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Exist6ncia e Regularidade de Minimizantes

para Integrais em DimensS,o 1 do Cdlculo das Variag6es

com Lagrangiano Nd,o-convexo Aut6nomo

Maria Clara da Palma Carlota

Resumo

Nesta dissertag6o apresentamos novas condig6es que provamos serem suficientes para

garantir a exist6ncia, e alguma regularidade, de minimizautes para integrais simples

aut6nomos nio-convexos

rb
{. (r (t) , rt (t)) d,t, I t (" (t) , *' (t)) dt ,

Ja

com /: lR x IR. --+ [0,+oo] (resp. -L : lR" x IR'--+ [0,+oo]), na classe das fungOes

absolutamente contfnuas r : fa,b] -r R. (resp. r : {a,b] -+ lR'') com r (a) : a,
u(b): g .

O lagrangiano l: IR x IR -* [0,+m] pode: ter /(s,') ndo-convexa (mesmo em

( : 0), assumir o valor -loo livremente, ou ser nd,o-boreliano. De facto, impombs

apenas as seguintes hip6teses bd,sicasl. l(.) c L86-mensur6,vel com l. (s, .) semicon-

tlnua inferiormente e superlinear. Para um tal lagrangiano / (') , mostramos exist0ncia e

regularidade sob mais uma hip6tese extra a ser escolhida entre vd,rias possibilidades.

Relativamente ao lagrangiano .L (.) , este pode ser e.g. semicontlnuo inferiormente e

superlinear; e substituimos a hip6tese usual de convexidade pela hip6tese mais geral de

"almost convexity", que no caso superlinear radial I (s, lul) 6 automaticamente satisfeita

quando I (t,.) 6 convexa no zero.
No que diz respeito ao caso escalar, os resultados foram obtidos generalizando os resul-

tados de A. Ornelas pala o caso 0-convexo, l** ( . , 0) : I (' ,0); nomeadamente usando

a bimonotonia. Esta propriedade de regularidade foi a base de partida para conseguirmos

provar os resultados aqui apresentados.

Relativamente ao caso vectorial, os resultados foram obtidos usando reparametrizag6es,

e aplicando os referidos resultados de bimonotonia a tais reparametrizag6es.
Apresentamos tamb6m algumas aplicag5es destes resultados para provar a exist6ncia de

minimizantes em exemplos concretos onde nio se podem aplicar resultados j6 conhecidos.

,,: ,

Palarnas chaae: cdlculo das variag6es, integrais n6,o-Iineares n5,o-convexos, propriedades

de regularidade.



Existence and regularity of minimizers

for 1-dim integrals of the calculus of variations

with nonconvex autonomous lagrangian

Maria Clara da Palma Carlota

Abstract

In this thesis we present new conditions which we prove to be sufficient to
guarantee existence, and some regularity, of minimizers for nonconvex autonomous 1-dim

integrals 
rb ft
I t("(t), x' (t)) dt, 

J, 
t@(t), r' (t)) dt

Ja

with / : IR x IR --- [0,+m] (resp. .L : IR." x IR' --+ [0,+oo] ) among the absolutely

continuousfunctions r:la,b)*R (resp. r: [o,b] --+1R.") with t(a):A, t(b):fi-
Thelagrangian /:lR.xlR--+[0,+m] may: have l(t,') nonconvex (evenat (:0),

assume *oo values freely, or be non-Borel. Indeed, our only basic hypotheses arel. l(')
is, 4 I B-measurable and has / (s, . ) lower semicontinuous and superlinear. For such

I (.) , we prove existence and regularity under an extra hypothesis to be chosen among

several possibilities.
As to L (.) , it may be e.g. superlinear lower semicontinuous; and we replace

convexity by almost convexity, an hypothesis which in the radial superlinear case .L (r, lrl)
is automatically satisfied when .L (s,') is convex at zeto.

Concerning the scalar case, our results have been obtained by generalizing the results

of A' ornelas for the O-convex case, /** (' ,0) : l(' ,0); namely using bimonotonicity'
This regularity property has been the starting basis to reach the results here presented.

As to the vector case, our results have been obtained by using reparametrizations, a,nd

by applying the bimonotonicity results to such reparametrizations-

We also present some applications of these results to show existence of minimizers in
concrete examples, not covered by previous results.

Key words: calculus of variations, nonconvex nonlinear integrals, regularity properties
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Chapter 1

Introduction

Consider the classical problem of the calculus of variations: minimize the integral

I,u 
r(r,*(t),r'(fl) at on X\,s, (1.1)

where XL,B,n)1, istheclassof AC (absolutelycontinuous) functions r:la,bl--
IRn satisfyingboundaryconditions r(a):A, r(b):9. (Inthe smlar case zz:1
we will rse Xap instead of X),r.)

The aim of this thesis is to prove new suf f ici,ent conditions guaranteeing existence
and regularity of minimizers for the problem (1.1) when the lagrangian L(.) is
autonomous, i.e., does not depend on the variable t (time):

.L : lR' x IR' --+ [0, +oo] .

(In the scalar case we will use /(.) instead of f (.).)
A classical example is the brachistochrone (or path of quickest descent) problem

which consists in the following: given two points in the vertical plane a : (a, B) and

P:(b,B) (A<B), findthecurve C joining a and f suchthatamaterialpoint,
starting at q,, will glide from o to B along C , under the force of gravity only, in
Ieast time (neglecting frictional effects). Labelling the horizontal axis with , and the
vertical axis with s, and assuming s to be positive downwards, well known mechanical
arguments lead to the conclusion that the curve C should be the graph of a minimizer
of the integral (1.1) with the lagrangian

/(s,O: JTT P
,S-s - n'

The solution is the ( unique ) cycloid with a vertical cusp at a and passing through B .

One could argue that the calculus of variations was born in June 1696, when Johann
Bernoulli presented this problem to the international mathematical community, as a
challenge.
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The first approach to solve problem (1.1) was what we can call an indirect method,
based on the naive idea they had that (1.1) always has a solution y (.) : to determine
it, one looks for conditions that minimizers must satisfy (necessary conditions) ,rrd
then eliminate possible candidates until eventually they become reduced to a unique y (.).
But this method can fail due to several reasons, one of them being because problem (1.1)
may have no solutions.

In 1915 Leonida Tonelli (tT]) presented a direct approach to problem (1.1), the
so called di,rect method of the u,lculus of uariat,ions. Indeed, he realized that by
transferring to the integrals of the calculus of variations the Ascoli-ArzelA compactness
and Baire semicontinuity theorems for real functions, he could obtain an edstence theory.
The reasoning to prove existence of minimizers for the integral (1.1) is the following:
prove that it is Isc (lower semicontinuous ) with respect to the weak topology of. Xf;,,
and then show that there exists a minimizing sequence (y" (.)) which converges weakly
to some y (.) e Xi,a . Indeed, in such case we have:

,ct?it,, t r'@ (t) , '' (t)) dt < I: L @ (t) , vt (t)) d't 3

< l*ii*r I! t @"(t), yL(t)) dt,:,pfii,, I!, t@(t), *' (t)) dt.

If f (.) is lsc with superlinear growth, i.e.

I (", €) > d (l€l) V (r, €) with 0 (r) /r + *oo as r --+ .roo,

and ( r-+ I (", () is convex then these conditions are satisfied. Indeed, lower semicontinuity
and convexity ensure the weak sequential lower semicontinuity of the integral ( see e.g.

[De G], [Ol 1] , [Io]), while the superlinear growth ensures the relative compactness.cf
minimizing sequences ( see e.g. [Bu Gi Hi] , [Ek T"] , [C] ).

Though these hypotheses are sufficient to get existence of minimizers, they are not
necessary, as simple examples show. For instance, if / : IR ---, [0, +oo] is a lsc function,
not necessarily convex or with superlinear growth, for which Aepil(.) (i.e. the closed
convex hull of the epigraph of l.(.) ) has only bounded faces, then it is easy to see that
for any A , B e IR there exists a minimizer for the integral

on XA,B,

which, moreover, is Lipschitz continuous.

Therefore, in the last years several authors investigated the possibility of eliminating
the hypotheses of convexity and / or superlinearity and of wea,kening the regularity required
on I(.).

Concerning the scalar convex case, the regularity hypotheses on the lagrangian have
been much weakened by [De G Bu Dal M] and [Amb]: they proved that to obtain weo,k

l,u 
n (o (t)) dt
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sequential lower semicontinuity of the integral one does not need to impose / (.) to be

ls'c, it suffices to ask I (.) to be only L S B - measurable ( as in [Roc We, 14.34] )
with / ( . , 0) Isc, provided the slope at zero is integrable , i.e. there exists m (') in
It" (R) for which

t(t,€) Z l(s,0) + rz (s) ( Vs, €. (1.2)

Therefore for such a convex / (.) with superlinear growth there exist minimizers for the
integral

rb

J" 
t @(t), *'(t)) dt on xA,B.

Even though this hypothesis is quite weak, in [Or 3] it was proved that (1.2) may
still be weakened, namely replaced by any one of the following hypotheses: either A : B ;

or l,(.) is lsc at (s,0) Vs; or l.(.) is integrably boundednear zero, i.e.

1l,M:lR-(0,*oo), lxMe L|(A,B)t /(r,OS,(r) Vl€l S i6 Vs; (1.3)

orelse,moregenerally, (.(.) is approri,mablewithintegrableslopesatzero, i.e.:

Vne N 1pn,lR.--+[0,n] lsc with (p"("))/1.(s,0) Vs, (1.4)

lm*(.) e LL(A,B) : [(",€) > p*(s) * rn"(s) ( V",€. (1.5)

This hypothesis (1.4) + (1.5) is weaker than (1.2) even in the case of a constant sequence

- i.e. pnG) : l, (s,0) and m"(s) : m(s) Y n - because rn, (.) needs to be integrable
only along co {A,B}, instead of on any bounded interval (even if the minimizer may
have values outside of co {A,B} ). Moreover, (1.4) + (1.5) is also weaker than either
(1.3) or the hypothesis of /(.) being lsc at (s,0) Vs.

