SEMONTOQA - A Semantic Understanding-Based
Ontological Framework for Factoid Question Answering

Md Moinul Hoque
Department of Informatics
University of Evora
Evora, Portugal

moincse@yahoo.com

ABSTRACT

This paper presents an outline of an Ontological and Se-
mantic understanding-based model (SEMONTOQA) for an
open-domain factoid Question Answering (QA) system. The
outlined model analyses unstructured English natural lan-
guage texts to a vast extent and represents the inherent con-
tents in an ontological manner. The model locates and ex-
tracts useful information from the text for various question
types and builds a semantically rich knowledge-base that
is capable of answering different categories of factoid ques-
tions. The system model converts the unstructured texts
into a minimalistic, labelled, directed graph that we call a
Syntactic Sentence Graph (SSG). An Automatic Text In-
terpreter using a set of pre-learnt Text Interpretation Sub-
graphs and patterns tries to understand the contents of the
SSG in a semantic way. The system proposes a new fea-
ture and action based Cognitive Entity-Relationship Net-
work designed to extend the text understanding process to
an in-depth level. Application of supervised learning allows
the system to gradually grow its capability to understand
the text in a more fruitful manner. The system incorpo-
rates an effective Text Inference Engine which takes the re-
sponsibility of inferring the text contents and isolating enti-
ties, their features, actions, objects, associated contexts and
other properties, required for answering questions. A similar
understanding-based question processing module interprets
the user’s need in a semantic way. An Ontological Mapping
Module, with the help of a set of pre-defined strategies de-
signed for different classes of questions, is able to perform
a mapping between a question’s ontology with the set of
ontologies stored in the background knowledge-base. Em-
pirical verification is performed to show the usability of the
proposed model. The results achieved show that, this model
can be used effectively as a semantic understanding based
alternative QA system.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

FIRE ’14, December 05-07, 2014, Bangalore, India
© 2015 ACM. ISBN 978-1-4503-3755-7/15/08. .. $15.00
DOL http://dx.doi.org/10.1145/2824864.2824886

Paulo Quaresma
Department of Informatics
University of Evora
Evora, Portugal

pg@di.uevora.pt

CCS Concepts

eComputing methodologies — Knowledge represen-
tation and reasoning;

Keywords

Deep question answering system, Text ontology, Syntactic
Sentence Graph, Text inference, Semantic mapping, Natural
language processing, Text understanding.

1. INTRODUCTION

In the area of Natural Language Processing, Question An-
swering (QA) system is a task, which is designed to automat-
ically answer a user’s question placed in a natural language
instead of a template base selection of user’s requirements.
The answer to a question may be produced from a back-
ground data collection. A QA system requires going through
a different steps of scientific techniques in order to assemble
a probable answer before returning the same to the user.
An open-domain QA system generally requires returning an
answer to a question in a precise or exact form or in a short
form of natural language text snippet as expected by the
users of the system.

The massive increase in the amount of on-line text these
days and the drive for accessing various types of data have
arisen the interest in a broad spectrum in the area of QA
systems that go well beyond simple document retrieval [1].
It has now become a necessity to combine search technolo-
gies and knowledge about a user’s query and context into
a single framework for providing the most suitable answer
to a user’s requirements. In the case of QA systems, the
burden of finding related material is placed on the system
that is responsible for scanning and navigating the retrieved
material to find an answer to a question. This requires a
well representation of the background data and also inter-
preting a query in detail for locating the search context, as
well as many other useful information from the question and
the background data collection.

Most of the QA systems use the architecture of Infor-
mation Retrieval (IR) [2] techniques at their core. These
techniques typically depend heavily on utilizing the ques-
tion words and syntactic structure of natural language texts
and do not try to understand the semantics articulated by
the text [3, 4]. Retrieval-based Question Answering systems
[5] actually consider the question as a query and uses a stan-
dard word-based ranking model to retrieve the most relevant
fragments from the test document residing at the back end.
The current architecture of Question Answering systems re-

volves around more or less a standard [6] set of components
that include a processing module for the input questions, a
data retrieval module which may extract information likely
to contain an answer and finally a module that extracts and
ranks [7] the tentative answer part of the information iso-
lated and presents the same back to the user. A smooth
interaction between these modules is a prerequisite for ar-
riving at a precise answer to a given question. In this type of
architecture, the background data collection is stored in an
index which hardly understand any coherent structure and
meaning of the texts. The answer is extracted using a set of
templates [8] or a set of question-answer patterns [9].

A few systems such as QANDA [10] combines both IR
approach and natural language processing in a single frame-
work to address the QA systems. Systems like QANUS
[11] uses a pipelined architecture [12] with document re-
trieval and analysis at the core. Web-based QA systems
like ARANEA [13] utilizes the vast and redundant resources
available on the web to achieve a convincing performance
over Text REtrieval Conference’s evaluation data. Some
recent works are based on pre-defined domain specific on-
tologies [14]. These systems are based on semi-structured
knowledge-bases and do not use free text documents on the
web directly. They require the web documents to be in a
structured or semi-structured format to allow their systems
to access them conveniently. Shallow QA systems locate the
answers directly from documents, whereas the deep QA sys-
tems may require to have the capability to do inference on
the facts.

Knowledge-based QA systems [15, 16, 17, 18, 19] use the
general strategy of analysing the question and mapping the
question words to the words appearing in the knowledge-
base (KB) and formulate search queries to extract answers.

Most of the state of the art system architectures heavily
depend on the similarity measure of the question sentence
and the background sentences. For some types of questions,
these systems may show acceptable performance to some ex-
tent, though they all miss out the points of understanding
the question and background collections, in general. Ex-
tracting useful information by analysing unstructured data
from any open-domain QA system is presently the most dif-
ficult challenge. Our Proposed system contributes in this
area and presents a model which is designed upon open-
domain unstructured data. The key idea is to create a use-
ful structured knowledge-base (KB) from unstructured data
which will extract and infer many useful information and
store them ontologically in some spread over multiple data
indices or KB. These KBs will play significant roles in an-
swering factoid questions of various types ontologically and
semantically. Our system can currently handle factoid ques-
tions which look for an entity, such as a person, organiza-
tion, date/time, different types of numerical quantity, etc.
The system also handles complex person description or def-
inition types of questions that demand a short paragraph of
few relevant sentences.

The paper is organized in the following sections. Sec-
tion 2 discusses the proposed system architecture. Section 3
explains the experimental data set, results and comparison
with other systems. Section 4 highlights a discussion and
concludes the paper.

