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Dado o historial de declínio do Sobreiro referenciado em Portugal e na Europa nas 

últimas décadas, este trabalho teve como objetivo efetuar o estudo diacrónico da 

mortalidade da espécie de Sobreiro (Quercus suber. L.) nas fotografias aéreas digitais 

de 2004 e de 2010 para as Zonas de Intervenção Florestal de Charneca, Erra e 

Ribeiras, com a quantificação de sobreiros mortos em fotografia aérea de falsa côr e 

aplicação do índice de mortalidade (Ribeiro & Surovy, 2008). A análise espacial e 

estatística do evento mortalidade (funções de Kernel), associada a factores abióticos 

revelou forte relação das condicionantes de solo com a mortalidade, regressão 

espacial das densidades de mortalidade mais elevadas a Nordeste da área de estudo 

e a proximidade destas a condicionantes de solos. O padrão espacial de agregação 

analisado no evento mortalidade (índice de Clark and Evans) em parcelas indica uma 

forte relação entre o padrão agregado (indicador da presença de doenças) e 

mortalidade. 

 



 
 

Abstract 

Manuela Silvestre, 2014 
 

 

"Diachronic study of Cork Oak (Quercus suber L.) mortality on aerial 

photography flights between 2004-2006 and 2010 - Case study of ZIF's (Forest 

Intervention Zones) of Charneca, Erra and Ribeiras - Santarém District" 

 

Given the historical record of Cork Oak decline in Portugal and Europe in the last 

decades, this study aimed to make the diachronic study of the mortality of the Cork 

Oak (Quercus suber. L.) in digital aerial photographs of 2004 and 2010 for the “Zonas 

de Intervenção Florestal” of “Charneca, Erra and Ribeiras”, with the quantification of 

dead trees (stands with Cork Oak) in false color aerial photograph, application of the 

mortality index (Ribeiro & Surovy, 2008). Spatial distribution and statistics analysis of 

mortality (Kernel functions) associating abiotic variables revealed strong relations 

between soil limitations and mortality, the spatial regression of the highest mortality 

densities in the Northeast of the area and proximity of highest mortality densities with 

soil limitations. The spatial aggregation patterns analyzed in the mortality event (Clark 

and Evans index) in plots indicate a strong relation between aggregation pattern 

(indicator of the presence of diseases) and mortality. 
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1 - INTRODUÇÃO 

 

O sobreiro (Quercus suber L.) é uma espécie de carvalho comum na Península 

Ibérica e um dos mais importantes carvalhos de florestas sempreverdes 

abertas, associado às zonas ecológicas onde se interligam a influência 

atlântica e mediterrânica. (Grupo atlas do ambiente,1987; Correia, et al.,2013). 

Segundo Reis (2014), o montado apresenta uma relevância “no sentido de 

figura da natureza - a natureza como «fábrica» onde se incluem recursos como 

a água, o solo, e biodiversidade, mas também a regulação das funções 

climáticas. Estes sistemas apresentam uma elevada importância, pelo seu 

desempenho na função de produção de bens mercantis, e nas funções que lhe 

decorrem, sob a vertente do consumo pela sociedade nos domínios da 

“proteção da natureza e conservação ambiental”. 

Surovy et al., (2007) refere ainda que “além de produção de bens diretos como 

a cortiça e frutos, os sobreiros têm como funções ecológicas a redução da 

velocidade do vento, interceção e redistribuição da precipitação, interceção da 

radiação solar e exploração das camadas mais profundas do solo. Estas 

funções traduzem-se numa mais eficiente proteção do solo, infiltração da água, 

circulação de nutrientes e criação de sombra”. 

Segundo Brasier, (1996); Ferreira (2000); Oszako, (2000); Thomas et al, 

(2002); in Costa et al, (2010), o declínio do sobreiro tem sido descrito como um 

fenómeno generalizado e complexo, desencadeado pela diminuição de vigor da 

árvore e stress fisiológico (por exemplo, secas) e subsequente ataque agentes 

patogénicos, um fenómeno que ocorre de forma semelhante na Europa. 

Segundo Ribeiro (2006), “vários autores têm identificado um conjunto causas 

para estes fenómenos de declínio (que têm uma dispersão nacional) que vão 

desde as alterações pedológicas, às ações de gestão desadequadas que 

conduzem à degradação da estação. Estudos mais recentes identificamos 

défices hídricos da planta como causa de stresse cuja ação continuada conduz 
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à decrepitude e morte dos sobreiros devido a processos de cavitação no xilema 

funcional”. 

Em Portugal um dos primeiros estudos que relacionam o declínio do montado 

com a fisiografia, foi realizado por António José Macara (1975), e baseou-se 

nas observações no terreno e no registo de alguns parâmetros em parcelas 

previamente selecionadas. Neste estudo, Macara observou nas áreas de maior 

declínio do sobreiro a presença de solos pobres ou terrenos com baixa 

fertilidade associados a práticas culturais desadequadas como: 

 o descortiçamento efetuado antes da idade legal (9 anos), levando ao 

aparecimento de carvão no entrecasco; 

 a utilização excessiva da gradagem retirando os matos nas zonas de 

declive mais acentuado (> 2%), em povoamentos de baixa densidade, 

impediu por um lado a regeneração natural mas retirou também toda a 

proteção à superfície dos solos, conduzindo a fenómenos de erosão a 

uma maior suscetibilidade a doenças nestas áreas. 

Dado o historial de declínio dos Carvalhos sinalizado na Europa, “a descrição 

dos padrões espaciais de declínio do sobreiro a nível da paisagem” (Costa et 

al., 2010) pode, portanto, “proporcionar um melhor entendimento sobre suas 

possíveis causas, bem como a relação entre a disponibilidade local do solo em 

água e o declínio da árvore” (Costa, et al., 2010). 

A análise em deteção remota é também um campo importante na pesquisa 

porque fornece um meio para o mapeamento da distribuição da vegetação, 

permitindo a realização de tarefas como a estimativa da densidade de 

vegetação, a monitorização das alterações da vegetação e classificação das 

espécies (Lucas, et al., 2008; Bai, et al., 2005 in Hung, 2012). 

O conhecimento das características ecológicas - culturais da espécie de 

sobreiro bem como as características biofísicas sobre a localização geográfica 

dos povoamentos recorrendo à sistematização e simplificação dessa mesma 

informação pelo uso de ferramentas de análise espacial que permitem o 

cruzamento destes elementos é possível aferir sobre uma combinação de 
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factores que poderão justificar a perda de vigor dos indivíduos, numa 

determinada área e a uma larga escala. 

Acrescentando os métodos de tratamentos espetrais de imagens baseados nas 

refletâncias das espécies florestais, que permitem de uma forma expedita a 

obtenção da localização das árvores com sinais de declínio, ficam criadas 

condições para possíveis zonamentos de áreas de declínio bem como a sua 

comparação numa escala temporal, fornecendo indicadores sobre a 

distribuição espacial do fenómeno mortalidade e possíveis factores externos 

que condicionem o desenvolvimento saudável dos povoamentos (Surovy, 

2004a; Surovy, 2004b). 

Neste sentido a segmentação de fotografias aéreas nos seus processos 

subsequentes, considerando a diminuição da refletância associada a uma 

espécie na fotografia de infravermelho próximo que se traduz na perda de 

clorofila nas folhas (sinal de falta de vitalidade com a diminuição da cor 

vermelha na fotografia), com a aplicação de métodos de otimização da imagem 

combinada da fotografia de infravermelho próximo com a fotografia RGB (Red, 

Green, Blue) também conhecida como fotografia aérea verdadeira alterada 

pela permutação de canais, permite detetar essa ausência de clorofila da 

espécie em estudo, que para este caso específico se trata do sobreiro, e a sua 

sinalização num conjunto de dados (Ribeiro, et al., 2006; Surovy, 2004a; 

Surovy, 2004b). 

A integração desta análise com dados sobre a sanidade e a gestão ao nível da 

árvore nos povoamentos (dados recolhidos no campo), permite a sinalização 

no espaço e no tempo do evento mortalidade facilitando a determinação das 

suas causas e tornando possível a monitorização de um fenómeno que tem 

vindo a ter nas últimas décadas um crescimento acentuado em Portugal 

(Condeso, et al., 2007; Liu, et al., 2007). 

 

 

 



Manuela Silvestre, 2014. 4 
 

A análise diacrónica espacial do declínio dos montados pode ser uma 

ferramenta útil para a implementação de medidas de mitigação e de prevenção 

à escala local e regional mas também para a integração de informação espacial 

de mortalidade com a de outros Países que tenham esta mesma problemática, 

reunindo-se, se devidamente harmonizadas, um conjunto de informações sobre 

a distribuição do evento e a sua análise a outros níveis de escala. 

 

1.1 - OBJETIVOS 

 

Este trabalho tem como objetivo o estudo diacrónico da mortalidade da espécie 

de Sobreiro (Quercus suber. L.) nas fotografias aéreas digitais de 2004 e de 

2010 para as Zonas de Intervenção Florestal de Charneca, Erra e Ribeiras, 

através da identificação e delimitação de povoamentos com a presença de 

sobreiro, quantificação do grau de cobertura em percentagem dos 

povoamentos com sobreiro, identificação e quantificação de sobreiros mortos 

em fotografia aérea de “falsa-cor”, aplicação do índice de mortalidade com a 

respetiva análise descritiva, ANOVA de factores principais, intervalos de 

confiança (95%) pesados pelas áreas dos polígonos para o evento mortalidade. 

Aplicação da análise da distribuição espacial da mortalidade das zonas de 

declínio associada às limitações de solo, declives e exposições para a espécie 

e análise espacial pontual do evento mortalidade com a aplicação das funções 

de Kernel. Verificação da presença de padrões espaciais de agregação do 

evento mortalidade com a aplicação do índice de Clark and Evans em parcelas 

retangulares, de dimensão 100m*100m, selecionadas aleatoriamente e 

aplicação da regressão linear na informação contida nas parcelas com o 

objetivo de encontrar variáveis relacionadas com o evento mortalidade nas 

mesmas mas também de encontrar relações entre as variáveis e o índice de 

Clark and Evans. 
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2- REVISÃO BIBLIOGRÁFICA 

 

2.1 - Mortalidade da espécie Quercus suber L. 

 

2.1.1 - Características ecológicas culturais do Sobreiro 

 

O sobreiro pertence à família botânica dos Carvalhos (Fagaceae) apresenta 

uma casca soberosa, com a particular característica que mantém intata a 

felogene inicial.  

“Possui folhas, subcoriáceas, ovadas a ovado-lanceoladas, verdes escuras na 

página superior e cinzento - tomentosas na página inferior. Na sua fase adulta, 

o sobreiro atinge entre os 10 m a 20 m de altura e caracteriza-se por ter uma 

copa ampla, um tanto irregular e pouco densa” (Grupo atlas do ambiente, 

1987). 

 

 
Figura 1 – Representação esquemática da distribuição de Florestas de sobreiro (Quercus suber L.) na 

bacia mediterrânica, segundo Oliveira, M.A., & Oliveira, L., (2000). 
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Quanto à distribuição geográfica, pela observação da figura 1 (a zona mais 

destacada a cinzento), ”está presente no Sudeste da Península Ibérica até às 

costas do Magrebe, de Marrocos à Tunísia, no sul mediterrânico de França e 

Itália, ilhas mediterrânicas como a Córsega, Sardenha e Sicília, mas encontra-

se também sob influências atlânticas do Noroeste da Península Ibérica às 

Landes (França) ” (Alves et al., 2012). 

O Sobreiro é uma espécie de habitat com características mediterrâneas e 

segundo Alves, et al., (2012), “em Portugal, tem o seu solar na região florestal 

submediterrânica (que vai desde do sul da bacia do Zêzere, Ribatejo, Sado, 

Baixo Alentejo Sul e Algarve), mas vai bem no litoral alentejano sob influência 

atlântica, penetra junto da área da azinheira, sobe ao Norte à Terra Quente e 

dispersa-se em zonas montanhosas mais frias do Centro e Norte, com alguma 

humidade”. Associado aos Sistemas Agro Florestais o sobreiro apresenta uma 

maior superfície e elevada importância económica a Sul do País, 

nomeadamente em todo o Alentejo, Algarve, Ribatejo, na região sul da Beira ‐ 

Baixa e na região quente de Trás‐os‐Montes (Reis, et al., 2014). 

O clima mediterrânico, caracteriza-se por invernos chuvosos moderadamente 

frios e verões quentes e secos, “e ocorre na Bacia do mediterrâneo, na 

Califórnia, no sopé ocidental da Cordilheira dos Andes (Chile), no limite 

sudoeste de África e sudoeste da Austrália” (Pereira, 2004). 

No período quente, quando a baixa pluviosidade é intensa e mais prolongada 

no tempo, a elevada evapotranspiração potencial, a elevada intensidade de 

radiação e temperaturas altas quando associadas a solos com uma fraca 

capacidade de armazenamento de água e teores em matéria orgânica podem 

conduzira limitações no crescimento neste tipo de clima. No período frio, as 

limitações de crescimento estão associadas a temperaturas atmosféricas 

demasiadamente baixas, a baixas intensidades de radiação e baixa 

evapotranspiração potencial (Pereira, 2004). 
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Segundo Natividade (1950), quanto à precipitação média anual favorável, 

está compreendida entre 600 e 800 mm anuais. Sendo possível encontrar 

sobreiros a vegetar em boas condições até aos 400 mm anuais. A temperatura 

média anual está compreendida entre 15 e 19 °C, embora suporte 

temperaturas estivais superiores a 40ºC. Em relação às temperaturas mínimas 

absolutas, as temperaturas inferiores a -5ºC parecem limitar a sobrevivência do 

Sobreiro. 

Segundo Natividade (1950) a altitude onde se observam a maior parte da área 

suberícola nacional é abaixo dos 200 m. No entanto, registam-se ocorrências 

de bosquetes naturais de sobreiro nas Beiras e Trás-os-Montes entre os 600m 

e 800 m, chegando aos 950 m em Bornes. 

No que diz respeito à ecologia, segundo Albuquerque (1954), a maior 

percentagem de sobreiros em Portugal encontra-se no andar Basal na zona 

ecológica Submediterrânea (SM), nomeadamente nas bacias pliocénicas do 

Tejo e do Sado e no Alentejo litoral. 

Segundo Dinis (1994), o sobreiro adapta-se bem a uma gama bastante variada 

de tipos de solo, tendo preferência por solos profundos bem drenados, mas 

distribui-se por quase todos os solos do País, à exceção de solos calcários ou 

de solos excessivamente argilosos.  

“O sobreiro exige um conjunto de condições físicas que proporcionem livre 

expansão radicular como por exemplo: um grau de arejamento elevado, 

drenagem interna boa ou regular, inexistência de horizontes compactos na 

zona de expansão radicular. Tem ainda preferência por solos de reação ácida 

(pH entre 5 e 6.5) não tolerando solos calcários (especialmente os ricos em 

calcário ativo), salinos, orgânicos e hidromórficos” Dinis (1994). 
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2.2 - O Montado e a sua flexibilidade de gestão como sistema 

multifuncional 

 

O montado é um sistema multifuncional artificial resultante da intervenção 

continuada do homem, constituído por povoamentos abertos e irregulares com 

a presença de Sobreiros e um sub-coberto constituído por matos, cultura 

agrícola ou pastagem (Potes, 2011). 

O Montado tem origem na floresta mediterrânica, adaptada às especificidades 

edafo-climáticas desta zona climática, surgindo como flora típica a azinheira, 

oliveira e a vinha. O género Quercus, nomeadamente o sobreiro surge nas 

zonas perto do litoral, devido à influência atlântica sobre esta espécie. 

Genericamente, no estrato arbustivo surgem outras espécies de Quercus, o 

zambujeiro bem como um conjunto de outras espécies arbustivas, onde se 

destacam os géneros Cistus ou Ulex. No estrato herbáceo é dominado por 

gramíneas e leguminosas.  

Segundo Ribeiro & Surovy (2008), nos “montados” como sistemas 

multifuncionais de produção podem descrever-se inúmeras variantes que vão 

desde o sistema agro-florestal até ao sistema agro-silvo-pastoril. 

Segundo Potes (2011), o Montado é um ecossistema vocacionado para a 

produção agro-silvo-pastoril, multifuncional porque se constitui por diversos 

subsistemas e sistemas de produção integrados e interdependentes. Baseia-se 

numa forma de produção extensiva, que se tem revelado não agressiva para o 

ambiente, desde que respeitadas as regras necessárias à manutenção do 

equilíbrio nos diversos subsistemas que o compõe. 

Pereira (2004), a par de outros autores salientou a alta biodiversidade que 

ocorre no clima mediterrânico etal como Potes (2011) refere, a mesma 

estende-se ao Montado como uma forma de defesa da natureza contra a 

irregularidade climática onde se insere. 

“As zonas onde os solos são mais pobres ou degradados pela intensidade 

agrícola e que predominam na zona mediterrânica são destinados à produção 

de floresta mediterrânica, à qual vem associada a produção animal em regime 
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extensivo, dando assim uma maior eficácia ao sistema produtivo” (Potes, 

2011). 

A figura 3 tem como objetivo facilitar a interpretação do ecossistema montado 

dando enfase à sua dinâmica, evidenciando a complexidade do ecossistema e 

a forte intervenção da componente humana nas diversas ações que levam à 

alternância entre estados (Floresta mediterrânica, Montado, Pastagem e 

Abandono). 

 

Figura 2 – Esquema de estado e transições, adaptado de Potes (2011). 

 

Dentro desta forte dinâmica, é de salientar as consequências que resultam do 

abandono do uso, que em qualquer dos estados em que o abandono se 

verifique, resulta no desenvolvimento do estrato arbustivo e se numa escala 

temporal mais alargada, o não uso permanecer, poderá ocorrer um regresso à 

floresta mediterrânica. 
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Esta alteração significa um sério risco de exposição ao consumo da floresta 

pelos incêndios, sobretudo em regiões onde a densidade populacional e as 

alterações climáticas aumentam a sua vulnerabilidade (Potes, 2011). 

Contudo, e como Macara (1974) observou, é de salientar a relevância da 

presença de matos para a proteção da superfície do solo dos factores abióticos 

(vento, radiação solar), mas também para a proteção de agentes patogénicos, 

permitindo o aumento de matéria orgânica no solo e servindo de fonte 

alimentar à componente animal. 

Segundo Ribeiro & Surovy (2008), o sistema agro-silvo-pastoril deve ser 

mantido pois o uso múltiplo destas áreas é que permite manter o potencial 

produtivo prevenindo a desertificação. 

Nos últimos anos verificou-se uma moderação das práticas culturais nas 

vertentes agrícolas e pecuárias, tornando este complexo sistema mais 

equilibrado nas suas componentes. Esta inversão parece estar exclusivamente 

relacionada com a valorização da cortiça. 

Pelo acima exposto é possível destacar a flexibilidade deste sistema, 

capacidade de adaptação e resiliência. 

Segundo o relatório do inventário florestal nacional com os resultados 

preliminares do uso dos solos (IFN 6) de 2013, a área ocupada por sobreiro em 

1995 era de 746 828 ha e em 2010 a área ocupada por esta espécie era de 

736 775 ha, verificando-se uma perda de área de 10 053 ha. Este relatório dá 

então a indicação de uma ligeira diminuição da área de sobreiro, mas 

considerando que a área se apresenta estável para o período analisado  

(1995 e 2010). 

