
SYMCOMP 2013

Lisbon, 9-10 September 2013

c©ECCOMAS, Portugal

SYSTEMATIC SYMBOLIC GENERATION OF ADDITIVE

AND MULTIPLICATIVE DISCRETE CONSTITUENTS

P. Areias1∗ and T. Rabczuk2

1: Physics Department University of Évora
Colégio Luís António Verney

Rua Romão Ramalho, 59
7002-554 Évora, Portugal
e-mail: pmaa@uevora.pt

2: Director of Institute of Structural Mechanics
Bauhaus-University

Weimar Marienstraße, 15
99423 Weimar, Germany

e-mail: timon.rabczuk@uni-weimar.de

Keywords: Symbolic Computation, Computational Framework, Finite Element Tech-
nology

Abstract. The combination of symbolic computation with a adaptable many-to-many
relationship framework allows the creation of varied additive (elements, loads, etc) and
multiplicative (multiple-point constraints) constituents. From the framework perspective,
both the algorithms and data structures and the architecture are tailored to accept the wide
variety of typical constituents: Shell and continuum elements, rigid body constraints and
essential boundary conditions. The symbolic computation is employed to generate, using
Acegen, the specific calculations:

• Element technology weak forms and linearization, including mixed methods

• Kinematic routines

• Residual vectors and transformation matrices for multiple-point constraints

• Flow vectors and derivatives

• Dedicated small-sized operations, such as sensitivity analysis for linear algebra cal-
culations

The dependence relations between solution methods, algorithms and constituents are de-
scribed. Fracture algorithms can be naturally casted in this framework. Data input makes
use of the relationship framework.

P. Areias and T. Rabczuk

1 Introduction

Discretizations of continuum engineering problems generate constituents belonging to
two classes: additive constituents and multiplicative constituents (certain equality con-
straints, master-slave relations, rigid parts and arc-length constraints). This classification
tolerates some overlapping, and a definite choice is usually made by considerations of
efficiency. Specific formulations of many of such constituents are provided in the book
by Belytschko et al. [10]. Details concerning the systematic creation and combination
of new constituents, independently of the specific problem treated, has not been shown
with details in the literature before. A systematization of the technical implementation
of models of mechanics, in the sense of A. Klarbring [17] after discretization, is the aim
of this work. This perspective is shared both by the governing equations, constraints and
solution methods.

Essential boundary conditions are a good example of the effectiveness of multiplicative
components used in many commercial and academic codes. The same applies to rod and
shell parametrization: director inextensibility is imposed with multiplicative constituents
(at the continuum level by coordinate transformation, see e.g. S.S. Antman [3, 2]).

To incorporate all constituents prior to the solution (currently carried out by sparse
methods of linear algebra) we apply transformations to a clique list of additive constituents
incorporating specific cost-saving properties.

In the context of multibody dynamics, these methods are also known as coordinate
reduction methods [1].

Belytschko et al. [10] have shown that solid-based shell elements can be obtained by
transformation of degrees-of-freedom of a standard 3D element. In addition, computa-
tional fracture techniques often make use of specific motions of the mesh; a shear band
only allows tangential relative motion, a mode I crack only allows opening, etc. Localized
arc-length, COD-control and related techniques, which were, until now, introduced as a
“added feature” prone to coding errors and maintenance requirements are reclassified as
equality constraints and therefore MPC. This classification is illustrated in detail in Figure
1. Specific operations are now performed with Mathematica and Acegen, as pointed out
in Figure 2. The framework allows the nearly automated creation of the input software.

