



# Nitrogen use Efficiency in Cereal Production Under Mediterranean Conditions

Mário Carvalho

**Climatic Constrains** 

**Edaphic Constrains** 

**Crop Phenology** 

**Crop Technology** 

## **First Climatic Constrain**

#### Temperature and Rainfall – Elvas Meteorological Station (1941/70)



### Relationship between the number of grains and wheat yield Vertic Clay Soil – South of Portugal



Adapted from Carvalho (1987)

#### Effect of rainfall on the wheat response to 60 kg N/ha applied at 20<sup>th</sup> of Jan. 120 kg N/ha were applied at 28<sup>th</sup> of Feb.



## **Second Climatic Constrain**

# Variation of Annual Rainfall (Évora)



Relationship between rainfall (Nov to Feb.), applied nitrogen and wheat yield. Vertic Clay Soil - Beja – South of Portugal



Which yield? Which NUE?

Carvalho et al (1996)

## **Major Soil Constrains**

#### Soil organic matter content (70% of Portuguese soils has less than 1% SOM)

Poor drainage (Luvisol and Vertic Clay Soils) (how to ensure soil trafficability)

#### Two major difficulties for a high efficiency in the use of nitrogen

How to match "year requirements" with N applied (the traditional approach of expected yield does not work) (How to avoid mistakes)

N losses due to leaching/volatilization in wet winters (N deficiency during tillering and spikelets differentiation) (Splitting; Type of fertilizer; Crop rotation; Soil contribution)

# Luvisol and three years

Total N: 0 – 60 – 120 – 180 and 220 kg N/ha N at seeding: 0 – 20 and 40 kg N/ha First top dressing: 0 – 30 and 60 kg N/ha (20<sup>th</sup> Jan) Second top dressing: 0 – 60 and 120 kg/ha Three applying dates of second top dressing Model developed N fertilizer application according rainfall for wheat production (Luvisol and Vertic Clay Soils)

 $Y = 574 + 10.25 \text{ N} - 0.04 \text{ N}^2 - 1.76 \text{ R}_1 + 0.001 \text{ R}_1 \text{N} + 19.6 \text{ R}_2 + 0.09 \text{ R}_2 \text{N}$ 

 $F_{[6,74]} = 106.81 \text{ p} < 2.15 \text{ E}^{-34} \text{ r}^2 = 0.90$ 

**Optimal Economic N Level** 

 $N = 78.1 + 0.01 R_1 + 1.1 R_2$ 

# Independent validation of the N management model Two years and two different soils (Luvisol and Vertic Clay)

|              | Seeding   | 1rst Top Dressing | 2nd Top Dressing |
|--------------|-----------|-------------------|------------------|
|              | (kg N/ha) | (%)               | (%)              |
| то           | 0         | 0                 | 0                |
| T111         | 20        | 50                | 50               |
| T112         | 20        | 50                | 100              |
| T113         | 20        | 50                | 150              |
| T121         | 20        | 100               | 50               |
| T122 (MODEL) | 20        | 100               | 100              |
| T123         | 20        | 100               | 150              |
| T131         | 20        | 150               | 50               |
| T132         | 20        | 150               | 100              |
| T133         | 20        | 150               | 150              |

## Validation of the Model - Luvisol



## Validation of the Model – Vertic Clay Soil



#### Effect of tillage on the saturated hydraulic conductivity Vertic Clay Soil- 6th Year



Adapted from Carvalho and Basch (1995)

### **Drainage + Soil Cohesion = Better soil trafficability**

## Effect of nitrification inhibitor on N use efficiency by wheat during the winter

 $NO_3NH_4 - 20$  kg N/ha at seeding and the rest at 20<sup>th</sup> Jan. NH<sub>4</sub>+DMPP (3,4-dimethyl pyrazole phosphate) – ENTEC BASF single application at seeding



N Applied (seending + first top dressing) (kg N ha<sup>-1</sup>)

#### Effect of the crop rotation on total N in the soil before the seeding of the wheat – Vertic Clay Soil – Average of four years



A -Between forrage legumes and sunflower

**B** -Between grain leguems and sunflower

Carvalho et al. (1998)

#### Wheat response to N after different preceding crops Vertic Clay Soil – Average of four years



Carvalho et al. (1998)

### Soil Organic Matter Evolution under Different Tillage Systems Revilheira Experimental Farm- Luvisol



### Effect of soil organic matter (O.M.) on the wheat response to nitrogen fertilization



 $Y = 631 + 35 \text{ N} - 0.07 \text{ N}^2 + 2718 \ln(\text{O.M.}) - 8.6 \text{N}$  (O.M.) (r<sup>2</sup>=0.80 p<0.001)

# Effect of Soil Organic Carbon (SOC) (0-30 cm) on the Efficiency of Applied Nitrogen



SOC (%) (0-30 cm)

## Nitrogen Fertilization Experiment 26<sup>th</sup> March 2003/2004



Field under NT+Straw 1,2% C (0-30cm) Field under CT 0.6% C (0-30 cm)

# CONCLUSIONS

Use efficiency of applied nitrogen for cereal production under Mediterranean conditions:

- Can be improved by Managing N fertilizer (amount and time) according "winter" rainfall in order to avoid mistakes (management model and soil transitability)
- But the benefits of using nitrification inhibitors or legumes do not seem to improve NUE significantly

## HOWERVER

 Significant increases of applied NUE can Only be achieved by Increasing soil organic matter content