Segundo o mesmo relatório, apesar da pequena variação em termos de área 

ocupada de 1995 para 2010, refere as áreas que estiveram sujeitas a diversos 

processos de arborização e desarborização sendo de destacar a perda de área 

para matos e pastagens de cerca de 28 mil ha e o ganho por arborização de 

terrenos agrícolas da ordem dos 18 mil ha. 
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Um outro dado apresentado neste relatório é a diminuição em área da classe 

de uso florestal de 1995 (3 305 411 ha) para 2010 (3 154 800 ha) 

representando uma perda de área da ordem dos 150 611 ha. 

Em 2012 segundo o INE Portugal é o líder mundial das exportações de cortiça, 

com uma quota de mais de 64,7 % do total mundial (www.ine.pt). 

 

2.3 - Declínio do montado - condicionantes 

 

Cabral (1992) descreve como principais sintomas de declínio do sobreiro: a 

rarefação da copa que fica transparente e apenas com folhas do ano; seca e 

prematura das folhas as quais ficam agarradas à árvore mesmo depois da 

mesma morrer, por um período variável, mas que pode ser superior a um ano; 

descoloração das folhas; existência de tufos de folhas no meio das pernadas; 

pontas secas; aparecimento de manchas escuras e depois esbranquiçadas no 

exterior da cortiça; sinais no tronco e ramos de presença de fungos e de 

insetos. 

À data da realização deste estudo a sintomatologia acima descrita era referida 

também em França, Espanha e Marrocos. 

Neste estudo estão referidas para Portugal algumas das datas marcantes no 

declínio dos montados em Portugal Continental. Na tabela 1 referem-se alguns 

dos surtos registados para Portugal Continental. 

Tabela 1 – Registos de surtos de mortalidade, dados obtidos de Cabral (1992). 

Datas Localização Referências 

Final do Século XX Algumas regiões do País 
Câmara Pestana (1899) 

Baptista  Ramires (1898) 

1927 e 1931 Vale do Tejo 
Silva Tavares (1927) 

Branquinho de Oliveira (1931) 

Década de 40 
Vale de Santarém e em 

Alpiarça 

Baeta Neves (1949) 

Lopes Pimentel (1946) 

1975 - 1976  Serrão Nogueira (1978) 

1980 - 1983 
Santiago do Cacém, 

Grândola e Sines 
Cabral et al. (1992) 
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Apesar da flexibilidade e capacidade de adaptação do sistema montado já 

acima referida, segundo Ribeiro & Surovy et al., (2008) dadas as alterações 

verificadas nas últimas décadas quer ao nível populacional, quer ao nível 

tecnológico observam-se atualmente quebras de resiliência dos ecossistemas 

associados ao montado pondo em causa a sua sustentabilidade. 

As perdas de resiliência apresentam como indicador a degradação do coberto 

arbóreo resultante:  

1. Da mortalidade de árvores em povoamentos com estruturas 

envelhecidas e de baixa densidade,  

2. Do baixo ou nulo ingresso de plantas jovens devido às baixas taxas de 

sucesso da regeneração natural (resultantes do uso do solo).  

 

A perda de coberto acentua os processos erosivos com a consequente 

diminuição da fertilidade do solo e sua capacidade de retenção para água 

assim como dos extremos da temperatura do solo. A degradação do solo 

combinada com as ações de gestão incidentes nos sobreiros, diminui as 

resistências das árvores aumentando o risco de ocorrência de pragas e 

doenças com o consequente incremento das taxas de mortalidade. Os 

processos de degradação uma vez em curso aumentam exponencialmente de 

intensidade. O abandono aumenta o risco de fogo que a ocorrer elimina 

instantaneamente o coberto. A energia necessária à recuperação ou apenas 

para manter o nível de produção (não sustentada) é, normalmente, superior à 

energia requerida para a conservação de uma produção sustentada (Ribeiro, et 

al., 2004). 
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Dentro dos sub-sistemas que constituem os montados (Solo, Pastagem, 

Estrato Arbóreo e Arbustivo e componente Animal), são várias as práticas que 

condicionam o equilíbrio no sistema montado como um todo. 

 

Tabela 2 – Sistemas (Produção, Social e Físico) que predispõem os montados ao declínio e afetam cada 

sub-sistema (solo, pastagem, arbóreo e arbustivo e animal) do montado. 

Sistemas 

 

Sub -

sistemas  

Sistema de produção 

Sistema 

social 

Sistema 

físico - 

Causas 

naturais 

 

Gestão desadequada  Efeitos 

Solo 1 

Sub-sistema animal: 

Sobrepastoreio; 

Infertilidade e erosão 

dos solos. 

D
u
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e
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d
e
s
 q

u
e

 g
e
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 d
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 c
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 c
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u
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o

 (
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 c
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e
n
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e
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o
) 

re
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a
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m
 i
n

te
re

s
s
e
s
 d

e
 p

ro
d

u
ç
ã

o
 d

iv
e

rg
e

n
te

s
. 

Clima: 

tempestade, 

neve e 

granizo, 

excesso de 

calor, 

deficiência 

em água; 

 

 

M
O

R
T

A
L

ID
A

D
E

 

Utilização excessiva da 

gradagem para 

mobilização dos solos, 

compactação pelo uso de 

maquinaria pesada,  

diminuição excessiva do 

grau de cobertura 

(desflorestação)   

Pastagem 

Sub-sistema animal: 

Sobrepastoreio; 

Diminuição da 

produtividade 

sustentada pela 

influência no sistema 

Solo. 

 

 

Diminuição excessiva do 

grau de cobertura; 

Estrato 

Arbóreo 

e 

Arbustivo 

Sub-sistema animal: 

Sobrepastoreio; 

Diminuição da 

capacidade de 

regeneração; 

Perda de estabilidade 

das árvores (corte de 

raízes ou incapacidade 

de desenvolvimento 

das raízes a níveis mais 

profundos, abaixo dos 

30 cm de 

profundidade); 

 

Clima: 

tempestade, 

neve e 

granizo, 

Excesso de 

calor, 

deficiência 

em água; 

Fisiografia: 

encostas 

viradas a 

Sul, vales 

de encosta. 

Utilização excessiva da 

gradagem para controlo de 

matos, compactação pelo 

uso de maquinaria pesada, 

aplicação de podas 

excessivas; 

Diminuição excessiva do 

grau de cobertura 

(desflorestação); 

                                                           
1  Características de Diagnóstico e Carta interpretativa de condicionamento ao uso florestal (tabela 4 e 
tabela 5). 
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De uma forma resumida o esquema acima apresentado (Tabela 2) tenta 

relacionar o esquema descrito por Potes (2011) sobre as principais ameaças 

que afetam cada sub-sistema do montado com os factores que levam ao 

declínio do montado (sistema social, físico e de produção) descrito por Cabral 

em 1992. Este esquema tem como objetivo referir a presença das principais 

medidas desadequadas de gestão e os seus efeitos em cada sub-sistema que 

constitui o montado. 

Neste esquema, o impacto de cada ação praticada pelo homem (sistema de 

produção e social) ou impacto da natureza (sistema físico) não está medido. 

Contudo, pela sua observação, dentro do que o homem pode controlar, a 

começar pelo planeamento adequado para a instalação de povoamentos com a 

escolha de espécies adequadas às características da estação (clima e 

fisiografia) partindo do sistema de produção e sistema social que lhe dá 

viabilidade, será a aplicação de ações adequadas na gestão nos diferentes 

sub-sistemas (encabeçamento adequado, utilização de maquinaria não 

agressiva, aplicação de técnicas de silvicultura não evasivas) que minimizarão 

por um lado a degradação da estação, tendo aqui o sub-sistema solo uma 

destacada relevância mas permitirão também a sustentabilidade da 

componente florestal e consequentemente a longevidade do montado em todas 

as suas vertentes. 

Dada a relevância do sub-sistema Solo para o adequado desenvolvimento do 

sobreiro, Diniz (1994) estudou 25 unidades de solo da carta de Portugal onde 

estão representadas as principais manchas de sobreiro associadas a diferentes 

tipos de solos, onde se incluem: litossolos, regossolos, psamíticos, aluviossolos 

antigos e coluviossolos, solos litólicos não húmicos, solos mediterrâneos 

pardos calcários e não calcários, solos mediterrâneos avermelhados calcários 

e não calcários, podzóis e solos hidromórficos. 

Na tabela 3 e tabela 4 apresentam-se as características de diagnóstico e a 

carta interpretativa de condicionamento ao uso florestal elaborada em 2001 por 

Ferreira et al., e que se baseiam na informação recolhida por Diniz em 1994. 
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Tabela 3 – Características de diagnóstico, adaptado de Ferreira et al., (2001). 

Características de 

diagnóstico 
Condicionante ao desenvolvimento 

Sem limitações Sem condicionantes 

Profundidade 

expansivel 
Limitação de espessura efetiva, que pode ser aumentada por meios mecânicos 

Calcário ativo Presença de calcário ativo 

Descontinuidade 

textural 
Horizonte B argílico 

Características 

vérticas 

Aberturas de fendas que dificultam ou limitam o desenvolvimento das raízes de 

plantas multianuais 

Salinidade Excesso de sais no perfil do solo 

Drenagem externa Potencial acumulação de água à superfície do solo 

Drenagem interna Presença de toalhas freáticas superficiais 

Textura arenosa Deficiente capacidade de armazenamento para água 

Espessura efetiva Limitação de espessura efetiva que não pode ser aumentada por meios mecânicos 

Afloramento 

rochoso 
Não produtivo 

Área social Não produtivo 

 
 

Tabela 4 – Carta interpretativa de condicionamento ao uso florestal, adaptado de Ferreira et al., (2001). 

Características 

de diagnóstico 

Nº 

Ordem 
Unidades - Solo 

Sem limitações 1 As não mencionadas. 

Profundidade 

expansivel 
2 

Incipientes litossolos, de regime xérico, derivados de arenitos xistos ou 

grauvaques. Argiluviados, mediterrâneos vermelhos ou amarelos, 

calcários ou não, normais, para barros, com laterite ou húmicos. Calcários, 

pardos de regime xérico, para litossolos. 

Calcário ativo 3 Calcários, pardos ou vermelhos, de regime xérico, normais ou para barros. 

Descontinuidade 

textural 
4 

Argiluviados, mediterrâneos pardos, calcários ou não, normais ou para 

barros. 

Características 

vérticas 
5 Barros pretos, pardos, calcários ou não, normais ou para barros. 

Salinidade 6 
Halomórficos, salinos, de salinidade elevada ou moderada, de aluviões ou 

rochas detríticas. 

Drenagem 

externa 
7 

Incipientes, aluviossolos, modernos ou antigos, calcários, não calcários ou 

não calcários húmicos. Incipientes, coluviossolos, calcários, não calcários 

ou não calcários húmicos. Incipientes, aluviossolos, modernos ou antigos, 

calcários, calcários ou não, para hidromórficos. 

Drenagem interna 8 

Podzolizados, podzóis hidromórficos, com ou sem surraipa. Hidromórficos, 

com horizonte eluvial para aluvissolos, para regossolos, para barros, para 

argiluviados. Hidromórficos, sem horizonte eluvial, planossolos ou 

planossólicos. Hidromórficos, orgânicos, turfosos. 

Textura arenosa 9 Incipientes, regossolos, psamíticos, normais. 

Espessura efetiva 10 
Incipientes, litossolos, de regime xérico, derivados de granito, gneisse, 

gabro ou quartzo. 

Afloramento 

rochoso 
11 Não produtivo. 

Área social 12 Não produtivo. 
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Segundo Ribeiro & Surovy (2008), os solos de textura ligeira, litólicos não 

húmicos (Vt, Vts, e Par) e alguns podzóis sobretudo quando derivados de 

arenitos (Ap e Ppt) que têm como características principais a elevada 

permeabilidade, a fraca retenção de humidade e o baixo índice de fertilidade 

intrínseca, o sobreiro vegeta em condições normais ou até de forma 

exuberante nas unidades derivadas de arenitos dada a particularidade do 

substrato geológico (não consolidado e profundamente alterado) que permite a 

retenção hídrica e favorece a progressão das raízes até camadas profundas.  

“Nos solos ligeiros profundos, nomeadamente nas superfícies aplanadas do 

domínio dos regossolos (Rg) de reduzida evolução pedológica ou de Podzóis 

(Ap)” (Diniz, 1994),e que se relacionam com mantos de areia muito espessos, 

em regra de permeabilidade excessiva e porque nestes solos se verifica a 

retenção de hídrica até poucos metros de profundidade, o sobreiro poderá 

vegetar em condições normais (Diniz, 1994; Ribeiro & Surovy, 2008). 

Nos solos hidromórficos, nomeadamente nos planossolos (Ps) onde se verifica 

uma reduzida retenção hídrica em especial onde as condições de arejamento 

do subsolo são atenuadas por horizontes arenosos superficiais que 

proporcionam a expansão radicular nos mesmos, o sobreiro vegeta apenas 

nestas condições, dadas as características de encharcamento temporário e 

permanente que nos restantes se verificam (Diniz, 1994; Ribeiro & Surovy, 

2008). 

“O sobreiro suporta mal o excesso de humidade quando esta é retida ao nível 

superficial do solo ou no subsolo; daí que, para além dos hidromórficos, 

também os podzóis de surraipa dura (Pz) com tendência a tornar-se contínua 

nas formas depressionadas do micro-relevo” (Diniz, 1994), correspondendo 

estas situações ao aparecimento de clareiras nos arvoredos (Diniz, 1994). 

“Relativamente às baixas ribeirinhas, o sobreiro vegeta bem nos terraços 

marginais, em correspondência com plataformas sobreelevadas não inundáveis 

e naturalmente bem drenadas, onde o lençol freático estaciona a alguns metros 

de profundidade” (Diniz, 1994). “Assim, em aluviossolos antigos de textura 

mediana (At) ou ligeira (Atl) ou em coluviossolos também de textura mediana 

(Sb e Sbl) o sobreiro vegeta em boas condições” (Ribeiro & Surovy, 2008). 
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“Estudos que têm vindo a ser efetuados referem o declínio progressivo da copa 

de sobreiro (dieback) tem vindo a ser associado às condições da estação 

nomeadamente a presença de solos pobres ou a presença de hidromorfismo” 

(Brasier, 1996, Moniz et al., 1996; Wargo, 1996; in Costa et al., 2010), “à 

desfolha, aos ataques de insetos, aos fungos patogénicos (Brasier, 1996: 

Moniz et al., 1996; Wargo, 1996; in Costa et al., 2010) ” e à gestão silvícola 

inapropriada que pode ameaçar seriamente a manutenção das árvores a longo 

prazo. 

No conjunto desajustado de ações mencionadas na tabela 2 conciliando 

também os factores naturais, as características de solos desajustadas à 

espécie de sobreiro (tabela 3 e tabela 4) estão então criadas as condições para 

o aparecimento de insetos e fungos e que provocam o aceleramento do 

declínio do montado. 

“De referir também a seca severa ou prolongada que pode atuar como um 

factor de predisposição para o declínio de carvalhos fisiologicamente maduros” 

ao nível global (Brasier, 1996; Breda, 2000; Carvalho et al., 1996;Wargo, 1996 

in Costa et al. 2010), “enquanto que na paisagem local atributos físicos, como 

as condições edáficas, distúrbios de declive e de uso do solo (por exemplo, 

invasão arbustiva) podem induzir de forma elevada a variabilidade de mistura 

de condições com diferentes impactos sobre as árvores” (Costa et al, 2008; 

Cubera et al., 2004; Montero et al., 2004 in Costa et al., 2010).  
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2.4 - Detecção remota 

 

2.4.1 - Análise de espécies florestais em fotografia aérea 

 

Segundo Jakubowski, et al., (2013) a deteção remota tem vindo a consolidar-se 

como uma das principais ferramentas para análise em larga escala de sistemas 

florestais.  

Dentro das componentes da energia eletromagnética (condução, convecção e 

radiação), é no campo da radiação eletromagnética onde se concentra a 

análise espacial e fotogramétrica da componente florestal, concretamente na 

banda do infravermelho próximo (700nm - 1.2 nm) onde é possível discriminar 

massas vegetais e concentrações de humidade (Casimiro, 2002; Surovy et al., 

2004a). 

No infravermelho próximo, é possível detetar a estrutura interna da própria 

folha nomeadamente a quantidade de clorofila. Em função da estrutura da 

folha, a cutícula, que apresenta por vezes um revestimento ceroso (caso da 

vegetação sub-xerofítica existente no Sul de Portugal), reflete bem a radiação 

solar (Casimiro, 2002). 

A composição colorida da fotografia aérea trata-se de um dos artifícios de 

maior utilidade na interpretação das informações em deteção remota. Ela é 

fundamental para uma boa identificação e discriminação dos alvos terrestres. O 

olho humano é capaz de discriminar mais facilmente matizes de cores do que 

tons de cinza. A composição colorida apresenta as cores primárias (vermelha, 

verde e azul), daí a designação instituída, do inglês, RGB (Red, Green, Blue). 
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Segundo Surovy, et al., (2004b), existem várias razões para a utilização de 

fotografias de infravermelho próximo na silvicultura: 

 A fotografia de infravermelho não proporciona a possibilidade de ver 

através de fenómenos atmosféricos como o nevoeiro que se constitui 

pelas gotículas por água, mas permite melhorar a visibilidade em 

determinados tipos de neblina, em que a dispersão da luz é produzida 

por partículas muito mais pequenas. A fotografia aérea de longa 

distância pode ser melhorada. A fotografia de infravermelho não resulta 

sempre numa melhoria na extensão ou na variabilidade da visibilidade 

que é possível obter, mas na generalidade permite o aumento do 

contraste de objetos distantes assim como a quantidade de detalhe que 

pode ser visualizado. 

 A refletância na fotografia de infravermelho próximo diminui com a 

mudança de orientação da folha, de predominantemente horizontal para 

o predominantemente vertical, em determinados estados nos ciclos de 

crescimento das espécies, e diminui também com a perda de clorofila 

nas folhas, perda esta que pode acontecer por diversos motivos tais 

como doença ou danos. De acordo com esta refletância no domínio do 

infravermelho próximo é específica das espécies devido à dependência 

dos factores acima mencionados. 

 

Uma das abordagens mais utilizadas na análise de imagens aplicadas a 

sistemas florestais consiste na transformação de uma imagem colorida numa 

imagem binária (a branco e preto) podendo dividir-se assim a imagem por 

zonas de interesse e definir-se a vegetação como a cor mais clara ou a cor 

mais escura. A este processo é usual a aplicar-se o termo de segmentação da 

imagem. Ao longo dos anos diversos autores definiram índices para o auxílio 

de identificação de vegetação em imagens: 

 Ohta, et al., (1980) determinou um índice que permitiu verificar que as 

características de cores são eficientes para se fazer a segmentação de 

uma imagem; 
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 Scheer (1993) introduziu uma nova combinação de canais RGB para a 

interpretação danos florestais; 

 Andreasen, et al., (1997) definiu um parâmetro para a separação de 

plantas e do solo em imagens coloridas; 

 Phillips e Rath (2002) definiram novos espaços de cor para transformar 

uma imagem colorida numa única imagem binária; 

Muitos destes índices não estão vocacionados para a análise de povoamentos 

com cobertura mais dispersa das árvores quando comparados com os 

povoamentos do Norte da Europa.  