2. ARCHITECTURE OF SEMONTOQA

The proposed architecture presents a framework for a se-

Semantic and Unstructured

Ontological background

Question KB data
Analyzer

User
Query

Question
Class

A Ontology Text
Mapping Analyzer
Question I Text |I
Ontology Ontology

Set of
Answers

Figure 1: Architectural diagram of SEMONTOQA

mantic understanding oriented knowledge-based QA system
which we call ’'SEMONTOQA’. The framework deals with
open-domain free texts and creates a semantically rich and
machine understandable ontological database from there in
an effective manner. The working procedure of this module
consists of three major modules, namely the Text Analyser
for background data processing, Question Analyser and an
Ontology Mapping module as shown in figure 1.

2.1 Text Analyser

This module is responsible to build the core knowledge-
base that will be used to answer the user queries. SEMON-
TOQA framework can answer a question from the avail-
able background data only. If there is no answer in the
background-text, SEMONTOQA will not answer the ques-
tion. This module receives unstructured free text as its in-
put. The free text does not necessarily means noisy data.
The text should be in English readable form. The Text Anal-
yser module consists of two major sub-modules, namely an
Automatic Text Interpreter (ATI) and a Text Inference En-
gine (TIE).

In the beginning, the Text Analyser divides the background-
text data into a set of paragraphs [20, 21] or into text seg-
ments. A paragraph here is considered to be the candidate
text having sufficient information retaining the possible con-
text of the paragraph within the text itself. It is important
to define the paragraph boundary in case no such boundary
can be found in the background collection. For oversized
paragraphs, we allow a maximum of 10 sentences in a para-
graph.

In the next step, pronouns in the text paragraphs are re-
solved. We use state of the ART tools [22, 23, 24] for detect-
ing pronominal references in the paragraph and resolve them
with their corresponding referenced nouns. In the resolution
step, personal and possessive pronouns are resolved and re-
flexive pronouns are removed. Complex and longer English
language sentence that contains individual sentences joined
with connectives are divided into simpler sentences using the
Stanford TREGEX [25] tree matching patterns found in the
Stanford parse tree [26] of the complex sentence. The parse

prep_in

Largest
City

nsubj .
conj_and
Mogadishu cop @ @

poss

Figure 2: Syntactic Sentence Graph (SSG) model
for the S2

tree is traversed and the complex sentence is segmented into
individual sentences bearing independent meanings. This
step is performed after the anaphora and co-references are
resolved so that, bringing a complex sentence down to indi-
vidual simpler sentences do not cause the sentences to lose
any significant information from the complex form. Even
the top of the line state of the art tools suffer to recognize
the proper syntactic relations between word tokens in a long
and complex sentence. For example, the following sentence
S1 can be divided into two sentences starting from the un-
derlined position as shown below.

S1: John Cena has started John Cena’s professional
wrestling career in 1999 with Ultimate Pro Wrestling, where
John Cena held the UPW Heavyweight Championship.

The Text Analyser then represents each of the sentences of
a paragraph using a minimalistic labelled graph that we call
a Syntactic Sentence Graph (SSG). The graph depicts the re-
lations among the expressions used in the sentence. We have
utilized the typed dependency output given by the Stanford
NLP parser [27] and MaltParser [28] for constructing the
SSG. Natural language tools are prone to errors. Stanford
parser was used at first and the n-number of highest-scoring
parses for a question sentence were initially retrieved. In
case, the parsing probability (normalized parsing score into
percentage) of the highest parsing score was below a pre-
defined threshold, MaltParser was used for getting the typed
dependencies.

To improve the parsing speed, LingPipe’s part of speech
tagger [29] was used to label the part of speech (POS) tags of
the each of the word tokens of the question sentence during
the preprocessing step. A sample SSG for the sentence S2:
Mogadishu known locally as Xamar, is the largest city in
Somalia and the nation’s capital is shown in figure 2. The
SSG is constructed after dropping the articles, determiners
and combining Named Entities, phrases, modifiers together,
etc., from the typed dependency output.

Named Entities such as name, organization, location, date,
time, duration, monetary items, etc., are detected using
standard tools for NE detection[20]. We propose to use DB-
pedia [30] to assist the system recognizing the "Person’ type
named entities. For example, in the sentence, 'Jay-Z co-owns
the 40/40 Club’, none of the NE detection tools managed to
identify Jay-Z as a named entity. A simple SPARQL [31]
query passed to the DBpedia and getting a non-nil set of
documents as a return can confirm the detection of person
names.

2.1.1 Automatic Text Interpreter (ATI)

The Syntactic Sentence Graph (SSG) is not semantic. Au-
tomatic Text Interpreter (ATI) uses a pre-learnt set of Text

nsubj xcomp

w VB (node2) VB (node3)

Figure 3: An example TIS learnt from the annotated
texts

nsubj

VB(node2) m VB(node3)

Figure 4: Simplified (Broken down) form of the TIS
as shown in the figure 3.

Interpretation Subgraphs (TIS) to give a semantic mean-
ing to the SSG. For getting the TIS set, we used a semi-
supervised learning approach to train the system using a
set of sentences each of which was annotated with possible
entities, their corresponding types, their features mentioned
anywhere in the sentence and all possible actions taken by
them appearing anywhere in the sentence in the following
way:

[Sentencei]:[Subject; <NE type/Non NE>][Featurer,
Features, .. Feature,][Action;, Action .. Action, |.

During the training period, the ATT module traverses the
SSG using the annotated sentence instances and learns a
set of subgraphs that tells the system on how to reach the
features and actions from the annotated subject entity. For
example, a simple Text Interpretation Subgraph (TIS) as
shown in the figure 3 represents that the subject entity men-
tioned in node 1 (part of speech tag: noun) is the action
taker or the subject of both nodes two and three.

When the ATI uses the learned subgraphs to locate fea-
tures or actions taken by an entity, it has to perform a sub-
graph matching between each of the TIS; in the TIS set
and the SSG. The longer subgraph comparison is computa-
tionally expensive. So, we actually break down the longer
subgraphs into a shorter form of subgraphs with only two
nodes and a relation.

For example, the TIS; shown in figure 3 can be broken
down to two smaller TISs (figure 4) which keeps the meaning
in the same way, but expresses them in a different way. In
this case, the TIS in figure 4 articulates that, node 2 is the
action of node I and node 2 and node 3 connected by an
open clausal verb complement are equivalent actions taken
by a common subject. Breaking down the longer TISs into
shorter ones actually boils down to only a pairwise subgraph
matching between the TIS entries and the SSG, which is
computation-wise significantly less expensive.