The above considerations concern the convex case, i.e., l(tr.) convex. But also

this hypothesis may be weakened. Indeed, a series of papers have been devoted to the
progressive weakening of the hypotheses allowing existence of minimizers to be proved in
the nonconvex case ( see e.g. [Ol 2] , [Au Ta] , [Marc] , [R.y] , [Ce Co] , [Ce Mari] ,

[Am Ce] , [A* Mari] , [Marq Or] ). In all of these paperc ( except for [Ray] , see (3.11) ),
existence has been proved tor (.(.) of. sum*type, i.e. .r

/ (r, €) : ,b(") + p(s) h(€) (1.6)

with p (.) = 1 , imposing on the lsc rlt (.) different geometric restrictions. In the last one
( [Marq Or] ) / (.) is assumed concaue - monotone, namely , 1b O is conu,ue (resp.
monotqne) along each interval of an open set C (resp. M) wit}a C UM: IR; while
in [Am Ce] , ,bO should satisfy the following: Vs e IR. 3 open nonempty interval,
withanextremityat s, where {rO decreasesstrictly (incase h..(0)<h(0)) asthe
distance from s increases.

Afterwards it was shown that these geometric restrictions on the lagrangian may be
weakened under the extra hypothesis of 0 - conaerity :

l(',0): l** (',0), (1.7)
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where 1..(.) is the bipolar, defined by epi {.*" (s,') :: @ epi l(t,') Vs. Indeed,

several pape$ ( [Am Ce], [fu Marc Or], [Or 1], [Or Z]) have weakened progressively

the hypotheses imposed to prove existence of minimizers under (1.7). The first 3 of
these papers dealt mainly with the sun't, case cited above, while [Or 2] treated completely
the " af f ine " case (L.6) .

Finally, the general nonlinear case l,: IR. x IR. --+ [0, +oo] was treated in [Or 4] ( see also

[Or 5] ) under extremely weak hypotheses. Namely assuming l(') L e B * measurable
with /(s, ') lsc, [Or a] proved existence of a 0 * relared minimizer gro (') (i.e. a
minimizer for an integral whose lagrangian is, in a sense, the convexification of l(t,')
only at the velocity zero Vs (see (2.11)) ) which is a true minimizer whenever

P('): l** (',0) : /(',0),
where p(.) :: l'(.,0), with l'(-) the largest of the 0 - lsc - conaen fundians
S [(.) (see deflnitions 2.1 ard 2.2), so that, in particular l'('): /**(') whenever

l.* (.) is lsc at ( : 0, i.e. at (r,0) Vs. Moreover, it suffices to 0 - conue*i,fy
the lagrangian /( s , .) only at one special point s' , because such yo (') is known to
satisfy a special regularity property, it ls bimonotone ( namely: apart from a (possibly
empty ) interval (o',b') where it rema'ins stopped at the mentioned point s', yo -(')
is strictly mqnotone ( with yi (t) + 0 a.e. ) along each one of the remaining intervals,

[o, a'] and [b', b] ). More precisely, once a bimonotone minimizer yo (') is known, then
either the stopping interval is empty and no convexity condition is needed, even at zero;
or else a' < b' and - without affecting the property of g, (') being a minimizer -
one may redefine (.(s,0) to become *oo at every s f s'. This is the main basis on
which this thesis stands.

In chapter 2 we present the results obtained in [Or 4] (see also [Or 5]), concerning
the existence of 0 - relared minimizers, in the superlinear case, for the L-dim integral

on X.n,a.

Chapter 3 is devoted to prove existence of. true minimizers, in the superlinear case,

even with p(s) < l**(t,0) < /(s,0) Vs, provided an adequate extra hypothesis is

satisfied, which needs a previously known 0 - relared minimizer go ('), to be stated
precisely. Indeed, defining So ,: yo ([o,b]) and poO :: flso ('), then such extra

hypothesis consists in imposing: there must exist some minimizer s' of. go(') whiih
is not a n1,ean - strict minirnizer of p (.) . This hypothesis generalizes directly the
hypotheses of [Am Ce] and [Marq Or] , and also the preceding ones ( of [Au Ta] ,

[Marc] , [Ruy] , and [Ce Co]). Notice that one can also give very general hypotheses,

nainely e.g. (3.10) and (3.12) (asincorollary 3.7), underwhichexistenceofminimizers
rnay be guaranteed without needing to know y, (').

On the contrary, in chapter 4 we prove a new SC (sufficient condition) on the
boundary data (a,A,b,B), which is applicable even when l(') does not

l,u 
n (r(t), *'(t)) dt
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satisfy the extra hypothesis of chapter 3. Indeed, such SC guarantees existence of a
bimqnotone 0 - relared minimizer yo (.) which d,oes not stop so that it is a true
minimizer. Therefore this SC replaces completely the condition of 0 - conaerity;
under it, existence of minimizers is obtained without any conuefri,ty hypothesis, and
with almost no regularity hypotheses on the lagrangian I (.) . Indeed, besides the
Basic Hypotheses of chapter 2 and superlinearity, we only need the validity of the
DuBois - Reymond diJ f erential i,nclusion (2.15) for the relaxed minimizer.

The bimonotonicity results of [Or 4] are also used in chapter 5, where we prove new
sufficient conditions for existence and regularity of minimizers for the 1-dim integral

I"u 
, (, (t) , *' (t)) dt on X\,,e.

Since L(t,. ) is allowed to be nonconvex, we consider the bipolar tr**(s,.) of
.L(r, .), and the corresponding convexified integral

f^u 
,.. (, (t) , t' (fl) at on X\,,a.

We call y" (.) arelaxed minimizer provided y" (.) minimizes this integral.
Unlike the scalar case, in this vector case the hypothesis of 0-convexity does not suffice

to guarantee existence of minimizers ( see section 5.5 ). Indeed, one needs to impose more
than just O-convexity in order to obtain, for general dimension, the same operational
possibilities ; namely almost wnaerity. This concept was born, for multifunctions, in
the paper [Ce Or], to prove existence of solutions to nonconvex differential inclusions
and to time-optimal control problems, using reparametrizations. The technique of repara-
metrizations has been used by A. Cellina and collaborators, during the last decade, to
prove also: Lipschitz properties for minimizers ( see e.g. [Ce] , [Ce Fe] ) and existence
results for convex noncoercive lagrangians (see e.g. [Ce T} Za], [Ce Fe]).

In the first result we present, L (.) is assumed to be lsc with superlinear growth
at infinity. This ensures existence of a relaxed minimizer y"(.), which is then changed
to become a new relaxed minimizer g (.) for which L*" (y (t) , y' (t)) : L (y (t) , y' (t))
a.e. on [a, b] ; so that y(.) is a true minimizer. In the second result, existence of y" (.)
is used as one hypothesis. We need no growth assumption to turn y. (.) into y (.), in
particular we do not need to impose coepiL (s, .) closed.

We also present applications of these results to show existence of true minimizers in
concrete examples, not covered by previous results.

As said above, two techniques have been combined to prove these results. The first one
is the above cited reparametrizations, while the second technique is bimonotonicity. Here,
for the first time, bimonotonicity is applied to the reparametrizations.
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Concerning the convex noncoercive vector case, there are available results (see e.g.

[Cl], [Ce TY Za], [Ce Fe]), which ensure existence of relaxed minimizers. However, as

far as we know, corollary 5.5 is the first existence result obtained in the general vector
nonconvex noncoercive autonomous case. Indeed, nonconvex, noncoercive vector results
have been obtained but just for lagrangians of sum-type (see e.g. [Cr] , [Cr Mal 1] ), or
for radial lagrangians (see e.g. [Cr Mal 2]).



Chapt er 2

Preliminaries for the scalar case

2,L Introduction

This chapter contains preliminaries for the scalar case treated in chapters 3 and 4,
where the problem considered is to prove existence, and regularity, of minimizers for the
1-dim integral

/"u 
n (* (t) , *' (t)) dt on XA,B, (2.t)

where Xa,s is theclass of AC (absolutely continuous) functions a:la,b) *lR with
r(a) :,4 and n(b) : B . The lagrangian / (.) win always satisfy ( in chapters 2, 3, 4)
the following extremely weak

Basic Hypotheses: /: IR x IR --- [0, +oo]

is f, 8 B - measurable (as in [Roc we]) with l(", .) lsc (lower semicontinuous)
Vs.

Any function as this /(.) wil be called a BH - function., for easier reference.

Since we allow / (s, .) to be nonconvex, we also use its bipolar l*. (.) ( defined by
epi l.** (s,.) :: @ epi l(t,.) Vs, namely the closed convex hull of the epigraph of
l(t,-) ) together with its 0 - lsc - conueri,fied lagrangi,an 1," (.).

" We call y (') a relared minimizer of (2.1) provided y (.) minimizes the integral
obtainedbyreplacing /(.) in (2.1) by l'(.); andthe superlinear growthhypothesis
(2.2) is used to obtain (via d,irect method,) existence of relared, minimizers,
from which 0 - relaxed m'inimizers of (2.1) are built. These are minimizers of the
nonconaerified integral, which is obtained from (2.1) by replacing l(.) with the
noncanuexified lagrangian l,o (.) .

The aim of this chapter is to define precisely all these concepts, and to review the
preceding results (of [Or  ] or [Or 5]), concerning existence and regularity proper-
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ties of 0 - relared minimizers. This is important for drapters 3 and 4, since 0 -
relared, minimizers are the starting basis for those chapters.

2.2 Existence of 0-relaxed minimizers

Definition 2.1 A BH * function is calld, superlinear prouided

as 16l - *. (2.2)

A BH - functi,on l(.) hauing l(t,.) conuer Vs is called 0 - lsc - conuen
proaided {(.,0) is lsc and l(.) is approrimableby integrable slopes at zero, i.e.

Vn e N 19,, : JR -- [0, n] lsc with (p" (r)) / (,(s,0) Vs

tm*(.) € ,t. (R) : l(t,0 2 p"(s) * m"(s)€ Vs, €.

