S ⊆ A. S is an ideal set iff S is admissible2 and ∀E ∈ EPR(AF) S ⊆ E.
The ideal extension is the maximal (w.r.t. set inclusion) ideal set.

Example 39 Let AF =< A,R > be an argumentation framework such that

A = {Aa, Ab, Ac, Ad}
R = {(Aa, Ab), (Ab, Aa), (Aa, Ac), (Ab, Ac), (Ac, Ad), (Ad, Ac)}

The grounded extension is ∅. Since EPR(AF) = {{Aa, Ad}, {Ab, Ad}}, the
ideal extension is {Ad}. As already proved, our (centralized) argumentation
framework has the same results as the grounded semantics.

We then adapt the above AF to A = {Ag1, Ag2} such that

Ag1 = < 1, {a← not b; b← not a}, {1}, {1, 2} >
Ag2 = < 2, {c← not a; c← not b; c← not d; d← not c}, {2}, {1, 2} >

1A preferred extension of A is as large as possible and able to defend itself from attack. For
further details see Definition 16 on Section 2.2.

2For details see Definition 14 on Section 2.2.

142 CHAPTER 5. RELATED WORK

such that Ag1 cooperates with Ag2 (and vice versa), and the arguments that
attack each other are in the same agent. We show that any other distribution
of such arguments has the same result for this “configuration” of A. We
defined that, for a given agent α in a multi-agent setting A, an agent β ∈
Cooperateα cooperates with an available argument A (cf. Def.59) under
one of the following conditions: (i) A is not attacked by any argument from
Argueβ, or (ii) A is attacked, but every attacking argument (cf. Def.60)
B against A is attacked by some argument from Argueβ. In both cases,
A is considered a defensible argument (cf. Def.62). Besides of the fact the
arguments for a, b, c, and d are involved in “mutual attack”, those arguments
are used in a cooperation process. Then, the arguments for a, b, c, and d are
defensibles,kA (k ∈ {s, w}) in both agents.

Therefore, the ideal semantics allows the acceptance of a set of arguments
possibly larger that our (distributed) argumentation-based negotiation when
every agent cooperates with all agents in A. However, we obtain different
results for any other configuration of sets of argumentative and cooperative
agents. In the conclusion of this chapter we present such configurations.

Prudent Semantics The family of prudent semantics [CMDM05] is introduced
by considering a more extensive notion of attack in the context of traditional
semantics. In particular, an argument Aa indirectly attacks an argument Ab if
there is an odd-length attack path from Aa to Ab. The odd-length path does
not need to be the shortest path and include cycles. A set S of arguments
is free of indirect conflicts, denoted by icf(S), if 6 ∃Aa, Ab ∈ S such that Aa

indirectly attacks Ab. The prudent version of traditional grounded extension
is defined as follows:

Definition 69 Let AF =< A,R > be an argumentation framework. The
function F p

AF : 2A → 2A such that for a given set S ⊆ A, F p
AF (S) =

{Aa | Aa is acceptable w.r.t. S ∧ icf(S ∪ {Aa})} is called a p(rudent)-
characteristic function of AF . Let j be the lowest integer such that the
sequence (F p

AF (S))
i(∅) is stationary for i ≥ j : (F p

AF (S))
i(∅) is the grounded

p(rudent)-extension of AF , denoted as GPE(AF).

As F p
AF is more restrictive than FAF [Dun95], it follows that the prudent

version of grounded semantics (GRP) is a possible strict subset of the tradi-
tional grounded semantics (GE). This entails in particular that reinstatement
is given up by GRP as it can be seen in the following example (adapted from
[BG09]):

5.2. DEFEASIBLE REASONING 143

Example 40 Let AF =< A,R > be an argumentation framework such that
A = {Aa, Ab, Ac, Ad, Ae} and R = {(Aa, Ab), (Ab, Ac), (Ae, Ac), (Ac, Ad)}.
GE(AF) = {Aa, Ad, Ae} whereas GPE(AF) = {Aa, Ae} because Ad is not
reinstated.

We do not deal with ‘indirect attack’, and so F p
AF is also more restrictive

than our characteristic function. Since we propose a distributed version of
argumentation, every agent would have to control the ‘odd-length attack
path’ to obtain similar results to centralized prudent semantics.

5.2 Defeasible Reasoning

According to [GS04], research in Nonmonotonic Reasoning, Logic Programming,
and Argumentation has provided important results seeking to develop more pow-
erful tools for knowledge representation and common sense reasoning. Advances in
those areas are leading to important and useful results for other areas such as the
development of intelligent agents and multi-agent system applications. Therefore,

“Defeasible Argumentation is a relatively young area, but already ma-
ture enough to provide solutions for other areas. Argumentative sys-
tems are now being applied for developing applications in legal systems,
negotiation among agents, decision making, etc”[GS04]

Nute was the first to introduce the Logic for Defeasible Reasoning [Nut94]
(LDR), a formalism that provides defeasible reasoning with a simple representa-
tional language. Although LDR is not a defeasible argumentation formalism in
itself, its implementation — d-Prolog — defined as an extension of PROLOG, was
the first language that introduced defeasible reasoning programming with speci-
ficity as a comparison criterion between rules. The proposed language has no
default literals, only a literal and its strong negation3. In LDR there are three
types of rules: strict rules (e.g. emus are birds), defeasible rules (e.g. birds usually
fly) and defeater rules (e.g. heavy animals may not fly). The purpose of defeater
rules is to account for the exceptions to defeasible rules and so they can only be
used to block an application of a defeasible rule. LDR also has defined strict and
defeasible derivations. The former only uses facts and strict rules; in the latter,
a more sophisticated analysis is performed such that if a literal has a defeasible
derivation then no further analysis is performed. A defeasible derivation cannot

3The strong negation represents contradictory knowledge, and it was introduced by [GL90].
It is also known as “explicit negation”.

144 CHAPTER 5. RELATED WORK

be considered as a single argument because it is related to a tree of arguments that
encodes the analysis of all possible attacks and counter attacks.

Pollock’s proposal [Pol74, Pol87] is another important work in Defeasible Rea-
soning. It introduced an important distinction between two kind of defeat, namely
rebutting defeat (attack on a conclusion) and undercutting defeat (attack on an
inference rule). In [Pol95], Pollock has changed the way in which an argument
is warranted4 adopting a multiple status assignment approach5. Pollock has also
developted a computer program in LISP — OSCAR [Pol96] — where arguments
are sequences of linked reasons, and probabilities are used for comparing compet-
ing arguments. In a way similar to Nute’s defeater rules, explicit undercutting
defeaters can be expressed in his language. Differently from Nute’s proposal, an
inference graph is used by OSCAR for evaluating the status of arguments.

Dung states that “there are interesting relations between argumentation and
logic programming”[Dun95], and he shows that logic programming can be shown as
a particular form of argumentation. He shows that argumentation can be “viewed”
as logic programming by introducing a general method for generating an interpreter
for argumentation. This method consists of a very simple logic program consisting
of the following two clauses:

acceptable(A)← not defeated(A).
defeated(A)← attacks(A), acceptable(A).

Inspired by legal reasoning, Prakken and Sartor [PS97] introduce an argument-
based formalism for extended logic programming with defeasible priorities, designed
as an instance of Dung’s abstract argumentation framework with Grounded seman-
tics. In their formalism, arguments are expressed with both strong and default
negation. Conflicts between arguments are decided with the help of priorities on
the rules. These priorities can be defeasible derived as conclusions within the
system. Its declarative semantics is given by a fixed point definition. Since they
are inspired by legal reasoning, a proof of a formula takes the form of a dialogue
between a proponent and an opponent: an argument is shown to be justified if the
proponent can make the opponent run out of moves in whatever way the opponent
attacks. Proponent and opponent have different rules for introducing arguments,
leading to an asymmetric dialogue. As already said, we follow Dung’s and Prakken
and Sartor’s proposal. An overview of these proposals is done in Section 2.3.2, and
our results and a comparison are presented in Chapter 3. Then:

• We generalize [PS97]’s definition of argument by proposing two kinds of
arguments, viz. strong arguments and weak arguments. Having two kinds of

4The terminology varies in the literature: justified vs warranted, overruled vs defeated, defen-
sible, etc.

5Unique- and multiple-status assignments for arguments are presented in Chapter 2, and
analyzed in depth in [PV02].

5.2. DEFEASIBLE REASONING 145

arguments, attacks by rebut do not need to be considered. Simply note that
rebut is undercut against weak arguments. Therefore, rebut is not considered
in our proposal since, as already shown in [SdAMA97, dAMA98b, SS02b], it
can be reduced to undercut by considering weaker versions of arguments.

• We extend [PS97]’s argumentation-based semantics for extended logic pro-
grams to deal with denials.

• Similarly to [Dun95, PS97] we formalize the concept of acceptable arguments
with a fixpoint operator. However, the acceptability of an argument may
have different results and it depends on which kind of interaction between
(strong and weak) arguments is chosen. Therefore, our argumentation se-
mantics assigns different levels of acceptability to an argument and so it can
be justified, overruled, or defensible. Moreover, a justified argument can be
contradictory, based on contradiction, or non contradictory. Consequently,
the truth value of an literal can be true (and either contradictory, based on
contradiction, or non contradictory), false, or undefined.

Garcia’s proposal of Defeasible Logic Programming [Gar00] (DeLP), is a for-
malism which combines results from Logic Programming and Defeasible Argumen-
tation. DeLP provides the possibility of representing information in the form of
“weak rules”6 in a declarative manner, and a defeasible argumentation inference
mechanism for warranting the entailed conclusions. DeLP considers two kinds of
program rules, viz. defeasible rules and strict rules. A defeasible rule express that
reasons to believe in the antecedent (Body) provide reasons to believe in the conse-
quent (Head), and it is used as a tentative information that may be used if nothing
could be posed against it; and a strict rule is used to represent non-defeasible in-
formation. Therefore, defeasible rules are used for representing weak or tentative
information, like “a mammal does not fly” or “usually, a bird can fly”; and strict
rules7 are used for representing strict (sound) knowledge, like “a dog is a mammal”
or “all penguins are birds”

The DeLP language is defined in terms of three disjoint sets: a set of facts,
a set of strict rules, and a set of defeasible rules; and both strict and defeasible
rules are ground. A DeLP-program [GS04] is denoted by a pair (Π,∆) such that
Π is a set of facts and strict rules, and ∆ is a set of defeasible rules. A derivation
from (Π, ∅) is called strict derivation; otherwise it is a defeasible derivation. A
DeLP-query for a ground literal Q succeeds if it is possible to build an argument
A that supports Q, and A is found to be undefeated by a warranted procedure.
The warranted procedure evaluates if there are other arguments that counter-argue

6Weak rules were proposed by [Pol95] and they are used to represent relations between pieces
of knowledge that could be defeated after all things are considered.