2 Multiple-point constraints

2.1 Independent constraints

Starting with n degrees of freedom and corresponding nonlinear equations, a set of m
nonlinear constraints is appended. Two residual vectors (containing n and m components,
respectively) are introduced, corresponding to these two sets of equations: f and g whose
components are of the class Cq, q ≥ 1. The degrees of freedom are grouped in a n-
dimensional array a and we can express the system as:

P. Areias and T. Rabczuk

u = u

: quadrature point

Debonding

Load Collapse

X − (X + Y)+ = 0

Separation

uLn = uRn

shear band=crack+MPC

MPCs (essential BC), mirror, rigid link, rigid body, shear band

∆a = L

a

Control equations

Pressure and point load elements

p

Geometric elements

graph
Local

Multiplier

Combined meshless arrangements

Beam, tetrahedron and shell elements with cracks and internal nodes

ALE mesh replacement constraints

Contact and interface elements (complementarity)

Ci3 = δi3
Nonlocal

αi − π/3

Figure 1: Classification of common discretization components as either additive (elements) or multiplica-
tive (MPC).

◦ Small strain algorithms

Element formulations

◦ Gather

◦ Finite strain relations
◦ Scatter

Constitutive laws

◦ Finite strain pre-processing

◦ Finite strain post-processing

Unified EVP small strains

◦ Specific technology (Acegen)

◦ Essential boundary conditions
◦ Rigid body condition
◦ Control equations
◦ Symmetry

◦ Anisotropy transformations

◦ Specific elastic laws
◦ Specific damage laws
◦ Specific flow laws
◦ Specific rate-dependence laws

Multiple point constraints
◦ Gather
◦ Local array creation
◦ Scatter

Sparse/Many-to-many Library

Figure 2: Typical discrete constituent operations. In red are shown the operations performed symbolically.

P. Areias and T. Rabczuk

f (a) = 0 (1)

g(a) = 0 (2)

where the gradient of g with respect to a given subset (s) of m degrees of freedom is full
rank (this is called the submersion assumption [23], p. 84):

RANK(g′
s) = m

for a ∈ R
n. This condition ensures that (2) is a Cq submanifold of Rn. Since, for m > 0,

more equations than unknown degrees-of-freedom are introduced, a subset n − m of f ,
identified as fr, has to be retained. Along with this subset, the corresponding subset of a,
ar is also selected. Succinctly, if ar, r ∈ Ir where |Ir| = n−m is the index set of retained
(or eliminated) degrees-of-freedom and as, s ∈ Is where |Is| = m is the set of slave, or
dependent, degrees-of-freedom. We can split the degrees-of-freedom a as an ordered pair
{as,ar}

T . Components of this list are ai with i ∈ I. The choice of Is is usually a matter
of efficiency. It is noticeable that equation (1) can also be written as δa·f = 0 where δa is
the virtual degree-of-freedom array (cf. [10]). When using this virtual degree-of-freedom
array, we can apply the Newton method to the system (1) and obtain,

δaT
r f

′
rrdar + δaT

s f
′
srdar + δaT

r f
′
rsdas + δaT

s f
′
ssdas +

dδaT
s f + dδaT

r f = −f (3)

where frs is the derivative of the r−part of the equation vector f with respect to as, etc.
The partition f = {fs, fr}

T is assumed. Note that, in (3), the two last terms in the left-
hand-side only exist if the final degrees-of-freedom are related to as and ar in a nonlinear
form. In particular, this occurs with rotations. Since the retained degrees-of-freedom are
also considered final, the term dδar is null. We can group the terms f ′

rr, f
′
rs, f

′
sr and f ′

ss

in one matrix K split according to the previous partition:

K =

[
f ′
ss f ′

sr

f ′
rs f ′

rr

]

(4)

Under the previous condition for g′
s, the application of Newton method to (2) results

in1:

das = −g′−1
s g′

rdar − g′−1
s g (5)

1There is the requirement of partitioning the list of degrees-of-freedom using the two index sets Is and
Ir by means of a permutation, see [21] concerning the definition of the required permutation matrices

P. Areias and T. Rabczuk

or, if T = −g′−1
s g′

r and bs = −g′−1
s g , we can write:

das = Tdar + bs (6)