(2.3)

(2.4)

To see an example, consider the BH - f unction

u, r\ l(r*€rlrl-')* fors*0and, (€l :1 or €:0)
/(s,O :: { i lor s :0 and, (€l : 1 or €:0)

t+* Vs for l€l >1.
Then /**(.) is 0-lsc-conuen for d<2, but l*"(.) isnot 0-lsc-conuer for
6>2-

Notice: any superlinear function / : IR x IR --+ [0,1oo] which is lsc has t** (.)
0 - lsc- conuer, since l** (.) is then Isc; indeed, more generally, any superlinear
BH-function with (.(t,.) conaer and (,(.) lsc at (s,0) Vs is 0-lsc-conuer (see

[Or3,th. 1]). Inparticular, a \-lsc-conaen function L(.) mayhave l.(s,0):*oo,
or 0(.(s,0):0 with finite /(s,0); indeed, what matters is, somehow, integrability in
s of theslopeof l(t,.) nearzero. Thereare 0*lsc-conuer functionswhicharenot
lsc at t : 0; see e.g. the example above with 6 < 2.

Definition 2.2 Giuen any BH - f unction l(.), d,efi,ne the 0 - lsc- canaerified
lagrangian l.'(.) to be the largest of the 0 - lsc- conuen BH - functions < lO.
Define also

p (.) ,: l' (. ,0) . (2.5)

One easily checks that such l'(.) always exists, hence we may consider the correspon-
ding 0 - lsc- conuerified integral

l"u 
n" (, (t) , ,' (fl) at on XA,B, (2.6)
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for any B H - f unctian l. (.). In concrete applications, with an explicitly given superlinear
l.(.), ore may not know exactly what /"(.) is; however, in such cases /c(.) may be
replaced by the following easily computable function V(.), in all that follows. (But
notice: /" (.) is in some cases, as in the example above, better than V, ( ) . ) to compute
Z(.), define f (.), g (.), h(.) by: "pif O,:@t(.); epts (s,.):: @ept f (s,.) Vs;
h(.,€)::[.(-,() for €10 and t (.,0)::s(.,0); uprT(s,.)::@epih(s,.). Then
Z(.) isconvexand lsc at (-0 (see [Or3,part(j)ofproof,p. 10]).Therefore 7(.)
is 0-lsc-canuer.

Proposition 2.3 (See [Or 3, th. 1])

. Let l.(.) be a superlinear BH - function. Then for any A, B there erists a
relared minimizer y. (.) ( i.e. a minimizer of (2.6) ). Moreouer, we nxay impose y"(.)
to be bimonotone (i.e. properties (ii) and, (iii) , of definition 2.4 below, hold, with
yo (.) replaced by y"(.)).

In the remaining of chapter 2 ( and chapters 3, 4 ) we restrict our attention mostly
to the set ,So ::A"(la,b]) with y. (.) as given by proposition 2.3, we define

and consider the sets

Si,at: {ste Sa,B, po("'):/(r',0)}, Si,at: {s'e ^9a,6 , po("') < /(s',0)}.

' Consider now the nonzero ertremities a (s) , B (s) of the intervals of affinity of
(.?(s,. ) which have the other extremity at € : 0. Or, more precisely, consider the
subdifferential 01."(s, .) of l' (t, -) (see [Ek Te, p. 20] ), and define the set

d(s):: (01.'(s,.))-'(O(.' (s,0)): {€ e m :0f (s,€)nAt'(s,glA}.

Then, assuming l(.) to be a superlinear BH - function,, as v/e always do here, we
have: the set {0} U 4 must be an interval

Io(s),B(s)] with *(") < 0 < 0(s); (2.e)

l"(",- ) isaffinealong [a(s),0] andalong [0,0@) - andevenaffinealong [o(s),8(s)]
whenever s € Solz, see (3.1), in particular for those s e ,Sals for which /** (s,0) :
p (s) - and the following equalities always hold true at those s where " 

(s) * 0 ( resp.

0 G) * 0) : {.'(s,o(s)) : l(s,o(s)) ( resp. ["(r,,8(r)) : l(s,6(r))).

For each s € ,So ,

{ (e, l'(", () )

consider the set Y (s) of those ( I 0 for which ( see [Roc] )

Po (') :: rlso (')

SA,B,: {"'e ,S, r p" ("') : min g" (.)}

(2.7)

(2.8)

) it a 0 - dimensional f ace of epi Lc (r, . ) ; (2.10)
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and define the nonconueri,fied lagrang,i,an

( f G,0 for €eV(s) and s€,So
I

lo (",€) ': { ,f (") f or € :0 and, s € Sa,B

I( *oo elsetohere,

together with the nonconoerified i,ntegral

rb

J" 
,o ("(t), *'(t)) dt on XA,B, (2.11)

for any BH - function l,(.). (Notice: in concrete examples in which y"(.), hence
S, *d SA,a , may be not explicitly known, one may define /0 (.) using IR instead of
.9s and Sa,6, butjustforthedefinitionof. [.0(.). Noticealso: theideaof l0(.) is,
somehow, to obtain the largest function having bipolar (.0*" (.) : t. (.) where it matters;
and l.' (r,{): l(",€) V€eV (s) Vs€S,.)

Definition 2.4 Wecall yoO a \-relared minimizer of (2.1) on Xap prouiiled
yoO has ualues yo(la,b]) : S. and is a b'imonotone minimizer of the nonemtuerified,
integral , in the sense that yo (.) € xn,B minimi,zes the 0 - lsc- canuerif ied integral
(2.6) on this class and, (usins l" (.) , g O , eo (.) as d,efined, in (2.b) and, (2.11) )
y" (.) satisfi,es the following regulari,ty :

1t) t" (u"(t), y',(t)) : to (u"(t), yLQ)) a.e. in lo,bl;
(ii) y"O remains a constant st along some subinterual (o',b'), witha, <b,;

(iii) yo(.) is monotone along each one of the remaining subinteruals, lo,o'l and fbt,bl,
wi,th deriuatiue "bounded o,uay" from zero, in the sense that

y[(t) 4 {0i u ( o,(y,(t)),0@,$))) o.u. in fa,atlulb',bl; (2.12)

(i")
l" (u, (t), v'"(t)) : I (ao @, v'"(t)) a.e. in fa,atlulbt,bl; (2.13)

(r)
s' e Sap, (2.14)

wheneuer t l' (y"(t) , y'"(t)) dt ( *m.
We say that yoO stops (resp. d,oes not stop) in case a'<b, (ntp. a,:b,).

One may alwags choose the stopping point st € St,a.

10
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Proposition 2.5 (See [Or 4, th. 1] or [Or 5, th. 1])

Let l.(.) be a superlinear BH - function. Then for any A, B the nonconuer
integral (2.1), defineil onthe class Xap, has a \-relared minimizer yoO.

Remark 2.6 Accord,ing to [Amb As Bu, th. 4.1] (see also [Dal M 1T, th. 3.10]), any
minimizer, as U"(.), of the conuerffied integral (2.6) satisfies the DuBois - Reymond
dif ferential inclusion (i.e. there euists a constant q for which

l.' (u" $) , y'" (t)) e q * yt" G) a (.' (a" (t) , y'" @) a.e. in [o, b] )

proaided the minimum ualue is finite and

yt"$) e interior ((.'(y.(t) , .) )-' (m) a.e. . (2.16)

Clearly a s'imple wey ol guarantee,ing this is by ashing the d,omain
(l'(y"(i) , .) )-' (R) to be open for a.e. t; and, this happens automaticallg in case

l' (y"(t), R) c R. f o, a.e. t e [a,b]. (2.r7)

Giaen a relared minimizer A"O (guaranteed to erist by proposition 2.3), the
proof of proposition 2.5 consists in changing it so as to obtain a 0 - relared minimizer
yr(-). This proof shows that il y"O satisfi,es the DuBois-Reymond differential inchrcion

{2.15) for l,'(.), ind,epend,ently of (2.16) holding true or not, either for y"(.) or for
AoO, then also yoO satisfi,es it for l,o(.), with the same constant q.

Remark 2.7 For a function l, : IR x lR --+ [0, +m], a simple way to obtain L A B-
measurab'ility is to ask that ll ,0 be measurable Y { and l.(s, .) be either continuous
( ".g. conuen with finite aalues) or else conues lsc with d,omain neaer a singleton V s ( see

[Roc We, 14.34, 14.39, 1/r./r2]). Notice also : definition 2.2 implies the rneasurability of
l'(" (.) , n' (.)) Vr (.) e XA,B , see [Or 3, prop. 2] , hence definitions 2.4, 3.1 malee
senge.

(2.15)

11



Chapter 3

Existence in the scalar case
without mean-strict minimizers

3.1 fntroductron

This chapter is devoted to prove existence of true minimizers, for superlinear
BH-functi,ons /(.), evenwith g(r)</**(",0)< l,(s,O) Vs, providedanadequate
extra hypothesis is satisfied, which is stated by using a 0 - relared minimizer yo O ,

already known to exist. Indeed, defining So i: ao([o,b]) -rd po (.) r: pls" (.), then
such extra hypothesis consists in imposing: there must exist some minimizer s' of p, (.)
which is not a mean- strict minimizer of g(.) . This generalizes directly the hypotheses
of [Am Ce] and [M-q Or] , and also the preceding ones ( of [Au Ta] , [Marc] , [Ruy] ,

and [Ce Co] ); and allows to show existence of minimizers in many cases even without
knowing go (.) , as e.g. in corollary 3.7.

Given the extreme weakness of our Basic Hypotheses, we should clarify precisely what
we mean by a solution of (2.1)

Definition 3.1 A functi,on y(.) e Xt,e is called a minimizer of the integrul (2.L)
prouid,ed y (-) minimizes the \-lsc-conueaified integral (2.6); arul l(y (.) , y' (.)) :
t'(y (.) , y' (-)) a.e. (untess Il t" @ (t) , a' (t)) dt: +oo ).

This definition makes sense: g(.) will give to the integral (2.1) a value S than
any other "(.) € Xa,e for which the integral (2.1) is defined.

12
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3.2 Existence and regularity of true minimizers

Flom now on we will consider a 0 - relared minimizer yo (.) ( Suaranteed to exist
by proposition 2.5 ), hence So : yo ([o, b]) and go (.) r: plso (.) . h what follows, when
we mention the nonempty interval (s', s) we mean, more precisely, interior (co {s', s}) ,

regardless of having s > s' or s < s'.
Using o(.),0(.) asin (2.9), definetheset Say. of.those s€lR atwhich l.(s,.)

is af f ine at zero , i.e.

o(s) < 0 < 0(r) and 1,"(s,0): (1- \)(."(s,a(s))+ ),(.'(s,0(r)), (8.1)

for anadequate ) to have 0 : (1 - )) o(s)+.\p(s). BV (2.9), (..(.) *uybereplaced
bV l(.) inthe rhs of.equality (3.1). Considernowthefunction

t t --b for seSoy2
p:rR--+(0,+m] , p(r) ':{ 

la(e)l rB(s) rv' o!uatz 
(8.?)