7Syntacticly, strict rules correspond to basic rules [Lif96].

146 CHAPTER 5. RELATED WORK

or attack A (or a sub-argument of A). In order to verify whether an argument
is non-defeated, all of its associated counter-arguments have to be verified, each
of them being a potential reason for rejecting A. Then it is established an argu-
ment comparison criterion based on generalized specificity, e.g. a more “precise
argument” is preferred.

DeLP accepts that (Π,∆) can have contradictory information but it does not
derive contradictory literals, i.e. neither a literal nor its strong negation are war-
ranted. DeLP has four possible answers for a literal L: yes, no, undecided or
unknown. The first means that L is warranted ; the second means the strong
negation of L is warranted ; the third one is related with a contradiction detected
between both L and its strong negation; and the last one is related with incomplete
information about L. Moreover, every literal in the Body of a defeasible rule may
be undecided if the Head is contradictory. Therefore, every literal involved with
some kind of contradiction is undecided.

According to [Pra09], in both [Nut94]’s and [Gar00]’s proposals — respec-
tively LDR and DeLP systems — the logic language is restricted in logic program-
ming. LDR is not explicitly argument-based but defines the notion of a proof
tree, which interleaves support and attack. LDR is proven to instantiate ground
semantics [Dun95]. In DeLP the only way to attack an argument is on a (sub-)
conclusion. DeLP’s notion of argument acceptability has no known relation to any
of the current argumentation semantics. Nevertheless, we relate our work with
DeLP’s proposal [Gar00] as follows:

• As in our proposal, no priority relation is needed for deciding between contra-
dictory literals in DeLP. However, DeLP distinguishes strict and defeasible
rules: only defeasible rules are evaluated. In some sense, it is a kind of
‘weak’ preference. The definition of a formal criterion for comparing argu-
ments is a central problem in defeasible argumentation. Existing formalisms
have adopted different solutions. Abstract argumentation systems usually
assume an ordering in the set of all possible arguments (eg. [Dun93]). In
other formalisms, explicit priorities among rules are given, so that the con-
flict between two rules can be solved. This approach is used in [Nut94]. In
[PS97] it is also possible to reason (defeasibly) about priorities among rules.
An alternative is to use the specificity criterion, and no explicit order among
rules or arguments need to be given. Finally, other formalisms use no pref-
erences [Gar00, GS04], as is also our case. However, it seems clear that the
flexibility offered by our proposal of sets of cooperative and argumentative
agents allows for giving priority to sets of rules over other sets of rules. This
is somehow similar to what is done in preferences in the context of logic pro-
grams. We have illustrated it in examples of Section 4.5, viz. how to model
knowledge over a hierarchy, and also how to model knowledge that evolves.

5.2. DEFEASIBLE REASONING 147

Both cases specify priorities between agents’ sets of rules.

• Since our argumentation is parameterized by the kind of interaction between
arguments, we obtain results ranging from a consistent way of reasoning to a
paraconsistent way of reasoning; the former is more sceptical than the latter
and it has similar results if applied to the DeLP’s set of defeasible rules. The
major difference between DeLP and our approach is the way in which contra-
dictory conclusions are treated. DeLP concludes both contradictory literals
from defeasible rules as undecided. We assume, in a consistent way, that ev-
ery contradictory literal has to be undefinedw,w

P . However, in a paraconsistent
way, we deal with contradiction and a literal may be true and contradictory,
based on contradiction, or non contradictory (for details see Def. 49). So we
may have contradictory literals as (trues,wP and) contradictorys,wP . We further
consider the literals that are involved with contradiction but in a different
way, every literal that is both trues,wP and falses,wP (and not contradictorys,wP)
is based-on-contradictions,w

P , whereas DeLP concludes them as undecided.
Undefinedk,w

P literals are only those which are neither truek,wP nor falsek,wP

(k ∈ {s, w}). For better understanding see Example 41.

Example 41 [GDS09] presents the following DeLP-program (Π,∆) where Π is a
set of facts and strict rules, and ∆ is a set of defeasible rules.

Π = { switch on(a); switch on(b); ¬electricity(b);
night; sunday; deadline;
¬day ← night;
¬dark(X)← illuminated(X)}

∆ = { lights on(X)← switch on(X);
¬lights on(X)← ¬electricity(X);
lights on(X)← ¬electricity(X), emergency lights(X);
dark(X)← ¬day;
illuminated(X)← lights on(X),¬day;
working at(X)← illuminated(X);
¬working at(X)← sunday;
working at(X)← sunday, deadline}

Π has information about two rooms, viz. a and b. There are facts expressing
that in both rooms a and b the light switch is on, and in room b there is no electric-
ity. There are also facts expressing that it is Sunday night and that people working
there have a deadline. The last strict rule expresses that an illuminated room is
not dark. ∆ has the defeasible rules that can infer, for instance, which room is
illuminated or if someone is working in a particular room. The first rule states
that “reasons to believe that the light switch of a room is on, provide reasons to

148 CHAPTER 5. RELATED WORK

believe that the lights on that room are on”. The second rule expresses that “usually
if there is no electricity then lights of a room are not on”. The third rule states
that “normally, if there is no electricity but there are emergency lights, the lights
will be on”. The last two rules state that “normally there is nobody working in a
room on a Sunday”, however, “if they have a deadline, people may be working on
Sunday”.

In this example, the literals illuminated(a), working at(a), ¬dark(a), and
dark(b) are warranted. In [GDS09] it is shown that two contradictory literals
trivially disagree. This is the case of working at(a) and ¬working at(a), how-
ever the defeasible derivation of working at(a) is considered more precise than
¬working at(a) (it is easy to verify by comparing the bodies of the rules). It is
also shown that two literals L and L′ that are non-contradictory can also disagree
if there is a derivation for ¬L. This is the case of illuminated(a) and dark(a)
because ¬dark(a). In this case, illuminated(a) is considered more precise than
dark(a). However, illuminated(b) is not warranted because neither light on(b) nor
¬light on(b) are warranted (since they are contradictory conclusions). Therefore,
the DeLP-answers for illuminated(a), working at(a), ¬dark(a), and dark(b) are
true, the DeLP-answers for ¬working at(a), dark(a), and ¬dark(b) are false, and
the DeLP-answer for illuminated(b), light on(b), and ¬light on(b) are undecided.

To compare DeLP with our proposal, we adapt the above example by considering
that every rule is a defeasible rule, i.e. P = Π ∪∆. We then show separately the
results for rooms a and b:

• The results of a consistent way of reasoning for room a are quite similar
to those of DeLP. The literals illuminated(a) and working at(a) are non-
contradictoryw,w

P , whereas ¬working at(a) is falses,wP . This happens because
working at(a) has two arguments supporting it, whereas ¬working at(a) has
only one. However, we detect contradiction between dark(a) and ¬dark(a),
and so both are undefinedw,w

P .

In a paraconsistent way of reasoning: illuminated(a) is non-contradictorys,wP ,
whereas ¬dark(a), dark(a), ¬working at(a) and working at(a) are contra-
dictorys,wP . Therefore, since we have no comparison criterion as DeLP to
choose between contradictory arguments, we conclude both as undefinedw,w

P

or contradictorys,wP .

• In a consistent way of reasoning, dark(b) is non-contradictoryw,w
P , ¬dark(b)

is falsew,w
P , whereas illuminated(b), light on(b), ¬light on(b) are undefinedw,w

P .
Those results are similar to DeLP.

However, we present different results by applying a paraconsistent way of
reasoning: dark(b) is non-contradictorys,wP . We detect contradiction between
light on(b) and ¬light on(b) and so both are contradictorys,wP . Consequently,

5.3. ARGUMENT-BASED NEGOTIATION 149

illuminated(b) is based-on-contradictions,w
P . Note that such results may “sig-

nal” that something is wrong with room b. Therefore, in this case of contra-
diction we argue that we present results more intuitive than DeLP.

5.3 Argument-based Negotiation

Negotiation has its origin in both Distributed Problem Solving (DPS), where the
agents are assumed to be cooperative, and Multi-agent Systems (MAS), where the
agents are supposed to be moved by self-interest. However, there are also proposals
in MAS of mechanisms for cooperative agents who need to resolve conflicts that
arise from conflicting beliefs about different aspects of their environment. In DPS,
negotiation is used for distributed planning and distributed search for possible
solutions for hard problems. In MAS, an abstract negotiation framework can be
viewed in terms of its negotiating agents (with their internal motivations, decision
mechanisms, knowledge-bases, etc.) and the environment in which these agents
interact.

The multi-agent paradigm offers a powerful set of metaphors, concepts, and
techniques for conceptualizing, designing, implementing, and verifying complex
distributed systems. An agent is viewed in [RRJ+04] as an encapsulated computer
system that is situated in an environment and is capable of flexible, autonomous
action in order to meet its design objectives. Most often, such agents need to
interact in order to fulfill their objectives or improve their performance. Gen-
erally speaking, different types of interaction mechanisms suit different types of
environments and applications. Thus, agents may need mechanisms that facilitate
information exchange, coordination (in which the agents arrange their individual
activities in a coherent manner), collaboration (in which agents work together to
achieve a common objective), and so on. One such type of interaction that is
gaining increasing prominence in the agent community is automated negotiation8.