Surovy, et al., em 2004, propôs um novo índice (B - Square) para a 

transformação da cor da floresta mediterrânica. Este índice apresentou em 

termos de precisão um desempenho igual ao de outros índices propostos para 

fins semelhantes em diferentes áreas, apresentando um menor erro de 

sobrestimação e evitou maiores níveis de cinza na escala de análise. 

Este índice é definido como um nível de cinzento na composição RGB, depois 

de transformar todas as cores da imagem no modelo cubo RGB e de se aplicar 

a segmentação da imagem. 

Da mesma forma como nas imagens de cor, a visão do intérprete geralmente 

faz distinção entre vegetação e solo, mesmo em 16 milhões de cores imagem 

usando esta "simplificação" da gama de cores. Na elaboração deste índice 

Surovy et al., (2004a) aplicou um novo método para simplificar a vasta gama de 

cores do espetro e para isso baseou-se no modelo de conversão cubo RGB, 

pelo fato de ter verificado que aumentando ou diminuindo valores nas 

diferentes cores no cubo RGB, não perderia informação relativamente à cor ou 

coloração, ao contrário do que verificou no método conhecido como HSB (Hue, 

Saturation, and Brightness) e frequentemente utilizando. Surovy, et al., (2004a) 

verificou que a alteração efetuada ao longo do eixo-B deste modelo (HSB) é 

equivalente à alteração efetuada na diminuição ou no aumento do valor das 

cores no modelo cubo RGB, mas com esta alteração perderia informação 

relativamente à cor.  
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2.4.2 - Estatísticas espaciais 

 

O padrão espacial pode ser considerado uma combinação de pontos, que 

podem representar plantas ou outros organismos distribuídos num espaço e 

que exibem uma certa quantidade de previsibilidade. Em muitas situações esta 

previsibilidade pode exprimir-se numa certa periodicidade ou repetição de 

padrão repetidos num espaço (amostra) equivalente a uma área dentro da 

paisagem analisada. 

Segundo Ludwig & Reynolds 1988 in Dele (1999), podemos dizer que o padrão 

espacial é não aleatório num arranjo espacial, permitindo assim uma predição, 

mas alguns autores consideram a possibilidade do padrão aleatório. Segundo 

Dele (1999), a verdadeira aleatoriedade permite também uma quantidade de 

previsibilidade probabilística. Em situações, onde os pontos estão dispostos 

aleatoriamente e são independentes entre si, podemos prever que o número de 

pontos presentes num conjunto de amostras com área idêntica apresentam 

uma distribuição de frequência aleatória. 

“A análise espacial de padrões de pontos tem uma longa presença na área da 

ecologia e das florestas, inicialmente estes estudos estavam mais 

vocacionados para a comparação da contagem de áreas (área definida) 

seguindo a distribuição de Poisson.  

Os métodos de áreas/quadrículas (unidades amostrais) e das distâncias são 

também utilizados para distinguir a distribuição aleatória, conhecida como 

complete spatial randomness (csr), da distribuição espacial regular da 

distribuição em padrão (cluster ou agregado), as funções - K (K funtions) 

poderão dar uma boa indicação da representação desse comportamento. 

Adotando a simbologia seguida por Cressie (1993), entende-se por distribuição 

aleatória (complete spatial randomness - csr) a distribuição de Poisson 

homogénea no espaço Rd. Neste processo existe a propriedade: 

Condicionada N (A) ao número de eventos presente na região A ⊂ Rd, os 

eventos neste processo são independentes e uniformemente distribuídos sobre 

A.  
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Traduzindo-se por: N (A) =n, sendo n - os dados ordenados utilizados como 

eventos (s1,...,sn) em An e satisfaz: 

 

, ,  (1) 

Onde, .  

Intuitivamente, esta expressão diz-nos que os eventos têm igual probabilidade 

de ocorrerem na região A e não interagem entre si, nem repulsivamente 

(eventos distribuídos regularmente) nem atrativamente (eventos agrupados em 

cluster) Cressie (1993). Na figura 4 apresenta-se a distribuição dos eventos de 

forma aleatória, regular e agrupados em cluster. 

 

 

 

 

 

Figura 3 – Representação espacial do padrão a duas dimensões de a) eventos distribuídos 

aleatoriamente – complete spatial randomness (csr), b) eventos distribuídos regularmente e c) 
eventos agrupado em cluster. 

a 

b 

c 
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O método das áreas/quadrículas (unidades amostrais) é um método 

aglomerativo, pelo que o efeito do tamanho do bloco (inserido na quadrícula) 

pode ser confundido com o espaçamento médio entre o centro dos blocos. 

 “Enquanto o método das quadrículas estão mais vocacionado para 

amostragem de campo, alguns dos mais poderosos métodos de distâncias 

dependem da existência de um bom mapa que reúna todos os eventos a 

analisar. Os métodos de distâncias dependem do uso de informação precisa 

sobre a localização desses mesmos eventos e possuem como vantagem a não 

dependência de escolhas arbitrárias do tamanho ou forma da quadrícula” 

(Cressie, 1993). 

Segundo Dale (1999), a literatura relacionada com a análise do padrão pontual 

inclui um vasto número de métodos baseados nas distâncias entre cada evento 

e o seu vizinho mais próximo.  

Pommerening (2002 e 2006) apresenta também a utilização de diversos 

índices de diversidade dependentes da distribuição espacial dos indivíduos 

para avaliar vários aspetos da diversidade e estrutura dos povoamentos, 

nomeadamente a posição, as espécies e as dimensões das árvores e 

dependendo os mesmos do conhecimento do posicionamento das árvores ou 

seja nas coordenadas das mesmas dentro do povoamento ou parcela. 

Os índices dependentes das medições de distância podem subdividir-se em: 

 Índices que utilizam parâmetros de árvores individuais baseados nas 

relações de vizinhança para pequenas diferenças de escala em termos 

de estrutura do povoamento; 

 Índices dependentes das medições de distâncias que permitem 

descrever a estrutura ao nível do povoamento; 

 E funções contínuas que descrevem a estrutura da floresta considerando 

todas as distâncias entre as árvores. 
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Segundo Pommerening (2002), os primeiros estão vocacionados para a 

descrição do tamanho das árvores (diâmetro ou altura) - Índice de 

diferenciação e para a análise do padrão da distribuição das espécies em 

relação à árvore de referência - Índice de Mingling. O segundo grupo de índices 

identifica o padrão de distribuição horizontal das árvores - Índice de Clark and 

Evans e a combinação ou mistura das espécies - Índice de segregação de 

Pielou. O último grupo de “índices” são funções contínuas, no caso das pair 

correlation function respondem ao mesmo tipo de questões que o índice de 

Clark and Evans, identificando o padrão agregado, aleatório ou regular, 

acrescentando a possibilidade de análise através das distâncias entre as 

árvores e verificar o tipo de interação entre as mesmas. As mark correlation 

functions permitem também a análise de distâncias entre as árvores em função 

de um parâmetro relativo à árvore, por exemplo a possibilidade de avaliar o 

diâmetro à altura do peito em função da distância entre árvores. 

“Estes índices, espacialmente explícitos, baseiam‐se no cálculo para cada 

indivíduo, denominado como árvore de referência ou central, dos seus vizinhos 

mais próximos” (Gonçalves et al., 2010). Segundo Pommerening (2006), “o 

número de vizinhos depende das características do povoamento, ou seja da 

sua estrutura, no entanto o número mais frequente de vizinhos é 3”. 

Dos índices acima mencionados, um dos mais conhecidos é o índice de 

agregação de Clark and Evans (1954), que permite a distinção da distribuição 

aleatória dispersa para a distribuição aleatória agrupada/agregada ou 

superdispersa. 

Este índice parte do pressuposto da distribuição aleatória ou de Poisson” 

(Cressie, 1992) e “pode ser calculado para o povoamento ou para cada uma 

das espécies que o constituem” (Pretzsch, 1997, 1998 in Gonçalves, et al., 

2010). 

, onde,     e ;  

 



Manuela Silvestre, 2014. 25 
 

Onde: 

 - Representa as distâncias médias entre o evento (ponto/árvore) e 

os seus vizinhos mais próximos.  

 - Representa a distância do vizinho mais próximo no povoamento com os 

eventos (pontos/árvores) seguindo a localização completamente aleatória 

(Poisson) de intensidade , onde A representa a área e N o número de 

árvores na área. 

“Teoricamente, R varia entre zero (máximo de agregação ou clustering) e 

2.1491 (padrão regular hexagonal) ” (Gonçalves, et al., 2010). 

Entendendo-se como: 

 , Se o padrão tem tendência para a regularidade; 

 , Se a distribuição é aleatória (Poisson) - complete spatial 

randomness (csr); 

 , Se o padrão apresenta agregação (Cluster). 
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Segundo Pommenering (2002), o padrão com tendência para a regularidade 

pode ser representativo de árvores muito jovens plantadas em linha ou em 

povoamentos envelhecidos onde a distância entre os indivíduos é maior. 

Havendo também a presença do padrão aleatório em povoamentos em final de 

vida.  

 

 

 

 

 

Figura4 – Representação espacial para a árvore de 

referência e os seus vizinhos mais próximo (índice de 
Clark and Evans. 

 

Segundo Dale (1999), estes índices estão mais vocacionados para a análise da 

intensidade do padrão do que para a escala a que os eventos ocorrem. Por 

outras palavras, diferentes padrões espaciais podem surgir a uma escala 

menor mas contudo apresentarem valores da mesma ordem no que se refere à 

distribuição das distâncias dos vizinhos mais próximos (figura 4). 

Para parcelas circulares e retangulares deve ser considerado o efeito de 

bordadura. Este fenómeno consiste na possibilidade de alguns eventos 

amostrados estarem mais próximos do limite das parcelas estudadas. Porque o 

vizinho mais próximo pode estar no limite exterior da área (parcela), a distância 

do evento ao seu vizinho mais próximo não é conhecida. Se o vizinho mais 

próximo considerado for um evento mais próximo dentro da parcela, as 

distâncias dos vizinhos mais próximos esperadas serão maiores para os 

eventos localizados na fronteira (limite interior) das parcelas do que no centro. 

Surgirão então resultados tendenciosos. Para as parcelas retangulares o 

método de correção consiste em considerar esta área como um toro, para que 

os eventos próximos das bordaduras opostas se possam considerar próximos. 

Para que os eventos próximos da bordadura inferior da parcela ingressem nos 

Árvore de referência i 

Segundo vizinho 

Primeiro vizinho 

Terceiro vizinho 
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eventos que ocorrem na bordadura de topo da parcela, assim como os eventos 

presentes na bordadura esquerda da parcela se juntem aos da bordadura 

direita da parcela. 

Para se ter uma perspetiva da distribuição da mortalidade na totalidade da área 

(nos dois voos) do padrão associado, pode efetuar-se uma análise de segunda 

ordem, descrita como uma extensão dos métodos de distância entre os 

vizinhos mais próximos, aplicando a função - K (K function), que segundo 

Cressie (1993) para padrões de pontos univariados parecem ser o melhor 

método de análise. É uma função que parte do pressuposto dos eventos 

distribuídos aleatoriamente - complete spatial randomness (csr). Embora não 

distinga as zonas onde existe ausência de informação para toda a informação 

mapeada, conseguem capturar a dependência espacial entre diferentes regiões 

do processo pontual (point process) e é definida como: 

 (número de eventos extra na distância h de um evento arbitrário), 

. 

É algumas vezes chamada como o segundo momento de medição reduzida, 

porque está fortemente relacionada com a intensidade de segunda ordem de 

um processo pontual isotrópico estacionário (stationary isotropic point process) 

que consiste na análise de um padrão no processo pontual que resulta da 

média de todas as direções. 

É uma estimativa baseada numa média empírica substituindo a expetativa do 

operador. Além disso, porque o estimador da contagem do número de eventos 

é realizado dentro de uma gama de distâncias, esta função não está 

vocacionada para a análise de eventos amostrados em áreas mais pequenas 

(parcelas). 

Para um mapa completo de eventos, considerando que  significam 

 a localização de todos os eventos delimitada por uma região de 
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estudo A, supondo que  são distâncias associadas dos eventos ao 

vizinho mais próximo de A. Então: 

 

,  e  

 

Neste processo de cálculo, Ripley propõe um método de correção de 

bordadura (fenómeno de subestimação nas zonas fronteira) no espaço R2 que 

utiliza informação dos eventos para os quais : 

,  e  

 

Onde: 

O peso é a proporção da circunferência de um círculo centrado em , 

passando por , e dentro da região de estudo A. A correção do efeito de 

bordadura para a estimação das funções K é fundamental porque dado que as 

áreas estudadas apresentam características com um padrão espacial a 

diversas escalas, pelo que não é surpreendente que as distâncias  maiores, a 

estimativa sem a correção de bordadura podem obter-se resultados 

enganadores.  

Por outras palavras as funções K sem a correção de bordadura poderão dar 

um resultado de regularidade quando na realidade o padrão agregado está 

presente (Cressie, 1993). 
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Considerando ainda a perspetiva global da área de estudo, de um mapa de 

dados ou eventos, os estimadores de Kernel, concretamente as funções de 

densidade, que podem ser estendidas para a obtenção de estimadores não 

paramétricos (Cressie, 1993), são funções de densidade que calculam a 

magnitude por unidade de área de ponto ou linha utilizando uma função de 

Kernel para atender a uma superfície suavemente cônica para cada ponto ou 

linha. A função de Kernel calcula a densidade na vizinhança de uma 

característica ou entidade analisada. 

“Concetualmente, uma superfície suavemente curva é colocada sobre cada 

ponto. O valor de superfície é maior no local do ponto e diminuiu com o 

aumento da distância a partir do ponto de atingir o valor 0 dentro da 

circunferência da banda circular de cada ponto. Apenas vizinhança circular é 

possível. O volume abaixo da superfície é igual ao valor do campo da 

população para o ponto, ou 1 se NONE for especificado” 

(http://resources.arcgis.com/, 2014). A densidade de cada output da célula 

raster é calculada pela soma dos valores de todas as superfícies do Kernel 

onde estes se sobrepõem à da célula central do raster“ (Strano, et al., 2007). 

 

Onde: 

 - Função de Kernel; 

 - Raster considerado; 

 - Posição central de cada célula; 

 - Posição de cada evento;  

 - Número total de eventos; 

http://resources.arcgis.com/
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A função de Kernel  é definida por um vetor  bi-dimensional e 

satisfazendo a distribuição normal: .  

Usualmente, é uma função decrescente radialmente simétrica do seu 

argumento. Uma das equações utilizadas e que está presente no programa 

Arcgis, é baseada na função de kernel quadrática descrita em Silverman (1986, 

p. 76, a equação 4.5” (Strano et al., 2007) é definida por: 

 

 

Esta função tem a vantagem de que pode ser calculada de forma mais rápida 

do que a função de Kernel padrão. Na verdade, com esta função, se a distância 

do centro da célula da característica/entidade considerada é maior do que a 

largura de banda  estabelecida, em seguida, a atividade dessa mesma 

característica não contribui para a soma. 

 

 

Figura 5 – Ilustração da densidade de kernel 

sobre o formato raster (fonte: 
http://resources.arcgis.com/, 2014). 

 

http://resources.arcgis.com/
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A ilustração acima (figura 5) mostra um segmento de linha e a superfície do 

Kernel instalados sobre ele. A contribuição do segmento da linha para a 

densidade é igual ao valor da superfície de Kernel no centro da célula do 

raster. 

Esta ferramenta tem a vantagem de permitir uma aglomeração de densidades 

com um raio de procura estabelecido (por unidade de medida numa área), 

obtendo-se um mapa que permite evidenciar de uma forma simples as zonas 

com diferentes densidades (Arcgis resources, 2014). Com a calibração dos 

parâmetros da função de Kernel (raio de busca e tamanho da célula do raster) 

pode então comparar-se um evento (ex: árvores mortas) em duas datas 

distintas sobre a mesma área. 

Para a análise diacrónicas as metodologias acima referidas associadas à 

utilização das ferramentas SIG (Statistic stools/Arcgis Desktop) permitem 

efetuar uma comparação entre eventos no espaço e no tempo, com a 

combinação de diferentes informações como: informação altimétrica (declive); 

informação de caracterização biofísica como (solos) e outro tipo de informação 

relacionada com os povoamentos florestais (ex: grau de cobertura).  

 

3 - MATERIAL E MÉTODOS 

 

3.1 - Área de Estudo (Caracterização) 

 

A área de estudo (figura 6) é constituída pelas Zonas de Intervenção Florestal 

de Charneca, Erra e Ribeiras. Estas três Zonas de Intervenção Florestal 

inserem-se na Lezíria do Tejo (NUT III) e são abrangidas pelos concelhos de 

Coruche, Salvaterra de Magos, Chamusca e Benavente. No seu conjunto estas 

três ZIF’s perfazem um total de 56209.67 ha. 
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Figura 6 – Enquadramento geográfico da área em estudo com os limites dos Concelhos. 

 

A topografia é dominada por planaltos que variam em altitude entre os 80m e 

180m, recortados por linhas de água temporárias, envolvidas zonas 

aluvionares que convergem para afluentes do rio Sorraia. 

No que diz respeito à Geologia (31 - C e 31 - D), verifica-se essencialmente a 

presença de formações da era do Cenozoico. Com a presença do complexo 

argilo – gresoso de Coruche (Mp), do período Miocénico. Nas zonas mais 

elevadas verifica-se também a presença de Grés e conglomerados da Serra de 

Almeirim, cascalheiras dos planaltos (P3), do período Pliocénico e em toda a 

área verifica-se também a presença de aluviões, do período moderno. 

Pela observação das cartas de solos (31 - C e 31 - D) pode verificar-se na 

parte Oeste da área de estudo a presença de: 
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 Solos Podzóis não hidromórficos com surraipa, de ou sobre arenitos 

consolidados (Ppt); 

 Solos mediterrâneos vermelhos ou amarelos de arenitos (Vtc), em 

manchas homogéneas ou intercalados (Ppt + Vt); 

 Podzóis hidromórficos sem surraipa, de areia ou arenitos (Aph), nas 

zonas aluvionares. 

 

Na parte Este da área verifica-se a presença de: 

 Solos  litólicos, não húmicos de arenitos grosseiros (Vt); 

 Litossolos de arenitos do triássico (Et); 

 Solos mediterrâneos pardos de margas ou calcários margosos ou 

arenitos calcários (Pac); 

 Solos hidromórficos de aluviões de textura ligeira (Cal). 

 

Estes três últimos tipos de solos estão presentes em menor quantidade. Por 

forma a tornar mais clara a distribuição de condicionantes em termos de solos 

para o desenvolvimento do sobreiro, apresenta-se no ANEXO I a carta 

interpretativa de condicionamento ao uso florestal (Ferreira, et al., 2001) para a 

área de estudo, em concreto nas áreas onde surge o sobreiro, áreas 

consideradas para análise. Pela observação desta carta é possível verificar 

uma forte presença de áreas de solos sem limitações. Surgindo na parte oeste, 

áreas com armazenamento de água e drenagem interna. 