( +* fo, s # Sof,l

and, for each bounded open interval ^91 0 satisfying the integrability condition

/, (.) € L' (S) ,

define the p - rnean ,integral of p (.) over ^9 by:

$rvG) 
as,: ffi lrvG) 1t(s)ds.

(3.3)

(3.4)

For each s' € So consider Sofu(s'), namely the set of those s # s' for which the
interval 

^9 
,: (s', s) satisfies (3.3) . Clearly Sol, (s') is always the union of two intervals,

each one of them possibly empty or bounded ( maybe including the extremity away from
s') or unbounded. Define also the set ^9,;,(s') consisting of the points s e Soy"$t)
for which p (s) : (.(s,0) ( min p"O.

Definition 3.2 We say that ste S,q,,a is not a nl,ean- strictminirnizer of p(,')
prouid,ed: either

s' e Sn:p; (B.b)

or

s' belongs to an open

or else I si e ,S, for which:

3s" e Sry, (r'r) \S. ,

f A interual S c Se,a hauins p (.) € ,t (S) ; (3.6)

either

bt _ at fs"
-+ ez and, il e@) d,s < min eo (.) (8.7)
Ii1' u@ a' J"1,

13
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or

or else

1s" e Soy, (ri) \S" 9@) do < min rpo (') Vs e (s'1,s"); (8.8), f:,

Remark 3.3 In definition 3.2, it appenrs easier to grasp its meaning by naming it,
as we did, in the negatiue way. In concrete applicationa, to proue eristence of min'imizers
for (2.L) with erplicitly giuen l(.), it may turn out rnore conuenient to select s\* s' .

Morenuer, in the rest of this remark we will assu,n'Le, to simplifg, s'r : s'.
In the spuial "af fine" case (3.18) in which p(.) is constant and, rlt (.) : p(.)

is lsc and is conm,ue - monotone at st , in the sense of st bel,onging to an open interaal
I where g O is either concaue or monotone, then clearly g (.) satisfies (3.6) or
(3.8) /or son'Le s" with either s" < s' or s' < s't 1 ind,eed,, such g (.) must satisfy

V s' € IR. lst' f st : g (.) decreases along co {s', s"}
as the distance from st increases.

(3.10)

(Notice: in the reali,ty we need, (3.10) to be satisfierl only for those st e 5a,6, see
(2.7); and, by IO d,ecreasing ue n'tean either non-strictly or strictly.) Since this is
the hypothesis rrced (with stri,ct decrensing) in lAm Cel, in particular definition 3.2
generalizes both the hypotheses of lMarq Ol and of lAm Cel. Of course d,efi,nition 3.2
also generalizes the one of [Roy], imposing

*0 V s, (; (3.11)

indeed,, if one aslcs this for (:Q only, then it means this C2 p(.): l"(.,0) cannot
haue local minimum points, hence has to be strictly monotone. As to lAu Tal, they ask
(3.11) to h;otd V{ e Ia(s),B(s)] Vs.

Let us comment now on definition 3.2 itself. As to the integrability condition p (.) €
It (S) , i,s easily imposed, e.g. by asking:

1s" e soy,Gi) t s, , 
W", 

(r) ,rl I b' -a' and 
f"," ,(s) ds ( min p, (.) . (3.9)

p(.) : t** (. ,o) <t (.,0), p(.) :: |oh . Eh € ,t" (R). (3.12)

(This hold,s e.g. inthe "af fine" case (3.18), with p(.) > 1, h(.) , rlr(.) anit p(.)
lsc, and, h.. (.) < h (.) .) Once such integrability is guaranteed,, then Soy, ("') : R\ {r'} .

Therefore what really matters, in general, to be able to apply d,efinition 3.2 in cnncrete
eramples, is to know whether it is possible to find, such a point stt satisfying the inequality
(3.7) or (3.8) or (3.9) . And, of course, this is possible only in case 9 O has some
one-sid,ed mean, as in the lhs o/ (3.8) wi,th s near st , which is < p (r') . One
possibility for this to happen is e.g. in case gO increases (ntp. decreases) or

*V"(",6)- r&n'a,*tf

t4
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remains constant along a small open f A interaal to the left (ntp. right) ol s, .

But clearly (3.7) or (3.8) or (3.9), can neaer be satisfi,ed at a minimizer s' o!
poO if, say, s' is also theunique globalminimizer of 9O; orif l.(.) is so wild,that
l(r',r) \S"r,l )0 or F,(.)eZl(s',s) or p(.) tr(.)4L'(t',s), Vsf s/.

Another possi,bility to get (3.7) or (3.8) or (3.9) , is : 9 (.) might, say, d,ecrease
strictly as one approaches st from the left; while g (.) might oscillate witttty to the right
of s', insuchawayastoyieldaright-sid,ed, rnean s,-.f:,g@)d,o decreasingas s
increases (at least for small enough s - s') , i.e. in sorne sense hauing p(.) to d,uruse
more than increase, in each oscillati,on.

Definition 3.4 We call y (.) a f ini,tely - monotone minimizer of the integral
(2.1) on Xa,B proaided: A O minimizes the 0 - lsc - conuerif ied, i,ntegrat (2.6) ;

l" (A (') , y' (')) : l, (A (.) , y' (.)) a.e. in case the corresponding minimum ualue is finite ;
and,, for some .l[ e N, [o,b] may be partitioned into N subinter"uals lo;,btl, along
each of which y (.) is strictly monotone and, satisfies (2.12) , ercept possibly along
one subinterual fono,bl'of where y (.) is constant. In such case we also catl y (.) a
N -monotone minimizer of (2.1). We say that y(.) stops (resp. d,oes not stop)
in case aio 1b,;o (resp. o% : b%).

Theorem 3.5 ( Sufficient cond,ition for the eristence of a true minimizer)

Let l.(.) bea superlinear BV-tunction, sothatproposition 2.5 maybeapplied
to reach yoO and, 9o(.), S, as in (2.7).

Then there esists a true minim,izer A O , for the fully nonmnuea intqral (2.1)
on Xap, whichis finitely-monotone, prouided: either at:bt; or Sf,.B*A; or
else )s' e Sqa whichi,s not a mean- stri,ct minimi,zer of p(.)

In case Ao O is Lipschitz continuous (see lO, 4) and CI (.) , 0 O are locally
bbunded then also y (.) i,s Lipschitz.

Proof : Denote by N the positive integer in (3.7). (As to
checks that such ,A/ must always exist; while in case (3.9) one takes
assume, say, s/ < s'l just to fix ideas. Define

(3.8), one easily
N: 1. ) Let us

so that

-Nf""1ot:6,-q,J", ffi'",

t_o:*l),,,h0",

(3.13)

15
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and define

rq : lst,r"l * fa',a' + (1 - 0) #] , za(s) :: a, * [i,fu ao ,

r-:lst,""] * [a'+(r -q+,o'+u'ff'f, z-(s) ::a'+f + tifua"
Since we are assuminl l/a(.), llp (.) e I, (t',t"), these functions r+ (.), r_ (.) will
be AC and monotone with derivative l0 a.e.:

r+ (.) increases , with r!(s) : LIB@) > 0 a.e.;

while

"- (.) d,ecreases , uith r'_(s; : l/o(s) < 0 a.e.. , ,

Moreover ,+(s') :at, T-(st):a'++, r-(s"):at *(t-0)#: 11(srl), by
(3.13) , (3.14). The inverse functions of r., (.) , ,- (.) , respectively

**, 
lo',a' 

+ (t -,) u' 
i"] -* 1"',""1,

*-,lo'+(1- t)+,"'*+)* [s',,"] ,

are well-defined and are AC ( see [Or 1, remark 4l), ,* (.) increases and r- (.) decreases
(both with derivative l0 a.e.); and

*+(o'): s/: *- (r'*#),
,*(o'+(1 - EL#):st,:*-(,,+(1- E+)

We may therefore deflne the function

,, , 
lo',a' + *!-f ----- [s', s"] ,

| "*O f or t ln la,,a,+ (1- E #l
z, (t) :: (

[ "- frl Jor t in lo'+ (r - q Ai!-,o' * u'*"').

Clearly rr(at): st : nt (O * +) , ,, (o, + (1 - e1 \4) : srt ,

( Obrttll for a.e. t in la',a'+(l-r) r#]
r'' 1t1 : \

I a(r1 (t)) f or a.e. t in 
fo' + (r - q Lil{,a, + b'*q'f 

.

16
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Therefore,
^^t 1bt -ot

**, J,-, 
N 

N (uo$), y,,(t)) dt: p(s,)
bt -at

_Ar

: 
1"" 

t (s, B@\ ft, a, + l" / (s, a(s)) ffi ,, :
p'+g-e1lgd: 

JO,
t (ra g) , ,'+ (t)) d,, + ["'*t#,, , t (*- (t) , *'- (t)) dt :

J atl(1-61 tt="t \

lat1- bt -at: J", 
' I (*, (t) , r', (t)) dt ,

( otherwise a contradiction would be reached, since g" (.) has to be already a 0 -
relared minimizer hence r, (.) cannot yield a smaller value to this integral. ) Therefore

,otqbt -ot not1-b, -at

J., 
' t (r, (t) , n, (t)) dt : J,, 

'" lo (ao U) , y,, @) at. (8.1b)

- Let us repeat now N times this construction. Namely: we construct r, (.) in

l"' + #,o' +zu'm"')t ... t $N(.) in fa'+ (nr- 1)$4,a'] irrthesameway as o, (.)

was constructed above in lo',a'+#l By gluing together these .A/ patches, we end
up with an AC function 

L r

. l" p(s) p(s) o": I:, [z{",o("))#. {(s,B@\Urt] ,":

y : [a,b] -----, [s', s"] ,

,,r,: 

{

y,(t) for t in

",:t) fo.r t i,n

lo,o'l

lo""' + \4)

n* (t) tor t
y"(t) for t

with 3r' (t) * 0 B.€., a (a') : s' : A (b') ,

times and adding,

in [a'+ (.ar - 1)$4,,bl
in [b',b)

and, by repeating the equality (3.15) N

fb' rb'

J,, 
n (, (t) , y' (t)) dt : 

J,, 
no (yo G) , y,, (0) at.