Several interaction and decision mechanisms for negotiation in a multi-agent
setting have been proposed and discussed. The three major classes of approaches
applied to multi-agent settings are game-theoretic analysis, heuristic approaches,
and argumentation-based approaches. A brief review and a comparison of these
three approaches is presented in [RRJ+04]. Those approaches consider the mech-
anism (or protocol), the agent strategies within the rules of the protocol, and the
outcome (i.e. a deal or a conflict over a negotiation set). The latter is the result of
the mechanism and the participant strategies applied in the negotiation process.

In most game-theoretic and heuristic models, agents exchange proposals (i.e.
potential agreements or potential deals). Agents are not allowed to exchange any

8In the following we write negotiation for automated negotiation.

150 CHAPTER 5. RELATED WORK

additional information other than what is expressed in the proposal itself. An-
other limitation of conventional approaches to negotiation is that agent’s utilities
or preferences are usually assumed to be completely characterized prior to the
interaction. Thus, an agent is assumed to have a mechanism by which it can
assess and compare any two proposals. In more complex negotiation situations,
such as trade union negotiations, agents may well have incomplete information
which limits this capability. Then, the agents might have inconsistent or uncer-
tain beliefs about the environment, have incoherent preferences, have unformed or
undetermined preferences, and so on. To overcome these limitations, the processes
of acquiring information, resolving uncertainties, or revising preferences often take
place as part of the negotiation process itself. A further drawback of traditional
models for negotiation is that agent’s preferences over proposals are often assumed
to be proper (in the sense that they reflect the true benefit the agent receives from
satisfying these preferences). Finally, game-theoretic and heuristic approaches as-
sume that agent’s utilities or preferences are fixed. One agent cannot directly
influence another agent’s preference model, or any of its internal mental attitudes
(e.g., beliefs, desires, goals, etc.) that generate its preference model. A rational
agent would only modify its preferences upon receipt of new information.

We can conclude that the Game-theoretic approach and the Heuristic-based
approach share some limitations such as (1) agents exchange proposals (potential
agreements or deals) but they are not allowed to exchange any additional infor-
mation to justify such proposals; (2) agent’s utilities or preferences are assumed
to be completely characterized prior to the interaction; (3) agents’ preferences are
assumed to be proper (i.e. they reflect the truth benefit the agents gets); (4) both
approaches assume that the agents’ utilities or preferences are fixed (i.e. agents
cannot influence on other agents’ preference models or internal mental attitudes).
Argumentation-based approaches to negotiation attempt to overcome the above
limitations by allowing agents to exchange additional information, or to argue
about their beliefs and other mental attitudes, during the negotiation process.

An argument-based negotiation protocol [PSJ98] is basically based on the ex-
change of proposals, critiques, counter-proposals, and explanations. It usually
proceeds in a series of rounds, with every agent making a proposal - a kind of
solution to the problem - at each round. One agent generates a proposal and other
agents review it. If some agent does not like the proposal, it rejects the proposal,
and generates a kind of feedback, either as a counter-proposal (i.e. an alternative
proposal generated in response to the initial proposal) or as a critique (i.e. com-
ments on which parts of the proposal the agents likes or dislikes). Then, every
agent, including the agent that generated the first proposal, reviews the feedback.
Based on the reviewing of the feedback, the proponent may generate a proposal
to lead to an agreement. In addition of generating proposals, counter-proposals,

5.3. ARGUMENT-BASED NEGOTIATION 151

and critiques, the agents can make the proposal more attractive by providing ad-
ditional meta-level information in the form of an argument. The process is then
repeated. It is assumed that a proposal becomes a solution when it is accepted
by all agents. Furthermore, argumentation may be used both at the level of an
agent’s internal reasoning and at the level of negotiation between the agents, and
where preferences can change. Therefore, argumentation can be seen as a more
sophisticated exchange of information in a negotiation protocol, or as a model for
reasoning based on the construction and comparison of arguments.

According to [RRJ+04], an argumentation-based negotiation is viewed as a
form of interaction in which a group of agents, with conflicting interests and a de-
sire to cooperate, try to come to a mutually acceptable agreement on the division
of scarce resources, not all of which can be simultaneously satisfied. A resource
is understood as commodities, services, time, money, etc. In short, anything that
is required to achieve something. According to Argumentation in Multi-Agent
Systems (ArgMAS 2010), argumentation can be abstractly defined as the formal
interaction of different arguments for and against some conclusion (eg., a propo-
sition, an action intention, a preference, etc.). An agent may use argumentation
techniques to perform individual reasoning, in order to resolve conflicting evidence
or to decide between conflicting goals. Multiple agents may also use dialectical
argumentation in order to identify and reconcile differences between themselves,
through interactions such as negotiation, persuasion, and joint deliberation. In
Computational Models for Argumentation in Multiagent Systems (2005), a multi-
agent system consists of a number of agents, which interact with one-another. In
the most general case, agents will be acting on behalf of users with different goals
and motivations. To successfully interact, they will require the ability to cooperate,
coordinate, and negotiate with each other, much as people do. We can conclude
that argumentation provides tools for designing, implementing, and analyzing so-
phisticated forms of interaction in multi-agent systems. Moreover, a single agent
may use argumentation techniques to perform its individual reasoning because it
needs to make decisions under complex preferences policies, in a highly dynamic
environment. Therefore, argumentation has made solid contributions to the prac-
tice of negotiation in multi-agent systems.

According to [AC02], the argumentation encopasses two views of arguments:
(i) a local view that intends to give support in favor or against a conclusion,
and (ii) a global view that intends to define acceptable arguments. We follow the
second view, and so we focus our attention on that. Formal argumentation systems
(e.g. [SL92b, Vre97, Pol01, Dun93, Dun95, PS97]) are characterized by representing
precisely some of these features of argumentation via formal languages, and by
applying formal inferences techniques. The different approaches, which have been
developed for reasoning within an argumentation system, use one of the following

152 CHAPTER 5. RELATED WORK

kinds of acceptability: (i) individual acceptability [EGH95] where an acceptability
level is assigned to a given argument on the basis of the existence of direct defeaters;
or (ii) joint acceptability [Dun93, Dun95] where the set of the accepted arguments
must defend itself against any defeater. These two notions of acceptability have
been most often defined purely on the basis of defeaters. The resulting evaluation of
arguments is only based on the interactions between (direct or indirect) defeaters.
However, other criteria may be taken into account for comparing arguments such
as for instance, preference [AC02], specifity [SL92b], or explicit priorities [PS97].
Below we give a brief overview of proposals that define acceptable arguments, and
draw some comparisons with our work.

The preference-based argumentation approach shows that it is not realistic
to assume that arguments have all the same strength (e.g. [Dun95]’s abstract
argumentation framework) since it may be the case that an argument relies on
certain information, while another argument is built from less certain ones. The
former argument has to be stronger than the latter. Therefore, preferences have
been introduced into argumentation theory to solve conflicts where a preference
relation captures differences in arguments’ strengths. An extension of Dung’s
framework [AC02] is proposed as a preference-based argumentation approach. The
idea behind this extension is that an attack from an argument a to an argument
b fails if b is stronger than a. To do so, it takes as input a set Arg of arguments,
an attack relation R, and a (partial or total) preorder9 ≥. This preorder is a
preference relation between arguments. The expression (a, b) ∈≥ or a ≥ b means
that the argument a is at least as strong as b. The symbol > denotes the strict
relation associated with ≥. Indeed, a > b iff a ≥ b and not (b ≥ a). From
the two relations R and ≥, a new binary relation, Def , is defined as follows:
a Def b iff aRb and not (b > a). This means that among all the attacks in
R, only the ones that hold between incomparable and indifferent arguments and
the ones that agree with the preference relation are kept. In order to evaluate
the acceptability of arguments, Dung’s acceptability semantics are applied to the
framework < Arg,Def >. [AV09] shows that this proposal gives unintended
results with the following example:

Example 42 Let us to consider the case of an agent who wants to buy a given vi-
olin. An expert says that the violin in question is produced by Stradivari (s), that’s
why it is expensive(e← s). This agent has thus an argument a1 whose conclusion
is “the violin is expensive”. Suppose now that the 3-years old son of this agent
says that the violin was not produced by Stradivari (¬s). Thus, an argument a2
which attacks a1 is given. In sum, Arg = {a1, a2} and R = {(a2, a1)}. According
to Dung’s framework, argument a2 wins. This is inadmissible, especially since it

9A binary relation is a preorder iff it is reflexive and transitive.

5.3. ARGUMENT-BASED NEGOTIATION 153

is clear that an argument of an expert is stronger than an argument given by a 3-
years old child. In the framework presented in [AC02], the fact that a1 is stronger
than a2 is taken into account. Thus, the relation ≥= {(a1, a1), (a2, a2), (a1, a2)} is
available. However, in this framework the relation Def is empty. Consequently,
the arguments a1 and a2 are in the unique preferred extension10. This means that
this extension is not conflict-free11. Moreover, both s and ¬s are deduced.

We can further evaluate the above example by assuming an argument a3 for
stradivari. We then obtain a new Arg = {a1, a2, a3} such that R = {(a2, a1),
(a2, a3), (a3, a2)}. According to Dung’s framework, no argument wins. This is an
inadmissible result because the argument a2 (from a child) invalidates both argu-
ments a1 and a3 (from an expert). That is also our result if we apply a (centralized)
consistent way of reasoning, Fw,w

P , over an ELP program P = {s;¬s; e← s}. If we
apply a (centralized) paraconsistent way of reasoning, F s,w

P , all arguments are ac-
ceptable which is also an inadmissible result because it assigns all those arguments
the same “strength”. However, we may represent such a problem as a MAS:

A = { < expert, {s; e← s}, {expert}, {expert, child} >,
< child, {¬s}, {child, expert}, {child, expert} > }

we define a preference between expert and child, i.e. the child must argue with the
expert, but not vice-versa. Moreover, we model that both agents cooperate with
each other and so they deduce the same truth value for every literal in H(A). In
a paraconsistent way of reasoning, e, s and ¬s are trues,wAg (Ag = {child, expert})
which are inadmissible results. However, in a consistent way of reasoning, e and
s are truew,w

Ag , and ¬s is falsew,w
Ag (Ag = {child, expert}). Therefore, we solve the

problem presented in [AV09]’s example by modelling cooperative and argumenta-
tive agents to obtain preference over rules from an expert.