Based on the subgraphs found in the TIS set, we man-
ually design a total of nine matrices, six of which are de-
signed for inferring features, actions, contexts of subjects.
These six matrices are called inference matrices. The rest
of the matrices contain various properties of features and
actions. Each row in a matrix contains a pair of data. The
matrix Subject-Feature (SF) contains the subjects and their
directly connected features. Feature-Context (FC) contains
the context of the features connected with prepositions and
other connectives. Equivalent-Feature (EF) contains pair-

wise features that are supposed to have a common subject.
Subject-Action (SA) contains the direct actions taken by
subjects. Equivalent-Action (EA) contains pairwise action
verbs that are tentatively equal from the point of view of
a common subject. Action-Context (AC) contains the con-
texts of the actions connected with prepositions and other
connectives. The non-inference matrix Action-Object (AO)
contains a pair of an action and the direct object upon which
the action takes place. Action-Temporal (AT) and Feature-
Temporal (FT) matrices contain the temporal state of the
features and actions respectively. The temporal state refers
to present, past or future event or features. The connected
auxiliary verb with a feature determines the temporal state
of the feature. The state of an action verb, as well as the
auxiliaries used with it, determine the temporal state of the
action.

These matrices are populated by the ATI according to the
TISs in the TIS set for each of the entities in the background
data sentences inside each of the paragraphs. Algorithm 1
shows the working procedure for the Automatic Text Inter-
pretation module.

Algorithm 1 Automatic Text Interpretation

1: procedure ATI
2: for each TIS; instructions in the TIS Set do
3: Perform a pairwise subgraph matching between TIS;
and the SSG
4: if there is a match with the nodes and relation
then
5: Extract the nodes from the SSG at the matching point
: Put the entity/feature/action/context/temporal value
nodes in the inference and other matrices according to
the TIS; instruction.

D

7: else

8: Continue to match with the next TIS;
9: end if

10: end for

11: end procedure

2.1.2 Text Inference Engine (TIE)

The Text Inference Engine (TIE) module takes the infer-
ence matrices as input and infers features and actions of the
entities that may not be directly connected with them. The
TIE performs cross matching Cartesian product between
the inference matrices to pull out indirect features and ac-
tions by inference. The set of Text Interpretation Subgraphs
(TIS) puts a semantic interpretation among a subject, their
features, actions, objects of the actions and contexts in the
SSG. The TIE lets the system to infer many features and re-
lations that could not be detected otherwise, even with any
current state-of-the-art discourse representation tools [32].

If we take a look at the sentence S3: John Cena started
his pro wrestling career in 1999 with Ultimate Pro Wrestling,
where he held the UPW Heavyweight Championship and then
signed a developmental contract with the World Wrestling
Federation in 2001. None of the existing state-of-the-art
tools can infer that John Cena signed a developmental con-
tract ...

For the sentence S3, the Automatic Text Interpreter (ATT)
loads the following information in the Subject-Action ma-
trix SA: (John Cena, started; John Cena, held) and the
Equivalent-Actions matrix EA is loaded with the equiva-

lent actions :(started, held ; held, signed). A cross matching
Cartesian product here considers each of the rows in the
participating matrices as single entries that actually con-
verts the participating matrices into two sets of elements.
So, an SA z EA will produce the following information by
taking (z,y)|lx € SAANy € EA:

(John Cena, started started, held), (John Cena, started
held, signed), (John Cena, held started, held) , (John Cena,
held held, signed)

And this will allow the system to infer a new fact, such
as John Cena, signed’ and update the SA matrix with this
new entry.

If we take a look at the sentence ’S/: Mogadishu known
locally as Xamar, is the largest city in Somalia and the na-
tion’s capital’, a Cartesian product between SF' (Mogadishu,
city) and EF (city, capital) allows the system to infer and
add the following fact into SF: (Mogadishu, capital). More-
over, an EF (city, capital) © FC (city, in Somalia; capital, of
nation) allows the system to infer the additional facts, such
as:

[Entity: Mogadishu <type: city>][feature: capital][context:
in Somalia <type: NE, Country>]

[Entity: Mogadishu <type: city>][feature: city][context:
of nation]

A question like: ’What is the capital of Somalia?’ can
be answered from the above facts by an ontology mapping
which we discuss in the upcoming sections. The TIE finally
reports unique actions and features of each of the subjects
from the SA and SF respectively. The contexts of the fea-
tures and actions are reported from the FC and AC matrices
respectively. Temporal status of the features and actions are
stated from the Temporal matrices. The objects of the ac-
tions if there is any will be taken from the Action-Object
matrix AO. All these information will be stored ontologi-
cally in a knowledge-base for the future use.

Algorithm 2 shows the working procedure for the action
and feature inference part of the Text Inference Engine.

Algorithm 2 Text Inference Engine for actions and features
inference
1: procedure TIE FOR ACTIONS AND FEATURES
repeat
: Perform Cross-matching Cartesian product
Between SA x SA and update EF with new equivalent
features
5: Between SA x EA and update SA with new actions of
a subject
6: Between SF x EF and update SF with new features of
a subject
7: Between SF x SA and update SA with new actions of
a subject
8: Between EF x FC and update FC
9: Between EA x AC and update AC
10: until no new features or actions can be inferred for
each of the subjects
11: Report unique features of each of the subjects from SF
12: Report unique actions of each of the subjects from SA
13: end procedure

> Wy

Cognitive Entity-Relationship Network (CEN)

To understand natural language text in a more in-depth
manner, we build a Cognitive Entity-Relationship Network

(CEN). To give the system a way to understand the text
deeply, the CEN built manually can come very handy. It
actually adds a significant extension to the text understand-
ing process. Each entry in the CEN set is divided into two
parts and these parts are connected with a logical opera-
tor such as implication, equivalence, etc. The first part of
a CEN entry connects two entities with a relation between
them. The relation can be a feature or an action. The sec-
ond part of the entry tells the extended meaning of the first
part in the same way as the first part. The feature/action
appearing in the relation part is further extended with their
syntactically relevant synonyms.

The TIE takes the knowledge-base (KB) entries and com-
pare them for a match with a part of the CEN; in the CEN
set and based on the logical operator applied between the
parts of the CEN, entry, the system adds the other part of
the CEN; into the KB for extended inference capability of
the system to answer questions in the future.

A few example CEN entries look like:

[Entity : * <type: NE, Person>|[feature: Professor]
[context: University] => [Entity : * <type: NE, Per-
son>][action: teach, instruct, profess][context: Uni-
versity]

[Entity : * <type: NE, Person>|[action: work|[contezt:

* <type: organization>] <=> [Entity : * <type: NE,
Person>|[feature: employee, worker] [context: * <type:
organization>]

The first example CEN entry tells that if a person is a
professor at a University, the system can add that the per-
son takes actions such as teach, instruct, profess at a Uni-
versity. Similarly, the second entry tells that, if a person
works in some organization, the system can add correspond-
ing features of that person such as worker, employee. The
equivalence logical operator mentioned here allows a similar
interpretation for the other side of this entry too.

The CEN is not represented in a graph-based design, as it
will require an extensive graph matching with the Syntactic
Sentence Graph of the text snippet. Representing the CEN
in terms of flat knowledge-base like entries, as shown above,
allows the system to search for a similarity using a simple
attribute wise matching with the entries of CEN and the
text ontology.