Therefore y (.) is the desired 2(N+1,)-monotonetrue minimizer of the firlly nonconvex
integral (2.1) on the class X.t,a. The proof is complete.
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Notice that this y (') also minimizes the integral obtained from (2.1) by replacing
l(l with a new lagrangian l'(.) defined to be equal to l(.) on R and *oo on
R2\r?, where R isthesetofthose (s,() forwhich: either €eV(s) and s€So;
or (:0 and l.(s,O): p(s)1 or else ( € {a("),0(")} and s (,S0. (Taking lz(s)
as in (2.10). )

Let us present now a simpler version of theorem 3.5, conceived for the special
" af f ine " case of definition 3.2 , as in (3.18) . In this case we need to assume h (.) lsc;
arrd let us assume also, for simplicity r/ (.) and p (.) Isc, so that p (.) ,: ,1, (.)+p (.) h.. (0)
and there exists a 0 - relared minimizer yo (.) as in definition 2.4 , which gives fl ::
yo(a,bl) and go(.)r: plso (.). Then s' e Sn,s willnot bea mean-strid minimizer
of p(.) provided either h**(0): h(0) or else, either st <interior(Se,e) f 0 or else,
considering the maximal open interval (o, B) containing 0 along which h** (.) is affine
and setting p,: h * fi, we have: ls', e S" for which:
either

1s" ( so , ffiez and, 

"h f"" ,(s) ds < min eo (')

)s't $ So, + 9 @) d,o < min rpo (.) Vs e (s'1, s") .

(3.16)

(3.17)

Corollary 3.6 Let h: IR---+ [0,+oo] be a lsc function haaing h(€) /l{l * +oo ,"
l€l * "o , and let ry' : lR --+ [0, +m) and p : IR - [1, +oo) be lsc functions, so that
proposition 2.5 may be applied, to reach a 0 - relared, minimi,zer yo O of

on X.e,B. (3.18)

Then there edsts a true minimizer y (.) , fo, the nonconuw integral (8.L8) , which
is finitely-monotone, prouided,either at:bt or h**(0):h(0) or g(.) satisfies
(3,10) orelse lste S4,B thatisnota mean-strict minimizer "I eO (i.e. asin,
(3.16) or (3.17) ).

In case yoO is Lipschitz continuous (see e.g. lO, 01) then also y(.) is.

Notice, however : 4) O ard p (.) could be taken just Lebesgue-measurable and apply
theorem 3.5.

Corollary 3.7 Let (.: lR x IR --.l [0, +m] be lsc and superlinear, uith:
l** (' ,0) : l. (' ,0) ; or else (3.10) and (3.12) .

either g (.) ::

Then there erists a minimizer for the intqral (2.1) which is f initety - monotone.

I

I,' r o (t)) + p(, (t)) n (r' (f) at
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Chapter 4

Existence in the scalar case under
appropriate mean speeds

4.L Introduction

In this chapter we consider the problem of existence of minimizers for the integral
(2.1) defined in the more restricted class

Za,s :: {, (.) e X.e.,B : *' (t) * 0 f or a.e. t in [", b]] .

Indeed, we present a SC (suf ficient candition) on the boundary data (a,A,b,B)
guaranteeing existence of. a bimonotone 0 - relared, minimizer yo ('), for the integlal
(2.1) on XA,B, which does not stop (so that yo (.) is actually in Zap ). Another way
of seeing this result is the following. If the bounda^ry data satisfies such ,SC then it ceases

tomatterwhether l("',.) is \-conuea ornotI sothat,inparticular, yo(') isnotonlya
0 - relared minimizer, it is indeed a true minimizer of this integral (2.1) . That is: this
,5C replaces completely the conditionof. |-conuerity; under it, existence of minimizers is

obtained without any conaerity hypothesis , and with almost no regularity hypotheses

onthelagrangian /(.). Indeed,besides l: IRxlR.-+ [0,*oo] being LSB-measurable
with I (",.) lsc Vs, having superlinear growth (as in (2.2)), we only need

the validity of the DuBois - Reymand dif f erenti,al indusian (2.15) for the relaxed
minimizer (in particular imposing e.g. the restriction n' (') > 0 causes no problem).
Notice that we use in this chapter the same definition 3.1 of minimizer.

We start by obtaining an inequality which is a NC (necessary condition) for a
bimonotone O - relared minimizer gro (.) to stop (i.u. to have o' a b'), a.nd the
opposite inequality yields immediately the above ,SC for go (.) not to stop (i.". to
have o/ : b', so that gro (.) e Ze,a ). Then a similar reasoning gives another inequality
which is a .l[C for go (.) notto stop; and, again, the opposite inequality yields a ^9d
for yo O to stop , so that yo O e Ze,r\ Zt,a ,t,
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This resea.rch was suggested by the paper [Mu Pe] , in which interesting numerical
examples have been reported.

4.2 Existence and regularity of true minimizers

Flom now on we will consider a 0 - relared minimizer Ao O ( guaranteed to exist
bypropositiot 2.5); willassume (2.15) (assuming e.g. (2.16) or (2.t7)); andwill
use

p(.): l'(.,0), so : yo(la,bl), poO: rgso (.), (4.1)

as given by proposition 2.5 and (2.7) , (2.8) . Before stating our first result, let us

introduce useful notations. In what follows, s' is always a parameter in 
^91,a 

. Define:
V(s',s')r:{0},

V (s,st),: {€ d (o(r), f(s)), p(s') e l"(t,€) - €Al'(",€)} for s f st ; (4.2)

V- (s, s') :: V (s, s') n (-m,0) ,

(4.3)

0-G,s/) :: min V- (s,s') , a- (s,s') :: maxV- (r,t'),

I/.. (s, s') ;: V (s,s') n (0, **) ,

(4.4)

a+ (s, s') :: min Va (s, s') , 0* (s, s') :: max Va (", r') .

4.2.L A necessary condition in case the O-relaxed minimizer stops

Defi.ne

0o(',s'): co {A,s'} -, R., gu(,s'): co {s',.B} -- lR,

( |-G,t') for s in l"',Al if st < A
goG,s'),: I

[ 0*(r,"') for s i,n [,4,"'] il Al st,

( 7-(s,s') f or s in [B,s'] iJ B < sl

0 uG's'):: \
[ 0* (s,s'; f or s in [r',.B] if st < B;

and, to use in case yo (.) is monotone, po,u t co {A,B} ------, IR,

0 o.u G) i: g o (s,s') : B, (s, s') V st e St,n '
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(Notice: atpointswhere V-('):0 (resp. 7+('):0) weassume 0-('):0:
o- (') ( resp. o+ (') : 0 : 0+ (') ) .) n

In the next theorem we use the definitions of sections 2.L and 2.2.

Theorem 4.1 (Necessary condition, in case the 0 - relaxed, minimizer stops)

Let l.(.) be a superlinear BH - function.
Let yo (.) be as in (4.1) , In case yo O d,oes not minimize the integral (2.1) we

must haae:

(o) yr(.) = r' along somenonempty subinteraal (o',b') C [a,b] , for some s'e Sn<p;

(b) if, n'tor@ner, S;,8 * A, then y, (') may be mod,ified so as to becnme a tnre
minimizer y (.) of the integml (2.1);

(c) otherwis" Si,B is empty and,, (und,er (2.L5) or (2.L6) or (2.17))

f"'lfB1
l^ oGr\ d' * 

J", T;C"i ds < b- a' (4'5)

, 

,n case voo is monotone,";::*;,*:r:,.1.5) the, 

(4.6)
Je go.uG) -"

Proof : (a) By (2.13), yo (.) has to minimize also the integrals

ff' I (" (t) , r' (t)) dt , n (a) : A, r(at) - st ,
(4.7)

t,l@(t),*' (t)) dt, r(bt):st, r(b): p.

Therefore, if y" (.) does not minimize the original integral (2.1) then

rb' fb'

J", 
n"(y,(t),y:(t)) d,t:(b'-a')e(r'). (o'-o;)((s',0) : 

J", 
tt,G),v',(t)) d:,

hence o'<b/ and p(s')<1,(st,0), sothat s'e 9f,,r. Indeed,otherwise yo(.) would
minimize the integral (2.1) :

'fbfb

J" 
n (r" (t) , a', @) dt : 

J, 
,' (yo (t) , y', (D) at .

(b) This case is obvious.

27



Chapter 4. Existence in the scalar case under appropriate mean speeds

(") But even when ,Sa;, is empty since yo (.) does not minimize the integral (2.1),
bV (a) , (2.15) and (2.14) we have, along the nonempty interval (o',b') ,

q : I (r') : *in po (.).

Therefore yo (.) satisfies also the explicit differential inclusion (see (a.2) )

vL O) < v (ao (t) , '' ) a.e. in lo,b) . (4.E)

Let us consider an interval, say [a, a/] , where yL (t) > 0 a.e. ; then (4.8) and (a.a)
yield

, a1 (y, (t), ,') < y'" (t) < g+ (yo (t) , ,') a.e. in lo,o'l .

Since the function t r-+ s : yo(t) restricted to lo,o'l has a.n inverse ro (.) which
is AC with derivative ,'n (.) > 0 a.e. on lA, s'| , we may consider the function
uo (.) :: L/r'o O, obtaining

a'r(t):ro@o(')):ur(s) fo, a.e. tela,a'f and a.e. s€[,4,s'] .

Therefore
o+ (s, t') I ,o(s) < B* (s,s') a.e. in [a,"'] .

We may define a new lagrangian loG,€) :: { f ao@), thus obtaining a L e B -
measurable function /, (.) with [o(-,0): 0, to which [Or 3, prop. 2] is applicable,
yieldingthemeasurabilityof thefunction yLO /""(AoO); andsince yLO /oo (yo (.)) :
1 a.e., inparticular ALO lu"(y"(.)) e L*(a,a'). Therefore [Or3, prop. 3 (a)] may
be applied to justify the change of variable in the integral

a, -a: I"o 
L d,t: I"- ffi ot: I;# 0,. I; o.[uqo,.