In the optimization literature the elimination of as results in the so-called reduced
Hessian method (cf. [19], p. 487). We use a specific null-space matrix using the gradient,
which is also called variable reduction method. The null-space property can be observed
by rewriting

{
das

dar

}

=

T⋆
︷ ︸︸ ︷[

T

I(n−m)×(n−m)

]

dar

︸ ︷︷ ︸

null−space term

+

b⋆
︷ ︸︸ ︷{

bs
0

}

︸ ︷︷ ︸

corrective term

(7)

In a more concise notation, (7) reads

da = T⋆dar + b⋆ (8)

The derivative of T⋆ with respect to a is given by:

T ′
⋆ = −cg′′T⋆ (9)

where the matrix c is given by:

c =

[
g′−1
s

0(n−m)×m

]

(10)

The second variation of a present in (3) is determined by the previous quantities (9)
and (10). Using index notation, it results:

dδai = −δarjTqjcipg
′′
pqkTkldarl (11)

with i, k, q ∈ I, p ∈ Is and j, l ∈ Ir. Summation is implied in repeated indices. To the
authors’ knowledge, despite its straightforward appearance, this term was not considered
before in the literature. Newton’s iteration can be summarized as:

T T
⋆

[
K − fTcg′′

]
T⋆

︸ ︷︷ ︸

K⋆

dar = −T T
⋆ (f +Kb⋆)
︸ ︷︷ ︸

f⋆

(12)

where K⋆ is the reduced stiffness matrix and f⋆ is the reduced force vector.
Considering the graph structure, K and fTcg′′ both result from sparse sums of clique

graphs. The number of cliques for the formation of K is the same as the number of
elements ne. If sparse sum (e.g. [13]) is considered we can simply write:

P. Areias and T. Rabczuk

K =

ne∑

i=1

Ke
i (13)

fTcg′′ =

m∑

j=1





(
ne∑

k=1

f e
k

)T
(
cjg

′′
j

)



 (14)

where Ke
i is the ith element stiffness matrix, f e

k is the kth element force and cjg
′′
j is

obtained from the jth constraint gradient and Hessian. The superscript e indicates a
element quantity. The matrices T⋆ and the vector b⋆ must be fully formed (this will be
detailed in the next section) before the multiplications by T⋆ in (12) are performed. The
actual implementation of (12) separates terms (13) and (14) since the degree-of-freedom
destinations of g′′ do not coincide with those of K. From the graph structure perspective,
−fTcg′′ are also cliques, since the result connects retained degrees-of-freedom which are
mutually visible. Recalling that our matrices are sparse, equation (12) can be written as:

T T
⋆

(
ne∑

i=1

Ke
i

)

T⋆ + T T
⋆






−

m∑

j=1





(
ne∑

k=1

f e
k

)T
(
cjg

′′
j

)










T⋆dar = (15)

−T T
⋆

(
ne∑

j=1

f e
j

)

− T
T

⋆

(
ne∑

l=1

Ke
j

)

b⋆ (16)

The format of equation (15) discloses a useful property: edges of the graph structure
of K⋆ are completely defined by each Ke

i and the transformation matrix T⋆. The term
containing the constraints’ Hessian g′′ will produce edges of the same graph, since it
is also pre-and-post multiplied by T⋆. The two cliques (Ke

i and −fTcig
′′
i) participate

additively in formation of the global stiffness matrix K⋆. In terms of condition number
of the reduced stiffness matrix, it can be shown that:

cond(K⋆) ≤ cond(K − fTcg′′) cond(T TT + I)
︸ ︷︷ ︸

κT

(17)

An application of (17) relies on the selection of degrees-of-freedom to eliminate (i.e.
the selection of set Is) for g(a) = 0. This could be, in theory, performed automatically.
However, in most engineering applications this is preferably left to the analyst since there
are other factors to include. For example, let us consider the classical 3-parameter director
representation with two distinct parametrizations:

• Exponential form with the axis-angle, θ.

• The parametrization with Rodrigues parameters, x (using the Cayley formula).