Moreover, the CEN helps the system to understand com-
plex facts. For example, A CEN entry like the following;:

([Entity : X <type: male, NE, Person>| [feature: mar-
ried] [context: Y <type: female, NE, Person])

=>

([Entity : X <type: NE, Person>] [feature: husband]
[context: Y <type: NE, Person>] A [Entity : Y <type:
NE, Person>] [feature: wife] [context: X <type: NE,
Person>] A [Entity : X <type: NE, Person>| [feature:
spouse] [context: Y <type: NE, Person>] A [Entity :
Y <type: NE, Person>] |feature: spouse] [context: X
<type: NE, Person>])

helps the system to infer facts that if X is married to Y
then X and Y has features like husband and wife and they
are spouse of each other. None of the existing QA systems
interpret these type of facts to answer questions.

CEN also adds entries in the CEN set for some features
which have a small set of values and the background-text

mentions the values of those features without explicitly men-
tioning the features. For example, in the text snippet: 'Ma-
hatma Gandhi was a Sanatani Hindu’, our system extracts
from the text that, the entity 'Mahatma Gandhi’ has a fea-
ture: Sanatani Hindu, but cannot understand that, it is
talking about the entity’s religion. CEN extends this type
of deep understanding capability to the system. Our system
can capture this significant detail by inferring the text with
the help of a simple CEN entry such as:

[Entity: * <type :NE, Person>|[feature : Hindu, Chris-
tian, Muslim , Jew...][context : *] => [Entity: * <type :NE,
Person>][feature : religion] [context value: Hindu, Chris-
tian, Muslim , Jew ..]

Pattern-based Information Extraction from the Text to
the Knowledge-base

Apart from detecting entities, features and actions, our sys-
tem classifies the features of the entities to a few different
finer types [33]. These finer types include various numerical
types for handling questions that ask for a distance between
entities, length, weight, speed, monetary value, size of en-
tities, etc. To understand these types from the text and
storing them in the knowledge-base (KB), we use a set of
pattern-based rules to associate a numeric number or text
to a numeric type and to an entity.

For example, from the text snippet: ’...the Great Wall of
China is 5,500 miles long..’, our system associates a feature
’5,500 miles long’ of the entity ’Great Wall of China’. Using
a predefined pattern in a patter set, such as: [Length: (0-
9)* mile/km/meter long/tall..], the Text Inference Engine
sets the ’length’ property flag in the KB to true with this
detected feature. So, the KB contains an entry like the
following for the above-mentioned text snippet:

[Entity: Great Wall of China <type: unknown>]|[feature:
length] [context: 5500 miles][location: China <type:NE, Coun-
try>] .. [lengthflag : true>] ..[..]

This allows our system to understand and answer numeric
type of questions such as 'How long is the Great Wall of
China?’.

Because, the system looks for type-specific keywords and
patterns in the text, it can handle different representations
of the same text containing similar information. So, an-
other representation of the above text snippet such as The
length of the Great Wall of China is 5,500 miles ..’ can
still be associated the same way based on the word length
and a matched pattern with the 5,500 miles. Similarly,
for the text: ’'The best price of Apple iPhone 6 in India
is Rs. 42606.°, Our system sets the moneyflag to true in
the following way: [Entity: Apple Iphone 6 <type: wun-
known>|[feature: price, cost][context: RS. 42606] [location:
India <type:Country>] .. [moneyflag: true].

2.1.3 The Knowledge-base

Information extracted from the text is stored in multi-
ple spread over data storages that we call a knowledge-base
(KB). The KB contains, a paragraph-level, a sentence-level,
an entity-feature and an entity-action level data storage hav-
ing useful information extracted from the text. The entity-
feature storage in the KB contains entities, types, their di-
rect and inferred features, contexts, and other associated
information of the features that we call properties such as lo-
cation, date/time, duration, monetary value, length, height
etc. The entity-action storage contains similar information,

Knowledgebase Knowledgebase Knowledgebase
Paragraph-Level < Sentence-Level —y| Entity-Features
[Filename [Sentence no [Sentence no

Paragraph no <Named Entity, type>.... <Entity, type ...>
Paragraph data Temporal state] {Feature

Paragraph context (+contextual synonyms)}
Significant keywords 11 Temporal state

Context

] Knowledgebase

Entity-Actions Date/time
[<Entity, type ...> Locatgon
{Action Duration

(+contextual synonyms)}
Temporal state]
Context
Date/time
Location
Duration

]

Figure 5: The Knowledge-base (KB)

such as entities, their direct an inferred actions, objects of
the actions (if any), the contexts of the actions, and asso-
ciated properties the same way as that of the entity-feature
storage (figure 5).

Contextual Word Sense Disambiguation is performed on
the text using WordNet [34, 35] and the semantically re-
lated synonyms of the features/actions are also preserved to
extend the ability to understand their meanings in a more
detailed way.

So, the entity-feature storage in the KB built from the
following text snippet: 'George Walker Bush is an American
politician and businessman who was the 43rd President of
the United States from 2001 to 2009, and the 46th Governor
of Texas from 1995 to 2000.° will uncover one of the many
other facts in the text ontology in the following way:

[Entity: George Walker Bush <type: NE, Person>|[feature:

president, head of state, chief of state, chief executive..[context:

of United States <type: NE, Country>][temporal: past]
[date/time : 2001 to 2009][location: nill] ..[..]

Similarly, the text snippet: 'On June 25, 2009, Jackson
died of acute propofol and benzodiazepine intoxication..’ re-
veals the following fact in the entity-action storage of the
KB such as:

[Entity: Michael Jackson <type: male, NE, Person>] [ac-
tion: died][context: of acute propofol, of benzodiazepine in-
toxication] [date/time : June 25, 2009]..]..]

Extracting Significant Keywords and Storing the Para-
graph Contexts in the Knowledge-base

To create the paragraph-level KB, the Text Analyser module
extracts useful phrases and keywords from the text and cal-
culates the relevance score of each of the keywords/phrases.
Top two keywords/phrases are assigned as the theme of the
paragraph that the paragraph is talking about.