In case we also have yto (t) > 0 a.e. in [b', b] then, similarly, since yo (.) restricted
to lb',bl has an inverse z, (.) which is AC, we may consider the firnction u, (.)::
t I r', ('), obtaining

b-bt : fu, or: f ''r(t).., d.t: IB -l ,r, rB 1

Jo, Jb,ue@oQD 
t: 

J", %G) 
otZ J", g'r1s,"'1as'

In particular I / 0+ (. , "') 
e L' (A,B) , and adding these two inequalities one gets

(b -,) - (b, - q, l:^#5 ,,
Since a/ < b/ we flnally reach

fur
J^ P;@ds<b-a' (4.e)
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In particular, in this case yo (') is monotone, hence there could exist plenty of possible
stopping points st e Sap for yo(.). However they all yield the same Po,uO. This
proves (c) of the statement in case yo (.) always increases.

The other cases may be treated similarly. The proof of theorem 4.1 is complete.

Theorem 4.2 (Sufficient condition for the eristence of a tnte minimizer)

Let (.(.) be a superlinear BH - functian.
Thenthere exi,sts a bimonotone minimizer of the nonconuer integral (2.L) on Xa,g

(namely: as in d,efinition 2.4 with at:b') prouid,ed, 3yoO as in (4.L), satisfuing
(2.15), (2.76) or (2.77), and: either yo(.) i, (bimonotonebut) non-monotoneand

b-a. I; iltqo'* l: o,[s,a'' (4.10)

where st is the point r" S, \ co {A, B} at maximum distance trcm co {A, Bl 1 or else
y" (.) is monotone and,

(4.11)

Proof : It suffices to notice that if the inequality (4.10) , opposite to the
inequality (4.5) of theorem 4.1 , holds true then A. O cannot stop because: if it
stopped then the inequality (4.5) would be true (by theorem 4.1 ); and since also the
opposite inequality (4.10) holds true (by the hypotheses of theorem 4.2), we would
reach a contradiction.

The proof is complete.

oB
b-a< I-Ja

1

-CI,S.

{1 o., (s)
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4.2.2 A sufficient condition for 0-relared minimizer to stop

Let us introduce further useful notation. Define:

eA i co {4, s'} -- R, aB z co {s', B} -- IR ,

( a-(s,s') for s in l"',A) if st < A
ao (s, s') :: {( o1(s,s') f or s in lA,t') if A I s' ,

( a-(s,s') f or s in lB,s') if B < st
a, (s, s') :: (

I a..,,(s,s') for s in [r',.B] if st1B;

and' to use in un ooo'^'u; 

: "; ,i:" -',,*u'!rr'i; ";,

l;' ct, o" * I:4+,, d's .-b- a'

Using similar proofs as above, one obtains the following results.

Theorem 4.3 ( Necessary condition, in case the 0 - relared, minimizer d,oes not stop)

Let L(.) be a superlinear BH * function.
Let Uo (.), a 0 - relared mi,nimizer of the nonconuefi integral (2.1) on Za,p

giuen by proposition L , satisfy the DuBois - Reymond dif f erenti,al inclusian (2.15) .

In case y, (.) does not stop then we must haue : ei,ther yo (.) is non-monotone and

-f"'lPl
b - a 1 l" ;;G"i ot * J", o,(s,s) ds ' (4'12)

where s' 'is as after (4.10); or else yoO is monotone and,

oBl
b-a<l ^d,s. (4.13)- Je oo.r(s)

Theorem 4.4 (Sufficient cond,ition for 0 - relared minirnizers to stop)

Let l.(.) be a superlinear BH - function.
Let yo(.), , \-relaredminimizer of thenonmnuexintqral (2.1) on Xnp giuen

by proposition 2.5, satisfy the DuBois - Reymond dif f erential inclusion (2.15).
Then y" (.) stops at some minimizer st of p"(.) proui,ded, : either yo(.) is

non-monotone and,

24
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where s' is as after (4.10); or else yoO is monotone and,

(4.1I)

Remark 4.5 The case a+ (., s') = 0+(. ,s') a.e. is specially interesting, inthe sense

that the aboue gap disappears: for b - a small enough yo O does not stop ; while trom

tt / 0*(,"') on, y" (.) stops. Therefore one is neuer in doubt about what happens,

in this case. We get thus a NSC fo, yoO to stop. This is the case namely wheneuer

l**(s,.) isstrictlyconaenoutsideof theinteraal (a("),,6(")) Vs€g"([a,b]). (An
erample is presented, in the nert sution.)

4.3 Determination of boundary data for which minimizers
exist in a specific example

Set /(s, €),: p(s) + h(Ol+d with g(s):: ls-s'l' and h(():: ll€l'*' - 0'*ol,
e ) 0, 6 ) 0, ali.d P) 0. Then o(s) : -0, 0(") =p, andone easilychecks, using
the results of chapter 3, that s' is the unique possible stopping point. Hence

v (s,s,): 
{ ,,;- 

t-o,gt,

l: *.,ds<b-a

I^'ho"

: e (")) for s*s'h6)o ll'*t + d (1 + d) l€l'*']

Let us consider, for simplicity, the special case 6 : L .

for s: s/.

Defining, for s f st ,

we get, fot s f s' ,

V (s, s') : {-, (s) , u (s)} ,

111111

-B-Oll: 
"- 1"r1 

: -rrG)' o+ G,s) 
: 

O*1t,,1: i51'
and one obtains, as N^9C for the eristence of a minimizer for the integral (2.L),

1

-t/z
u (s) ::

b-a1 (4.16)

(Notice: the hypotheses of the relaxation result of [Ek Te, th. IX.4.1, p. 287) are
fulfilled. )

I: h,'l

4+3eG)g-a>P>0,

r!
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To consider still a more specifi.c example, fo A : l, €. : 2, s' : 0, B : 1; then
a SC for the existence of minimizers for the fully nonconvex integral (2.1), for any
A < 0, is the inequality

b - a 1 R(A) ::,fi l' +t + JT + s-, 
d,

One easily checks that R(A) > n(0) : 0.953. . . V.4 < 0. Therefore it suffices to choose
b - a ! 0.953 to be sure of the existence of a minimizet for the fully nonconvex integral
(2.1) with A < 0, B : L. In particular, there always exists a true minimizer for the
integral

with r(0): A<0, r(1./2):1.

On the other hand, if we fix the interval lo,b) ( or, more precisely, its length: e.g.

we may set a:0 and fix b), then the integral (2.1) wiI have minimizers whenever
A ( is negative and ) has modulus large enough.

However, for e : 5 existence of minimizers would demand

Io"' *rrr, * (,, e)2 -t)' o,

u , fi I'* d,s : 7.07404...

Therefore: in case a:0, B:l and b > 7.075, there exists no minimizer, for any
.4 < 0. In particular, there exists no true minimizer for the integral

fo' l*tolu * (,'o)2 -r)' o, with z(0) : A <0, r(8) : 1.

We can state the morale synthetically as: by imposing a mean speed lB - Al / @ - ")large enough then the 0 - relared minimizer cannot afiord to stop, hence is a true
minimizer.
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Chapter 5

Existence in the vector case under
almost convexity

5.1 Introduction

The aim of this chapter is to prove new sufficient conditions for existence and regu-
larity of minimizers for the 1-dim integral

I"u 
, (* (t) , n' 1t1) at on X\,o, (5.1)

where Xi,p is the class of AC ( absolutely continuous ) functions x : la,b] --+ IR"

satisfying boundary conditions n (a) : A, n(b) : B, and .L : lR' x lR.' --+ [0,+oo].
Since L(t,. ) is allowed to be nonconvex, we consider the bipolar tr**(",.) of

L(",.), so that epiL** (r,') : @ epi tr(r,'), and the corresponding convexifi.ed
integral

on X\,e.

We call A"O a relaxed minimizer provided y. (.) minimizes the integral (5.2).
Since in the vector case the hypothesis of 0-convexity does not sufrce to guarantee

existence of minimizers (see (5.16) ), we have used instead almost convexity, a concept
that was born, for multifunctions, in the paper [Ce Or].

In the first result we present, I (.) is assumed to be Isc with superlinear growth at
infinity, i.e.

I(",€)>A(l€l) V(r,€) with 0(r)/r+*oo as r---+*&, (5.3)

so that there exists a relaxed minimizer y" (.). Changing y" (.), by applying to repara-
metrizations the bimonotonicity results of A. Ornelas, we obtain a new rela>red minimizer
y (.) which is a true minimizer: it also minimizes the original, nonconvex, integral (5.1).

l.u 
,.. (, (t) , r' (t)) at (5.2)
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Chapter 5. Existence in the vector case under almost convexity

In the second result, existence of y" (.) is used as one hypothesis, and we need no growth
assumption to turn g" (.) into y (.) .

We also present some concrete examples of application of these results to prove
existence of true minimizers.

5.2 Almost convexity

Definition 5.1 For a function L :lR- x IR' --+ (-oo,*oo], we call tr (r, . ) almost
conuefr prouided

Y € with L"* (t,0 < r(",€)
3.\e [0,1] lA€[1,+oo) lae [0,1] forwhich

tr**(",€) : (1 - a) L(s,.\O + oI(s,Ao

€:(1 -")()€)+o(AO.

(5.4)

(5.5)

(5.6)

(5.7)

For completeness, u)e also set ) : 1 : A : o at those ( where tr**(",€) : tr(",(),
in particular at {: Q. (The conuention 0.(+m; : g is used,.) W" will denote,by

^r 
(.) the function (", €) * ), for L (-) . Similarly for tr., a .