Segundo a “Carta Ecológica de Portugal” de Albuquerque (1954), a área em 

estudo insere-se no andar basal, ou seja a altitudes inferiores aos 400m e 

dominado pela zona ecológica Submediterrânea (SM) na parte Este da área de 

estudo e pela zona ecológica Subatlântica x Mediterrâneo‐atlântica (SA x MA) 

na parte Oeste da área de estudo. 

Segundo a classificação das zonas fitogeográficas predominantes de Portugal 

Continental de Franco (1994), na área em estudo é possível verificar a 

presença de duas zonas da Região Centro, nomeadamente a zona Centro-Sul 

Plistocénico (na parte Oeste da área de estudo) e a zona Centro-Sul Miocénico 



Manuela Silvestre, 2014. 34 
 

(na parte Nordeste da área de estudo). Verifica-se ainda a presença da Região 

Sul da zona Sudoeste Setentrional (na parte Sul da área de estudo). 

Segundo Franco, pelas características edafo‐climáticas das regiões (Centro e 

Sul) as zonas, Centro-Sul Miocénico e Sudoeste Setentrional são zonas de 

distribuição de Quercus suber.  

Quanto ao clima (tabela 5) foram consideradas as estações de Barragem de 

Magos (situada na zona oeste da área de estudo) e Barragem de Montargil 

(situada na zona oeste da área de estudo). Os critérios de escolha destas duas 

estações estão relacionados com o enquadramento da área de estudo mas 

também com a obtenção de uma série de dados contínuos para um período de 

28 anos. 

Tabela 5 – Valores de coordenadas (latitude e longitude) e altitude das 

estações da Barragem de Magos e Barragem de Montargil, para o período de 
1981 - 2009 (fonte: www.snirh.pt). 

 Estações 

 Barragem dos Magos Barragem de Montargil 

Latitude 38º 99’ N 39º 051’ N 

Longitude -8,694’’ W -8,173’’ W 

Altitude 43 95 

 
 
 
 

 
Figura 7 – Variação das temperaturas médias (ºC) ao longo do ano, nas estações da Barragem 

de Magos e Barragem de Montargil, para o período de 1981 - 2009. 

 
 
 

http://www.snirh.pt/
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Figura 8 – Variação das precipitações médias (mm) ao longo do ano, nas estações da 

Barragem de Magos e Barragem de Montargil, para o período de 1981 - 2009. 

 

 
Figura 9 – Variação da humidade relativa do ar (%), registada ao longo do ano nas 

estações da Barragem de Magos e Barragem de Montargil, para o período de 1981 - 2009. 

 
 

Considerando a figura 7, a figura 8 e figura 9, é possível observar: 

Que as temperaturas médias mensais (ºC) oscilam entre os 9.36 e 8.47 º C no 

mês de Janeiro, e os 22.3ºc e 22.6ºC no mês de Julho, com uma amplitude 

térmica anual na ordem dos 12.45ºC. Para a estação de Montargil não foram 

encontrados dados para a estação da barragem de Magos de temperatura 

mínima e máxima diária, para se aferir acerca da amplitude térmica. Este 
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parâmetro comporta-se anualmente de forma semelhante para as duas 

estações; 

Que em termos de precipitação média mensal (mm), o mês de julho é o menos 

chuvoso para as duas estações (4.76 mm e 6.29 mm), assim como o mês de 

Dezembro é o mais chuvoso (97.94 mm e 86.49mm) e a distribuição deste 

parâmetro ocorre de forma semelhante para as duas estações; 

Que para humidade relativa do ar (%), os valores mais baixos ocorrem no mês 

de Agosto para as duas estações (69.33% e 69.41%) ao passo que os valores 

mais elevados ocorrem em Janeiro (89.24%) para a estação da Barragem de 

Magos e em Dezembro para a estação da Barragem de Montargil (80.19%). 

Quanto ao parâmetro vento (ANEXO II) de uma forma sucinta observa-se que 

para a estação da Barragem de Magos o rumo dominante em praticamente 

todo o ano é o de Noroeste (NW), nomeadamente de Janeiro a Outubro, com a 

exceção de Novembro e Dezembro onde dominam os rumos de Sul (S) e 

sudoeste (SW). 

Para a estação da barragem de Montargil (ANEXO II) domina o rumo de 

Sudoeste (SW) nos meses de Janeiro, Fevereiro, e entre os meses Abril a 

Outubro. Nos meses de Março, Novembro e Dezembro domina o rumo de Este 

(E). No ANEXO II apresentam-se ainda os diagramas ombrotérmicos 

correspondentes às duas estações, podendo referir-se a presença da estação 

seca em Agosto na estação de barragem de Magos e a presença de uma 

estação seca em Julho na estação da barragem de Montargil. 

No que diz respeito à fisiografia (ANEXO I) e considerando a variação de 

altitude que se encontra presente na área (entre os 80m e 180m) verifica-se um 

claro domínio dos declives na ordem dos 0 - 15 % (considerando as classes de 

0 - 15%, 15.1 - 35% e > 35%, da tabela 6, apresentada mais à frente). Em 

termos de exposições (ANEXO I) é possível verificar uma grande presença de 

zonas planas, intercaladas por exposições do quadrante Norte, Nordeste, 

Noroeste e Oeste na zona oeste da área de estudo. Na parte Este da área de 

estudo surgem em igual presença entre si as exposições dos quadrantes de 
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Norte a Sul e de Este a Oeste mas em unidades homogéneas menores 

tornando-se espacialmente um conjunto de linhas reticuladas. 

 

Figura 10 – Ocupação Não florestal e Florestal com e sem a espécie de sobreiro. 

 
 

 

Na figura 10 apresenta-se a ocupação genérica da área total considerada para 

este estudo, dividida entre área não florestal, área florestal sem a presença de 

sobreiro e área florestal com a presença de sobreiro. Pela observação da figura 

é possível verificar um equilíbrio entre a ocupação florestal de povoamentos 

sem a presença de sobreiro e a ocupação florestal de povoamentos com 

sobreiro, sendo estas as classes dominantes. A ocupação não florestal 

apresenta-se em menor quantidade que as duas ocupações acima referidas. 

Dada a natureza da área em estudo será expetável uma maior presença de 
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ocupações florestais. É de referir que a área não florestal inclui as áreas 

agrícolas. 

 
Figura 11 – Ocupação Florestal com a presença de Sobreiro. 

 

Tabela 6 – Áreas dos povoamentos com a presença sobreiro em hectare e 

percentagem em relação à sua área total. 

Áreas (Povoamentos) com Sobreiro Área (ha) Percentagem (%) 

Áreas puras de Sobreiro 14095.16 69 

Áreas mistas de Resinosas com Sobreiros 3327.56 16.2 

Áreas mistas de Sobreiro com Resinosas 2441.15 12 

Áreas mistas de Folhosas com Sobreiros 374.21 1.82 

Áreas mistas de Sobreiro com Folhosas 312.18 1.52 

Áreas mistas de Outros Carvalhos com Sobreiros 4.89 0.02 

Total 20555.2 100 
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Na figura 11 e na tabela 6, apresenta-se a ocupação florestal de áreas com a 

presença de sobreiro, área considerada para análise. De forma a tornar mais 

nítida a distinção entre as áreas correspondentes a povoamentos puros e 

mistos de sobreiro, optou-se por apresentar as outras espécies incluídas nos 

dois grandes grupos de classificação das espécies (folhosas e resinosas). 

A área florestal considerada para análise, com 20555.2 ha, contém cerca de 69 

% de áreas puras de sobreiro. As restantes classificações diminuem 

drasticamente, nomeadamente com 16.2% (3327.56 ha) de áreas mistas de 

resinosas com sobreiro, 12% (2441.15 ha) de áreas mistas de folhosas com 

sobreiro, 1.82% (374.21 ha) de áreas mistas de sobreiro com folhosas, 1.52 % 

(312.18 ha) de áreas mistas de sobreiro com folhosas e 0.02% (4.49 ha) de 

áreas mistas de outros carvalhos com sobreiro. 
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3.2 - Procedimentos metodológicos espectrais e estatísticos 

 

A metodologia utilizada tem como objetivo a obtenção de fotografias aéreas 

com maior qualidade e precisão para que se obtenham resultados mais 

eficientes na análise em fotografia aérea digital para a identificação dos 

povoamentos puros (Sistemas agroflorestais com sobreiro e áreas com 

sobreiro e culturas de sequeiro que também foram classificados como 

povoamentos puros) e mistos de sobreiro para a quantificação do grau de 

cobertura e a identificação das árvores de sobreiro com sinais de declínio total 

(árvores mortas). Na tabela 7 apresenta-se a lista de objetos utilizados para a 

aplicação da metodologia neste trabalho. 

 

Tabela 7 – Lista de objetos utilizados. 

Lista de objetos utilizados Escala/resolução Fonte 

Fotografia aérea (RGB + IV): voos de 2004 e 2010  0.50 metros IGP 

Carta de ocupação dos solos  1:25000 APFC 

Carta de aptidão de solos 1:25000 APFC 

Carta militar (altimetria e declives)  1:25000 
Universidade de 

Évora 

 

Na figura 12 apresentam-se o conjunto de operações aplicadas no software 

Arcgis 10.*, onde se procedeu à junção do grau de cobertura nos polígonos 

provenientes da ocupação dos solos (COS’ 2007) validados para os voos 

utilizados e adequados à nomenclatura da COS’90, com posterior sobreposição 

da informação de declive (%) resultante da informação altimétrica, das 

características de diagnóstico. Paralelamente efetuou-se a marcação de 

árvores mortas sobre a imagem de falsa cor e juntou-se a mesma à informação 

resultante do cruzamento acima referido, aplicando-se então o cálculo do 

índice de mortalidade. 

 

 

 



Manuela Silvestre, 2014. 41 
 

 

 

 

 

 

 

 

 

 

 

 

Figura 12 – Descrição sucinta das principais funções aplicadas pelo software Arcgis 10.*. 

 

Na figura 13 estão descritas as linhas orientadoras que estão na base 

metodológica para este trabalho, nomeadamente:  

 Ponto 1 - Delimitação dos povoamentos florestais, através de 

fotointerpretação comparando as fotografias aéreas dos voos de 2004 e 

2010, tendo como base a carta de ocupação de solos de 2007 e 

adequando à nomenclatura da COS’90;  

 Ponto 2 - Tratamento espetral e espacial das fotografias aéreas, com o 

objetivo de obter imagens que permitam a marcação das árvores mortas 

(Sobreiros) presentes nos polígonos (Informação vetorial) e o respetivo 

cálculo do grau de cobertura nos povoamentos;  

 Ponto 3.a - Análise espacal e estatística (Polígonos), que reúne a 

informação de polígonos (informação vetorial), resultantes da 

delimitação dos povoamentos já com a informação do grau de cobertura 

(%) incluída, com o cruzamento das árvores mortas (informação 

Grau de Cobertura (%) 

Fotografia aérea – Falsa cor 

Características de Diagnóstico 
- polígono 

 

Join 

Shape Final 
(Aplicação do Índice 

de Mortalidade) 
- polígono 

Declive (%) 
-polígono 

 

Ocupação dos Solos 
COS 2007-polígono 

 

Intersect 

Intersect 

Intersect 

Fotografia aérea – RGB 

 
Marcação de 
árvores mortas 

- pontual 
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pontual), cruzamento das classes de características de diagnóstico dos 

solos e cruzamento das classes de declives para o cálculo do índice de 

mortalidade; 

 Ponto 3.b - Análise espacal e estatística (Point process) onde se aplica 

a análise de vizinhança para a totalidade de árvores mortas marcadas 

nos voos de 2004 e 2010 (Funções K) para uma primeira indicação da 

presença de um padrão espacial de agregação, a aplicação do índice de 

Clark and Evans em parcelas de dimensão 100*100m, com os factores 

de solos, declive, grau de cobertura e exposições, homogéneas dentro 

das mesmas, com a finalidade de encontrar padrões de agregação, 

regularidade ou aleatório que indiquem possíveis causas de mortalidade 

nas mesmas. 

 

 

Figura 13 – Linhas orientadoras que estão na base metodológica para este trabalho. 

 

Na figura 14 estão sintetizados os passos efetuados no tratamento espetral do 

ponto 2 para a obtenção da informação de polígonos e pontos utilizados na 

análise do ponto 3.a e do ponto 3.b. Este tratamento teve como base a 

metodologia apresentada no Inventário nacional de mortalidade de sobreiro na 

fotografia aérea digital de 2004/2006, trabalho elaborado por Ribeiro & Surovy 

(2008). 
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Cruzamento do grau de cobertura com a marcação de indivíduos da espécie de Sobreiro com sinais de 
declínio (ponto 2.3) nos polígonos e posterior cruzamento desta informação com as classes de 
características de diagnóstico (Tabela 4) e com as classes de declive (Tabela 8). 

 

NOTA - Este processo foi efetuado nas fotografias aéreas dos voos de 2004 e 2010.  

Tratamento espetral da imagem 

 

 

 

 
 
 
Fig. A) ponto 2.1 - ex: Processo de 
tratamento espetral da imagem com 
obtenção de imagem falsa cor através de 
combinação de imagens RGB com 
imagens de infravermelhos - voo 2010 
(IGP). 

Tratamento espacial da imagem 

 
 
 

Fig. B) ponto 2 e ponto 3 - ex: Identificação 
de polígonos e segmentação automática 
das áreas florestais - voo de 2004 (IGP). 
Fonte: Ribeiro e Surovy, 2008. 

 

 

  

Figura 14 – Fluxograma metodológico do tratamento espetral e espacial das fotografias aéreas e 

aplicação do índice de mortalidade. 

 

Tabela 8 – Limites utilizados para a construção das 

classes de declive para o cálculo do índice de 
Mortalidade. 

Classe de declive Intervalo de declive (%) 

1 [0, 15[ 

2 [15, 35[ 

3 [35, ∞ [ 

 

 

 

2.1 - Tratamento espetral das fotografias aéreas dos 

dois voos. (transformação das imagens RGB 
recorrendo às imagens de infravermelhos onde a 
permutação de canais permite a obtenção da 
imagem pretendida para as análises a efetuar). 

2.2 - Segmentação espacial mediante a definição de 

polígonos: com critérios pré-definidos para a 
identificação de áreas florestais e não florestais (área 
mínima de 0.5 ha e largura superior ou igual a 20 m). 
 
2.3 - Cálculo do grau de cobertura arbórea (%) nas 

fotografias aéreas para a totalidade da área de 
estudo, baseado na refletância das espécies 
arbóreas, identificando-se a área ocupada da projeção 
pelas copas, em cada uma das fotos e em cada um 
dos polígonos definidos, resultando duas imagens 
binárias que definem a área coberta e a área não 
coberta. 

RGB IV 

Falsa cor 
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A transformação de cores utilizada teve como objetivo distinguir dentro da 

imagem de cor normal, por exemplo, a cor verde da vegetação e o fundo não-

verde. A cor mais significativa de vegetação está na cor verde, ou em outras 

palavras, o espetro da vegetação é mais difundido no canal verde, menos nos 

vermelhos e nos azuis. Em imagens infravermelho próximo a cor mais 

significativa é o vermelho (Surovy et al., 2004a) e esta é um indicador de 

presença de clorofila na vegetação. 

Foram aplicadas derivações na imagem RGB, com a substituição do canal 

verde pelo canal vermelho, pela substituição do canal vermelho pelo verde e a 

manutenção do canal azul. A razão para tal é que o canal azul tanto em 

imagens de cores normais como em imagens de infravermelho próximo tem 

menor influência no espetro de vegetação” (Surovy et al., 2004a). 

Simultaneamente e pela substituição acima mencionada do canal verde pelo 

canal vermelho, substituição do canal vermelho pelo verde e a manutenção do 

canal azul, obtém-se um output em formato “.bmp” com a refletância da 

vegetação a vermelho (Infra-vermelho), em que é possível observar com nitidez 

a falta de clorofila produzida pelo sobreiro, que se traduz numa coloração 

“esbranquiçada” das copas (Surovy, et al., 2004a). Deste modo é possível 

identificar árvores com sinais de declínio efetuando a sua marcação em 

gabinete (figura 15 – árvore morta em 2004 e não presente em 2010). 

 

 

Figura 15 – Exemplo de uma copa de sobreiro em declínio, voo de 2004 e 2010. 
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A ferramenta Composite Bands (figura 16) disponível no software arcgis 

permite criar um único conjunto de dados raster a partir de várias bandas 

separadas e pode também criar um conjunto de dados raster usando apenas 

um subconjunto de bandas. Esta opção é especialmente útil quando se 

pretende criar um novo conjunto de dados raster com uma combinação e 

ordem específica de bandas, permitindo guardar a imagem num conjunto de 

formatos, inclusive o formato “.bmp”, formato utilizado. 

 

 
Figura 16 – Ilustração representativa da 

criação de uma única imagem colorida a partir 
de um conjunto de bandas separadas da 
ferramenta Composite Bands. 

(fonte:http://resources.arcgis.com/, 2014). 

 

Esta ferramenta é também especialmente aconselhada para alteração de 

imagens em situações em que cada uma das bandas (exemplo: band1.tif, 

band2.tif e band3.tif) que constitui a imagem está contida num único ficheiro. 

Para criar uma única imagem colorida (composite image) a partir da informação 

inicial conjunta, é necessário que cada banda esteja contida dentro de um 

único conjunto de dados raster (por exemplo, allbands.tif).  

Com a permutação das bandas das fotografias aéreas utilizadas esta opção de 

utilização permite o melhoramento da imagem composta (RGB Composite). 

http://resources.arcgis.com/
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Nas imagens analisadas foi aplicado o processo de segmentação que consiste 

na marcação de regiões de interesse - ROI (Regions of interest), que para esta 

análise são compostas por vegetação e solo (área coberta e não coberta), foi 

aplicado o índice B – Square (para florestas mediterrânicas) e calculado um 

histograma de níveis de cinza que permite esta segmentação. Em seguida, o 

limiar automático foi definido (Surovy et al., 2004a). 

Para evitar esta sobrestimação das copas e que detalhes da imagem (ex: 

ramos já sem folhas) sejam também incluídos nas mesmas, “foi aplicado o 

gaussian smoothing com o objetivo de aproximar a forma de 

visualização/perceção que o intérprete tem de uma copa e assim agrupar os 

detalhes da copa em forma de "bolha" com o nível máximo de cinza” 

(representativo da copa) (Surovy, et al., 2004a). 

A aplicação desta metodologia (figura 14) permite efetuar o cálculo do grau de 

cobertura (%) baseado na refletância característica das espécies arbóreas pela 

identificação da área ocupada da projeção das copas em cada imagem e 

polígono homogéneo (de povoamentos puros e povoamentos mistos de 

sobreiro) definido, resultando nas duas imagens binárias acima referidas, uma 

para área coberta e outra para a área não coberta (segmentação).  