P. Areias and T. Rabczuk

θ3 = 3π/2

θ1

θ 2

κTx

θ1

θ 2
κTθ

d0 = {0, 0, 1}T

Figure 3: Condition numbers for the two director parametrizations as a function of θ1 and θ2.

Let d represent a director in the deformed configuration and d0 the corresponding director
in the undeformed configuration. Using either of the parametrizations, it is straightfor-
ward to show that dθ = Rθ(θ)d0 and dx = Rx(x)d0 are, respectively2:

dθ = d0 +
sin ‖θ‖

‖θ‖
θ × d0 + 2

sin2 ‖θ‖
2

‖θ‖2
θ × (θ × d0) (18)

dx =







−1 +
2(1+x2

1)

1+x2
1+x2

2+x2
3

2(x1x2−x3)
1+x2

1+x2
2+x2

3

2(x1x3+x2)
1+x2

1+x2
2+x2

3

2(x1x2+x3)

1+x2
1+x2

2+x2
3

−1 +
2(1+x2

2)

1+x2
1+x2

2+x2
3

2(x2x3−x1)

1+x2
1+x2

2+x2
3

2(x1x3−x2)

1+x2
1+x2

2+x2
3

2(x2x3+x1)

1+x2
1+x2

2+x2
3

−1 +
2(1+x2

3)

1+x2
1+x2

2+x2
3






d0 (19)

2.2 Inertial forces

Many studies in multibody dynamics are focused in constraint imposition and time
integration (see, e.g. Nikravesh [20]). The proposed algorithm can be directly used for
multibody dynamics without specific requirements. Considering time-step algorithms and
using the subscript n for a given time step and n+1 for the subsequent time step, we can
write the second time derivative of a as a function of an, an+1, ȧn and än:

än+1 = ä (an,an+1, ȧn, än) (20)

The total force vector including inertial forces is given by:

2x = tan
(

‖θ‖
2

)
θ

‖θ‖

P. Areias and T. Rabczuk

fdyn = f +Män+1 (21)

where M is an appropriate mass matrix (cf. [10]). We can therefore write the uncon-
strained solution scheme as:

δaT

(

K +M
∂ä

∂an+1

)

︸ ︷︷ ︸

Kdyn

da = −δaT (f +Män+1)
︸ ︷︷ ︸

fdyn

(22)

It is very clear that there is no need to calculate the inertia matrix since it is accounted
by the transformation technique. Beam dynamics which result in intricate inertia forces
are also taken care by our approach if director constraints are imposed by MPC. The
incorporation of inertial forces in the analysis with constraints is performed in a straight-
forward manner:

• The function ä is specified for a given time-integration method, as well as the
derivative with respect to an+1 (and the half-step an+ 1

2
).

• fdyn replaces f in (12).

• Kdyn replaces K in (12).

The half-step mean-acceleration/three-point backward Euler time-integration algorithm
is used as a prototype model (it is described in [9]). In that case we specify ä as:

ä =







16

(

a
n+1

2
−an

)

∆t2
− 8ȧn

∆t
− än , hs = 1 (ä ≡ än+ 1

2
)

1
∆t
ȧn −

4
∆t
ȧn+ 1

2
+ 3

∆t
ȧn+1 , hs = 2 (ä ≡ än+1)

(23)

where hs is the homotopy step counter (two homotopy steps are used). It is also worth
noting that the rigid-body constraint results in the application of (23) to all degrees-of-
freedom, regardless of being slaves or not. Rotational inertia is indirectly considered by
the application of the rigid-body constraint but all classical terms (cf. [8]) are included.
An simple application is the pendulum which we can of course integrated in closed form.
Figure 4 shows an application with two fixed time step increments (∆t=1% and ∆t=5%
of the linear period Tl) for E = ∞ (with the rigid body multiple-point constraint). Ex-
ceptional robustness and accuracy are verified.