Clearly L(t, .) convex lsc implies I(r, .) almost convex. Moreover L(t, .) almost
convex implies L** (t,0) : .L (s,0) . But the opposite implication does not hold, even for
simple 2-dim superlinear polynomials. Indeed, e.g.

r(r, €) :: h (€) ,: (€? + €3) ((? - t)2 + €Z

satisfles h*. (0) : h(0) : 0 but:

1€:(Llz,L) l.\:0 f A:2 1q:l/2 with

€: (1 - o)(,\€) +a(A(), h** ()€): h()€):0, lr..(A€): h(AO:4
h.. (€) : t t h(€) < (1 - a) h(l€) + ah(lro :2 (5.8)

( and: ,\ must be zero, while 2 is the best value of A, i.e. the one yielding the smallest
rhs in (5.8)); moreover, even though /(.) is superlinear,

3{:(0,1) : h..(A€)<h(A€) VA>1. (5.e)

Indeed, h** (€r, t) : €Z V l€rl S r V{2.
Typical examples of almost convex functions may be obtained by increasing arbitrarily

( ".S. to become : *oo ) the values of any given .L (') as follows. Denote by .F' (s)
the vertical projection into IR" of any ( relatively open ) f.ace F (s) of ept,L** (r, . ) .

Then one may change I(",€) by increasing it, starting from the value Z**(s,(), at
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those (f 0 containedinanyboundedsubsetof any k-dim F1r; *ti"triscontained
in a k-dim linear subspace of lR", ] < lc ( n. Or, as a simpler alternative, increase
arbitrarily I (r, €) only at those ( e F (s) , for each bounded n-dim face f, (s) .

Notice also that for L (r, .) , IR" --+ [0, *oo] lsc superlinear we do have

L**(",0) : tr(s,0) =+ L (", ') almost conuen (5.1.0)

whenever the faces of. ept, L** (t,.) have aII dimension ( L, namely in the scalar n : 1

or radial I(r,€) : /(s,l(l) case. Here superlinearity is really not needed: it suffices
to have boundedness of the nonconvexity faces ( i.e. of the subset of each F 1r; *t"r"
./** (s, ') < / (r, ') ).

5.3 Existence of minimizers

Theorem 5.2 (Eristence superlinear)

Let L : lR' x IR' --+ [0, +m] be a lsc function with superlinear growth (5.3) haui,ng
L(t, .) almost conuex V s.

Then for any A, B the nonconuex integral (5.1) has minimizers.
(Notice: the regularity of theorem 5.4 applies herc too.)

Corollary 5.3 (Eristence radial) ..

Let f : IR' x [0,+m) --+ [0,+m] be alsc function with f(r, .) > d(.) Vs, 0(.) as

in (5.3).
Then for any A, B the nonconuer integral

7b

J, t ("ft),1*'@D dt on x2,,8

hasminimi,zersprouidel,.f**(.,0):/(.,0) (u,sing l(.,-r) ':.f (.,r) Vr>0).

Theorem 5.4 (Regularity in all cases)

Let L : IR' x IR' --+ [0, +m] be a Borel function with L** (.) Borel. Fia A, B e
IR', U. O e Xi,B and assume ,(.,0) to belsc on U"([r,b]) and, L(y"(r),.) to be

almost conaer lsc Y t € [a,b].
Then there erists y (.) e Xi,a for which

(il t: L @ (t) , s, (t)) dt < I: L** (a" (t) , a," (t)) dt ;

(ii) 1at <bt : y'(t) *0 a.e. in [a,at]Ulbt,bl;

(iii) lst minimizer of L** (.,0) on, y (la,b)) : A.([a,b] ) : g(.) = s' on la',b'l;
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(iu) L** (v (') , v'(')) : , (s (') , v'(')) a.e. .

Corollary 5.5 (Eristence, giaen relo,red minimizer)

Und,er the same hypotheses of theorem 5.4, the eristence of a rela,red, minimizer (i.e.
a minimizer of (5.2)) implies the eristence of a trae minimizer ( o/ (5.t) ).

Proposition 5.6 (See [Cl]) Let L: IRD x IR'---r [0,+m] be a Borel function with
,.. (.) Borel.

Ffu A, B€lR' andaclosedsubset OclR* forwhich r-.(.) islscon OxlRn,
(L** (t,. ))-' (R) is open * A Y s e Q. Assume there esists rnfi > 0 for which the
class Xs, of those r (.) i,n Xft,, hauing r (la,b)) c Q anil giuing a ualue 1 me to
the conuerified integral (5.2), has a Lipschitz continuous element.

Define 
Q (€) ,: {tr** (", €) - (€, 0 L** (s,{)) : s e O}

q- ': nIT_ sup {s € I (€) , l€l > a}

and,,for K)0,
s+ @):: inf {e € I (€) : l€l < I(} .

Assume, rnoreol)er:

(o) 3.I{e >0: l{tela,bl:lr' (r)l </(o}l>0 Vr(.) e .ts,

(u) q- < s+ (Ko)'

Then there exists a related, minimizer y"(.) (i.e. a minimizer of (5.2)) which is

Corollary 5.7 Let L(.) and y"(.) be as in proposition 5.6.
Then the nonconuer integral (5.L) has minimizers prouidd L(y"(t),.) is almost

conaerlsc Yt€.fa,b).
If, in addition,

VM>0 lMt: Lt(s,0 1€l SMr Vl(l SM Ys€y"([r,b])

then y (.) is Lipschitz continuous.

Notice: in theorem 5.2 and corollaries 5.3, 5.5, 5.7, clearly theorem 5.4 may
be applied to obtain a minimizer y (.) satisfying regularity properties (i) , (ii) , (iii) ,

(ir).
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Proof : (") We will consider the following class of reparametrizations of the interval

fa,b]: Ro,6 istheclassof.all AC maps r:[o,b] --+[a,b] having r(a):s,, r(b):6
a^nd r/(.))0 a.e..

For each nonconstant g(.) in Xft,, (see.e.g. [C]), there exists y(.) in Xft,,
characterized by having consta,nt speed, i.e. lY'(t)l:m Vt e [a,b] \.A/, where ,A/ is
a null set and m is the mean speed of y (.) :

lyt (t)l dt.

Deflning

we have r'(t):49 > O,

dr,

hence r (.) eR",u. Moreover

Itb_t
b-oJ.

r (t) :: o + L 
l^' lr,{il

r (a): a and r (b) :6,

v(t):Y(r(t)) vte [a,b] .

Clearly f (.) is Lipschitz continuous.

(b) Asiswellknow (see [Ol 1], [Io]), theconvexifiedintegral (5.2) hasaminimizer
y.(.). We may assume the minimizer y"(.) to be nonconstant. Let us consider the
corresponding special function Y (.) having consta,nt speed rn, as in (a) . Let ,A/ be
the set of those r ir [a,b] where the derivative Y'(r) does not exist or lY' (r)l * *.
Let r"€Roi besuchthat (asin (a)) Y(r"(t)):a"(t) Vte [o,b].

Define the function /o : IR x IR --+ [0, +oo] ,

L** (Y (r) ,Y' (r)r) f or r e [a,b) \N and r € [0, +oo)

{o(r,r)::

Clearly lrO is L I B-measurable and lo(.,0) is lsc. Therefore the integraiid
lr("(-),r'(.)) ismeasurable (by [Or3,propos.2]) foranyreparametrization r(.) in
Ro,o.By [Or3,propos. lwith CI:0], thereexistsareparametrization rr(.)eLo,6
forwhich: 1at<bt suchthat "i@*0 a.e. in [a,at)ttlb',b), fz' minimizerof.
/o'(. ,0) on [a, b] such that r, (.) = r' or fa',b'] , and

f,o 
n, (,,(t),,i0)) dt 

= l,u 
^ 

(,"(t), r'"(f) at.

In particular, setting h (t) :: Y (r, (t)) it follows that y, (.) is a new minimizer for the
convexified integral (5.2), since "l (.) (resp. ":(.)), hence sl (.) (resp. yl (.) ), it
zero a.e. on r;1 (,A/) ( resp. 

".-l 
(.4/) ).

L** (Y ("), 0)

*oo

f or (r e [a,b) and r :0)
or (r eN and, r:l)

f or other (r,r) e IR. x lR.
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Thefunctions f (.),:\r,(y,(.),yi(.)), tr(.)::A;,(s,(.), ui(.)) aremeasurable.
Therefore there exist Borel functions .\, A: [a,b] --+ JR. such that )(.) : f (.) and
A(.):[(.) a.e.in [a,b]. Let r,:{t€[o,b] :)(.)If(.) or A(.)#tr()]

A6 ': ,;1(N) u {t e la,b}:f,r',(t) or 1rl(t) :0} u

u {t e la,Ul : flyt, (t) or y', (t) t Y' (r, (t))"i g)} ur,
an{ I/, ,: r, (tr/o), hence l/, i. a null set. Notice that r, l[o,o,]u(b,,bl (.) hr" an inverse
r;t : la,b) --+ la,atlu(bt,b) which is a measurable firnction *itt measurable derivative
r;t'(rr(t)) : Llr'LQ) > o a.e. in fa,at)tt (b',b1. Define the measurable functions
)1 , A, : IR -+ IR setting

1 'l(",-1(")) t^- - a r^ Ar \ 
^/\ ,_\. , 

", 
for r e [a,b] \'&,

^r \',/ '- \
I( t otherwise

( ^("rlt,l) f or re [a,b] \,V,
^ /-\. ) 'l''(")r\1 \',, '- \

[ , otherwise.

Define the new function l, : JR. x IR --+ [0, +m],

L(Y(r),Y'(r)r) for r e [a,b] \A( o.nd r e{),(z),A,(r)}

f or other (r,r) e IR. x IR.

Then l, (') is 4 e 6- measurable with l, (, , . ) lsc ; and one easily checks the following :

also li. O is L I B-measurable with li* (. ,0) : /, (. ,0) lsc; li* ?,r) : *oo
whenever r # la,b] or r # [0, A, (r)] ; and

L** (Y (r),Y' (r)r) S li* k,r) < l,(r,r) Vr e IR Yr e la,bl \If, (b.11)

withequality at r € {0,,\, (r).,A, (r)} inbothinequalities, andat r e {0}U[), (r), A, (")]
(in particular at r :1/rr1'(r) ) in the first one. Indeed., the bipolai of Z, 1r, .; is;
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L*" (Y (r),Yt(r)r)

(r-r-) L(Y(r),0)+

f or r e [o, b] \N, and r e [,\, (r) , A, (z)]

ll* (r , r) :: ffi t 1V (r) ,Y'(r) ), (z)) for r e (0,A, (r)) and r e [a,b] \,A/,

f or (r e la,b) and r :0)
or (, < N, and r :1)

f or other (r, r) e IR x IR ,

L(Y (r),0)

srnce

L** (Y (r),Y' (r)r) : t,(v (r),Y'(r)r) vr e {0,}, ("),A, (")} vr ela,bl \I/,.