A question like: QI1:’Who was the sole survivor of Sago
Mine disaster?’ could not be directly answered from the
text snippet: ’'The Sago Mine Disaster was a coal mine
explosion on January 2, 2006, in the International Coal
Group’s Sago Mine in Sago, West Virginia. The blast and
ensuing aftermath ... Only one miner, Randal McCloy,
was the survivor.’; though the snippet contains the answer
for sure. Our TIE can detect from the last line of the para-
graph that, ’survivor’ is the feature of the entity Randal
L. McCloy. But this line does not tell that, the entity is
the survivor of the event Sago Mine disaster. Here the con-

1. Collection of
Text | 7. Build SSG Keyword/Phrase| | Relevance Paragraph | | |1
Extraction Calculation: Context
2. Paragraph L IKeyword/Phrase] -
Splitting Set of TISGs
1A ic Text| Significant
3. Pronoun Interpreter Keywords
Resolution v Entity, Features
Contexts and
4. Sentence > propertics
Splitting Text Inference) Se ical and
Engine L . N Ontological
5. Sentence Egm};’ ./??tymgs Knowledge | g——
Simplification T 4 ontexts an -Base
H properties
CEN _

Text Ontology

6. Named Entity)|

recognition Text Patterns
Figure 6: Working Procedure of the Text Analyser
module

text/theme of the paragraph is Sago Mine Disaster. If the
system would have the ability to read in context of the para-
graph, it could understand that Randal McCloy was the sole
survivor of the Sago Mine Disaster.

To detect the top ranking keyword/phrases from a para-
graph, each of the extracted keywords/phrases are ranked
based on their relevance scores in the paragraph. For cal-
culating the relevance scores of the keywords/phrases, the
system isolates the smallest noun phrases first. The rel-
evance score is normalized to a [0-1] range. All kinds of
date/time/numbers are avoided from the keyword/phrase
list as they bear very less significance in the context/theme
calculation of a paragraph. Points are calculated based on
the criteria shown below and a positive(+1) or negative(-1)
points are added to a keyword/phrase based on some heuris-
tics.

Criteria for point assignment of the keyword k; or phrase

Cl: Term frequency (including individual tokens of the
phrase p; / keyword k;), C2 : ((Total number of candidate
keywords or phrases in the text)/(position of appearance of
the keyword k; or phrase p; in the paragraph))

Heuristics for point addition /subtraction of the keyword
k; or phrase p;: H1: Part of a Named Entity [organization,
location, person etc.](+1); H2: Participates in any action(s)
(4+1) / Has feature(s)(+1); H3: Is the entity a subject(+1),
H4: First letter capitalization for the word tokens of keyword
k; or phrase p; (41 for each capitalization). H5: Object of
a subject(-1), H6: Object of a preposition(-1).

Each keyword k; or phrase p; , thus gets a relevance score
and the top scoring two candidate keywords/phrases get se-
lected as the contexts/theme of the paragraph. In the above
text snippet, the phrase Sago Mine Disaster achieves the
highest relevance score and is preserved as the contextual
theme of the paragraph. The system, in the context of the
paragraph can then answer the above-mentioned question
Q1 easily. The overall architecture for the Text Analyser
module is shown in figure 6.

2.2 Question Analyser

The SEMONTOQA module deals with factoid types of
questions along with person description, definition types of
questions. It does not handle questions that ask for a pro-
cedure or reason.

2.2.1 Question Preprocessing and Spell Checking

The Question Analyser module performs question prepro-

cessing, which removes unwanted noises or symbols from the
question and performs a non-interactive and automatic spell
checking that replaces a misspelled word to the suggested
words without the user’s intervention.

2.2.2 Question Classification

We used the question classification taxonomy used in [33]
and questions were classified in 50 finer sub-classes of 5 ma-
jor classes such as Entity, Location, Numeric, Description,
Human. An extended set of Text Interpretation Subgraph
that covers the question sentence structure detects a ques-
tion’s focus. The proper meaning and root the of question
focus word was detected in the context of the question words
using WordNet. The meaning of the question focus was then
compared with the detailed definition of the finer sub-classes
for a similarity score. The finer class definition getting the
highest similarity score was assigned to the question. Each
finer class definition is connected to a major class and thus,
the major class could be detected from the connection with
the detected finer sub-class.

We also combine the approach of a finite state machine
based classification to learn a set of patterns for various ques-
tion classes [36]. Question class gives the system an idea on
the type of answer to look for in the knowledge-base. For
example, the question, "Who is the CEO of 8M?’ is asking
for an entity as answer whose type is Named Entity:Person.
The Question: How long is the Brooklyn bridge?’ is asking
for the length of the entity 'Brooklyn bridge.

2.2.3 Building the Question Ontology

SEMONTOQA does not depend on a simple Information
Retrieval based approach that uses keywords from the ques-
tion to find a set of documents first and finds an answer
using a set of question-answer patterns only. No types of
understanding is involved in such systems. Because the an-
swering process of SEMONTOQA is understanding based,
the Question analyser has to understand the question both
syntactically and semantically and generate a question on-
tology with entities, attributes, features, actions and other
properties so that the system can look into the knowledge-
base for a valid response.

The Question Analyser converts a question into a Syntac-
tic Sentence Graph (SSG) in the same way the Text analyser
module does and uses the set of Text Interpretation Sub-
graphs (TIS) to extract the text ontology from it. The ques-
tion sentences differ from the background data collection in
terms of the sentence structure. Questions are supposed to
start with a question word such as what, who, how, when,
where, whom, etc. A Question starting with a question word
actually asks for some information that are mentioned in the
question in a complex way. If we take a look at a question
Q2: 'When was John F. Kennedy killed?’ , our system us-
ing the TIS set, can detect from the question’s SSG that
the system is looking for the date/time of an action ’kill’
which is a past event and the object of the action is John F.
Kennedy. No subject of the action is mentioned in the text.
So, a question ontology can be formulated as follows for the
above question:

[Entity: *][action: kill, assassination, murder][object: John
F. Kennedy <type: NE, Person>|[location: *]... [date/time:

Here * means, the value for the attribute can be anything,
and a question mark in the date/time field indicates a value

Auto Spell Checking
[Non interactive]

Constructing SSG

from the question

\ 4

Question Ontology
+ Extraction

Question Focus
Detection and
Classification

Figure 7: Working procedure for the Question Anal-
yser

that the question is looking for.

Depending on the question class, the ontology builder uses
different strategies to extract multiple question ontologies.
For example, the question 'How tall is the FEiffel Tower?’ is
asking for the height of the entity ’Fiffel Tower’ based on the
question focus word ’tall’. Depending on the Numeric:height
class type, the system generates following alternative ques-
tion ontologies for the answer mapping module:

[Entity: Eiffel Tower |[feature : ?][context: *] [temporal:
present|[location: *] .. [date/time:*] .. [..] [lengthflag: true]

[Entity: tall, height][context: Eiffel Tower |[feature : ?][tem-
poral: present|[location: * | .. [date/time: * | [..] ..[.]
[lengthflag: true]

When generating a question ontology, a question is contex-
tually analysed for an all-word Word Sense Disambiguation
and the syntactically related synonyms of the action/features
or subjects, etc. are also added into the question ontology
to expand the query coverage.

The overall working procedure for the Question Analyser
is shown in figure 7.