[AV09] proposes a new preference-relation argumentation framework that en-
sures being conflict-free w.r.t. the attack relation and so solves the problem pre-
sented in Example 42. The proposal has similar results to the ones to those
presented above. Thus, this framework recovers Dung’s acceptability extensions,
viz. preferred extensions and grounded extension. Since we follow the grounded
extension, we will focus our attention on that. The framework takes as input three
elements: a set of arguments Arg, an attack relation R, and a (partial or total)
preorder ≥. It returns extensions that are subsets E of Arg. These extensions

10A set of arguments is a preferred extension iff it is a maximal (w.r.t. ⊆) admissible set. A set
of arguments is admissible iff it defends all its elements. A set of arguments defends an argument
a iff ∀b ∈ Arg if bRa, then ∃c ∈ B such that cRb whether the framework < Arg,Def >. For
details see Section 2.2

11A set B of arguments is conflict-free iff ¬∃a, b /∈ B such that aRb.

154 CHAPTER 5. RELATED WORK

satisfy the two following basic requirements, viz. conflict-freedom and generaliza-
tion. The former ensures safe results in the sense that inconsistent conclusions
in E are avoided. The latter captures the idea that an attack fails in case the
attacker is weaker than its target. Moreover, it states that the proposed approach
extends Dung’s framework, i.e. it refines its acceptability semantics. Preferences
relations, denoted by �, between the different conflict-free sets E of arguments are
defined: E ≻ E ′ iff E � E ′ and not (E ′ � E). Then maximal elements and the new
preference-based argumentation (PAF) are defined as follows:

Definition 70 (Maximal Elements) Let E be a conflict-free set of arguments.
E is maximal w.r.t. � iff:

1. (∀E ′ ⊆ Arg) ((E is conflict-free) ⇒ (E � E ′))

2. No strict superset of E is conflict-free and verifies (1)

Let �max denote the set of maximal sets w.r.t. �.

Definition 71 (PAF) A PAF is a tuple (Arg,R,≥), where Arg is a set of ar-
guments, R is an attack relation, and ≥ is a (partial or total) preorder on Arg.
Extensions of (Arg,R,≥) are the maximal elements of a relation �⊆ 2Arg × 2Arg

that satisfies the two basic requirements.

Then, a relation which generalizes grounded semantics [Dun95] is defined. The
basic idea behind this relation is that a set is not worse than another if it can
strongly defend all its arguments against all attacks that come from the other
set. The notion of strong defense is generalized by taking into account preference
between arguments: an argument has either to be preferred to its attacker or has
to be defended by arguments that themselves can be strongly defended without
using the argument in question.

Definition 72 (Strong Defense) Let E ′ ⊆ Arg. E ′ strongly defends an argu-
ment x from attacks of a set E , denoted by sd(x, E ′, E) iff (∀y ∈ E) if (((y, x) ∈
R ∧ (x, y) /∈ >) or ((x, y) ∈ R ∧ (y, x) ∈>)) then ((∃z ∈ E ′\{x}) such that
((z, y) ∈ R ∧ (y, z) /∈> ∧ sd(z, E ′\{x}, E))). If the third argument of sd is not
specified, then sd(x, E) ≡ sd(x, E ,Arg).

Example 43 This example is taken from [AV09]. Let Arg = {a, b, c}, ≥= {(a, a),
(b, b), (a, b)} and R = {(a, b), (b, a), (b, c), (c, b)}. The conflict-free sets of argu-
ments are: E1 = ∅, E2 = {a}, E3 = {b}, E4 = {c}, and E5 = {a, c}. The relations
are: E2 � E1, E3 � E1, E4 � E1, E5 � E1, E5 � E4, E5 � E2, E5 � E3, E4 � E3,
E3 � E4, and E2 � E3. Therefore, �max= E▽. It holds that sd(a, {a}, {b}) since
a is strictly prefered to b thus it can defend itself. However, ¬sd(b, {b}, {c}) holds

5.3. ARGUMENT-BASED NEGOTIATION 155

because b cannot defend itself against c. On the other hand, it does hold that
sd(c, {a, c}, {b}) since a can defend c against b and a is protected from b since it
is strictly prefered to it. Therefore, a and c are acceptable arguments, whereas b is
not.

To compare PAF with our proposal, we need to adapt the proposed argumenta-
tion set of arguments Arg to an MAS. First, we assume that the above argument a
(resp. b, c) is Aa = [a← not b] (resp. Ab = [b← not a, not c], Ac = [c← not b]).
Then, we specify a multi-agent set A = {Ag1, Ag2} such that

Ag1 = < 1, {a← not b}, {1}, {1, 2} >
Ag2 = < 2, {b← not a, not c; c← not b}, {1, 2}, {1, 2} >

This example has no explicit negation which means that there are no contradic-
tory literals, and so both consistent and paraconsistent ways of reasoning have the
same result. In the following we show, step by step, how we obtain the lfp(F s,s

A),
i.e. the set of acceptable arguments. First of all, we determine the set of strong
local arguments of A:

LAs(A) = { (1, []), (1, [a← not b]),
(2, []), (2, [c← not b])
(2, [b← not a, not c]) }

and the set of available arguments of A given LAs(A) is

Args(A) = LAs(A) ∪ { (2, [a← not b]) }

• Let S0 = ∅. Since Atts0 = ∅, the set of opposing arguments is

Def 0 = Defs,s(S
0) = Args(A)

The set of proposed arguments is LAs(A), resulting from Av(S0). Then we
determine the following attacks

opposing argument proposed argument
(1, [a← not b])

(1, [a← not b]) (2, [b← not a, not c])
(2, [a← not b]) (2, [b← not a, not c])

(2, [b← not a, not c]) (2, [c← not b])

Therefore,

S1 = F s,s
A (S0) = { (1, [a← not b]), (1, []), (2, []) }

156 CHAPTER 5. RELATED WORK

Remark that (2, [b ← not a, not c]) is attacked by arguments for a of both
agents, and that (2, [a← not b]) is built by cooperation with 1. Furthermore,
(1, [a← not b]) is not attacked because agent 2 does not argue with agent 1.
Such situation permits that every argument of agent 1 has preference over
arguments of agent 2.

• Since Atts1 = {(1, [a← not b]), (2, [a← not b]), (2, [b← not a, not c]), (2←
not b)}, the argument (2, [b← not a, not c]) in Args(A) is rejected and so

Def 1 = Defs,s(S
1) = { (1, [a← not b]), (2, [a← not b]) }

The proposed arguments are obtained from Av(S1), the attacks are

opposing argument proposed argument
(1, [a← not b])
(2, [a← not b])

(1, [a← not b]) (2, [b← not a, not c])
(2, [a← not b]) (2, [b← not a, not c])

(2, [c← not b])

and so

S2 = F s,s
A (S1) = { (1, [a← not b]), (2, [a← not b]),

(2, [c← not b]), (1, []), (2, []) }

• Since F s,s
A (S2) = S2, we then obtain the lfp(F s,s

A). We can further say
the justifieds,sA arguments are in S2, the overruleds,sA argument is (2, [b ←
not a, not c]), and there is no defensibles,sA argument. Therefore, we obtain
results similar to the (centralized) preference-relation argumentation frame-
work from [AV09].

We show in the above example that we can specify preference rules between
two agents by defining that the agent with less priority has to argue with the other
one. If both agents cooperate with each other, we garantee that the conclusions
will be the same. The preference relation between arguments has to be individually
specified in [AV09] whereas we globaly define the preference relation for differents
(cooperative and argumentative) agents in the same multi-agent setting. So each
agent has some level of preference rules over the others ones.

By defining sets of (cooperative and argumentative) agents, we apply our pro-
posal in different aproaches such as those presented in the Section 4.5. On that, we
can model a situation where arguments have to be deduced without a “global view
of the world”. For instance, assume a multi-agent setting A = {Ag1, Ag2, . . . , Agn}

5.3. ARGUMENT-BASED NEGOTIATION 157

and an agent Agi that does not argue with agent Agj (1 ≤ j ≤ n and j 6= i). Agi
deduces the truth value of any literal L without consider the fact that the argu-
ments for L might be attacked by arguments in some Aj. [AV09]’s framework
needs to define a preference relation over all arguments of both Agi and Agj to
obtain the same result as our. Therefore, we consider our proposal easier to model
such situation.

[BC03] also extends [Dun95]’s argumentation framework. It assumes that each
argument promotes a value, and a preference between two arguments comes from
importance of the respective values that are promoted by two arguments. In
[BCA09], an (abstract) Value-based argumentation framework is presented as fol-
lows:

Definition 73 A value-based argumentation framework (V AF) is a 5-tuple:

V AF =< Arg,R,V, val, P >

where Arg is a finite set of arguments, R is an irreflexive binary relation on Arg,
V is a non-empty set of values, val is a function which maps elements of A to
elements of V, and P is the set of possible audiences (i.e. total orders on V). An
argument a relates to value v if accepting Arg promotes or defends v: the value in
question is given by val(a). For every a ∈ Arg, val(a) ∈ V.

When the V AF is considered by a particular audience, the ordering of values
is fixed. Then an Audience Specific VAF is as following:

Definition 74 An audience specific value-based argumentation framework (AV AF)
is a 5-tuple:

V AFa =< Arg,R,V, val, V alprefa >

where Arg,R, V, and val are as for a V AF , a is an audience in P , and V alPrefa ⊆
V × V is a preference relation (transitive, irreflexive, and asymmetric), reflect-
ing the value preferences of audience a. The AV AF relates to the V AF in that
Arg,R,V, and val are identical, and V alPrefa is the set of preferences derivable
from the ordering a ∈ P in the V AF .

The purpose of introducing V AF s is to distinguish between one argument
attacking another, and that attack succeeding, so that the attacked argument may
or may not be defeated. Whether the attack succeeds depends on the value order
of the audience considering the V AF . Then the notion of defeat is defined as
follows:

Definition 75 An argument A ∈ AV AF defeatsa an argument B ∈ AV AF for
an audience a iff both R(A,B) and not (val(A), val(B)) ∈ V alPrefa.

