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Animal Growth in Random Environments: Estimation with SeveralPathsFilipe, Patríia A.Universidade de Évora, CIMA (Centro de Investigação em Matemátia e Apliações)Rua Romão Ramalho 597000-671 Évora, PortugalE-mail: pasf�uevora.ptBraumann, Carlos A.Universidade de Évora, CIMA (Centro de Investigação em Matemátia e Apliações)E-mail: braumann�uevora.pt1. IntrodutionClassial models for the growth of an individual animal (or plant) in terms of its size X(t) (somemeasure of weight, volume or height) at time t have assumed the form of a di�erential equation
dY (t) = b (A − Y (t)) dt, Y (t0) = y0,(1)whit Y (t) = g(X(t)), where g is a stritly inreasing funtion. We have y0 = g(x0), where x0 is thesize at birth, and A = g(a), where a is the asymptoti size or size at maturity of the individual. Theparameter b > 0 is a rate of approah to maturity.The Bertalan�y-Rihards model, proposed by von Bertalan�y (1957) and also studied by Rihards(1959), has been extensively used and orresponds to g(x) = xc for c > 0 and to g(x) = ln x for c = 0(for c = 0, is also known as the Gompertz model, appropriate if one assumes growth to be basiallya multipliative proess). The speial ase c = 1 is also known as the Mitsherlih model and hasbeen used in agriulture (see, for instane, Goldsworthy and Colegrove, 1974), partiularly for linearmeasurements like length or height. If one, however, onsiders size measured as a volume or a weight,

c = 1/3 is quite a ommon hoie (making Y (t) a kind of "length"). Other hoies of c (inluding thehoie providing the best adjustment) have been proposed.The Bertalan�y-Rihards model has been applied to animal growth data extensively. See, forinstane: Freitas (2005), Mazini et al. (2003), Ohnishi and Akamine (2006), Oliveira, L�bo, and Pereira(2000). For an appliation to tumor growth, see Kozusko and Bajzer (2003).When one onsiders the e�ets of environmental random �utuations on the growth proess, itis natural to propose (see Garia, 1983) the stohasti di�erential equation (SDE) model
dY (t) = b (A − Y (t)) dt + σdW (t), Y (t0) = y0,(2)where W (t) is a standard Wiener proess and σ > 0 measures the intensity of the e�et of environmental�utuations (internal and external) on growth. The solution is a homogeneous di�usion proess withdrift b (A − y) and di�usion oe�ient σ2. The solution is (see, for instane, Braumann, 2005)
Y (t) = A + e−bt(y0 − A) + σe−bt

∫ t

0
ebsdW (s).(3)The distribution of Y (t) is Gaussian with mean A + e−bt(y0 − A) and variane σ2

2b
(1 − e−2bt).Usually, random variations in data have been treated by lassial regression models. Regressionmodels assume that the observed deviations from a deterministi urve are independent at di�erenttimes. This would be a realisti assumption if the deviations were due to measurement errors, but it



is totally unrealisti when they are due to random hanges on growth rates indued by environmentalrandom �utuations. For instane, in a regression model, a delay in growth at a ertain time has noreperussions on future weights, making regression models inappropriate to model growth in a randomenvironment. The SDE model (2) does not have these shortomings.In Patríia, Braumann, and Roquete (2007), we have onsidered, for a single path (a singleanimal), the statistial problems of parameter estimation and of predition of future population sizesfor model (2) and have illustrated the methods with data on the weight of bovine growth. Setion 2gives a brief summary of the estimation part. Here, we extend (see Setion 3) the estimation methodsto the ase of several paths (several animals of the same type raised under similar onditions), assumedto be independent, and also illustrate with bovine data.The data in the illustrations, provided by Carlos Roquete (ICAM-University of Évora), is from"mertolengo" attle of the "rosilho" strand raised in the "Herdade da Abóboda" in the Serpa region, atthe left margin of the Guadiana river. The animals were raised in pasture, together with their mothersduring nursing and later supplemented with silage when pasture is in shortage (Autumn and Winter).2. Parameter estimation for a single pathAssume we observe the evolution of the size of one animal (one path) by measuring its size at thetimes (ounted from birth) 0 = t0 < t1 < ... < tn and want to estimate p = (A, b, σ). Let Xk = X(tk)be the animal size at time tk (k = 1, 2, ..., n) and let Yk = Y (tk) = g(X(tk)). Let x = (x0, x1, ..., xn)be the vetor of observed values of X = (X0,X1, ...,Xn) and let y = (y0, y1, ..., yn), with yk = g(xk)(k = 1, 2, ..., n). We assume that g is a known funtion, so that we an ompute the yk (k = 1, 2, ..., n).For k = 1, 2, ..., n, one an see from (3) that Yk = A+e−b(tk−tk−1)(Yk−1−A)+σe−btk
∫ tk
tk−1

ebsdWs.Therefore, onditioned on having Yk−1 = yk−1, the probability density funtion (p.d.f.) of Yk is
fYk|Yk−1=yk−1
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,where ∆tk = tk − tk−1. Sine Y (t) is a Markov proess, the joint density of Y1 = Y (t1), ..., Yn = Y (tn)(given Y0 = y0, assumed known) is the produt of the above onditional p.d.f. for k = 1, 2, ..., n andso the log-likelihood funtion in terms of the Y variables is given by
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.(4)In terms of the X variables, the log-likelihood is LX(p) = LY (p) +