2.3 Ontology Mapping Module

Once we have the question ontology in hand, the Answer
Mapping Module (OMM) searches the background knowledge-
base (KB) to extract the desired answer based on it. The
Ontology Mapping module uses some heuristic guidelines
based on the question classes for picking up one of the few
different strategies to look for an answer.

The background knowledge-base is represented in a MySQL
database as well as in a database like format using Lucene’s
data structure [37]. The OMM converts Question Ontol-
ogy to corresponding SQL and Lucene queries. For partial
matching, we have used Lucene’s proximity search technique
that matches the availability of tokens within a specific dis-
tance rather than matching the whole string which is likely
to cause the system to fail while finding a match with the
names of Named Entities. In the case of partial matching
search, the search is made in the Lucene-based KB first to
reduce the search space. OMM, then builds a 'SELECT’
database SQL query [38] and passes to the KB stored in the
MySQL environment to get the results (figure 8).

2.3.1 Direct Mapping of the Text Ontology with the
Question Ontology

If we take a look at the following question: Who is the
author of "Harry Potter and the Goblet of Fire’? and the
question ontology in the following form of attributes and
values.

[Entity: 7 <type: NE, Person>|[feature: author, writer

Pick an Answering
Strategy

Question
Type

MySQL
Based KB

Picked
Answer

Lucene
Based KB

Question
Ontology

Figure 8: Working procedure of OMM

..] [context: Harry Potter and the Goblet of Fire|[date/time:
nill][location: nill][..]..[..]

In case, the knowledge-base has the following text ontol-
ogy, the OMM using the above question ontology can give a
straightforward answer by a mapping the question ontology
to the text ontology.

[Entity: J. K. Rowling <type: female, NE, Person>|[feature

: author, writer] [context: Harry Potter and the Goblet of
Fire][date/time: nill][location: nill][..]..[..]

2.3.2 Question Ontology Conversion

If the system is asked a question like 'Who is the killer of
John F. Kennedy ?’. It is very likely that, it won’t have a
direct mapping of the question ontology to the text ontol-
ogy. If the system has the following text ontology: [Entity:
Lee Harvey Oswald <type: male, NE, Person>] [action:
kill,assassinate, murder..] [temporal: past event] [context:
John F Kennedy <type: male, NE, Person>] [date/time:
nill] [location : nill] [..].. [..], the OMM requires to per-
form a feature (noun) to action (verb) transformation us-
ing WordNet and get the verb representation of the feature.
Here, the noun feature killer in the question ontology can
be transformed to its equivalent verb kill and the question
ontology can be transformed into the following form:

[Entity: 7 <type: NE, Person>| [action: kill, murder..]
[temporal: *] [object: John F Kennedy <type: male, NE,
Person>|[[date/time: nill] [location : nill][..]..[..]

The previous temporal state of the feature ’killer’ is changed
from present to any as the temporal state of the feature can-
not be confidently applied to the transformed action. The
transformed question ontology can now have a match with
the text ontology and an answer can be returned to the user
of the system. The Cognitive Entity Relationship Network
is also consulted to check if it can help the feature to action
conversion or vice versa with the pre-stored facts stored in
it.

For answering Human:description questions like’'Who is
Jay-Z?’, the OMM matches the Named Entity ’Jay-Z’ in
the subject field of the KB and returns the paragraph that
starts with a feature description of the entity or talks more
about the entity’s features. In this case, the system uses
partial matching for mapping the name. In case, the NE
matches partially with several different names, the system
selects the name with the highest term frequency in the KB.
Since our system is not a dialogue based interactive system,

it uses the above heuristics to show the description of the
name that is most popular in the KB.

Moreover, a set of question class based Answer Interpre-
tation Rules was developed that tells the OMM that the
entity-action ontology: ‘Jay-Z was born in New York.’, is
also a valid selection for responding to the above type (Hu-
man: description) of questions, in case the system fails to
locate any paragraph that begins with or contains features of
the subject. Similar type of strategy is applied for answering
definition types of questions.

3. EMPIRICAL VERIFICATION

We set the experimental environment for testing the ef-
fectiveness of the Automatic Text Interpreter and Text In-
ference Engine first and then test the effectiveness of the
whole system SEMONTOQA in terms of questions from the
TREC 2007 [39].

3.1 Performance Measure of the Text Analyzer
Module

For testing the performance of the Text Analyser module
in terms of ATT and TIE, we take a total of 100 factoid ques-
tions from the TREC 2007 data set based on AQUAINT-2
corpus. For the selected questions, from the answer con-
taining paragraphs of them, we took 100 diverse sentences
containing features and actions related to the questions. An-
other 100 sentences were picked randomly that contained a
significant number of features and actions connected with
various subjects directly and indirectly. This was done to
ensure that, the system can get used to the various text rep-
resentation format. We also use a Jsoup [40] based custom
implementation for searching on the website of Google * to
get top 5 documents for the diverse types of selected ques-
tions and a total of 100 Sentences were manually picked from
there that had plenty of different types of features, actions
related to various entities.

A set of 100 questions was created manually to test the
performance of the ATT and TIE. Performance was measured
in terms of Precision, Recall and F-measure. Precision, Re-
call and F-measure were calculated based on the following
formula for testing the feature extraction process. A Similar
formula was applied for testing the action extraction.

relevant features[)retrieved features

Precision = |retrieved features|

__ relevant features [retrieved features
Recall = |relevant features|

Precision X Recall
Precision+Recall

F-Measure = 2 x

A total of 300 training set sentences were divided into a sets
of 100, 200 and 300 sentences respectively. Table 1 shows
the results for feature extraction and Table 2 depicts the
similar results for the action extraction.

Natural language processing tools are not perfect. From
the results in Table 1 and 2, we can see that precision and
recall values improved with more training set data used to
train the system. Larger training set allowed the system
to learn varieties of Text Interpretation Subgraphs that the
ATT and TIE used later on to understand texts. Because
of wrong dependency parsing, the TIS set was populated
with some confusing subgraphs. A manual intervention was

Yhttp:/ /www.google.com

Table 1: Performance measure of TIE for feature
extraction using TISs

Training Set Size | Precision| Recall F-
Measure

100 0.84 0.83 0.83

200 0.91 0.87 0.89

300 0.96 0.91 0.93

Table 2: Performance measure of TIE for action ex-
traction using TISs

Training Set Size | Precision| Recall F-
Measure

100 0.80 0.77 0.78

200 0.84 0.80 0.82

300 0.89 0.85 0.87

required for getting the TIS entries in the TIS set right.
Some fine tuning is still required for getting a more accu-
rate TIS set. The action extraction process using the TISs
labelled some actions erroneously with wrong entities and
the precision value went down for that reason. Because of
the complex nature of free English language text, our sys-
tem failed to locate some features and actions properly. The
performance achieved is still quite satisfactory considering
the complexity found in the sentence structures in the test
set.