Após aplicação das operações acima referidas para obtenção da informação 

vetorial e pontual com a finalidade de calcular o índice de mortalidade e efetuar 

a marcação das árvores mortas, passou-se então à análise estatística, 

apresentada na figura 17, sobre estes dois conjuntos de informações.  
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3.a - Análise espacial e estatística (Polígonos) 3.b - Análise espacial e estatística (PointProcess) 

Voos de 2004 e 2010 Voos de 2004 e 2010 

- Cálculo do índice de mortalidade em cada polígono: 
 

 
 
 

- Construção de intervalos de confiança 95% para o 
índice de mortalidade para cada classe dos factores 

referidos; 
 

- ANOVA de factores principais; 
 

1 - Mapa total de eventos de mortalidade: 
 

- Densidade de Kernel (raio de busca = 2000m, 
tamanho da célula do raster = 25 cm) 

 
- Análise comparativa 2004 e 2010 para áreas com 

maior densidade (vetores de tendência) e 
sobreposição com as condicionantes de solo. Análise 

das variações relativas das classes do grau de 
cobertura e do índice de mortalide nos polígonos sem 

condicionantes de solos (Solos sem limitações) 
 

-  Multi-Distance Spatial Cluster Analysis (Ripleys K 
Function) 

 
2 - Mapa de eventos de mortalidade por unidade 
homogénea - Parcelas aleatórias quadrangulares 

(100*100m): 
 

- Aplicação do Índice de Clark and Evans 
 

 - Aplicação da regressão linear 

Figura 17 – Descrição sucinta do tratamento espacial e estatístico para os voos de 2004 e 2010. 

 

Dada grande homogeneidade de características favoráveis ao desenvolvimento 

do sobreiro presentes na área de análise e disponível na informação sobre 

declives (0 - 15%) e características de diagnóstico (Solos sem limitações), o 

ponto3.a serve como validação das relações do evento mortalidade com a 

informação de declives e características de diagnóstico menos favoráveis ao 

desenvolvimento da espécie de sobreiro para os dois voos. 

No ponto 3.b.1, pretende-se analisar o evento mortalidade a nível global para a 

área em análise, ou seja com todos os eventos de mortalidade de sobreiro 

marcados. Neste sentido, foi aplicada a densidade de Kernel que possibilita a 

aglomeração da informação pontual em densidades permitindo assim uma 

visualização simples do evento mortalidade. Aplicando-se também uma análise 

diacrónica para a evolução de focos de densidade de mortalidade e a sua 

ligação com as condicionantes de solos para o sobreiro. 

Partindo do pressuposto da distribuição aleatória do evento mortalidade a 

aplicação da função K (Ripley K function), inserida nos métodos de distância 

entre os vizinhos mais próximos, consegue caracterizar a dependência espacial 

entre diferentes regiões do processo pontual (point process) numa perspetiva 
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global, permitindo uma análise do padrão do processo pontual através do 

cálculo da média de todas as direções dos eventos. 

Nestas duas formas de análise pretende-se reconhecer a localização e 

distribuição de focos de mortalidade e encontrar um primeiro indicador em 

termos globais acerca de aglomeração ou agregação entre as árvores mortas 

para os dois voos. 

No ponto 3b.2, pretende-se efetuar uma análise mais detalhada da mortalidade 

do sobreiro, em função da seleção de parcelas retangulares, incidindo estas 

sobre as classes mais elevadas da densidade de mortalidade de Kernel 

calculadas para os dois voos. Depois de selecionadas 49 parcelas, foi usado o 

software Crancod para a aplicação do índice de Clark and Evans 

separadamente nas árvores mortas das parcelas para os dois voos. Este 

cálculo tem como objetivo aferir acerca do padrão de agregação entre eventos.  

Após este processo foi adicionada à informação parcelar o índice calculado 

para os dois voos e toda a informação vetorial obtida na shape final onde se 

aplicou o índice de mortalidade. Pela sobreposição da informação de solos, de 

declives, exposições e grau de cobertura, pretende-se verificar a presença 

relações de condicionantes que possam explicar estatisticamente o evento 

mortalidade nas parcelas selecionadas. 

 

 

4 - RESULTADOS 

 

Ponto 2 - Tratamento espetral e espacial das fotografias aéreas 

 

Neste ponto apresentam-se o conjunto de resultados para o grau de cobertura 

(%) e índice de mortalidade, provenientes da metodologia aplicada no 

tratamento espetral e espacial das fotografias aéreas correspondentes aos 

voos de 2004 e 2010. 
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Figura 18 – Grau de Cobertura (%) para o voo de 2004. 
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Figura 19 – Grau de Cobertura (%) para o voo de 2010. 

 

 

Figura 20 – Distribuição percentual do Grau de Cobertura (%) para os voos de 2004 e 2010. 
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Na figura 18 e figura 19 apresenta-se o grau de cobertura calculado em 

percentagem e na figura 20,a respetiva distribuição percentual em função da 

área ocupada, em cada uma das classes do grau de cobertura para os dois 

anos.  

Pela observação das três figuras é possível observar: 

 Um ligeiro decréscimo, na ordem de 1%, da classe de 0.1 - 25 %, de 

34% em 2004 para 33% em 2010; 

 Um aumento, na ordem dos 3%, da classe 25.1 - 50 %, de 59% em 2004 

para 62% em 2010); 

 Um decréscimo, na ordem dos 2%,da classe 50.1 - 100 % de 2004 para 

2010, dos 7% para os 5%. 

Estas variações, pela observação dos polígonos presentes nos mapas 

apresentados, poderão estar relacionadas com a diminuição do coberto na 

classe de 50.1 - 100%, passando os polígonos para a classe antecedente (25.1 

- 50%) bem como o decréscimo da classe 0.1 - 25%, passando os polígonos 

correspondentes a essas áreas para a classe subsequente. É de salientar que 

os valores mais elevados de grau de cobertura surgem em zonas de 

povoamentos mistos com o domínio de folhosas e resinosas. 
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Figura 21 – Índice de Mortalidade para o voo de 2004. 
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Figura 22 – Índice de Mortalidade para o voo de 2010. 

Figura 23 – Distribuição percentual do Índice de Mortalidade para o voo de 2004. 
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Na figura 21 e figura 22 apresenta-se o índice de mortalidade e na figura 23, as 

respetivas distribuições percentuais das classes, para os dois voos em função 

da área ocupada. Pela observação das três figuras é possível observar: 

 Uma vasta área sem ocorrência de mortalidade com uma tendência 

regressiva (na ordem dos 7%), passando dos 61% em 2004 para os 

54% em 2010; 

 Uma forte presença da classe de mortalidade mais baixa (0.001 - 0.879), 

com um ligeiro aumento (da ordem dos 7%) de 2004 para 2010, 

nomeadamente dos 30% para os 37%; 

 A classe 0.880 - 3.214 surge em menor quantidade, com um ligeiro 

aumento (de 1%) de 2004 para 2010, de 6% para 7%; 

 As classes 3.215 - 9.001, 9.002 - 21.853 e 21.854 - 51.592 têm uma 

presença bem mais baixa sendo que nas três classes há um decréscimo 

de 2004 para 2010, nomeadamente de 1.95% para 1.58% (3.215 - 

9.001), de 0.74% para 0.22% (9.002 - 21.853) e de 0.05% para 0.007% 

(21.854 - 51.592); 

 A classe mais elevada 51.593 - 82.727, tem muito pouca 

representatividade, com uma variação de 0.0002% em 2004 para 

0.0008% em 2010.  

O princípio de que abaixo dos graus de cobertura tidos como normais num 

sistema de uso múltiplo (30%, sendo que o grau de considerado ótimo para os 

povoamentos adultos com função de uso múltiplo é de 58% - Barros, et al., 

2006) a mortalidade aumenta, traduz-se facilmente com a aplicação deste 

índice. Considerando a relação da exploração intensiva do montado, 

(nomeadamente nos sub-sistemas animal, pastagens e arbustivo, com o 

recurso à utilização de maquinaria pesada nas áreas sem cobertura florestal 

mas também muitas vezes aplicada nas áreas de projeção das copas) com o 

enfraquecimento dos sub-sistemas florestal e solos, o grau de cobertura por 

consequência diminui nestas áreas, pela influência ou danos causados na 

parte radicular das árvores, traduzindo-se num declínio da componente arbórea 

e consequentemente em todos os sub-sistemas presentes. 
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Apesar do cálculo obtido do grau de cobertura (dado do povoamento), neste 

estudo a componente de gestão não é analisada, pelo que não se poderá aferir 

em concreto sobre os efeitos da gestão na mortalidade. Sabe-se que na zona 

da Machuqueira (localizada na parte Nordeste da área de estudo) têm vindo a 

ser implementadas medidas no sentido de aplicar uma gestão sustentada do 

montado e é possível verificar nesta área que a mortalidade baixou em 2010. 

Excluindo esta informação e dada a forma como o cálculo do índice de 

mortalidade foi aplicado, ou seja, após o cruzamento da informação das 

características de diagnóstico e de declive, poder-se-á dizer que o índice traduz 

uma maior veracidade no que diz respeito a estas condicionantes para a 

espécie de sobreiro. 

A presença acentuada de classes de mortalidade mais baixas em toda a área 

também poderá ser justificada pela grande representatividade de 

características favoráveis em termos de solos e declives (já anteriormente 

analisadas) para a presença do sobreiro. 

Para a análise da relação dos factores condicionantes ou limitantes à presença 

de sobreiro com o índice de mortalidade, efetuou-se a análise estatística que a 

seguir se apresenta no ponto 3.a. 

 

 

Ponto 3.a - Análise espacial e estatística (Polígonos) 

 

Para o ponto 3.a apresentam-se os intervalos de confiança (95%) para o índice 

de mortalidade calculado nos dois voos com as classes de declive e 

características de diagnóstico. Esta análise foi também aplicada às exposições. 
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Figura 24 – Intervalos de confiança 95% para o Índice de Mortalidade por classe 

de declive para os voos de 2004 e 2010. 
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Na figura 24 é possível observar um decréscimo dos valores do índice de 

mortalidade à medida que aumentam as classes de declive para os dois anos 

analisados. Observa-se também: 

 Que a classe de declive 0.1 - 15% está associada a valores de 

mortalidade mais elevados; 

 Que a classe de declive de 15.1 - 35 % é a que apresenta maior 

amplitude de mortalidade nos dois anos, diminuindo ligeiramente em 

2010; 

 A classe de 35.1 - 100 % tem associados valores de mortalidade muito 

baixos; 

 

É de referir que nesta situação em particular os polígonos associados a esta 

classe são muito pouco representativos em número de presença e de área por 

polígono, pelo que não foi possível obter dados expetáveis de mortalidade para 

esta classe de declive. 
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Figura 25 – Intervalos de confiança 95% para o Índice de Mortalidade por classe de 

característica de diagnóstico para os voos de 2004 e 2010. 
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Pela observação da figura 25 é possível verificar: 

 Que no ano de 2004 os valores mais elevados de mortalidade estão 

associados a solos com profundidade expansível, seguindo-se os solos 

com problemas de drenagem externa e drenagem interna; 

 Para o ano de 2010 os valores mais elevados de mortalidade surgem 

nos solos com problemas de drenagem interna, seguindo-se os solos 

com drenagem externa e por fim os solos com profundidade expansível. 

Para as classes de drenagem externa e drenagem interna, normalmente com 

condicionantes  difíceis de contornar, nomeadamente a acumulação de água à 

superfície do solo e a presença de toalhas freáticas superficiais, ainda que para 

acumulação de água à superfície seja possível a aplicação de valas de 

drenagem. 

Para os solos com profundidade expansível, a limitação em termos de 

espessura efetiva ainda que se possa aumentá-la por via mecânica, uma vez 

que se trata de um solo com um limite de perfil, se exposto a longos períodos 

com chuva pode conduzir a períodos de encharcamento prolongados, 

justificando-se os valores elevados de mortalidade nestas áreas (Dinis, 1994; 

Ribeiro & Surovy et al., 2008). Este tipo de solos já tinha apresentado valores 

elevados em termos de mortalidade no inventário de mortalidade realizado para 

o sobreiro (Ribeiro & Surovy et al., 2008) e verificam-se novamente no ano de 

2004. Será expetável que o índice de mortalidade ao longo de um período 

temporal permaneça nas características de diagnóstico menos favoráveis à 

presença do sobreiro. Os resultados de 2010 parecem estar de acordo 

comeste pressuposto, uma vez que as classes drenagem interna e drenagem 

externa passam a apresentar valores mais elevados de mortalidade e a classe 

de profundidade expansível, ainda que diminua, contínua fortemente associada 

ao fenómeno mortalidade. 

Sucintamente para cada ano analisado poder-se-á dizer que as características 

de diagnóstico parecem ser um factor relevante associado à mortalidade uma 

vez que estas representam limitações consistentes para a presença do 

Sobreiro. 
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Figura 26 – Intervalos de confiança 95% para o Índice de Mortalidade por código de 

exposição para os voos de 2004 e 2010. 
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As exposições apesar de não terem sido cruzadas para o cálculo do índice de 

mortalidade, dado que os polígonos resultantes desta junção seriam muito 

menores em termos de área, fazendo com que cálculo do índice de mortalidade 

fosse sobrestimado para as mesmas, aplicou-se o seu cruzamento após o 

cálculo do índice de mortalidade para verificar quais os quadrantes que 

apresentam maior mortalidade. Na figura 26 é possível observar: 

 Que no ano de 2004 os quadrantes Sudoeste e Sudeste apresentam 

valores de mortalidade mais elevados, para os restantes quadrantes os 

valores de mortalidade associados são mais baixos. 

 Para o ano de 2010 os quadrantes de Noroeste, Sudoeste e Oeste são 

os que apresentam valores de mortalidade mais elevados. 

Contudo, na generalidade todos os quadrantes estão associados à mortalidade 

de uma forma “dispersa” e quando comparados os dois anos, a mortalidade 

associada aos mesmos diminui em 2010. 
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Figura 27 – Intervalos de confiança 95% para o Índice de Mortalidade por 

característica de diagnóstico e por classe de declive para os voos de 2004 e 
2010. 
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Na figura 27 apresenta-se o índice de mortalidade por classe de característica 

de diagnóstico e classe de declive e na sequência dos resultados apresentados 

na figura 24, onde os solos com profundidade expansível, drenagem externa e 

drenagem interna apresentavam os valores mais elevados de mortalidade no 

ano de 2004. É possível observar: 

 Que nos solos com profundidade expansível, a classe de declive de 0.1 - 

15% tem uma maior influência na mortalidade, nos solos de drenagem 

externa volta a surgir a mesma classe de declive (0.1 - 15%) mas com 

valores de mortalidade mais baixos, nos solos com drenagem interna a 

classe de declive mais significativa é a de 15.1 - 35 %. No conjunto das 

três classes observa-se também que continuam a ser estes três tipos de 

solos os que têm mais peso no evento mortalidade; 

 Para o voo de 2010, na generalidade, voltam a confirmar-se valores de 

mortalidade mais elevados nos solos com drenagem interna, tendo a 

classe de declive de 15.1 - 35 % mais peso na mortalidade associada a 

esta classe. Nos solos com drenagem externa e nos solos com 

profundidade expansível a classe de declive de 0.1 - 15% é a que 

apresenta mais peso na mortalidade; 

Poder-se-á dizer que para os voos de 2004 e 2010, para além das 

condicionantes de solos mais extremas onde estão presentes valores de 

mortalidade mais elevados, nas restantes classes de condicionantes de solo o 

declive mais significativo para a mortalidade é o correspondente à classe 0.1 -

15%. Especificamente para os solos com problemas de armazenamento de 

água, é possível, ainda que não se tenha tido acesso a dados de gestão que 

alguma medida corretiva tenha sido implementada, nomeadamente valas de 

drenagem em zonas onde o declive seja mais acentuado para evitar a 

acumulação de água nestes solos. Apesar de a área apresentar uma grande 

homogeneidade em termos de declive, na generalidade e como já foi possível 

observar um claro domínio da classe 0.1 - 15%, é de salientar que a análise 

efetuada considera o peso da área do polígono, para todas as variáveis 

analisadas. 
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Figura 28 – Intervalos de confiança 95% para o Índice de Mortalidade por 

características de diagnóstico e código de exposição para os voos de 2004 e 2010. 
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Para as classes de profundidade expansível, drenagem externa e drenagem 

interna, associadas a um índice de mortalidade mais elevado no ano de 2004 

(figura 24),observa-se na figura 28: 

 No ano de 2004, a profundidade expansível, a drenagem externa, e 

drenagem interna, bem como nas restantes classes, as exposições têm 

uma fraca representatividade quando associadas à mortalidade. Verifica-

se apenas alguma influência do quadrante Noroeste em solos com 

drenagem externa. 

 Para o ano de 2010 observa-se a mesma tendência, de fraca 

representatividade em termos de exposições associadas à mortalidade. 

Apenas em solos com condicionante de profundidade expansível e 

drenagem externa, o quadrante Noroeste parece estar associado a 

valores mais elevados de mortalidade. 

De uma forma geral não se verificam a presença de exposições (dos 

quadrantes Sul, Sudeste, Sudoeste, e Este), teoricamente menos favoráveis à 

presença de sobreiro pela sua maior exposição aos raios solares. 
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Tests of Between-Subjects Effects 

Dependent Variable: Índice de mortalidade 2004  

Source Type III Sum of 

Squares 

df MeanSquare F Sig. 

CorrectedModel 638,006a 17 37,530 15,937 ,000 

Intercept 3,117 1 3,117 1,324 ,250 

Características de diagnóstico 148,082 5 29,616 12,576 ,000 

Classes de declive 6,973 2 3,486 1,480 ,228 

Classes de Grau de cobertura 169,176 2 84,588 35,920 ,000 

Exposições 329,802 8 41,225 17,506 ,000 

Error 32832,283 13942 2,355 
  

Total 35833,683 13960 
   

Corrected Total 33470,289 13959 
   

a. R Squared = .019 (Adjusted R Squared = .018) 

 

Tests of Between-Subjects Effects 

Dependent Variable: Índice de mortalidade 2010  

Source Type III Sum of 

Squares 

df MeanSquare F Sig. 

CorrectedModel 581,415a 17 34,201 30,729 ,000 

Intercept ,850 1 ,850 ,764 ,382 

Características de diagnóstico 301,913 5 60,383 54,252 ,000 

Classes de declive 7,500 2 3,750 3,369 ,034 

Classes de Grau de cobertura 185,603 2 92,802 83,380 ,000 

Exposições 66,682 8 8,335 7,489 ,000 

Error 15517,359 13942 1,113 
  

Total 18099,843 13960 
   

Corrected Total 16098,774 13959 
   

a. R Squared = .036 (Adjusted R Squared = .035) 
Figura 29 – ANOVA para os factores principais de característica de diagnóstico, classes de declive, 

classes de grau de cobertura (%) e código de exposição para os voos de 2004 e 2010. 