2.3 Interconnected constraints

Assuming that an order of constraint application is pre-established (this order will be
determined by a topological ordering), then each constraint beyond the first one will be

P. Areias and T. Rabczuk

Y

X
Z

ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã

ã
ã

ã
ã

ã
ã

ã
ããããããããã

ãã
ã

ã
ã

ã
ã

ã
ã

ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã ã

ã ã
ã ã ã ã ã ã ã ã ã

ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ã
ããããããããããããã

ç

ç

ç

ç

ç

ç
ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç
ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

çç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç ç

ççç

-1.0 -0.5 0.5 1.0

-4

-2

2

4

θ

md = 0.628319 Kg
g = 9.8 m/s−2

mh = 0 Kg

θ(t)

Pinned

θ(0) = 4π
9 rad

Tl = 1.45427 s

Mesh:

6342 nodes
26867 tetrahedral elements

∆t=5% Tl

Exact

Phase plots

∆t=1% Tl

θ̇

0.
52
5
m

Figure 4: Large amplitude pendulum (rigid-body constraint) integrated with two time-steps (1% and 5%
of the linear period).

applied to an already constrained system. It is obvious that if a certain constraint only
affects degrees-of-freedom of the unconstrained system, it should be among the first to be
applied. If we assume all constraints to be interconnected, then an ordered sequence must
follow according to the closeness to the original degrees-of-freedom. Each constraint will
contribute with a matrix T⋆l, a vector b⋆l a matrix cl and the tensor g′′

l . To facilitate the
interpretation, matrices T⋆, after ordering, relate degrees-of-freedom at position l with
the ones at several positions which are farther away from the original degrees-of-freedom3.
The generalization of the slave update formula for m interconnected equality constraints
is presented, after the preliminary step of topological ordering, as:

Tm
⋆ =

1∏

l=m

T⋆l (24)

bm⋆ =

1∑

l=m

[(
l∏

p=m

T⋆p

)

b⋆l

]

(25)

Many MPC applications only moderately increase the fill-in in decomposition if an effi-
cient post-ordering is performed, as the rigid link of Figure 5 suggests: DOF renumbering
must be performed after the graph updating. The user must specify T⋆ and b⋆ either
obtained explicitly from the knowledge of the problem, or pre-process the constraint in
the form g(a) = 0. A pseudo-code preprocessor is shown as Algorithm 1. The use of a
sparse linear solver is important at this preliminary stage since gs is frequently very sparse
(often close to the identity matrix) and |Is| can be large. Many calculations make use of

3In the sense of the original unconstrained system

P. Areias and T. Rabczuk

1

2

3

5

4

1

2

3

4

5

Link

Introduce the link

Update DOF connectivities (expand)

Remove node 4 (node 5 will become 4)

Figure 5: Example of a local graph update from the introduction of a rigid link. The slave node (here 4)
is removed from the graph.

cliques, since it is well known that clique processing allows for computational savings as
it circumvents the need for a dynamic structure (see, e.g. [12]).

Algorithm 1 Pre-processing of a single constraint g(a) = 0

!*** pre -processing of a single constraint

mpctreat (gr,gs,eq ,b,t)

! allocates b and t in the heap

! solve for b and t with multiple right -hand -sides (with sparse solver):

gs.[b|t]=-[eq|gr]

3 One-to-many and many-to-many adjacency lists

The adjacency lists of a CSR representation of a sparse matrix define many-to-many
relations (the seminal work of F. G. Gustavson [15] explores this aspect by means of the
transposition algorithm). Two interpretations occur:

• The pair (mp(i),d(p(i)-1+j)) where i is the natural position of the row, mp(i)
the image under some map and j is the local column index represents an edge of a
digraph.

• The row d(p(i)):d(p(i+1)-1) represents a generalized edge of a hypergraph.