(") Now we claim that the reparametrization r, (.) ( yietding y (", (')) : y, (.) )
is a minimizer for the convexified integral

7b

J" 
n: (, (t) , r' (t)) dt, (b.12)

defined on the class R,,6. To prove this claim, notice that for each r (.) in Ro,6 we
have, setting r(t)::Y (r(t)), at AC map:

7b tb tb
I *'Q) at: I Y'(r(t))r'(t) d,t: I yt(r) d,r,

Ja Ja Ja

since the last integral exists and r (.) is monotone. Moreover,

L"* (r(t), r' (t)) : L*" (Y ("(r)),Yt(r(t))"'(t)) < li. ("(t),r'(t)) (b.19)

for a.e. t in la,b] ; with equality at a.e. t in [a, b] where r' (t) e {0} U [^1 (" (t)) , Arr (t)] ,

in particular in case , (.) : r, (.).
To see this, notice that this follows from (5.11) for those t where r'(t) exists,

rt(t) : Yt(r(t))rt(t) and r(t) e [r,b] \I/, (i.e. for almost t e r-7 ([r,b] \I4)),
while, on the other hand, since "A( is a null set, we have rt(t) : O for a.e. t e r-L (Nr) ,

hence the lhs of (5.13) is .L*'(f (r(t)),0) and the rhs is /i* k(t),0) for a.e.

t e r-L (Nr) ( and these two are equal at any r (t) e [o, b] , by the definition of /i. (.)
and the almost convexity of .L(')). (In particular: equality in (5.13) holds for a.e.
t€r-t(,\() )

In the special case r (.) : ", 
(.) , ut one easily checks,

,\, (r, (t)) : ) (r) ri (t) < r', (t)
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A, (r, (r)) : A (t) rl (t) > "i (t) ,

i.e. ri(t)eh,(rr(r)),4,("r(r))l fora.e. teNr; r'r(t):0 fora.e. t€.AIo. Hence
equality holds in (5.13).

Using (5.13) we may now complete the proof of the claim stated at the beginning of
(") ,

t t:. (" (t) , ,' (t)) dt > I: L* (, (r) , nt (t)) d,t >

> I: L." (v, (t) , vi ftD dt : [: ti. (", (t) , r', (l) at.

(d) Define o : [a, b] -, IR

[ ^, 
(,) fo, ", {, 

e [a.,b] , 
]rf)n_.on,T,or!ril?3. 

** 
]

I

^.r-t .- )"t'/'- I 0 fo, r€{re [a,b)zl**(r,0):+oo or l** (r,)r(r)):+oo]
I( A, (") f o, r e {r e la,bl: ), (r) :0} .

By [Or 3, propos. 1 with this a(.)], there exists a reparametrization rr(.) e Ro,6
for which: aat' I b", with a" I a' and b' S b", such that "l(t) + 0 a.e.

in la,a'tlu lb",bl, ,r(.) : ,' on Io",b"), ":(t) # i0) U (0,a (rr(t)) ) ".". infa,a"lulb',b!, ri(t) e h, (rr (r)), Ar ("r (t))l a.e. in la,at')v[b/',b], a.nd

1b 1b

l, n: (", (t) , "l (t)) ot 
= J, 

ti. (,, (t) , "', (t)) dt .

Therefore the reparametrization "r(.) is also a minimizer for the convexified integral
(5.12).

(") By [Or 4, th. 1] , or [Or 5, th. 1], there exists a reparametrization ", 
(-)

in the class Ro,6 having ,!(t) + 0 a.e. in fa,attlu|ib",bl, rr(.) : ,' on la",b!t',,

"!(t) # {0}u(0,o(r, (t))) a.e. in la,att}ulbtt,b), "!(t) e {), (2, (t)),A, (r, (t))} a.e.

in [4, att] tl lbtt ,bl ,

ti* (r, (t) , ,: (r)) : t, (r, (t) , "! (t))
a.e. in [a,b] (hence, in particular, the rhs is measurable in t), ,16

7b 7b

J, 
l, (""(t), "',(t)) dt 

= J. 
n:. (",(t), ri(t)) at. (5.14)

Let us define a new function y(t):: Y(ra(t)), obtainingt y(a) : A, y(b):
B, y(') is AC with y'(t):Y'(r"(t))r!(t) for a.e. t in lo,b). Since rj(t) €

{0,}r(rr(t)),Ar("r(t))} fora.e. t on [a,b], byareasoningsimilartotheoneusedto
prove (5.13) (but with l.(.), L(.), ",r(,A/r) 

instead) weget

[., (r, (t) , ,l (t)) : L (Y (", (r)) ,Y (r, (t)) ri (r)) :: L (v (t) , v' (t)) Ior a.e. t e la,bJ.
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To complete this proof it only lacks to show that g (.) minimizes indeed the integral (5.1)
on the class Xft,r. But, for any r(.) in this class we have, by (5.15) and (b.14),

t t t, (t) , y, (t)) dt: t t, ('. (r) , r!@) at <

s I: ti. (", (t) , ",, (t)) dt < I: L"" (a" (t) , y," (t)) dt <

< [: L* @ (t) , at (t)) dt s I: L @ (t) , rt (t)) d,t.

5.4 Special regularity for n:l

CorollaryS.8 (Regularity)

Let l,:lRxlR.--+[0,+m] beaBorelfunctionwith 1."* (.,0): t(.,0) lscand l(t,.)
Isc Vs.

Fis A, B € IRn and y"(.) < Ze,,a lorwhichthefaces of epil.**(y"(t),.) sre
bound,ed, Yte [a,b).

Then there erists y (.) e Xi,e satisfying the properties (i) , (ii) , (iii) , (ir) of
theorem 5.4 plus:

(r) y'(t) 4 @(y(t)),9(y(t))) a.e. in la,atltsfbt,bl, with a(.), p(.) as in remartc
5.9;

(ri) y(.) ismonotoneon la,at) and,on [bt,b] prouid,ed tl.* (y"(t),a,"(t)) dt( *oo
and 01.** (y"(t) ,0) + 0 Vt e [a, b] .

Rernark 5.9 For each s, o (s) , 0 (s) are the nqnzero ertremi,ties of the intervals
of ffinity of e** $, .) whi,ch haue the other ertremity at {:0. More pruisely, consider
the subd,ifferential 0(.** (s,.) of l.** (s, .) (see [Ek Te, p. 20]), and, define the set

d(s) :: (0 (."* (s, .))-L (or.(s,0)) - {€ e m : 0 t"*(",€) n 0t*" (s,o) + a} .

Then, und,er the hypotheses of corollarg 5.8, we haue: the set {0} U.F', is an interuol

Ia(s),8(s)l uith o(s) <O < 6(s),

and, (.**(s,.) is ffine along la(s),01 and, along [0,f(")].

Proposition 5.10 (See [Cl]) Let (.: IR x IR -- [0,+m] be a Borel function with
l**(',0):/(',0) lscand' l.(",') /sc Vs.

Fir A, _B e IR and, a closed, subset O c R. for which l.** (.) is lsc on O x IRn,
(l**(",.))-'(R) isopen lA Vse O. Assumethereuists rme)0 forwhichthe
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class Xs, oJ those r (.) in Xa,B having r (la,b)) c Q and giuing a ualue 1 ms to
the conuerified integral (5.2), has a Lipschitz continuous element.

Defr,ne

Q ({)': U** (", €) - €0{.. (",€), s € O}

s- :: RIS; sun is € I (0 , l(l > n)

and,, lor K )0,
., e+ (K; ,: inf {q € Q (€) 

' l(l < l(}.
Assume, moreouer:

(a) euery r(.) e Xs is such that r ( [o,b]) Cinterior (Q),

(b) /..(.) is locally Lipschitzin (s,() and, satisfies, for constants ko and co,

l0,l** (s,Ol S k" ll** (",€)l+co V (",O € O x IR,

where

l0"l** (so,0l :: sup{lul : u is inthe Clarlce's differential ol l** (.,€) at s: so},

(") q- < s+ (It) for some K > lT:t 
.

Then there e.si,sts a relaned, minimizer y"(.) (i.e. a minimizer of (5.2)) which is
Lipschitz continuous.

Corollary 5.L1 (Eristence noncoerciue)

Let l.(.) and y"(.) be as in proposition 5.70.
Then the nonconuen integral (5.1) hos minimizers proaided, the faces of epi (."* (y" (t) , .)

arebounded, Yte[a,bl.
Moreouer, there erist a minimizer y (.) which satisfies the regularity properties (i) ,

(ii) , (iii) , (ir) of theorern 5.4 plus properties (a) and, (ai,) of corollary 5.8.
If, in addition,

VM>0 lMt: /\r,(r,€)l(l <Mr Vl€lStr,t Vs€y"([",b])

then y (-) is Lipschitz continuous.
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5.5 Examples of application

Theorem 5.2 ensures the existence of a minimizer for the nonconvex integral (5.1)

when .L : lR' x lR" * [0, 
.|oo] is e.g.

I t,-,ol'* (tteP-.,')' for {to
-r(",€) : {

I l, - ,ol' lor {: g.

As to corollary 5.7, it ensures existence and Lipschitz continuity of a minimizer e.g. in
case L: IR' x IR" * [0, *oo] has the form

I(r,€):g(s)/(€)

with / : IR' --+ [0, +m] ,

[ (r + rer')] ror t€t > 1

I/(O: I ** lor O< l€l < 1

I

| ,/, for {:s,
and g : IR' --+ [1, +oo) is a lsc function, locally bounded.

Finally, to see a simple 2-dim exarnple where convexity at zero does

existence, Iet

h(€) : (e? +ei) (€? - t)' + €2,

and
I(",():"?+h(€),

not imply

(5.16)

(5.17)

s:(s1,s2), o,:0, a:(0,0), b:L, B:(0,1). Clearly y"(t):(0,t) isarelaxed
minimizer, giving the value L to the integral (5.2). However, as one easily checks, to
satisfy the boundary conditions the value of the nonconvex integral (5.1) must always
be > L (while ttre inf is, clearly, :1).
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