3.2 Performance of the Question Answering
System

In order to evaluate the performance of the overall SE-
MONTOQA system, we use the questions and answers from
the TREC 2007 [39]. We use AQUAINT-2 corpus which
contains around 2.5 GB of background text in XML format.
We use a custom built XML processing unit to extract the
raw text data from the XML files. The corpus was built
from news documents which contain plenty of noise and less
significant texts. To avoid handling the huge, noisy data set,
our system skipped portions of the data which did not qual-
ify as useful texts. Because, our approach is not Information
Retrieval (IR) based, it was not important for us to worry
about the recall values of the document retrieval. Rather,
we were concerned about the text and question understand-
ing and the construction of an effective knowledge-base from
the free text which was the most important step for the sys-
tem. Currently, SEMONTOQA supports only factoid type
of questions and for that reason, we use the general eval-
uation metric used for getting the accuracy of the factoid
questions, which is defined using the following formula:

Total no. of correctly answered questions
Total no. of factoid questions in the test set

Accuracy =

TREC 2007 data set had a total of 360 questions. We have
used a total of 200 questions for evaluating the performance
of the system. The questions were about some target of
interests. The target of interests was about any person,
organization, something, or an event. TREC 2007 also used
the Blog06 corpus and we did not have that corpus with us.
For that reason, we fetched Google’s top 10 documents for
each of the questions and added them into the system for
analysing. The Text Analyser created the knowledge-base

using the data from the AQUAINT-2 corpus and from the
files fetched from Google’s top 10 results.

The top system in the TREC 2007 QA track was LY M-
BAPAOQ7 with an accuracy of 0.706 [39]. The accuracy
of SEMONTOQA calculated from the above formula was
0.740 which we find as quite satisfactory. Our system did
not find the answer to a total of 15 questions in the KB
and answered a total of 148 questions correctly. Out of a
total of 185 questions answered, 37 questions did not have
the right answers or the system gave wrong types as an-
swers. Misclassification and lack of a proper interpretation
of the questions were the contributors to this error. More-
over, the error in the TIE module propagated to the answer
mapping module and was another contributor to the overall
error rate of the system. Fine tuning the Text Interpretation
subgraphs should be able to reduce the overall error rate of
the SEMONTOQA by a good margin.

SEMONTOQA was heavily benefited from the use of Cog-
nitive Entity-Relationship Network, which allowed it to an-
swer questions like: ’Which university does Paul Krugman
teach?’ from the text snippet: ’Paul Krugman, the New
York Times colummnist and professor of Princeton Univer-
sity...” as it could infer the fact from the CEN that the
entity Paul Krugman being a professor at Princeton Uni-
versity teaches at Princeton University.

It is very difficult to classify every feature/action of en-
tities to proper semantic classes. For example, our system
could answer the following question confidently, What or-
ganism causes Lyme disease? from the KB entry that was
formed from the text snippet: ”...Borrelia burgdorferi, the
organism that causes Lyme disease...”. though, it could not
detect 'Borrelia burgdorferi’ as an organism because, an ex-
tensive semantic type annotator is required for this purpose.
Currently, there is no such tools that can perform semantic
type annotation for everything in open-domain free texts.
In a domain-specific system, it may be possible to develop
such an annotator to cover all possible semantic types which
will allow our system to perform even better in terms of un-
derstanding.

We could not get into a head to head comparison with the
systems competed in TREC 2007 as the data set that we
used and the total number of questions were not exactly the
same that other systems used during the competition. Our
aim was to see how our semantic understanding knowledge-
based system performs with the questions and corpus used
by the competing systems. A better accuracy achieved at
the current version of the SEMONTOQA is very much en-
couraging and we will be glad to test the system with other
corpus and questions in the future. Results from the current
prototype clearly suggest that SEMONTOQA can possibly
become an alternative way for the QA systems in future.

4. DISCUSSION AND CONCLUSION

The current work is presented as an outcome of an ongo-
ing research in the field of Natural language based Question
Answering system. For the factoid QA systems, the perfor-
mance of the existing systems for English language lies on
or below the 70% range and thus allows newer techniques
to be incorporated for better results. Though, knowledge-
based QA systems do exist, the understanding based QA
systems rarely exist and was the motivation behind the cur-
rent work. Our system achieved an accuracy rate of around
74% which is very encouraging. Most importantly, the sys-

tem tried an understanding based approach to answer the
fact-based questions. In the future, we shall present the re-
port of the performance of SEMONTOQA on other corpus
and questions.

Addition of Cognitive Entity-Relationship Network to as-
sist the Text Inference module performed well beyond ex-
pectation in the case of factual inference. For example, an
entry in the CEN that tells that ’If a person X is the son
of a person Y(male) => Y is father of person X’ extends
in reality the inference capability to a great extent. If the
system is domain specific, then the addition of CEN in the
way it was incorporated in our system based on domain-
specific knowledge will allow the system to understand facts
in a proper way. The simpler attribute based implementa-
tion will also perform very fast in computationally powerful
computing systems. Designing a CEN for an open domain
Question Answering system was a difficult task. We think
that the CEN can be enhanced more by continuously adding
newer facts into the system over time.

Our TIE module suffered because of wrong dependency
parsing by the dependency parsers used. It will be interest-
ing to see the performance of the TIE module by incorpo-
rating Combinatory Categorial Grammar (CCG) [41] based
parser. We could not test the system using a CCG parser in
this version. In the future, we plan to change the parser and
train the system to learn different subgraphs and observe
the effect on the accuracy.

At the moment, the system is fully dependent on the off-
line knowledge-base (KB) and cannot answer any question
if the KB does not have relevant facts pre-stored. Though,
the current model can be modified easily to crawl web-based
texts during the non user-interaction mode and update its
KB frequently to accommodate newer questions over the
time. We have a plan to implement this step in the near fu-
ture to transform the system into a more usable QA system
that understands to some extent both the background text
and the users’ questions before giving an answer.

5. ACKNOWLEDGEMENTS

The current work is funded by EMMA in the framework
of the EU Erasmus Mundus Action 2.

6. REFERENCES

[1] E.M. Voorhees and D. Harman., Overview of the eighth
text retrieval conference (trec-8). pages 1-24, 2000.

[2] G. Salton., Automatic Information Organization and
Retrieval. McGraw-Hill, NewYork, 1968.

[3] A. Hickl, K. Roberts, B. Rink, J. Bensley, T. Jungen,

Y. Shi, and J. Williams., Question Answering with

LCCs CHAUCER-2 at TREC 2007. In Proceedings of

Text Retrieval Conference., 2007.

S.R. Joty and Y. Chali., University of Lethbridge’s

Participation in TREC 2007 QA Track. In Proceedings

of Text Retrieval Conference., 2007.