 

Na figura 29 apresentam-se os outputs obtidos para a Anova de factores 

principais em função do índice de mortalidade calculado para os dois voos, 

pela observação dos níveis de significância para cada um dos factores 

introduzidos, é possível observar que à exceção do declive para 2004, todos os 

restantes factores apresentam uma significância inferior a 0.05 para os dois 

anos.  
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Ponto 3.b - Análise espacial e estatística (PointProcess) 

 

Para a informação que a seguir se apresenta foram utilizadas dois ficheiros 

shapefiles de pontos com 1522 árvores marcadas para o voo de 2004 e 1621 

árvores marcadas para o voo de 2010. Para validação de alguns dos 

resultados que a seguir se apresentam, optou-se por colocar nesta secção 

alguns processos metodológicos, nomeadamente a parametrização da função 

k - de Ripley no software Arcgis 10.* e a reclassificação das variáveis utilizadas 

na regressão linear (tabela 9). 

 
Figura 30 – Densidade de Kernel para o voo de 2004. 
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Figura 31 – Densidade de Kernel para o voo de 2010. 

 

Na figura 30 e figura 31 apresenta-se a densidade de Kernel para os voos de 

2004 e 2010. Esta densidade foi calculada a partir da informação pontual das 

árvores mortas marcadas na área para os dois anos.  

No ano de 2004 é possível observar, 7 zonas onde se concentram os valores 

mais elevados de densidade de eventos (classe 0.100 - 0.173 eventos/ha) 

envolvidas pela classe anterior (0.050 - 0.100 eventos/ha) e assim 

sucessivamente pelas classes de 0.025 - 0.050 eventos/ha e de 0.000 - 0.025 

eventos/ha.  
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Para 2010 verifica-se a presença de 6 zonas correspondentes à classe mais 

elevada de densidade de eventos (classe 0.100 - 0.156 eventos/ha).  

Para uma melhor análise comparativa estão marcadas três zonas nos mapas 

das duas figuras.  

Considerando-se os dois anos analisados é possível observar de 2004 para 

2010: 

 A diminuição em termos de área da classe mais elevada de densidade 

de árvores mortas, nas três zonas sinalizadas. Contudo, estes focos 

continuam presentes, e na zona 3 já é possível observar de uma forma 

mais acentuada uma tendência de regressão da classe mais alta de 

densidade de árvores mortas, surgindo a classe mais alta (0.100 - 0.156 

eventos/ha) em duas novas áreas mais a sul dentro desta zona 

sinalizada (zona 3); 
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Figura 32 – Linhas de tendência da evolução verificada nas duas classes da densidade de kernel mais 

elevadas para os voos de 2004 e 2010. 

 

Na figura 32 apresenta-se a evolução espacial e temporal dos focos ou classes 

de densidade de árvores mortas para os dois voos (as duas classes mais 

elevadas) já representadas na figura 30 e na figura 31, e pretende-se facilitar a 

visualização da tendência já encontrada. Ou seja, a deslocação dos focos mais 

elevados de árvores mortas para zonas mais a sul, considerando-se a 

progressão para zonas a sul da área de estudo. Nesta figura a tendência está 

graficamente representada pelas linhas a encarnado, e ainda que em algumas 

zonas se parta da classe mais elevada de 2004 para a classe mais elevada 

mas de área menor em 2010, a deslocação é entendida como uma progressão 
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espacial da mortalidade, uma vez que se pretendem interpretar os focos de 

densidade com os fluxos de mortalidade.  

As linhas a azul assinalam um sentido provável de deslocação das classes 

mais elevadas de 2004 para a classe mais baixa em 2010, seguindo-se a 

mesma interpretação de fluxo. Mesmo que a segunda classe mais elevada 

surja isoladamente em 2010 em novas áreas, quando se observam os focos de 

densidade da classe mais elevada de árvores mortas em 2004, pode 

interpretar-se que no conjunto dos dois anos se observa uma regressão da 

mortalidade. Esta situação observa-se na zona Nordeste da área de estudo. 

 

Figura 33 – Densidade de kernel para as duas classes mais elevadas calculadas nos voos de 2004 e 

2010, com as condicionantes de solos para o sobreiro. 
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Na figura 33 apresentam-se as duas classes mais elevadas da densidade de 

Kernel calculadas para os dois voos em conjunto com as características de 

diagnósticos (solos) não favoráveis à presença de sobreiro. 

As classes de condicionantes presentes na área são as de armazenamento de 

água, drenagem interna, drenagem externa, profundidade expansível e área 

social, com o objetivo de simular uma informação altimétrica. 

Os solos com condicionantes de armazenamento de água, dominam na parte 

Oeste da área, onde se verifica também a presença de solos com 

condicionante de drenagem interna. Um núcleo de condicionantes que 

acompanha depois todo o limite inferior da área (sentido Este), onde a 

drenagem interna e externa dominam. Este núcleo subdivide-se em diversas 

linhas reticuladas (solos que estão associados à proximidade de linhas de 

água) à medida que se avança para a parte Centro Norte e Nordeste da área, 

associados a drenagem interna e externa. 

Pela tendência já observada na figura 32 para a densidade de árvores mortas, 

poder-se-á dizer que os núcleos das classes mais elevadas para os dois anos, 

estão esquematicamente relacionados com a presença de condicionantes de 

solo na parte Oeste da área. Já o mesmo não se poderá dizer para a parte 

Centro Norte e Nordeste da área quando se considera o ano de 2004. Contudo, 

quando se observa o ano 2010, na parte Centro Norte, parece encontrar-se 

alguma tendência da classe mais elevada em se alocar nas áreas próximas de 

condicionantes, tornando-se mais evidente quando se observa a classe que lhe 

antecede, uma vez que esta segue com alguma nitidez as áreas com 

condicionantes de solos. Na parte Nordeste da área, onde a classe densidade 

mais elevada regrediu, é possível observar a mesma tendência da classe 

antecedente (de 2010), ou seja o acompanhamento das linhas de 

condicionantes de solos. 

Na parte Central da área onde surge um pequeno foco de densidade mais 

elevada (2010), e na parte Este onde surgem as duas classes mais elevadas 

(2010), não é tão nítida a ligação dos solos às classes de densidade de árvores 

mortas. Em termos de informação altimétrica, verifica-se que estes dois focos 

se localizam a cotas mais elevadas. Nomeadamente, na ordem dos 140 metros 
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com pendor para Norte (foco na parte Central) e na ordem dos 150 metros com 

pendor para Sul (foco da parte Este). 

Nas áreas onde não se verificam limitações de solos e onde o evento 

mortalidade foi detetado e com o objetivo de encontrar padrões de variação na 

cobertura que possam estar associados à mortalidade, procedeu-se ao 

cruzamento da variação relativa do grau de cobertura e do índice de 

mortalidade com as classes do grau de cobertura para o ano de 2004 (figura 

34, figura 35 e figura 36). 

Figura 34 – Cruzamento de solos sem limitações para o grau de cobertura de 2004 (0.1 – 25%), variação 

relativa do grau de cobertura e variação relativa do índice de mortalidade. 
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Para a classe de grau de cobertura 0.1 - 25 % em solos sem limitações 

observa-se que as variações são baixas, apesar de alguma amplitude de 

valores encontrados na variação do índice de mortalidade. Na classe de 

variação da cobertura decrescente (-0.7789_ - 0.0030) é possível observar um 

decréscimo da mortalidade (- 1_ -0.083), correspondendo por norma a um 

maior número de árvores mortas marcadas no ano de 2004 em polígonos de 

grande dimensão, associados ainda a uma baixa variação do grau de 

cobertura. Nas zonas onde a variação do grau de cobertura é nula a 

mortalidade diminuiu. Nas classes onde o grau de cobertura aumentou (0.0031 

- 0.7789) e (0.7789 - 2.9274) verifica-se uma tendência para diminuição da 

mortalidade (na ordem do -1 a - 0.0833), com alguma presença na área de 

estudo. Contudo, verificam-se áreas onde o grau de cobertura aumentou e 

mortalidade aumentou também. Estas situações estão associadas a um maior 

número de árvores mortas por área no ano de 2010 e onde a variação do grau 

de cobertura não foi suficiente para que o índice de mortalidade baixasse. Na 

globalidade pode dizer-se que dadas as variações encontradas para esta 

classe de grau de cobertura (0.1 - 25%), e principalmente onde o número de 

árvores mortas por área de polígono aumentou, poderá haver a necessidade 

intervenções que fomentem regeneração dos povoamentos. 
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Figura 35 – Cruzamento de solos sem limitações para o grau de cobertura de 2004 (25.1 – 50 %), 

variação relativa do grau de cobertura e variação relativa do índice de mortalidade. 

 

Para a classe de grau de cobertura 25.1-50 % em solos sem limitações 

observam-se na generalidade variações baixas. Na classe de variação da 

cobertura decrescente (-0.7789_ - 0.0030) onde a houve decréscimo da 

mortalidade (- 1_ - 0.083), bem representada na área de estudo, corresponde 

por norma a um maior número de árvores mortas marcadas no ano de 2004, 

em polígonos de grande dimensão, associados a uma baixa variação do grau 

de cobertura. Verifica-se também a tendência para diminuição da mortalidade 

em polígonos onde o grau de cobertura aumentou. Encontrando-se também 

polígonos onde o grau de cobertura e a mortalidade aumentaram. Estas 

situações voltam novamente a estar associadas a um maior número de árvores 
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mortas por área no ano de 2010 e a uma variação do grau de cobertura não 

suficiente para que o índice de mortalidade baixasse. Pode dizer-se também 

que o aumento da mortalidade nesta classe de grau de cobertura (25.1 – 50 %) 

é mais baixo que na classe 0.1 – 25 %. Nesta classe os valores do grau de 

cobertura parecem estar adequados à espécie, pelo que a mortalidade pode 

estar associada a outros factores (gestão, no caso de povoamentos mais 

jovens no processo normal de adaptação das árvores do povoamento à sua 

localização).  

 

Figura 36 – Cruzamento de solos sem limitações para o grau de cobertura de 2004 (50.1 – 100 %), 

variação relativa do grau de cobertura e variação relativa do índice de mortalidade. 
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Para a classe de grau de cobertura 50.1 - 100 % em solos sem limitações 

observa-se na generalidade o aumento de mortalidade mais baixo, quando 

comparada com as duas classes que lhe antecedem. Na classe de variação da 

cobertura decrescente (-0.7789_ - 0.0030) onde a houve decréscimo da 

mortalidade (- 1_ - 0.083), bem representada na área de estudo, corresponde 

por norma a um maior número de árvores mortas marcadas no ano de 2004 em 

polígonos de grande dimensão associados a uma baixa variação do grau de 

cobertura. Verifica-se também a tendência para diminuição da mortalidade em 

polígonos onde o grau de cobertura aumentou. Encontrando-se também 

polígonos onde o grau de cobertura e a mortalidade aumentaram. Estas 

situações voltam novamente a estar associadas a um maior número de árvores 

mortas por área no ano de 2010 e a baixa variação do grau de cobertura. De 

uma forma geral a mortalidade encontrada nesta classe (50.1 - 100%) parece 

apresentar valores adequados à interação entre indivíduos num povoamento 

florestal onde o grau de cobertura e densidade são mais elevados, não se 

podendo concluir acerca de factores de competição. 

Para uma primeira aproximação sobre a análise do padrão espacial (agrupado 

ou disperso) de distribuição dos eventos de árvores mortas (informação 

pontual), foi aplicada a ferramenta disponível no software Arcgis 10.1 

denominada Multi-DistanceSpatial Cluster Analysis (Análise de multi-distâncias 

de agregação espacial), baseada na função - K de Ripley, função utilizada na 

análise pontual que se baseia no método de distâncias. 

 

Figura 37 – Gráficos para a função k para o evento mortalidade dos voos de 2004 e2010. 

 

 

http://resources.arcgis.com/en/help/main/10.1/005p/005p0000000m000000.htm
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Resultados da função k de ripley para 2004 
1522 Árvores 

ExpectedK ObservedK DiffK LwConfEnv HiConfEnv 

987.73 2007.21 1019.48 1004.36 1023.76 

1975.47 3140.78 1165.31 1999.55 2020.90 

2963.20 4130.87 1167.67 3000.60 3017.56 

3950.93 5072.03 1121.09 3992.10 4016.68 

4938.67 6037.29 1098.62 4969.70 5001.21 

5926.40 6922.76 996.36 5934.86 5975.31 

6914.14 7790.25 876.11 6897.55 6939.07 

7901.87 8667.73 765.86 7839.16 7895.34 

8889.60 9584.14 694.54 8761.05 8840.72 

9877.34 10484.84 607.51 9672.54 9763.03 

 
Figura 38 – Tabelas de resultados (valor esperado de k, valor observado de k, diferença entre valor 

observado e esperado de k, intervalo de confiança inferior para 90% e intervalo de confiança superior 
para 90%) para a função k, do evento mortalidade para os voos de 2004 e 2010. 

 

 

Na figura 37 e na figura 38 apresentam-se os resultados da função - K de 

Ripley para os dois voos obtidos pela aplicação do Multi-Distance Spatial 

Cluster Analysis sobre o evento mortalidade, seguindo os tutoriais 

disponibilizados pela esri (http://resources.arcgis.com/, 2004). Não se aplicou o 

peso sobre nenhuma variável para que a ferramenta analise fenómenos de 

agregação e dispersão simultaneamente. Aplicou-se o intervalo de confiança 

de 90% com 9_permutações, o método de correção de simulação de valores 

fora da zona fronteira de localização dos eventos simulando assim pontos fora 

da área de estudo de forma a evitar subestimação nestas zonas.  

Após a aplicação destas condições verifica-se que nos dois voos os eventos de 

mortalidade apresentam valores esperados de k (Expected K) inferiores aos 

valores observados k (Observed K), verificando-se também este resultado pela 

diferença positiva entre o valor observado e o valor esperado de k (DiffK), 

indicando a presença de um padrão espacial agregado. Verifica-se também 

que nos dois voos os valores observados de k (Observed K) são superiores ao 

intervalo de confiança superior (HiConfEnv), este é um indicador de que o 

padrão agregado entre os eventos é estatisticamente significativo para as 

distâncias presentes entre os mesmos. Pode então dizer-se que na globalidade 

foi encontrado um primeiro indicador de que os eventos de mortalidade para os 

dois voos apresentam o padrão espacial de agregação.  

Resultados da função k de ripley para 2010 
 1621 Árvores 

ExpectedK ObservedK DiffK LwConfEnv HiConfEnv 

1005.70 1856.38 850.67 1019.57 1044.60 

2011.41 2943.23 931.82 2034.99 2060.46 

3017.11 3924.61 907.50 3058.70 3078.18 

4022.81 4945.65 922.83 4070.66 4087.68 

5028.52 6003.45 974.93 5065.13 5083.95 

6034.22 7017.60 983.38 6052.52 6076.39 

7039.93 7970.27 930.34 7022.67 7054.71 

8045.63 8802.77 757.14 7982.03 8029.92 

9051.33 9621.61 570.27 8932.41 8995.70 

10057.04 10509.32 452.28 9866.61 9935.37 

http://resources.arcgis.com/en/help/main/10.1/005p/005p0000000m000000.htm
http://resources.arcgis.com/en/help/main/10.1/005p/005p0000000m000000.htm
http://resources.arcgis.com/
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Para uma análise mais detalhada sobre a agregação dos eventos para os dois 

voos, foi aplicado o índice de Clark and Evans em 49 parcelas retangulares 

(100m*100m) através da utilização do software Crancod 1.4. No ANEXO III, na 

figura 1, na figura 2 e na figura 3 apresenta-se a respetiva localização das 

parcelas. A sua localização teve como base as duas classes mais elevadas de 

densidade de Kernel obtidas para os dois anos (2004 e 2010), características 

de diagnóstico, declive e exposições. 

Ainda no ANEXO III, na tabela 1, apresentam-se também os resultados obtidos 

para o Índice de Clark and Evans aplicado nas árvores mortas das parcelas 

para os voos de 2004 (CE_04) e 2010 (CE_10), e o seu valor agregado 

(CE_0410). Nos campos NC_04 e NC_10 estão presentes o número de 

árvores mortas para 2004 e para 2010. A título de exemplo apresenta-se 

também no ANEXO III, figura 4, uma parcela com árvores mortas marcadas. 

 

 

Figura 39 – Distribuição percentual do Índice de Clark and Evans das árvores mortas nas parcelas para 

os voos de 2004 e 2010. 

 

 

 



Manuela Silvestre, 2014. 80 
 

Na figura 39 apresenta-se a distribuição do índice Clark and Evans calculado 

nas parcelas para os dois voos (2004 e 2010): 

 A classe sem referência representa as parcelas onde não existem 

árvores suficientes para realizar o cálculo, e é de 28.57 % em 2004 e de 

57.14 % em 2010; 

 A classe> 1, classe indicadora da presença de padrão regular, no que 

diz respeito às árvores mortas nas parcelas, é de 6.12 % em 2004 e de 

10.20 % em 2010; 

 A classe de 0.0000, é de 10.20 % em 2004 e de 20.41 % em 2010, ao 

passo que a classe de 0.0001 - 0.9999 é de 55.10 % em 2004 e de 

12.24 % em 2010; 

Estas duas últimas classes referidas representam ambas o padrão de 

agregação ou cluster, sendo que a percentagem de agregação é de 65.30% 

em 2004 e de 32.71 % em 2010. Na sequência da análise com a função k de 

ripley, o índice de Clark and Evans para as parcelas onde estavam presentes 

árvores mortas, vem reforçar a tendência inicialmente encontrada, ou seja a 

presença de padrões agregados nas árvores mortas para as parcelas 

selecionadas. 
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Figura 40 – Intervalos de confiança 95% do Índice de mortalidade por classe de índice de 

Clark and Evans, calculado nas árvores mortas das parcelas - os voos de 2004 e 2010. 
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Pela observação da figura 40 com os intervalos de confiança (95%),é possível 

observar: 

 

 Que a classe 0.0000, está associada a valores mais elevados em 2004 e 

á a segunda classe mais representativa em 2010. Segue-se a classe 

0.0001 - 0.9999, sendo a segunda classe mais representativa em 2004 e 

a classe associada aos valores mais elevados de mortalidade em 2010. 

A classe> 1 apresenta os valores mais baixos nos dois voos.  

 

Os valores associados às classes 0.0000 e 0.0001- 0.9999, representam o 

padrão de agregação, são as classes mais representativas nas parcelas 

selecionadas. A classe> 1 apresenta também alguma associação à 

mortalidade. 
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Figura 41 – Intervalos de confiança 95% do Índice de mortalidade por características 

de diagnóstico e por classe de índice de Clark and Evans, calculado nas árvores 
mortas das parcelas - os voos de 2004 e 2010. 
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Pela observação da figura 41, com os intervalos de confiança (95%) verifica-se: 

 

 Que em zonas de profundidade expansível, a classe 0.0000 (padrão 

agregado) apresenta uma forte relação com a mortalidade em 2004 

diminuindo bastante em zonas sem limitação e de armazenamento de 

água. Em 2010 esta classe está fortemente associada à mortalidade nas 

zonas de drenagem externa, nas zonas sem limitação e ainda em zonas 

de drenagem interna; 

 

 Que a classe> 1, está associada a valores inferiores de mortalidade para 

os dois voos e aparece associada a solos sem limitações nos dois voos 

e a solos com problemas de drenagem interna em 2004; 

 

 Que a classe 0.0001 - 0.9999, apresenta-se associada a valores 

relativamente baixos de mortalidade em 2004, surgindo em todas as 

classes de diagnóstico e a sua presença aumenta em relação à classe> 

1 no ano de 2010, nomeadamente nos solos com drenagem interna, 

drenagem externa, com menos intensidade em solos sem limitações e 

associada a valores mais baixos de mortalidade em solos com 

profundidade expansível; 

 

Os valores associados às classes 0.0000 e 0.0001 - 0.9999, representam o 

padrão de agregação, e ainda que a segunda classe apresente valores mais 

baixos, na globalidade as duas classes estão ligadas ao fenómeno de 

mortalidade. A classe> 1, indicadora de povoamentos com árvores muito 

jovens ou de um povoamento envelhecido, com uma distribuição espacial 

alinhada que determina o padrão regular, pode ser então representativa de 

graus de cobertura mais elevados e tendo em linha de conta a fórmula de 

cálculo do índice de mortalidade, será expetável que a mesma se associe a 

valores um pouco mais baixos de mortalidade. 
 