∑n
k=1 ln
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dY
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∣

∣

∣

x=xk

).The maximum likelihood estimator p̂ = (Â, b̂, σ̂) is obtained by maximization of LY (equivalentto the maximization of LX), using numerial tehniques (in the appliations we have used the nlminbroutine from the software S-PLUS). The estimators are asymptotially Gaussian with mean vetor pand variane-ovariane matrix Σ = F−1, where F is the Fisher information matrix with elements
Fij = −E[∂2LY /∂pi∂pj]. The expressions of the Fij an be expliitly obtained using the properties ofthe proess Y (t). F, and therefore Σ, an be estimated by replaing p by p̂ on those expressions, thusallowing the onstrution of approximate on�dene intervals for the parameters.In Filipe, Braumann, and Roquete (2007), we have applied the stohasti Bertalan�y-Rihardsmodel, for the partiular ases c = 0 and c = 1/3, to the weight in Kg of a single animal for whih wehad 79 observations sine birth till about 5 tears of age. We have onsidered also the ases c = 1 (notvery appropriate for weight data) and g(x) = xc with c unknown (also to be estimated from data); thelast ase is muh more umbersome (we an not use LY beause we do not know g, and so we have tomaximize LX) and the improvement over the ases c = 0 and c = 1/3 was not signi�ant.



The estimated asymptoti variane-ovariane matries for p̂ are
Vc=0 =





0.00570 −0.00680 −0.00005

−0.00680 0.03266 0.00024

−0.00005 0.00024 0.00033



 Vc=1/3 =





1731.7 −4.9989 −0.0882

−4.9989 0.0457 0.0008

−0.0882 0.0008 0.0018



 .Table 1 shows the maximum likelihood estimates (and the orresponding value of LX) togetherwith the approximate 95% on�dene intervals. We use the parameter a = g−1(A) (average weight atmaturity) so that we may ompare the two ases; the other parameters, b and σ, are not omparable.Figure 1 shows the graphs of the adjusted models c = 0 and c = 1/3 in the absene of environ-mental �utuations (σ = 0). Filipe, Braumann, and Roquete (2007) also studied the adjustment ofthe models in terms of their ability to predit future weights of the animal under study.Table 1. Maximum likelihood estimates and 95% on�dene intervals (one animal)for a for b for σ LX

c = 0 (Gompertz) 407.1 ± 60.5 1.472 ± 0.354 0.2259 ± 0.0355 −338.12

c = 1/3 422.4 ± 81.6 1.096 ± 0.525 0.5248 ± 0.0827 −337.88
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Figure 1. Estimated urves for =0 (Gompertz) and =1/3, when σ = 03. Parameter estimation for several independent pathsLet us onsider now several paths of the stohasti proess orresponding to di�erent animals ofthe same type and raised under similar onditions. Assume we have data on m animals. The size ofanimal number j (j = 1, 2, ...,m) is observed at the times (ounted from birth) 0 = tj0 < tj1 < ... < tjnjand is, respetively, Xj0 = X(tj0),Xj1 = X(tj1), ...,Xjnj
= X(tjnj

). Let Yjk = Y (tjk) = g(Xjk). Let
xj =

(

xj0, xj1, ..., xjnj

) be the vetor of of observed values of Xj =
(

Xj0,Xj1, ...,Xjnj

) and let
yj =

(

yj0, yj1, ..., yjnj

), with yjk = g(xjk) (j = 1, 2, ...,m; k = 1, 2, ..., nj). Assume that g is known.For animal (trajetory) number j we an obtain its log-likelihood LYj
by proeeding as in (4):
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,(5)with ∆tjk = tjk − tj,k−1. From the independene, the overall log-likelihood for the m animals is

LY1,...,Ym(p) =
m
∑

j=1

LYj
(p).(6) The maximum likelihood estimator p̂ is obtained by maximization of LY1,...,Ym, again using nu-merial tehniques. The estimators are asymptotially Gaussian with mean vetor p and variane-ovariane matrix Σ = F−1. The Fisher information matrix F is the sum of the Fisher information



matries of the individual trajetories, whih expressions we already know. Replaing p by p̂, we anagain obtain an estimation of Σ and, therefore, approximate on�dene intervals for the parameters.We have applied the proedure for the stohasti Bertalan�y-Rihards model, for the partiularases c = 0 and c = 1/3, to m = 5 animals of the same strand raised under similar onditions. Oneof them was the animal onsidered in the previous setion (with 79 observations) and the other fouranimals have 38 observations eah.The estimated asymptoti variane-ovariane matries for p̂ were
Vc=0 =





0.00201 −0.00257 −0.00002

−0.00257 0.00965 0.00008

−0.00002 0.00008 0.00014



 Vc=1/3 =





555.65 −1.7451 −0.0311

−1.7451 0.0115 0.0002

−0.0311 0.0002 0.0006



 .Table 2 shows the maximum likelihood estimates (and the orresponding value of LX1,...,Xm)together with the approximate 95% on�dene intervals.Table 2. Maximum likelihood estimates and 95% on�dene intervals (�ve animals)for a for b for σ LX1,...,X5

c = 0 (Gompertz) 352.4 ± 28.3 1.708 ± 0.193 0.2534 ± 0.0234 −958.84
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