[5] S. Verberne., Retrieval-based Question Answering for

Machine Reading Evalua-tion, CLEF. In CLEF 2011

Labs and Workshop, Notebook Papers., Amsterdam,

September 2011.

D. Jurafsky and J.H. Martin., Speech and Language

Processing. 2nd Edition, Prentice Hall Series in

Artificial Intelligence.,2008.

[4

6

[7] J. Ko, L. Si and E. Nyberg., Combining evidence with
a probabilistic framework for answer ranking and
answer merging in question answering. Elsevier
Journal: Information Processing and Management 46.,
541-554, 2010.

[8] A. Andrenucci and E. Sneiders., Automated question
answering: review of the main approaches. In
Proceedings of ICITA 05, pp:541-554, 2010.

[9] A.C. Mendes, L. Coheur, J. Silva and H. Rodrigues.,
Just.Ask - A multi-pronged approach to question
answering. In International Journal on Artificial
Intelligence Tools , vol.22, n.1, 2013.

[10] J. D. Burger, L. Ferro, W. Greiff, J. Henderson, M.
Light, and S. Mardis., MITRE’s Qanda at TREC-11. In
Proceedings of the Eleventh Text Retrieval Conference.,
2003.

[11] J. Ng and M. Kan., QANUS- An Open-source
Question-Answering Platform. 2010.

[12] L. Hirschman and R. Gaizauskas., Natural Language
Question Answering: The View From Here. Natural
Language Engineering , Vol:7, Issue 4, pp:275-300,
December 2001.

[13] J. Lin., An Exploration of the Principles Underlying
Redundancy-Based Factoid Question Answering. ACM
Transactions on Information Systems., 27(2): 1-55,
2007.

[14] D.S. Wang., A Domain-Specific Question Answering
System Based on Ontology and Question Templates. In
Proceedings of 11th ACIS International Conference on
Software Engineering., Artificial Intelligences,
Networking and Parallel/Distributed Computing,
SNPD, London, 2010.

[15] V. Lopez, V. Uren, E. Motta and M. Pasin., AquaLog:
An ontology-driven question answering system for
organizational semantic intranets. Web Semantics:
Science, Services and Agents on the World Wide Web.,
5(2), 72-105, 2007.

[16] M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath,
V. Tresp, and G. Weikum., Natural language questions
for the web of data. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning., pp: 379-390, July 2012.

[17] C. Unger, L. Buhmann, J. Lehmann, A.C. Ngonga
Ngomo, D. Gerber, and P. Cimiano., Template-based
question answering over RDF data. In Proceedings of
the 21st international conference on World Wide Web,
pp: 639-648, April 2012.

[18] D. Damljanovic, M. Agatonovic and H. Cunningham.,
FREyA: An interactive way of querying Linked Data
using natural language. In The Semantic Web: ESWC
2011 Workshops., Springer Berlin Heidelberg,
pp:125-138, January 2011.

[19] C. Unger, P. Cimiano., Pythia: Compositional
meaning construction for ontologybased question
answering on the Semantic Web. In Natural Language
Processing and Information Systems., Springer Berlin
Heidelberg, pp:153-160, 2011.

[20] C.D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S.J.
Bethard and D. McClosky., The Stanford CoreNLP
Natural Language Processing Toolkit. In Proceedings of
52nd Annual Meeting of the Association for

Computational Linguistics: System Demonstrations.,
pp: 55-60, 2014.

[21] OpenNLP., OpenNLP Tools,
https://opennlp.apache.org/, Accessed on October 1
2014.

[22] R. Mitkov., Anaphora Resolution: The State of the
Art. Paper based on the COLING’98/ACL’98 tutorial
on anaphora resolution., University of Wolverhampton,
1999.

[23] M. Denber., Automatic Resolution of Anaphora in
English. Technical report, Eastman Kodak Co., 1998.

[24] E. Bengtson and D. Roth., Understanding the Value
of Features for Coreference Resolution. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing, pp:294-303, 2008.

[25] R. Levy and G. Andrew., Tregex and Tsurgeon: tools
for querying and manipulating tree data structures. In
Proceedings of 5th International Conference on
Language Resources and Evaluation (LREC 2006).,
2006.

[26] D. Chen and C.D. Manning., A Fast and Accurate
Dependency Parser using Neural Networks. In
Proceedings of EMNLP 2014., pp:740-750, 2014.

[27] Marie-Catherine, B. MacCartney, and C.D. Manning.,
Generating Typed Dependency Parses from Phrase
Structure Parses. In Proceedings of LREC , 2006.

[28] J. Nivre, J. Hall and J. Nilsson., MaltParser: A
Data-Driven Parser-Generator for Dependency Parsing.
In Proceedings of LREC2006, Genoa, Italy,
pp:2216-2219, 2006.

[29] LingPipe., LingPipe tool kit for processing text using
computational linguistics. http://alias-i.com/lingpipe/,
Accessed on 01 March 2015.

[30] DBpedia., DBpedia Knowledge Base.
http://dbpedia.org/, Accessed on 01 March 2015.

[31] SPARQL, DBpedia., SPARQL RDF query language.
http://dbpedia.org/spargl, Accessed on 01 March 2015.

[32] Boxer., Boxer CandC tools.
http://svn.ask.it.usyd. edu. au/trac/candc/wiki/Demo.,
Accessed on 11 March 2015.

[33] X. Li and D. Roth., Learning Question Classifiers. In
Proceedings of the 19th International Conference on
Computational Linguistics., pp: 1-7, Taipei, 2002.

[34] C. Fellbaum., WordNet: An Electronic Lexical
Database. Cambridge, MA: MIT Press., 1998.

[35] G. Miller., WordNet: A Lexical Database for English.
Communications of the ACM., 38(11):39-41, 1995.

[36] M. Hoque, T. Goncalves and P. Quaresma., Classifying
Questions in Question Answering Systems using Finite
State Machines with a simple learning approach. In
Proceedings of PACLIC 27, pp:409—414, Taiwan, 2013.

[37] LUCENE., LUCENE : Apache Lucene Core.
https://lucene.apache.org/core/, Accessed on 01 March
2015.

[38] A. Silberschatz, H.F. Korth and S. Sudarshan.,
Database System Concepts. McGraw-Hill , Chapter: 3:
Introduction to SQL., 6th edition.

[39] H.T. Dang, D. Kelly, and J. Lin. Overview of the
TREC 2007 Question Answering Track. TREC 2007.

[40] JSOUP., http://jsoup.org/download, Accessed on 01
March 2015.

[41] S. Clark and J.R. Curran. Wide-Coverage Efficient
Statistical Parsing with CCG and Log-Linear Models.
Computational Linguistics, 33(4), 2007.