158 CHAPTER 5. RELATED WORK

Then, various notions of the status of arguments are defined as:

Definition 76 An argument A ∈ Arg is acceptable-to-audience-a (acceptablea)
w.r.t. a set of arguments S (acceptablea(A, S)) if

(∀x)((x ∈ A ∧ defeatsa(x,A))→ (∃y)(y ∈ S ∧ defeatsa(y, x))).

Definition 77 A set S of arguments is conflict-free-for-audience-a if

(∀x)(∀y)((x ∈ S ∧ y ∈ S)→ (¬R(x, y) ∨ (val(y), val(x)) ∈ V alPrefa)).

Definition 78 A conflict-free-for-audience-a set of arguments S is admissible-
for-an-audience-a if

(∀x)(x ∈ S → acceptablea(x, S)).

Definition 79 A set of arguments S in a value-based argumentation framework
V AF is a prefered-extension-for-audience-a (prefereda) if it is a maximal (w.r.t.
set of inclusion) admissible-for-audience-a subset of A.

Example 44 Let A = {Agblue, Agred} such that each agent is

Agblue = < blue,

{

a← not d; d← not c;
g ← not f ; h← not g

}

, {blue}, {blue} >

Agred = < red,

{

b← not a; c← not b;
f ← not e; e← not h

}

, {red, blue}, {red, blue} >

This example is adapted from [BCA09], a V AF with values red and blue. On that,
there are two prefered extensions, according to whether red > blue, or blue > red.
If red > blue, the preferred extension is {e, g, a, b}; and if blue > red, {e, g, d, b}.
Moreover, e and g are objectively acceptable, and c, f and h are indefensible. If
red > blue (resp. blue > blue) then a (resp. d) is subjectively acceptable, and b
(resp. a) is defensible.

First of all, we determine the set of strong local arguments of A:

LAs(A) = { (blue, []), (blue, [a← not d]), (blue, [d← not c]),
(blue, [g ← not f]), (blue, [h← not g]),
(red, []), (red, [b← not a]), (red, [c← not d]),
(red, [f ← not e]), (red, [e← not h]) }

and the set of available arguments of A given LAs(A) is

Args(A) = LAs(A) ∪ { (red, [a← not d]), (red, [d← not c]),
(red, [g ← not f]), (red, [h← not g]) }

5.3. ARGUMENT-BASED NEGOTIATION 159

• Let S0 = ∅. Since Atts0 = ∅, the set of opposing arguments is

Def 0 = Defs,s(S
0) = Args(A)

The set of proposed arguments is LAs(A), resulting from Av(S0). Then we
determine the following attacks

opposing argument proposed argument
(blue, [d← not c]) (blue, [a← not d])
(blue, [d← not c]) (red, [a← not d])
(blue, [a← not d]) (red, [b← not a])
(red, [a← not d]) (red, [b← not a])
(red, [b← not a]) (red, [c← not b])

(blue, [d← not c])
(red, [c← not b]) (red, [d← not c])
(blue, [h← not g]) (red, [e← not h])
(red, [h← not g]) (red, [e← not h])
(red, [e← not h]) (red, [f ← not e])

(blue, [g ← not f])
(red, [f ← not e]) (red, [g ← not f])
(blue, [g ← not f]) (blue, [h← not g])
(blue, [g ← not f]) (red, [h← not g])

and so

S1 = F s,s
A (S0) = { (blue, [d← not c]), (blue, [g ← not f]),

(red, []), (blue, []) }

Remark that some arguments of red are attacked by both arguments of blue
and arguments of red (in this case, built by cooperation with blue, e.g.
(red, [a ← not d])). However, arguments of blue are only attacked by ar-
guments of blue. Such situation permits that every argument of blue has
preference over arguments of red.

• Since Atts1 = S1 − {(red, []), (blue, [])}, the arguments (blue, [a ← not d]),
(red, [a ← not d]), (blue, [h ← not g]), (red, [h ← not g]) in Args(A) are
rejected and so

Def 1 = Defs,s(S
1) = Def 0 − { (blue, [a← not d], (red, [a← not d],

(blue, [h← not g], (red, [h← not g] }

160 CHAPTER 5. RELATED WORK

Then proposed arguments are obtained from Av(S1), and the attacks are

opposing argument proposed argument
(red, [b← not a])

(red, [b← not a]) (red, [c← not b])
(blue, [d← not c])

(red, [c← not b]) (red, [d← not c])
(red, [e← not h])

(red, [e← not h]) (red, [f ← not e])
(blue, [g ← not f])

(red, [f ← not e]) (red, [g ← not f])

and so

S2 = F s,s
A (S1) = { (red, [b← not a]), (blue, [d← not c]), (red, [e← not h]),

(blue, [g ← not f]), (red, []), (blue, []) }

• Since Atts2 = S2 − {(red, []), (blue, [])}, the arguments (red, [c ← not b]),
(red, [f ← not e]) in Args(A) are rejected and so

Def 2 = Defs,s(S
2) = Def 1 − { (blue, [d← not c]), (red, [e← not h]),

(blue, [g ← not f]) }

Then proposed arguments are obtained from Av(S1). Since no attack is de-
termined for the proposed arguments, then

S3 = F s,s
A (S2) = { (red, [b← not a]), (blue, [d← not c]), (red, [d← not c]),

(red, [e← not h]), (blue, [g ← not f]), (red, [g ← not f]),
(red, []), (blue, []) }

• Finally, F s,s
A (S3) = S3. We can say that the acceptable arguments of A are

in S3, the lfp(F s,s
A).

Moreover, the justifieds,sA arguments are in S3, the overruleds,sA are in the set
{(blue, [a ← not d]), (red, [a ← not d]), (blue, [h ← not g]), (red, [h ←
not g]), (red, [c ← not b]), (red, [f ← not e])}, and there is no defensibles,sA

argument.
Therefore, we obtain similar results as the (centralized) Bench-Capon pro-

posal [BC03]. Note that we cannot determine which argument is subjectively/objec-
tively acceptable because we follows the unique-status approach. However, we could
deduce that both arguments for d and g of blue are acceptable given the preference
relation between both agents.

5.4. SOME CONCLUSIONS 161

We show in the above example that we specify preference rules between two
agents by defining that both agents cooperate with each other, and only the agent
with less priority has to argue with the other agent. Since both agents cooperate
with each other, the truth value of any literal will be the same. Similar to the pre-
vious approach, [BC03]’s approach cannot be applied for obtainning a conclusion
in an agent without considering the knowlegde of other agents.

5.4 Some conclusions

We relate our work with proposals in semantics of abstract argumentation systems,
defeasible reasoning, and argumentation-based negotiation. On that, we show that

• the ideal semantics[DMT06] allows the acceptance of a set of arguments
possibly larger that our (distributed) argumentation-based negotiation when
every agent cooperates with all agents in A. However, we obtain different
results for any other configuration of sets of argumentative and cooperative
agents;

• we do not deal with ‘indirect attack’, and so the centralized prudent seman-
tics [CMDM05] is more restrictive than our characteristic function;

• we generalized the [PS97]’s proposal;

• our results are more intuitive than DeLP [Gar00] when in presence of con-
tradiction; and

• we are able to deal with preferences as in the preference-based argumentation
framework [AV09], and the value-based argumentation framework [BC03].
These frameworks define a preference relation between arguments, and we
show that we can model prefence relation between set of rules ranging from
consistent to a paraconsistent way of reasoning.

Therefore, our proposal is general enough to capture some of these approaches,
without losing the opportunity of having some other results when

• two agents (1) neither argue nor cooperate with each other, or (2) both argue
with each other. In this case there is no preference between agents’ rules and
so every argument has the same “strength”;

• an agent Ag1 has to argue with agent Ag2, but not vice-versa. In this case
the rules of Ag2 have more “strength” than Ag1, and so we model preference
relation between those sets of rules; and

162 CHAPTER 5. RELATED WORK

• two agents do not cooperate with each other, and so the truth value of a
literal L is different, depending on who L is infered.

All of these cases can be applied in the same multi-agent setting with different
(cooperative and argumentative) sets of agents. Moreover, since our argumentation
is parameterized by the kind of interaction between arguments, we obtain results
ranging from a consistent way of reasoning to a paraconsistent way of reasoning;
the former is more sceptical than the latter. We assume, in a consistent way, that
every contradictory literal has to be undefined. However, in a paraconsistent way,
we deal with contradiction and a literal may be true and contradictory, based on
contradiction, or non contradictory (for details see Def. 49). None of the above
aproaches present such a distinction when in presence of contradiction.

Chapter 6

Conclusions and Future Work

This chapter goes back to the objectives drawn in the introduction, synthesizing the
way how the work which unfolded throughout this dissertation has fulfilled them.
Then, it outlines some future research aspects that emerged from the work presented
herein

The main goal of this dissertation was to define an argumentation-based nego-
tiation for agent’s knowledge bases. The agent’s beliefs are characterized by the
relations between its “internal” arguments supporting its beliefs and the “exter-
nal” arguments supporting the contradictory beliefs of other agents. So in a certain
sense, argumentative reasoning is based on the “external stability” of acceptable
arguments in a multi-agent setting. It was also a goal to have an argumentation-
based semantics that can deduce the acceptability of agent’s arguments in a para-
consistent way of reasoning. Moreover, in some applications it may be interesting
to easily change from a paraconsistent to a consistent way of reasoning (or vice-
versa). Furthermore, the Argumentation-based semantics should be as simple as
possible because its definitions will be used in the Argumentation-based Nego-
tiation semantics. Therefore, we first defined a Self-argumentation framework,
upon which most of the definitions of the Argument-based Negotiations seman-
tics were constructed. Consequently, we first present the contributions from the
Self-argumentation framework, followed by the Argumentation-based Negotiation
framework.