Após a aplicação e análise de Clark and Evans procedeu-se à análise 

estatística com o recurso à regressão linear, tomando como variável 

dependente o índice de mortalidade e utilizando como variáveis independentes: 



Manuela Silvestre, 2014. 85 
 

o declive; as exposições; as características de diagnóstico; o grau de cobertura 

para 2004 e 2010;e o índice Clark and Evans. 

O objetivo desta análise é obter o modelo de regressão com as variáveis 

independentes que melhor explicam o fenómeno mortalidade nas parcelas. 

Como variáveis independentes contínuas utilizou-se o índice de Clark and 

Evans e o grau de cobertura. Utilizou-se ainda o declive, as exposições e as 

características de diagnóstico. Para a sua aplicação foi necessário a sua 

reclassificação transformação em variáveis dummy, que a seguir se 

apresentam na tabela 9. Esta classificação consistiu em agregar as 

componentes favoráveis que constituem cada variável para a presença do 

sobreiro como “zero” e as que representam condicionantes para a presença de 

sobreiro como “um”. 

 

Tabela 9 – Transformação das variáveis categóricas em variáveis dummy. 

Classes 
de 

declive 
Classificação Exposições Classificação 

Características 
de 

diagnóstico 
Classificação 

[0, 15[ 1 Norte 0 Sem limitações 0 

[15, 35[ 0 Noroeste 0 Armazenamento de água 1 

[35, ∞ [ 1 Nordeste 0 Drenagem interna 1 

  
Oeste 0 Drenagem externa 1 

  
Sudoeste 1 Profundidade expansível 1 

  
Este 1 

  

  
Sudeste 1 

  

  
Sul 1 

   

Para aumentar a robustez desta análise e considerando que o objetivo é 

encontrar uma relação da mortalidade com as variáveis independentes sema 

utilização da escala temporal, agregaram-se os resultados das variáveis para 

as parcelas dos dois voos como se de um ano se tratasse. 
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Na figura 42 é possível observar no histograma alguma tendência para uma 

assimetria ou skewness à direita, indicador de eventuais problemas de 

normalidade dos dados. Nesta mesma figura através do diagrama de pontos ou 

Scatterplot, considerando o eixo das ordenadas, observa-se uma menor 

amplitude de distribuição de pontos à esquerda e uma maior dispersão de 

pontos à medida que se prologa ao longo do eixo das abcissas, não se 

distribuindo de uma forma linear. Esta distribuição é usualmente designada por 

forma de megafone, e pode ser indicadora da presença de heterocedasticidade 

nos resíduos. Dada a presença de variáveis dummy a utilizar no modelo, optou-

se por não se efetuarem transformações das variáveis. 

 
Figura 42 – Histograma representativo da normalidade de resíduos e Scatterplot representativo 

da heterocedasticidade, dos resíduos para a variável dependente índice de mortalidade. 

 

Pela observação da figura 43 e figura 44, verifica-se que a estatística de teste 

da ANOVA apresenta uma significância inferior a 5% (0.05) e por isso 

estatisticamente significativa para as variáveis independentes utilizadas. Pode 

dizer-se pelo R2 obtido (0.156) que 15.6 % da variabilidade da mortalidade é 

explicada pelas variáveis independentes introduzidas. Dado que o valor de R2 é 

bastante mais baixo que 40% (valor de R2 considerado como um bom ajuste do 

modelo), poder-se-á dizer que a regressão apresenta resultados baixos para a 

modelação da mortalidade. 
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ANOVAa 

Model 
Sum of 
Squares 

df 
Mean 

Square 
F Sig. 

1 

Regression 2758193,354 5 551638,671 18119,326 ,000b 

Residual 14917753,190 489994 30,445 
  

Total 17675946,544 489999 
   

a. Dependent Variable: Imort0410 

b. Predictors: (Constant), GC0410, Exp_BIN01, D_BIN01, CD_BIN01, CE_0410 

Figura 43 – Resultados da ANOVA para a regressão linear com o índice 

de mortalidade. 

 

 
Model Summaryb 

Model R R Square 
Adjusted 
R Square 

Std. Error of 
the Estimate 

1 ,395a ,156 ,156 5,517677687 

a. Predictors: (Constant), GC0410, Exp_BIN01, D_BIN01, 
CD_BIN01, CE_0410 

b. Dependent Variable: Imort0410 

Figura 44 – Quadro resumo o R e R2 para a regressão linear 

para o índice de mortalidade como variável dependente. 

 

Na figura 45 apresentam-se os valores de coeficientes calculados na regressão 

para testar a correlação e colinariedade. Os coeficientes das variáveis 

independentes são todos significativos, de valor zero, inferior a 5% (α = 0.05). 

Pelos valores dos coeficientes padronizados (Standardized Coefficients - beta) 

obtidos, pode dizer-se que em termos absolutos todas as variáveis 

independentes contribuem para a explicação da variância da mortalidade, 

destacando-se o grau de cobertura com um valor mais elevado. 

No que diz respeito à correlação (partial and part Correlations) pode dizer-se 

que os valores não se afastam da correlação zero, indicando-as variáveis não 

são redundantes na explicação da variância da mortalidade. Os valores 

elevados de tolerância apresentados na colinariedade para cada variável 

independente são baixo e os valores de VIF são todos inferiores a dois pelo 

que se pode dizer que as variáveis não apresentam problemas de redundância 

e de multicolinariedade. 
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Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 
Correlations 

Collinearity 
Statistics 

B Std. Error Beta Zero-order Partial Part Tolerance VIF 

1 

(Constant) 8,415 ,032  265,809 ,000 8,353 8,477    

D_BIN01 -1,413 ,034 -,071 -41,759 ,000 -1,479 -1,346 -,212 -,060 -,055 

CD_BIN01 2,295 ,018 ,191 128,331 ,000 2,260 2,330 ,199 ,180 ,168 

Exp_BIN01 ,313 ,029 ,016 10,842 ,000 ,257 ,370 ,099 ,015 ,014 

CE_0410 -,723 ,024 -,051 -30,738 ,000 -,769 -,677 -,161 -,044 -,040 

GC0410 -,190 ,001 -,304 -223,520 ,000 -,192 -,189 -,306 -,304 -,293 

a. Dependent Variable: Imort0410 

Figura 45 – Quadro resumo de coeficientes calculados, com o teste de correlação e multicolinariedade, para a 

regressão linear com o índice de mortalidade. 

 

 

Considerando a equação da reta; 

, sendo: 

Y – Variável Dependente; 

X1, X2, ...Xk – Variáveis Independentes; 

β0 – Ordenada na origem; 

β1, β2, ...,  – Coeficientes de regressão; 

εi – erro ou resíduo aleatório; 

Podendo escrever-se: 

 

Pode dizer-se que o valor de coeficiente de regressão negativo do grau de 

cobertura será expetável, uma vez que o mesmo foi utilizado para o cálculo do 

índice de mortalidade. Como já foi referido anteriormente, pela forma de cálculo 

aplicada no índice de mortalidade, é de esperar que para valores mais 

elevados de mortalidade o valor do grau de cobertura diminua, apresentando 

desta forma sinal negativo. A sua introdução no modelo serviu para dar mais 
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alguma robustez ao mesmo e para acentuar ou validar o resultado expetável no 

índice de mortalidade. 

O declive apresenta um coeficiente com sinal negativo, dando a indicação de 

mortalidade presente nas classes favoráveis para a presença de sobreiro. Este 

não será à partida um resultado expetável mas a pouca variabilidade 

encontrada para o declive pode justificar este resultado. Para as exposições, 

ainda que os dados em termos gerais sejam dispersos apresentam um 

coeficiente com sinal positivo, pelo que as exposições menos favoráveis 

estarão a explicar a mortalidade no modelo.  

É de salientar que dada a pouca presença de variáveis independentes a 

introduzir no modelo de regressão, foi necessária a aplicação das variáveis 

acima referidas. No caso do grau de cobertura ele serve também de validação 

ao modelo escolhido, uma vez que se enquadra no resultado esperado. 

As características de diagnóstico apresentam sinal positivo, dando indicação 

que as condicionantes de solo presentes nas parcelas explicam a mortalidade. 

O índice de Clark and Evans apresenta também sinal negativo. Pelos 

resultados obtidos anteriormente, onde o padrão agregação foi o que mais se 

destacou (R <), o sinal negativo do seu coeficiente poderá estar de acordo com 

o resultado mencionado, entendendo-se o mesmo como uma tendência para 

validação deste mesmo padrão encontrado. 

Na tabela 10 e na tabela 11 apresentam-se ainda os resultados para dois 

modelos de regressão: um tomando como variável dependente o índice de 

mortalidade e como variáveis independentes o declive, as características de 

diagnóstico e as exposições; um outro tomando como variável dependente o 

índice de Clark and Evans e como variáveis independentes o declive, as 

características de diagnóstico, as exposições e o grau de cobertura. 

Os dois modelos apresentados têm como objetivo relacionar o índice de 

mortalidade e o índice de Clark and Evans com a componente abiótica 

presente nas parcelas e especificamente no índice de Clark and Evans 

introduzir a variável de caracterização da parcela ou povoamento - grau de 

cobertura. 
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Tabela 10 – Síntese de resultados de regressão linear, com nível de significância 

do modelo, R2 e VIF, assumindo como variável dependente o índice de 
mortalidade e índice de Clark and Evans das variáveis categóricas em variáveis 
dummy. 

Variável  
dependente 

Variáveis 
independentes 

ANOVA  
significância 

R2 
VIF 

médio 

Imort0410 
D_BIN01 

CD_BIN01 
Exp_BIN01 

0,000 0,065 1,163 

CE_0410 

D_BIN01 
CD_BIN01 
Exp_BIN01 

GC0410 

0,000 0,380 1,162 

 

 
Tabela 11 – Transformação das variáveis categóricas em variáveis dummy. 

Variável  
dependente 

Modelo 

Imort0410 
 

CE_0410 
 

 

 

 
Pela observação dos resultados obtidos é possível observar que no modelo 

onde a variável dependente é o índice de mortalidade (R2 = 0.065 <40 % ou de 

6.5 % e VIF = 1.163, com fraco ajuste ao modelo e sem multicolinariedade), o 

declive apresenta um coeficiente com valor negativo, indicando novamente a 

mortalidade associada a classes favoráveis para a presença de sobreiro. As 

características de diagnóstico e as exposições apresentam coeficientes com 

valor positivo, dando enfase à mortalidade em solos e exposições menos 

favoráveis à presença do sobreiro.  

Quando a variável dependente é o índice de Clark and Evans (R2 = 38.0 ou de 

38.5 % < 40 % e VIF = 1.162, com ajuste mediano ao modelo e sem 

multicolinariedade), o declive e as exposições apresentam um coeficiente com 

valor positivo, indicando que declives e exposições menos favoráveis à 

presença do sobreiro estarão a explicar o índice de Clark and Evans. As 

características de diagnóstico apresentam coeficientes negativos e baixos e o 

grau de cobertura apresenta um coeficiente positivo. Este resultado pode dizer 

que as áreas com solos sem limitações explicam um índice de Clark and Evans 

mais elevado. Graus de cobertura mais elevados são também mais explicativos 

para valores mais elevados do índice de Clark and Evans. 
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Ainda que o ajuste aos modelos sejam baixos e medianos, este resultado 

indica que o índice de mortalidade está relacionado com os factores abióticos 

(solos, declive e exposições) menos favoráveis à presença de sobreiro. O 

índice de Clark and Evans está também relacionado com solos, declives e 

exposições menos favoráveis. O grau de cobertura mais elevado é explicativo 

para o índice de Clark and Evans, ou seja, onde é de esperar a presença do 

padrão regular nas parcelas.  

O resultado das variáveis independentes (declive e exposições) não será muito 

expetável, ou será até indiferente, uma vez que mesmo que teoricamente as 

zonas aplanadas se associam a graus de cobertura mais elevados (onde é de 

esperar a presença de um padrão regular/índice de Clark and Evans mais 

elevado), esta não é uma regra. 

 

5 - CONCLUSÃO 

 

Através da análise apresentada pelos gráficos, intervalos de confiança 

construídos e pela estatística aplicada (ANOVA de factores principais) aplicada 

nos polígonos e apesar da pouca variabilidade das variáveis de solos, declives 

e exposições na área de estudo, foi possível verificar uma vasta área com a 

presença de classes de mortalidade mais baixas nos dois voos, e encontrar 

relações entre as condicionantes de solos mais extremas e onde o índice de 

mortalidade é mais elevado. 

A tendência nas condicionantes de solos observadas com o aumento da 

mortalidade nos solos com drenagem interna e nos solos com drenagem 

externa e mesmo com alguma diminuição em solos com profundidade 

expansível, parece reforçar a relevância das condicionantes de solos com a 

mortalidade do sobreiro, nesta área. O declive com mais peso nestes solos 

quando a mortalidade é associada corresponde à classe de declive mais baixa 

(0.1 – 15%) e será também um resultado esperado dada a fisiografia que se 

espera encontrar associada a este tipo de solos, zonas aplanadas. Verifica-se 

que as exposições não possuem quadrantes que se destaquem quando 
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associadas isoladamente ao fenómeno mortalidade e quando associadas às 

condicionantes de solos, apenas o quadrante Noroeste está associado à 

mortalidade com uma maior amplitude, nomeadamente em solos com 

condicionantes de drenagem externa (2004 e 2010) e de profundidade 

expansível (2010). Este resultado não será relevante, uma vez que a 

condicionante solo se sobrepõe em termos de relevância à presença do 

quadrante, normalmente favorável à presença do sobreiro. 

Na Anova de factores principais o declive é não significativo para o ano de 

2004. Para as exposições os resultados foram significativos para 2004 e 2010. 

Pela significância apresentada em 2010 para o declive, e pela significância 

encontrada nos dois voos para as exposições, estas variáveis foram 

consideradas na análise posterior. 

Em termos de distribuição espacial do evento mortalidade, pela análise da 

densidade de Kernel efetuada, foi possível observar uma diminuição em termos 

de área da classe mais elevada de densidade de árvores mortas (0.100 - 

0.173) na parte Oeste da área. Na parte Nordeste a classe mais elevada de 

densidade de árvores mortas (0.100 - 0.173) desapareceu, surgindo novos 

focos da classe mais elevada (0.100 - 0.156) na parte Sul em 2010. 

Na análise das linhas de tendência da densidade de mortalidade foi possível 

observar com alguma nitidez a deslocação dos focos de mortalidade (duas 

classes mais elevadas de densidade de árvores mortas por hectare) para 

zonas mais a sul da área de estudo. Observou-se também de uma forma nítida 

a regressão da densidade de mortalidade na zona Nordeste da área de estudo, 

onde está inserida a Herdade da Machuqueira, que tem vindo a desenvolver 

projetos de gestão sustentável para o sobreiro e que poderão também estar na 

base deste resultado, uma vez que as condicionantes de declive e de 

exposições não têm relevância nesta área, e as condicionantes de solos são 

também pouco representativas. 

Quando as condicionantes de solos para o sobreiro foram associadas às 

classes de densidade de árvores mortas, observou-se uma clara relação entre 

as condicionantes de solos e estes mesmos focos, na zona Oeste da área. O 

mesmo não foi possível observar com tanta nitidez na parte Centro Norte da 
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área de estudo para o ano de 2004. Contudo, no ano de 2010, observou-se 

alguma tendência da classe mais elevada em se alocar nas áreas próximas de 

condicionantes de solos, tornando-se mais evidente quando se teve em 

consideração a segunda classe mais alta. Na parte Nordeste da área onde se 

observou a regressão da mortalidade, foi também possível observar a mesma 

tendência da segunda classe mais alta (de 2010) de proximidade às linhas de 

condicionantes de solos. Na parte Central da área onde surgiu um pequeno 

foco de densidade mais elevada (2010), e na parte Este onde surgiram duas 

classes mais elevadas (2010), não foi nítida a ligação dos solos às classes de 

densidade de árvores mortas.  

Foi possível observar a diminuição em termos de área de alguns focos de 

densidade de árvores mortas, bem como encontrar uma ligação espacial entre 

os focos de densidade de árvores mortas com as condicionantes de solos. 

Nos solos sem limitações quando cruzados com as classes de grau de 

cobertura de 2004, com a variação relativa do grau de cobertura e variação 

relativa do índice de mortalidade, foi possível observar baixas variações do 

grau de cobertura nas três classes de grau de cobertura. 

Nas três classes foi possível observar também a presença da diminuição do 

grau de cobertura com a diminuição da mortalidade, que se relaciona com 

maior número de árvores mortas no ano de 2004 em polígonos de grandes 

dimensões e com uma variação muito baixa do grau de cobertura. Observou-se 

também o aumento do grau de cobertura associado ao aumento da mortalidade 

em polígonos. Quando se trata: 

 Da classe do grau de cobertura 0.1 - 25 % associada ao aumento ou 

diminuição da mortalidade deve destacar-se a necessidade de 

regeneração dos povoamentos uma vez que a diminuição da 

mortalidade associada à baixa densidade é indicadora que os mesmos 

estão no limite da sua sustentabilidade; 

 Da classe do grau de cobertura 25.1 - 50 % (classe considerada ideal 

para os montados de sobreiro) com o aumento da mortalidade pode 

indicar a adaptação dos indivíduos a factores desadequados de gestão 

como a gradagem e a pastorícia intensiva que levam por um lado ao 
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corte das raízes superficiais mas também à compactação e 

mineralização dos solos afectando assim o sistema radicular dos 

indivíduos. Devem considerar-se também factores de alterações 

climáticas que se têm vindo a manifestar nas últimas décadas; 

 Da classe do grau de cobertura 50.1 – 100 % associada à mortalidade, e 

onde estão presentes composições mistas de sobreiro com folhosas 

como o eucalipto e resinosas como o pinheiro bravo, devem destacar-se 

os factores de competição (não havendo neste estudo dados para 

analisar este factor) entre os indivíduos como causa de mortalidade. 

A análise Multi-Distance Spatial Cluster Analysis (Análise de multi-distâncias de 

agregação espacial), baseada na função - K de Ripley, que se baseia no 

método de cálculo das distâncias entre eventos pontuais, partindo do 

pressuposto da distribuição aleatória de eventos, permitiu obter um primeiro 

indicador em termos globais, da presença do padrão espacial de agregação 

entre eventos mortalidade, para os dois voos.  