P. Areias and T. Rabczuk

When one constituent is tied to a set of constituents, its local numbers must be mapped
to the numbers of the set. This is a simple mapping described in algorithm 2. The one-to-
many relation is represented by a list, where the natural ordering provides the “many” part
of the relation and the “one” is the number stored at every position. For example, a list of
degrees-of-freedom (DOF) related with a hypothetical constituent can be represented by a
list: dof={3,2,2,4,1,2}. The one-to-many relation is interpreted as: DOF 1 is related to
local number 5, DOF 2 is related to local numbers 2,3 and 6, etc. Both the corresponding
many-to-many complete representation and its transpose can be obtained as shown in
algorithm 2 (routine enlarge). For clarity, the beginning is represented by the letter p

(pointer) and the lists are stored in a list d (destination).

4 Assembling

4.1 Symbolic and numeric assembling

The algorithm is shown in listing 3; note that large storage can be avoided by invoking
a routine to form a specific element matrix. With MPC, modified element connectivity
tables are necessary to obtain a new ordering that reduces the fill-in. As an additional
benefit, memory fragmentation is minimized. There are repetitions in MPC multiplica-
tions, since DOF are usually shared by more than one node, but memory movements are
reduced. Having the structure defined, assembling of a single element is performed as in
listing 4. Only the essential operations are shown, as further details can be consulted in
[4].

4.2 Recovery of slave degrees-of-freedom

After the linear solution is carried out for the master degrees-of-freedom, slave values
must recovered and reactions calculated (part of these are calculated in the assembling
loop). The pseudo-code to perform this task is shown in algorithm 5. See also [4] for
further details.

4.3 Performance comparison

To assess the performance of both the numerical and symbolic parts of the assembling
algorithm we compare its performance with two other implementations of different data
structures. Note that flexibility is delegated for the column number lists, since the total
number of degrees-of-freedom is known prior to filling the global stiffness matrix from a
simple calculation.

• Array of self-resizing arrays, allowing linear search but requiring resizing operations
(we double the required size every time a resize is needed). An analogous approach
with a linked-list is discussed by Duff et al. [14].

P. Areias and T. Rabczuk

Algorithm 2 Transposition of a many-to-many representation and conversion of a one-
to-many to a many-to-many representation

!*** transposition of a many -to -many adjacency list

transp (n1 ,p1 ,d1,n2,p2,d2,ij)

n2=max(d1)

do i=1,n1

do j=p1(i),p1(i+1)-1

k=d1(j)

p2(k)=p2(k)+1

end do

end do

lol=p2 (1)

p2 (1)=1

do i=1,n

new=p2(i)+lol

i1=i+1

lol=p2(i1)

p2(i1)=new

end do

l=0

do i=1,n1

do j=p1(i),p1(i+1)-1

l=l+1

k=d(j)

next=p2(k)

ij(next)=l

p2(k)= next+1

d2(next)=i

end do

end do

do i=n2 ,1,-1

p2(i+1)=p2(i)

enddo

p2 (1)=1

end

!*** conversion from a one -to -many to

!*** a many -to-many representation

enlarge (nl ,list ,nt,pt,dt,n,p,d,ij)

pt (1)=1

do i=2,nl+1

pt(i)=pt(i -1)+1

end do

nt=nl

dt=list

transp (nt ,pt ,dt ,n,p,d,ij)

end

P. Areias and T. Rabczuk

Algorithm 3 Symbolic assembling

!*** symbolic assembling

symassemb (nel ,lep ,led ,clqp ,clqd ,neq ,mp ,md)

transp (nel ,lep ,letp ,neq ,led ,letd ,ijle)

clqaddress (nel ,lep ,lep ,clqp) ! obtains clique addresses

atimesb1 (neq ,letp ,letd ,nel ,lep ,led ,igash ,mp)

l=0

do ira =1, neq

do iza=letp(ira),letp(ira +1)-1

iel =letd(iza)

igl =ijle(iza)

jgl =0

do izb =lep(iel),lep(iel +1)-1

jgl=jgl +1

mpb=led(izb)