Self-Argumentation Framework Our self-argumentation semantics is based
on the argumentation metaphor, in the line of the work developed in [Dun95,

163

164 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

PS97, BDKT97, SS02b] for defining semantics of single extended logic pro-
grams. In these argumentation-based semantics, rules of a logic program are
viewed as encoding arguments of an agent. More precisely, an argument for
an objective literal L is a sequence of rules that “proves” L, if all default
literals (of the form not L′) in the body of those rules are assumed true. In
other words, arguments encoded by a program can attack — by undercut
— each other. Moreover, an argument for L attacks — by rebut — another
argument if this other argument assumes its explicit negation (of the form
¬L). The meaning of the program is then determined by those arguments
that somehow (depending on the specific semantics) can defend themselves
from the attacks of other arguments.

We generalize [PS97]’s definition of argument by proposing two kinds of
arguments, viz. strong arguments and weak arguments. Having two kinds
of arguments, attacks by undercut do not need to be considered. Simply
note that rebut is undercut against weak arguments. Therefore, rebut is not
considered in our proposal since, as already shown in [SdAMA97, dAMA98b,
SS02b], it can be reduced to undercut by considering weaker versions of
arguments. We further extend [PS97]’s argumentation-based semantics for
extended logic programs [PA92] to deal with denials.

Similarly to [Dun95, PS97] we formalize the concept of acceptable arguments
with a fixpoint operator. However, the acceptability of an argument may
have different results and it depends on which kind of interaction between
(strong and weak) arguments is chosen. Therefore, our argumentation se-
mantics assigns different levels of acceptability to an argument and so it can
be justified, overruled, or defensible. Moreover, a justified argument can be
contradictory, based on contradiction, or non contradictory. Consequently,
the truth value of an literal can be true (and either contradictory, based on
contradiction, or non contradictory), false, or undefined.

Since our argumentation semantics is parametrised by the kind of interac-
tion between arguments, we obtain results ranging from a consistent way of
reasoning to a paraconsistent way of reasoning. In the presence of rules for
both literals L and ¬L: a consistent way of reasoning neither concludes L
nor ¬L as true (even if one of these is a fact); a paraconsistent way of rea-
soning can conclude that L is true even if it also concludes that ¬L is true.
Given that we consider denials in the agent’s knowledge base, a consistent
way of reasoning does not conclude a given L as true if L is related with the
presence of falsity ; a paraconsistent way of reasoning may conclude L even
if it is related with falsity.

[CS05] states that “some researchers say that the difference between the

165

two approaches can be compared with the skeptical vs credulous attitude
towards drawing defeasible conclusions. The multi-status assignment (MSA)
is more convenient for identifying sets of arguments that are compatible
with each other, and an argument is genuinely justified if and only if it is
justified in all possible assignments. The unique-status assignment (USA)
considers arguments on an individual basis, and so undecided conflicts get
the status not justified (i.e. overruled or defensible)”. Our proposal is an
USA approach. However, since our argumentation semantics is parametrised
by the kind of interaction between arguments, we obtain results ranging from
a consistent way of reasoning to a paraconsistent way of reasoning and, as
shown above, the latter is more credulous than the former.

The results obtained through the characteristic function p o of a logic pro-
gram P (cf. Def. 43) coincide with well-founded semantics:

• WFSXp semantics [ADP95] and F s,w
P (cf. Theorem 33),

• Grounded extension [Dun95] and Fw,w
P (cf. Theorem 36),

• WFSX [PA92] and Fw,s
P (cf. Theorem 34),

• WFS semantics [Prz90] and F s,s
P (cf. Theorem 37).

Argumentation-based Negotiation Framework As already said, we extend
the Self-argumentation semantics to an Argumentation-based Negotiation
semantics. The goal of this semantics is to define a framework such that
agents negotiate by exchanging parts of their knowledge (i.e. arguments)
and obtain a consensus concerning their beliefs. In other words, the agents
evaluate arguments to obtain a consensus about a common knowledge by
either proposing arguments, or trying to built opposing arguments against
them. As in the centralized version, the proposed framework is able to
deal with mutually inconsistent, and even inconsistent, knowledge bases.
Moreover, when in presence of contradiction, it obtains ways of multi-agent
setting reasoning, ranging from consistent (in which inconsistencies lead to
no result) to paraconsistent.

The argumentation-based negotiation deals with incomplete knowledge (i.e.
partial arguments) and so cooperation grants arguments to achieve knowl-
edge completeness. The declarative semantics for Argumentation-based Ne-
gotiation is composed by argumentation and cooperation. The former im-
poses that every agent should argue with other agents to evaluate its knowl-
edge. The latter allows an agent to handle its incomplete knowledge with
the ‘help’ of other agents. Therefore, each agent α has both sets of argu-
mentative and cooperative agents — Argueα and Cooperateα, respectively
— and α must reach a consensus of its arguments with agents in Argueα and

166 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

α may ask for arguments from agents in Cooperateα to complete its partial
arguments.

We introduce cooperation by defining available arguments : (1) every (com-
plete or partial) argument of α is considered an available argument of α; (2)
if a partial argument for L of α may be further completed with arguments
from Cooperateα, this further completed argument is also an available argu-
ment of α. Furthermore, an agent in a multi-agent setting A may be able
to build a (partial or complete) argument for any L in H(A) even though
α has no knowledge about such an L: it will depend upon the arguments
from Cooperateα. We further propose “indirect cooperation”: it may occur
between argumentative agents when a proposed argument A can be used to
complete a partial opposing argument B, and so the resulting argument from
A +B is used to attack A.

We propose the idea that every argument A of an agent α can be used in
a cooperation process if and only if A is initially evaluated by Argueα, i.e.
cooperation and argumentation are interlaced processes. As with other ar-
gumentation based frameworks the semantics is defined based on a notion of
acceptable arguments, where a set of arguments is acceptable if any argument
attacking it is itself attacked by the set. In this distributed setting, we had to
define which arguments can be used to attack a set of arguments, and which
arguments are available for being used to defend the attacks. We define that
for a given agent α in a multi-agent setting A, an agent β ∈ Cooperateα co-
operates with an available argument A under one of the following conditions:
(i) A is not attacked by any argument from Argueβ, or (ii) A is attacked,
but every attacking argument B against A is attacked by some argument
from Argueβ. We propose (ii) by considering that Argueα can evaluate A as
defensible, and such an argument might be evaluated as justified by other set
of argumentative agents. Therefore, an agent cooperates with both justified
and defensible arguments.

Any agent in an MAS can be queried regarding the truth value of a con-
clusion. Moreover, the truth value of an agent’s belief depends on from
which agent such a belief is inferred, and also on the specification of both
sets Argueα and Cooperateα. Nevertheless, such answer is always consis-
tent/paraconsistent with the knowledge base of the involved agents. Assum-
ing that every agent argues and cooperates with all agents in an argumentation-
based negotiation process, the results from such a process and the argumentation-
based process (over the set of all agent’s knowledge base coincide (cf. proof of
Theorem 51). However, our proposal allows modelling a multi-agent setting
with different kinds of representation, such as when a multi-agent setting
stands for a kind of hierarchy of knowledge found in an organization, where

6.1. FUTURE WORK 167

each agent has only partial knowledge of the overall process (see Examples 26
and 36); or when each agent represents “acquired knowledge” in a different
period of the time and we want to know the truth value of some agent’s belief
in a specific period of time (see Examples 37 and 38).

We improve the idea of ‘automated negotiation’ by proposing a negotiation
without a ‘meta-agent’ that controls and evaluates the overall negotiation
process. Moreover, we propose an architecture to be implemented over a
reliable network communication layer. The network communication layer
permits the agents communication in a LAN or WAN network, the delivery
of messages to every involved agents, and new agents or crashed agents are
handled in the sets of argumentative and cooperative agents. It provides a
fault tolerance in a negotiation process, i.e. such a process can continue if an
agent crashes. In other words, if an agent Ag1 knows that an involved agent
Ag2 crashed, Ag1 will not wait for any answer from Ag2 and will continue its
(argumentative or cooperative) process by considering only the active agents.
This is important because it releases an agent from a pending answer from
a crashed agent, thus avoiding deadlocks.

6.1 Future Work

During the work performed in the preparation of this dissertation, namely in its
final period, we were able to identify a set of open research aspects that we plan
to tackle in the future and that will be described in this section.

Sets of Strict and Defeasible rules We may extend our proposal to express
defeasible/strict rules. A DeLP-program [GS04]’s is denoted by a pair (Π,∆)
distinguishing the subset Π of facts and strict rules (that represent non-
defeasible knowledge), and the subset ∆ of defeasible rules. Intuitively, we
could model (Π,∆) by defining a multi-agent setting A with two agents, viz.
a strict agent AgΠ and a defeasible agent Ag∆. AgΠ does not argue with any
agent (not even itself if we assume that the set of facts and strict rules is non
contradictory, as DeLP), and AgΠ only cooperates with Ag∆ with “facts”.
Intuitively, if AgΠ cooperates with arguments < Π, [L] > then no argument
can attack it.

Updates It seems clear that the flexibility offered by the sets of cooperative and
argumentative agents allows for giving priority to sets of rules over other sets
of rules. This is somehow similar to logic programming updates. Example
38 suggests how our framework can be used for modelling updates. In this
example, the results coincide with those of [ALP+00], but we need a study
on how general this equivalence is.

168 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Belief Revision We intend to introduce the capability of the agents to revise
their knowledge as a consequence of internal or external events. In case of
no agreement in a negotiation process, the agents would be able to discuss
(or negotiate again) how and when they got their knowledge, and try to find
a way to reach an agreement.

If an objective literal L leads to falsity, L is also contradictory because there
is an argument AL such that A⊥ is built based on such an argument, e.g.
A⊥ : AL + [⊥ ← L, not L′]. However, we should point out that this solution
may not be complete in the sense that we only consider the conclusions
directly involved with falsity (cf. Def. 40). It would be better to define a
new status, e.g. generate contradiction, for the conclusions that are involved
with any case of contradiction. However, to define this new status is as
complex as defining a method of “belief revision”, e.g. [DP97, DPS97].