Este resultado possibilitou centrar a análise no padrão pontual, na tentativa de 

se encontrarem padrões espaciais de agregação entre as árvores mortas a 

uma escala menor, com a utilização das parcelas retangulares (49 parcelas 

retangulares com a dimensão de 100m*100m). 

Para os resultados obtidos para o índice de Clark and Evans, nos intervalos de 

confiança (95%) associados à mortalidade, observou-se que o padrão espacial 

de agregação apresentou uma forte relação com valores mais elevados de 

mortalidade (índice de mortalidade calculado). A classe> 1, representativa do 

padrão de regularidade apresentou também alguma associação ao evento 

mortalidade. 

Quando as classes representativas do padrão de agregação foram associadas 

às condicionantes de solos em conjunto com a mortalidade, observou-se que o 

padrão de agregação surgiu por um lado fortemente associado a 

condicionantes de profundidade expansível e uma forte relação com as 

condicionantes de drenagem externa e drenagem interna em 2010. Este 

resultado vem reforçar a ligação do padrão espacial às condicionantes de solos 

http://resources.arcgis.com/en/help/main/10.1/005p/005p0000000m000000.htm
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Surge também a associação aos dois voos o padrão agregado a zonas onde 

não estão presentes condicionantes de solo (Sem limitações). Este resultado 

pode indicar a presença de outros factores que poderão estar associados ao 

evento mortalidade. A gestão pode ser um dos factores a considerar nas zonas 

sem limitações de solos. 

 

A classe> 1 (padrão de regularidade), apresentou-se associada a valores 

inferiores de mortalidade, com alguma representatividade em solos sem 

limitações nos dois voos e em solos com problemas de drenagem interna em 

2004. Sendo esta uma classe representativa de povoamentos com uma 

distribuição alinhada com um grau de cobertura mais elevado, ou a 

povoamentos envelhecidos, situações que se verificaram nas parcelas para 

estas classes, poderão levantar-se questões em termos de competitividade 

entre os indivíduos, contudo este estudo não está vocacionado para este tipo 

de análise. 

 
Para a análise de regressão efetuada, obteve-se um modelo com um baixo 

ajustamento mas que evidencia, ao nível da parcela, a relação das 

condicionantes de solo com o padrão de agregação obtido pelo índice de Clark 

and Evans ao fenómeno mortalidade. 

Deve destacar-se o padrão agregado como indicador da presença de doenças 

nos povoamentos florestais. Este padrão já foi descrito por alguns autores 

como Liu., et. al., (2007), que associou este padrão ao declínio que se verificou 

em Carvalhos como o Quercus agrifolia (coast live oak ou Carvalho Costeiro) e 

o Quercus kelloggii (black oak, carvalho negro), desde a década de 90, na 

Costa Central da Califórnia, “provocado” pela Phytophthora ramorum. O 

método de análise pontual tem sido apontado como fundamental no 

acompanhamento e compreensão das dinâmicas de doenças florestais para 

um melhor controlo das mesmas. 

 

Em Portugal uma das doenças que tem vindo a ser mais associada ao 

sobreiro, trata-se da Phytophthora cinnamomi. Os focos de mortalidade 

provocada por este fungo têm vindo a ser relacionados com factores abióticos 

desfavoráveis como os solos. Nomeadamente em solos com problemas de 
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compactação de pouca profundidade, com problemas de drenagem ou sujeitos 

a encharcamento excessivo, que afetem a expansão das raízes, e onde se 

verificam aumentos de temperatura do solo, no caso da gestão desadequada 

com a utilização da gradagem, levando estes factores a “quebras de absorção 

de água e nutrientes pelas raízes conduzindo a uma predisposição das árvores 

a outros factores de stress, bióticos” (Brasier et al., 1993; Moreira-Marcelino, 

2001; Sanchez et. al., 2002in Ribeiro., et. al., 2008) como a Phytophthora 

cinnamomi. 

 

Não se pretende afirmar neste estudo a presença desta doença na área, mas 

indicar esta possibilidade de análise com a relação a factores biofísicos bem 

como a utilização de variáveis ao nível do povoamento e da árvore (grau de 

cobertura, dados de mortalidade, de sanidade e de gestão) com a respectiva 

validação de campo, como diagnóstico de doenças em áreas de montado. 

 
Nos resultados obtidos para a regressão, onde se considerou como variável 

dependente o índice de mortalidade e como variáveis dependentes o declive, 

as características de diagnóstico e as exposições, à exceção do declive 

apresentam um valor positivo, dando indicação de que as condicionantes de 

solo e as exposições menos favoráveis nas parcelas explicam a mortalidade no 

modelo.   

Considerando a regressão linear onde se assumiu como variável dependente o 

índice de Clark and Evans e como variáveis dependentes o declive, as 

características de diagnóstico, as exposições e o grau de cobertura. Os 

declives e exposições menos favoráveis à presença do sobreiro explicaram o 

índice de Clark and Evans. Os solos sem limitações e o grau de cobertura mais 

elevado foram também mais explicativos para o índice de Clark and Evans. 

Ainda que o ajuste aos modelos sejam baixos e medianos, este resultado 

indica que o índice de mortalidade está relacionado com os factores abióticos 

(solos, declive e exposições) menos favoráveis à presença de sobreiro e com o 

padrão espacial de agregação (Índice de Clark and Evans). Foi possível 

também encontrar relações entre o índice de Clark and Evans aplicado nas 

árvores mortas com a componente abiótica ou variáveis ao nível da estação 
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(declive, exposições e solos) mas também com as variáveis ao nível do 

povoamento (grau de cobertura). Os resultados obtidos com a aplicação do 

índice de Clark and Evans à mortalidade indicam uma análise adequada onde 

é possível destacar relações de factores ao nível da estação (abióticos) com 

variáveis ao nível do povoamento, onde a mortalidade está fortemente 

relacionada com o padrão espacial de agregação. 
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ANEXO I 
 

 

Figura 1 – Carta interpretativa de condicionamento ao uso florestal (Ferreira, et al., 2001) para a área 

de estudo, nas áreas com a presença de sobreiro. 
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Figura 2 - Carta de declives para a área de estudo, nas áreas com a presença de sobreiro. 
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Figura 3 – Carta de exposições para a área de estudo, nas áreas com a presença de sobreiro. 
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ANEXO II 

Rumos dominantes - Montargil 

 
2001 2002 2003 2004 2005 2006 2007 

Janeiro 
 

SW SW e N SW e E E e NE E E 

Fevereiro S SW SW e E E e SW E E e SW SW e O 

Março SW E E e NE E e SW E SW  E e SW 

Abril SW SW SW e E SW e E SW SW e O E e SW 

Maio SW SW SW e N SW e E SW e O SW e O SW e O 

Junho SW SW SW e O SW e O Sw SW e O E 

Julho SW SW SW e O SW e O SW SW e O SW e O 

Agosto SW SW SW e O SW SW e O SW e O SW 

Setembro SW SW  e O SW SW e O SW e O SW SW 

Outubro E SW SW SW SW e E SW SW 

Novembro E SW SW e E E E e SW E e SW E 

Dezembro E SW E  E E E E 
Figura 1 – Rumos dominantes para a estação da Barragem de Motargil - período de 2001/2007. 

 

 

Rumos dominantes - Magos 

 
2001 2002 2003 2004 2005 2006 2007 2008 2009 

Janeiro 
  

NE E O NW NW NW SW 

Fevereiro 
  

NW N O NW SW SE NW 

Março 
  

E NE SW SW NW NW NW 

Abril SE 
 

S NE O NW NW NW NW 

Maio SE 
 

NE NW S NW NW NW NW 

Junho 
  

NW NW S NW NW NW NW 

Julho 
  

NE NE S NW NW NW 
 Agosto 

 
NW NW NW SE NW NW NW 

 Setembro 
 

N e NW NW NW SE NW NW NW 
 Outubro 

 
NW E NW SE S NW NW 

 Novembro 
 

S S O SW S NW NW 
 Dezembro 

 
SE SW O SW NW NW NW 

 Figura 2 - Rumos dominantes para a estação da Barragem de Magos - período de 2001/2009. 

 

 

 

 

 

 



Manuela Silvestre, 2014  

 

 
Figura 3 – Diagrama ombrotérmico para a estação da Barragem de Montargil - período de 

1971/2009. 
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Figura 4 – Diagrama ombrotérmico para a estação da Barragem de Magos - período de 

1971/2009. 
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ANEXO III 

Figura 1 - Localização das parcelas (100m*100m). 
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Figura 2 - Localização das parcelas (100m*100m). 
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Figura 3 - Localização das parcelas (100m*100m). 



Manuela Silvestre, 2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plot Number LEG Area Exposições (Cod) CD_NOME D_Classe GC0410 Imort0410p Ano NC_04 NC_10 CE_04 CE_10 CE_REC04 CE_REC10 CE_0410 

1 BC1 10000 Plano 
Profundidade 

expansivel 
0 - 15 20.00 2.6319979 2004 4 1 0.8137 0.0000 0.0001 - 0.9999 

 
0.81368 

2 BC1 10000 Plano Sem limitacao 0 - 15 26.50 6.4903218 2004 4 0 0.4008 0.0000 0.0001 - 0.9999 
 

0.40082 

3 BC1 10000 Noroeste Sem limitacao 0 - 15 22.5 4.20310201 410 2 3 0.0000 0.0000 0.0001 - 0.9999 0.0000 0.00001 

4 BC1 10000 Nordeste Sem limitacao 0 - 15 14.55 6.163139147 410 3 2 0.0000 0.0000 0.0000 0.0000 0.00000 

5 BC1 10000 Plano Sem limitacao 0 - 15 40.00 0.8203139 2004 4 1 0.4800 0.0000 0.0001 - 0.9999 
 

0.48000 

6 BC1 10000 Nordeste Sem limitacao 0 - 15 40.00 0.8203139 2004 4 0 0.0000 0.0000 0.0001 - 0.9999 
 

0.00001 

7 BM2 10000 Sul Sem limitacao 0 - 15 10.10 17.122536 2004 5 1 0.2346 0.0000 0.0001 - 0.9999 
 

0.23456 

8 BB1 10000 Plano Sem limitacao 0 - 15 10.30 0.8565310 2004 3 0 0.0000 0.0000 0.0001 - 0.9999 
 

0.00001 

9 BB3 10000 Este Sem limitacao 0 - 15 20.40 4.0804105 2004 6 0 0.5013 0.0000 0.0001 - 0.9999 
 

0.50128 

10 BB1 10000 Este Sem limitacao 0 - 15 13.50 8.6288116 2004 4 0 0.8295 0.0000 0.0001 - 0.9999 
 

0.82949 

11 BB3 10000 Sudoeste Sem limitacao 0 - 15 22.10 0.4874566 2004 3 0 0.6519 0.0000 0.0001 - 0.9999 
 

0.65191 

12 BB1 10000 Sudoeste Sem limitacao 0 - 15 18.05 5.009822909 410 3 2 0.0000 0.4733 0.0000 0.0001 - 0.9999 0.23666 

13 BB1 10000 Este Sem limitacao 0 - 15 10.30 0.8565310 2004 3 0 0.5738 0.0000 0.0001 - 0.9999 
 

0.57382 

14 BC1 10000 Este Sem limitacao 0 - 15 15.00 4.1655458 2004 3 1 0.6287 0.0000 0.0001 - 0.9999 
 

0.62874 

15 BC1 10000 Noroeste Drenagem Interna 0 - 15 14.90 3.9685267 2010 1 3 0.0000 0.0000 
 

0.0001 - 0.9999 0.00000 

16 BC1 10000 Sudoeste Sem limitacao 0 - 15 12.5 6.798869108 410 3 2 0.0000 0.0000 0.0001 - 0.9999 0.0000 0.00001 

17 BB1 10000 Norte Drenagem Interna 0 - 15 20.70 5.6374878 2010 1 3 0.0000 0.0000 
 

0.0001 - 0.9999 0.00000 

18 BC1 10000 Noroeste Drenagem Interna 0 - 15 27.535 1.965127122 410 4 2 1.0200 0.0000 >1 0.0000 0.51000 

19 BE3 10000 Sudoeste Sem limitacao 0 - 15 18.26 0.4116106 2004 4 0 0.5333 0.0000 0.0001 - 0.9999 
 

0.53328 

20 EB3 10000 Oeste Sem limitacao 0 - 15 9.20 5.7060848 2004 4 0 0.0000 0.0000 0.0001 - 0.9999 
 

0.00001 

21 BC1 10000 Plano Sem limitacao 0 - 15 18.55 10.56551789 410 2 9 0.0000 0.0000 0.0001 - 0.9999 0.0000 0.00001 

22 BC1 10000 Plano Sem limitacao 0 - 15 40.00 0.8203139 2004 4 0 1.0318 0.0000 >1 
 

1.03182 

23 BB1 10000 Plano Sem limitacao 0 - 15 11.40 8.1928372 2004 3 1 0.0000 0.0000 0.0001 - 0.9999 
 

0.00001 

24 BB3 10000 Plano Sem limitacao 0 - 15 20.40 1.3978520 2004 9 0 0.5408 0.0000 0.0001 - 0.9999 
 

0.54080 

25 BC1 10000 Plano Drenagem Interna 0 - 15 9.90 21.471351 2010 1 5 0.0000 0.6101 
 

0.0001 - 0.9999 0.6101 

26 BC1 10000 Noroeste Drenagem Interna 0 - 15 18.10 2.2820831 2010 1 4 0.0000 0.0000 
 

0.0000 0.00000 

27 BC1 10000 Noroeste Drenagem Interna 0 - 15 36.97 1.6481711 2004 3 1 0.0000 0.0000 0.0001 - 0.9999 
 

0.00001 

28 BP2 10000 Sudoeste Drenagem Interna 0 - 15 19.90 5.0317726 2004 3 
 

0.7542 0.0000 0.0001 - 0.9999 
 

0.75419 

29 BC1 10000 Sudoeste Armazenamento agua 0 - 15 41.00 0.3637139 2004 2 
 

0.0000 0.0000 0.0000 
 

0.00000 

30 BP2 10000 Nordeste Drenagem Interna 0 - 15 19.90 5.0317726 2004 5 
 

1.3600 0.0000 >1 
 

1.36000 

31 MB2 10000 Sudoeste Armazenamento agua 0 - 15 46.10 3.0371790 2004 2 
 

0.6132 0.0000 0.0001 - 0.9999 
 

0.61320 

32 BC1 10000 Sul Drenagem Interna 0 - 15 10.70 3.1171186 2010 
 

3 0.0000 0.0000 
 

0.0000 0.00000 

33 BB1 10000 Plano Drenagem Interna 0 - 15 16.20 5.6374878 2010 
 

2 0.0000 0.0000 
 

0.0000 0.00000 

34 BB1 10000 Norte Drenagem Interna 0 - 15 16.20 5.6374878 2010 
 

3 0.0000 0.0000 
 

0.0000 0.00000 

35 BC1 10000 Sudoeste Armazenamento agua 0 - 15 18.40 10.207805 2010 
 

5 0.0000 0.9500 0.0001 - 0.9999 
 

0.95000 

36 BB1 10000 Plano Drenagem Externa 0 - 15 22.55 5.955514145 2004 3 
 

0.5400 
 

0.0001 - 0.9999 
 

0.54054 

37 MB1 10000 Plano Drenagem Externa 0 - 15 17.40 9.4588293 2010 
 

2 0.0000 0.0000 
 

0.0000 0.00000 

38 BC1 10000 Este 
Profundidade 

expansivel 
0 - 15 41.10 0.2801150 2004 2 

 
0.4641 0.0000 0.0001 - 0.9999 

 
0.46406 

39 BC1 10000 Sul 
Profundidade 

expansivel 
0 - 15 25.20 2.6319979 2004 3 

 
0.1812 0.0000 0.0001 - 0.9999 

 
0.18115 

40 BB1 10000 Plano 
Profundidade 

expansivel 
0 - 15 10.90 8.0232347 2004 2 

 
0.7251 0.0000 0.0001 - 0.9999 

 
0.72513 

Tabela 1 - Resultados para as parcelas do índice de Clark and Evans para 2004 e 2010 (e resultados agregados), com características de diagnóstico, declives, grau de 

cobertura e índice de mortalidade (estas últimas duas variáveis com os  resultados agregados). 
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Plot Number LEG Area Exposições (Cod) CD_NOME D_Classe GC0410 Imort0410p Ano NC_04 NC_10 CE_04 CE_10 CE_REC04 CE_REC10 CE_0410 

41 BC1 10000 Sul 
Profundidade 

expansivel 
0 - 15 25.20 1.0605636 2004 2 

 
0.0000 0.0000 0.0000 

 
0.00000 

42 BB3 10000 Oeste 
Profundidade 

expansivel 
0 - 15 14.60 1.6062160 2010 

 
3 0.0000 0.8034 

 
0.0001 - 0.9999 0.80339 

43 BB3 10000 Plano 
Profundidade 

expansivel 
0 - 15 25.20 33.381801 2004 2 

 
0.0000 0.0000 0.0000 

 
0.00000 

44 BB3 10000 Plano 
Profundidade 

expansivel 
0 - 15 26.00 14.198488 2004 4 

 
0.8626 0.0000 0.0001 - 0.9999 

 
0.86255 

45 BC1 10000 Este Sem limitacao 0 - 15 21.30 0.5099249 2010 0 3 0.0000 1.3500 
 

>1 1.35000 

46 BB3 10000 Nordeste Sem limitacao 0 - 15 32.70 0.2915619 2010 0 3 0.0000 1.1600 
 

>1 1.16000 

47 BB3 10000 Plano Sem limitacao 0 - 15 17.40 5.0155778 2010 0 7 0.0000 1.1107 
 

>1 1.11065 

48 BC1 10000 Sudoeste Sem limitacao 0 - 15 31.40 0.6509190 2010 0 3 0.0000 1.0900 
 

>1 1.09000 

49 BC1 10000 Sul Sem limitacao 0 - 15 28.10 0.7046988 2010 0 3 0.0000 1.0700 
 

>1 1.07000 

 

 

Numenclatura Descrição 

Plot Number Numero da parcela 

LEG Ocupação do solo (COS) 

Area Área da parcela 

Exposições (Cod) Código de exposição 

CD_NOME Condicionantes de solos 

D_Classe Classes de declive 

GC0410 Graude cobertura agregadp 

Imort0410 Índice de mortalidade agregado 

Ano Ano considerado para o cálculo do índice de Clark and Evans 

NC_04 Número de árvores mortas na parcela em 2004 

NC_10 Número de árvores mortas na parcela em 2010 

CE_04 Índice de Clark and Evans Calculado em 2004 

CE_10 Índice de Clark and Evans Calculado em 2010 

CE_REC04 Índice de Clark and Evans reclassificado - 2004 

CE_REC10 Índice de Clark and Evans reclassificado - 2010 

CE_0410 Índice de Clark and Evans agregado 

Tabela 1 - continuação. 

Nomenclatura utilizada 
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Figura 4 – Parcela 10, com marcação de árvores mortas sobre fotográfia aérea de falsa cor para o 

voo de 2004 e 2010 (100m*100m). 

 