ip=iw(mpb)

if(ip.eq.0) then

l=l+1

md(l)=mpb

iw(mpb)=l

llp=indstiff (clqp ,lep ,iel ,igl ,jgl)

call insert (clqd ,llp ,l)

else

llp=indstiff (clqp ,lep ,iel ,igl ,jgl)

call insert (clqd ,llp ,ip)

end if

end do

end do

do izc=mp(ira),l

iw(md(izc))=0

end do

end do

end

!*** half sparse multiplication

atimesb1 (na,ia,ja ,nb ,ib ,jb ,nc ,ic)

ncb=numinj (nb,ib ,jb)

nc=na

do i=1,na

ldg =0

llast =-1

do j=ia(i),ia(i+1)-1

jr=ja(j)

do k=ib(jr),ib(jr+1)-1

jc=jb(k)

if(iw(jc).eq .0) then

ldg=ldg +1

iw(jc)= llast

llast=jc

end if

end do

end do

ic(i)=ldg

do k=1, ldg

j=iw(llast)

iw(llast)=0

llast=j

end do

end do

mudlis (nc ,ic) ! creates pointers from number of elements

end

P. Areias and T. Rabczuk

Algorithm 4 Numerical assembling

!*** numerical assembling

nmassb (iel ,ind ,clqp ,clqd ,estif ,matrix)

nedof =ind(iel +1)- ind(iel)

do jedof =1, nedof

do iedof =1, nedof

iz=clqd(indstiff (clqp ,ind ,iel ,iedof ,jedof))

matrix (iz)= matrix (iz)+ estif(id2d(nedof ,iedof ,jedof))

end do

end do

end

!*** index in a clique list

indstiff (p,ind ,iel ,iedof ,jedof)

indstiff =p(iel)-1+ id2d(mmaddress (ind ,iel ,0), iedof ,jedof)

end

Algorithm 5 Recovery of slave degrees-of-freedom

...

soluc =0.0

do i=1,n

ityp=typdf (i) ! type of dof

soluc(ityp)= newdestvec (i) ! part of the solution

do j=p(i),p(i+1)-1

if(d(j).ne .0) then

itemp =nwdof(d(j)) ! dof number

if(itemp .ne.0) then

soluc(ityp)= soluc(ityp)+mat(j)*vec(itemp) ! update of solution

end if

end if

end do

end do

...

P. Areias and T. Rabczuk

Cubic mesh

with 8-node bricks

1× 108

Symbolic assembling

1× 109

T
im

e
[s
]

Number of stiffness coefficients

1× 102

Array of AVL trees
Array of dynamic arrays

1× 10−1

1× 100

1× 101

1× 106 1× 107

Numerical assembling

Figure 6: Assembling times as a function of number of stiffness matrix coefficients. Machine: Apple
MacBook Pro 2.66 GHz Intel Core i7, 8 Gb RAM. Compiler: gfortran (GCC 4.5.0) with -O3 option.

• Array of AVL trees [18], allowing binary search but requiring branch balancing.

• Our clique/adjacency structure, allowing direct access with symbolic pre-processing
required.

Figure 6 shows the results. Some conclusions are:

• The linear search using an array of dynamic arrays is clearly slower than the other
two options.

• The array of AVL trees results slightly faster than the symbolic part of the assem-
bling technique proposed here. After the symbolic part is performed, the numerical
assembling is much faster than the array of AVL trees.

• The direct access provided by the preliminary symbolic assembling is clearly faster
than the two alternatives.

Further improvements of the numerical assembling performance can be achieved by order-
ing the element loop according to the destinations in the global stiffness matrix.