Solving conflicts among Object Constraint Language’s restrictions

The Unified Modelling Language (UML) is designed specifically to represent
object-oriented (OO) systems (for details see [Pen03]). Object-oriented de-
velopment techniques describe software as a set of cooperating blocks of infor-
mation and behavior. The standardized architecture of UML is based on the
Meta Object Facility (MOF) Core [OMG06]. The MOF defines standard for-
mats for the key elements of a model so that they can be stored in a common
repository and exchanged between modelling tools, e.g. UModel2005 [Alt],
Together2006 [Bor], Rational [IBM], Objecteering [SOF], and System Archi-
tect [SPA].

The Object Constraint Language (OCL) [WK] is a notational language for
analysis and design of software systems, which is used in conjunction with
UML to specify the semantics of the building blocks precisely. OCL has been
defined to impose restrictions over UML’s diagrams. OCL can be used both
at the UML metamodel and model levels. At the metamodel level if is used
to specify well-formedness rules, that is, rules that must be complied to by
models built upon the specified metamodel. At the model level it can be
used to specify domain constraints (e.g. contract rules).

The meta-model of UML has been used by the Object Management Group
(OMG) as the standard for Software Engineering support tools. Support
tools are aimed at making UML easier to use such as UModel2005, Ratio-
nal and Objecteering. However, these support tools still accept an OCL
expression as ‘simple text’, i.e. without validating it. Nevertheless, both
support tools Together2006 and System Architect validate OCL expressions.
Furthermore, there are some special tools to validate OCL expressions, for
instance IBM OCL Parser v0.31 , OCLE 2 , and USE3.

6.1. FUTURE WORK 169

The above checking tools do not verify conflicts between restrictions. By
conflicting restrictions we mean that a conflict might occur because two
restrictions cannot be true at the same time, or some restriction is concluded
as true and so it causes that other one will be false. Furthermore, restrictions
might be conflicting in a domain’s modelling level, but also in both metal-
level of UML and OCL. In the following we illustrate a situation of conflicting
restrictions:

“Call processing systems are large, distributed systems. Tradi-
tionally, they were either telephone exchanges or private branch
exchanges under the control of a single provider or owner. Recent
developments have shifted the whole area of call processing to-
wards an open market and a more unified view of communications,
considered more than Plain Old Telephone System (POTS) calls.
Furthermore, the functionality has been largely enhanced by the
provisioning of features. Features are extensions to the basic ser-
vice, developed independently of the basic service. The last devel-
opments allow operators/providers to develop their own features.
With the growing number of features that might be developed by
different providers, a problem known as ‘feature interaction’ gains
importance. Features that work independently as expected, cause
some unexpected/undesired behavior when combined in a system.
A typical example is a user subscribing to a Call Forwarding on
Busy feature (which redirects incoming calls to a busy line to a
different phone) and a Call Waiting feature (which plays a tone
when a call comes into a busy line). Assume the user is busy and
an incoming call arrives. This raises the question of which of the
feature’s behavior should be activated, as both together do not
provide sensible behavior...” [RMT]

Based on such a description we are motivated to solve the following questions:

• How can conflicting restrictions be detected?

• How to solve conflicting restrictions? Can we determine which restric-
tion should be preferred?

Therefore, the main goal would be to solve conflicts between OCL restric-
tions by dynamically determining preferences among such restrictions. The
aim would be to develop a comprehensive approach to the engineering of
software systems for service-oriented overlay computers where foundational
theories, techniques and methods are fully integrated in a software engineer-
ing approach.

170 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

[AC02] Leila Amgoud and Claudette Cayrol. A reasoning model based on
the production of acceptable arguments. Ann. Math. Artif. Intell.,
34(1-3):197–215, 2002.

[ADP95] José Júlio Alferes, Carlos Viegas Damásio, and Lúıs Moniz Pereira.
A logic programming system for nonmonotonic reasoning. J. Autom.
Reasoning, 14(1):93–147, 1995.

[ALP+00] José Júlio Alferes, João Alexandre Leite, Lúıs Moniz Pereira, Halina
Przymusinska, and Teodor C. Przymusinski. Dynamic updates of
non-monotonic knowledge bases. J. Log. Program., 45(1-3):43–70,
2000.

[Alt] Altanova. Umodel 2005. Available at http://www.altanova.com.

[AP96] José Júlio Alferes and Lúıs Moniz Pereira. Reasoning with Logic
Programming, volume 1111 of Lecture Notes in Computer Science.
Springer, 1996.

[APS04] José Júlio Alferes, Lúıs Moniz Pereira, and Terrance Swift. Abduction
in well-founded semantics and generalized stable models via tabled
dual programs. TPLP, 4(4):383–428, 2004.

[arg10] Argument and computation ejournal. Taylor and Francis, 2010. Avail-
able at http://www.tandf.co.uk/journals/tarc.

[AV09] Leila Amgoud and Srdjan Vesic. Repairing preference-based argumen-
tation frameworks. In Craig Boutilier, editor, IJCAI, pages 665–670,
2009.

[BC03] Trevor J. M. Bench-Capon. Persuasion in practical argument using
value-based argumentation frameworks. J. Log. Comput., 13(3):429–
448, 2003.

171

172 BIBLIOGRAPHY

[BCA09] Trevor Bench-Capon and Katie Atkinson. Argumentation in Artificial
Intelligence, chapter Abstract Argumentation and Values. In Rahwan
and Simari [RS09], 2009.

[BDKT97] Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski, and
Francesca Toni. An abstract, argumentation-theoretic approach to
default reasoning. Artif. Intell., 93:63–101, 1997.

[Bea02] B. Ben and et al. Jgroups – a toolkit for realiable multicast commu-
nication. Technical report, Jgroups project, 2002. Toolkit available
at http://www.jgroups.org.

[BG09] Pietro Baroni and Massimiliano Giacomin. Argumentation in Artifi-
cial Intelligence, chapter Semantics of Abstract Argument Systems.
In Rahwan and Simari [RS09], 2009.

[Bor] Borland. Together 2006 for eclipse. Available at
www.borland.com/us/products/together/.

[Cal04] Miguel Calejo. Interprolog: Towards a declarative embedding of
logic programming in java. In José Júlio Alferes and João Alexan-
dre Leite, editors, JELIA, volume 3229 of Lecture Notes in Com-
puter Science, pages 714–717. Springer, 2004. Toolkit available at
http://www.declarativa.com/InterProlog/.

[CMDM05] Sylvie Coste-Marquis, Caroline Devred, and Pierre Marquis. Prudent
semantics for argumentation frameworks. In ICTAI, pages 568–572.
IEEE Computer Society, 2005.

[CML00] Carlos Iván Chesñevar, Ana Gabriela Maguitman, and
Ronald Prescott Loui. Logical models of argument. ACM Comput.
Surv., 32(4):337–383, 2000.

[CS05] Carlos Iván Chesñevar and Guillermo R. Simari. A tu-
torial on computational models for argumentation in mas,
2005. in the EASSS 2005 (Utrecht, NL). Available at
http://www.cs.uns.edu.ar/g̃rs/Publications/index-publications.html.

[CW96] W. Chen and D. S. Warren. Tabled evaluation with delaying for
general logic programs. Journal of ACM, 43(1):20–34, 1996.

[dAA06] Iara Carnevale de Almeida and José Júlio Alferes. An argumentation-
based negotiation framework. In K. Inoue, K. Satoh, and F Toni, ed-
itors, VII International Workshop on Computational Logic in Multi-

BIBLIOGRAPHY 173

agent Systems (CLIMA), volume 4371 of LNAI, pages 191–210.
Springer, 2006. Revised Selected and Invited Papers.

[dAMA97] Iara de Almeida Móra and José Júlio Alferes. Credulous and sceptical
argumentation for extended logic programming. Technical report,
CENTRIA, Universidade Nova de Lisboa, Portugal, 1997.

[dAMA98a] Iara de Almeida Móra and José Júlio Alferes. Argumentation and
cooperation for distributed extended logic programs. In Juergen Dix
and Jorge Lobo, editors, 7th International Workshop on Nonmono-
tonic Reasoning (NMRW), 1998.

[dAMA98b] Iara de Almeida Móra and José Júlio Alferes. Argumentative and
cooperative multi-agent system for extended logic programming. In
Flávio Moreira de Oliveira, editor, SBIA, volume 1515 of Lecture
Notes in Computer Science, pages 161–170. Springer, 1998.

[dAMA99] Iara de Almeida Móra and José Júlio Alferes. Conflict resolution
between argumentative agents. Technical report, CENTRIA, Univer-
sidade Nova de Lisboa, Portugal, 1999.

[dAMAS97] Iara de Almeida Móra, José Júlio Alferes, and Michael Schroeder.
Argumentation for distributed extended logic programs. In Multi
Agents and Logic Programming, Leuven, Belgium, 1997.

[DMT02a] Phan Minh Dung, Paolo Mancarella, and Francesca Toni.
Argumentation-based proof procedures for credulous and sceptical
non-monotonic reasoning. In Computational Logic: Logic Program-
ming and Beyond, pages 289–310, 2002.

[DMT02b] Phan Minh Dung, Paolo Mancarella, and Francesca Toni.
Argumentation-based proof procedures for credulous and sceptical
non-monotonic reasoning. In Antonis C. Kakas and Fariba Sadri, ed-
itors, Computational Logic: Logic Programming and Beyond, volume
2408 of Lecture Notes in Computer Science, pages 289–310. Springer,
2002.

[DMT06] Phan Minh Dung, Paolo Mancarella, and Francesca Toni. A dialectic
procedure for sceptical, assumption-based argumentation. In Paul E.
Dunne and Trevor J. M. Bench-Capon, editors, COMMA, volume 144
of Frontiers in Artificial Intelligence and Applications, pages 145–156.
IOS Press, 2006.

174 BIBLIOGRAPHY

[DP97] Carlos Viegas Damásio and Lúıs Moniz Pereira. A paraconsistent
semantics with contradiction support detection. In Jürgen Dix, Ulrich
Furbach, and Anil Nerode, editors, LPNMR, volume 1265 of Lecture
Notes in Computer Science, pages 224–243. Springer, 1997.

[DPP98] Jürgen Dix, Lúıs Moniz Pereira, and Teodor C. Przymusinski, edi-
tors. Logic Programming and Knowledge Representation, Third In-
ternational Workshop, LPKR ’97, Port Jefferson, New York, USA,
October 17, 1997, Selected Papers, volume 1471 of Lecture Notes in
Computer Science. Springer, 1998.

[DPS97] Carlos Viegas Damásio, Lúıs Moniz Pereira, and Michael Schroeder.
Revise: Logic programming and diagnosis. In Jürgen Dix, Ulrich
Furbach, and Anil Nerode, editors, LPNMR, volume 1265 of Lecture
Notes in Computer Science, pages 354–363. Springer, 1997.

[Dun93] Phan Minh Dung. An argumentation semantics for logic programming
with explicit negation. In ICLP, pages 616–630, 1993.

[Dun95] Phan Minh Dung. On the acceptability of arguments and its fun-
damental role in nonmonotonic reasoning, logic programming and
n-person games. Artif. Intell., 77(2):321–358, 1995.

[EGH95] Morten Elvang-Gøransson and Anthony Hunter. Argumentative log-
ics: Reasoning with classically inconsistent information. Data Knowl.
Eng., 16(2):125–145, 1995.

[FKIS09] Marcelo A. Falappa, Gabriele Kern-Isberner, and Guilhermo R.
Simari. Argumentation in Artificial Intelligence, chapter Belief Re-
vision and Argumentation Theory. In Rahwan and Simari [RS09],
2009.

[Gar00] Alejandro Javier Garćıa. Defeasible Logic Programming: Definition,
Operational Semantics and Paralelism. PhD thesis, Computer Science
and Engineering Department of Universidad Nacional del Sur, Bah́ıa
Blanca, Argentina, 2000.

[GDS09] Alejandro Javier Garćıa, Jürgen Dix, and Guillermo Ricardo Simari.
Argumentation in Artificial Intelligence, chapter Argument-based
Logic Programming. In Rahwan and Simari [RS09], 2009.

[GL90] M. Gelfond and V. Lifschitz. Logic programs with classical negation.
In Warren and Szeredi, editors, 7th International Conference on LP
(ICLP), pages 579–597. MIT Press, 1990.

BIBLIOGRAPHY 175

[GS04] Alejandro Javier Garćıa and Guillermo Ricardo Simari. Defeasible
logic programming: An argumentative approach. TPLP, 4(1-2):95–
138, 2004.

[IBM] IBM. Rational software architecture an modeler. Available at
http://www-306.ibm.com/software/awdtools/developer/rose/.

[JFJ+96] Nicholas R. Jennings, Peyman Faratin, M. J. Johnson, Timothy J.
Norman, P. O’Brien, and M. E. Wiegand. Agent-based business
process management. Int. J. Cooperative Inf. Syst., 5(2&3):105–130,
1996.

[Lif96] Vladimir Lifschitz. Foundations of logic programming. pages 69–127,
1996.

[Lou87] R. P. Loui. Defeat among arguments: a system of defeasible inference.
Journal of Computational Intelligence, 3(2):100–106, 1987.

[Lou98] R. P. Loui. Process and policy: Resource-bounded non-demonstrative
reasoning. Journal of Computational Intelligence, 14:1–38, May 1998.

[Moo85] R. Moore. Semantics considerations on nonmonotonic logic. Artificial
Intelligence, (25):75–94, 1985.

[Nut94] D. N. Nute. Handbook of Logic in Artificial Intelligence and Logic
Programming, volume 3 of Nonmonotonic Reasoning and Uncertain
Reasoning, chapter Defeasible Logic, pages 355–395. Oxford Univer-
sity Press, 1994.

[OMG06] OMG. Object Management Group. Meta object facility (mof) core
specification, 2.0 edition, 2006. Document “formal/06-01-01”. Avail-
able at http://www.omg.org/docs/formal/06-01-01.pdf.

[PA92] Lúıs Moniz Pereira and José Júlio Alferes. Well founded semantics
for logic programs with explicit negation. In ECAI, pages 102–106,
1992.

[Pen03] Tom Pender. UML Bible. Wiley Publishing, Inc., 2003.

[Pol74] J. L. Pollock. Knowledge and justification. 1974. Princeton University
Press.

[Pol87] John L. Pollock. Defeasible reasoning. Cognitive Science, 11(4):481–
518, 1987.

176 BIBLIOGRAPHY

[Pol91] J. L. Pollock. A theory of defeasible reasoning. International Journal
of Intelligent Systems, 6:33–54, 1991.

[Pol92] J. L. Pollock. How to reason defeasibly. Journal of Artificial Intelli-
gence, 57(1):1–42, September 1992.

[Pol95] J. L. Pollock. Cognitive Carpentry: A Blueprint for How to Build a
Person. MIT Press, 1995.

[Pol96] John L. Pollock. A general-purpose defeasible reasoner. Journal of
Applied Non-Classical Logics, 6(1), 1996.

[Pol01] John L. Pollock. Defeasible reasoning with variable degrees of justi-
fication. Artif. Intell., 133(1-2):233–282, 2001.

[PP90] H. Przymusinska and T. Przymusinski. Semantic issues in deductive
databases and logic programs, pages 321–367. 1990.

[Pra93] Henry Prakken. An argumentation framework in default logic. Ann.
Math. Artif. Intell., 9(1-2):93–132, 1993.

[Pra09] Henry Prakken. An abstract framework for argumentation with
structured arguments. Technical report, Department of Informa-
tion and Computing Sciences, Utrecht University, 2009. Available at
http://www.cs.uu.nl/research/techreps/repo/CS-2009/2009-019.pdf.

[Prz90] T. Przymusinski. Extended stable semantics for normal and disjunc-
tive programs. In Warren and Szeredi, editors, 7th International Con-
ference on Logic Programming (ICLP), pages 459–477. MIT Press,
1990.

[PS97] Henry Prakken and Giovanni Sartor. Argument-based extended logic
programming with defeasible priorities. Journal of Applied Non-
Classical Logics, 7(1), 1997.

[PSJ98] S. Parsons, C. Sierra, and N. R. Jennings. Agents that reason and
negotiate by arguing. Journal of Logic and Computational, 8(8):261–
292, 1998.

[PV02] H. Prakken and G. A. W. Vreeswijk. Handbook of Philosophical Logic,
volume 4, chapter Logics for Defeasible Argumentation, pages 218–
319. Kluwer Academic, 2 edition, 2002.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–
132, 1980.

BIBLIOGRAPHY 177

[RMT] S. Reiff-Marganiec and K. J. Turner. Use of logic to describe enhanced
communications services. In Formal Techniques for Networked and
Distributed Systems (FORTE).

[RRJ+04] I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons,
and L. Sonenberg. Argumentation-based negotiation. Journal of The
Knowledge Engineering Review, 2004.

[RS09] Iyad Rahwan and Guilhermo R. Simari, editors. Argumentation in
Artificial Intelligence. Springer, 2009.

[Sch99] Michael Schroeder. An efficient argumentation framework for negti-
ating autonomous agents. In Francisco J. Garijo and Magnus Boman,
editors, MAAMAW, volume 1647 of Lecture Notes in Computer Sci-
ence, pages 140–149. Springer, 1999.

[SdAMA97] Michael Schroeder, Iara de Almeida Móra, and José Júlio Alferes.
Vivid agents arguing about distributed extended logic programs.
In Ernesto Costa and Amilcar Cardoso, editors, Progress in Artifi-
cial Intelligence, 8th Portuguese Conference on Artificial Intelligence
(EPIA), volume 1323 of LNAI, pages 217–228. Springer, 1997.

[SL92a] Guillermo Ricardo Simari and Ronald Prescott Loui. A mathemati-
cal treatment of defeasible reasoning and its implementation. Artif.
Intell., 53(2-3):125–157, 1992.

[SL92b] Guillermo Ricardo Simari and Ronald Prescott Loui. A mathemati-
cal treatment of defeasible reasoning and its implementation. Artif.
Intell., 53(2-3):125–157, 1992.

[SOF] SOFTEAM. Objecteering uml enterprise edition v5.3.0. Available at
http://www.objecteering.com/.

[SPA] SPARX. Enterprise architect’s uml 2.0. Available at
http://www.sparxsystems.com/products/ea.html.

[SPR98] Michael Schroeder, Daniela Alina Plewe, and Andreas Raab. Ultima
ratio: Should hamlet kill claudius? In Agents, pages 467–468, 1998.

[SS02a] Michael Schroeder and Ralf Schweimeier. Arguments and misunder-
standings: Fuzzy unification for negotiating agents. Electr. Notes
Theor. Comput. Sci., 70(5), 2002.

178 BIBLIOGRAPHY

[SS02b] Ralf Schweimeier and Michael Schroeder. Notions of attack and justi-
fied arguments for extended logic programs. In Frank van Harmelen,
editor, ECAI, pages 536–540. IOS Press, 2002.

[SW07] Terrance Swift and David S. Warren. The xsb logic programming sys-
tem. Association for Logic Programming Newsletter, 2007. Summary
of recent develpments in XSB.

[Swi99] Terrance Swift. A new formulation of tabled resolution with delay. In
Pedro Barahona and José Júlio Alferes, editors, EPIA, volume 1695
of Lecture Notes in Computer Science, pages 163–177. Springer, 1999.

[Tar55] A. Tarski. A lattice-theoretic fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5:285–309, 1955.

[Vre93] G. A. W. Vreeswijk. Studies in Defeasible Argumentation. PhD thesis,
Free University Amsterdam, Departament of Computer Science, 1993.

[Vre97] G. A. W. Vreeswijk. Abstract argumentation systems. Journal of
Artificial Intelligence, 90(1–2):225–279, 1997.

[vRS91] Allen van Gelder, Kenneth Ross, and John S. Schlipf. The well-
founded semantics for general logic programs. ACM, 38(3):620–650,
1991.

[WK] J. B. Warmer and A. G. Klepe. The Object Constraint Language:
precise modelling with UML. Addison-Wesley, 2 edition.