4.4 Recursive processing of MPC by clique format operations

We introduce the notion of extension number, eni of a degree-of-freedom. This is
the cardinality of the set of masters tied to that degree-of-freedom. Slave degrees-of-
freedom can have any non-negative eni (for example Dirichlet conditions result in a zero

P. Areias and T. Rabczuk

1 : 1

Degree-of-freedom:list of masters

Topological sort

3 : 2,0

4 : 1,1|3,0

Unroll of nested DOFs Collapse (and sum)

1 : 1

2 : 0

4 : 1, 0

8 : 8

5 : 3,0|4,1|4,0|2,0 5 : 0, 1

6 : 2,0|1,1|5,0|5,1|5,0|5,0 6 : 0, 1

7 : 6,0|6,1|6,0|6,1|6,0|6,0 7 : 0, 1

3 : 0

1 : 1

2 : 0

3 : 2

4 : 1, 3

5 : 3, 4, 2

6 : 2, 1, 5

7 : 6

8 : 8

Acyclic test

Hasse diagramDirected graph

2 : 0

8 : 8

6

5

7

8

1

0

2

3

4

7 8

6

5

0

2

31

4

Figure 7: Specific DOF distribution: directed graph and Hasse diagram. Collapse of DOF destinations.

eni). Consider the DOF arrangement of Figure 7where the directed graph and the Hasse
diagram for this arrangement are shown. Traversing from the top the Hasse diagram we
obtain the correct sequence for DOF processing. Note that if the graph is cyclic, the
problem is ill-posed since a DOF cannot be simultaneously slave and not slave. The one
in the picture is acyclic [16]. Due to the self loop in DOF 1, it is positioned at the same
level of DOF 3. Self-loops are only possible in non-slave DOF (i.e. a slave DOF cannot
master itself).

In the sequence of operations in Figure 7, it can also be observed that DOFs are sorted
by their inter-dependence. In this case, after collapse, only two DOFs survive: 1 and 8.
Surviving DOF are characterized by having no proper outer edges. Two properties from
graph theory [16] are relevant for our application (proofs are given in that reference):

• A partially order set corresponds to an acyclic directed graph.

• Every directed graph admits a topological ordering.

P. Areias and T. Rabczuk

• The resulting DOF depth is at most 2, and can be made exactly either 2 or 0.

We convert the pair pold, dold by the pair p, d performing the operations in Algorithm
7. User input must guarantee that the digraph is acyclic (a test is performed at the
sorting stage) and, after that, a partial ordering must be established from the DOF
edges. This extension is usually called topological order [16]. Algorithm 6 shows this
operation. A solvable problem results in a Direct Acyclic Graph (DAG). The scheduling
of DOF processing is required to avoid repetitions. As can be observed in Figure 7,
there are no repetitions4 in the processing of the sequences of DOFs. Multiplication
of transformation matrices will benefit from this procedure. Non-slave nodes have unit
T⋆-coefficients whereas slave nodes’ T⋆−coefficients depend on the constraint imposed.

4.5 Further details concerning the algorithm

The specific problem data, both element and MPC information is communicated to a
driver routine by use of two subroutines. A clique (a given generalized element) is inserted
by invoking the overloaded routine store:

• store(iel,ndofiel,lnods,ltyps,efor,emat) where:

– iel is the global element number.

– ndofiel is the number of degrees-of-freedom of element iel.

– lnods (size ndofiel) is the list of global nodes corresponding to each degree-
of-freedom.

– ltyps (size ndofiel) is the list of global types corresponding to each degree-
of-freedom.

– efor (size ndofiel) is the element “force” vector f .

– emat (size ndofiel×ndofiel) is the element “stiffness” matrix K.

For example, a 3D MINI element (cf. [8]) which has 4 outer nodes and 1 inner node, we
identify the degrees-of-freedom as: 3 displacement degrees-of-freedom (types 1,2,3) and 1
pressure (here identified as type 7) degree-of-freedom per outer node and one internal node
with 3 displacement degrees-of-freedom, we can set ltyps as: {1,2,3,7,1,2,3,7,1,2,3,7,1,2,3,7,1,2,3}
Multiple-point constraints are inserted by a similarly-named routine:

• store(mnods,mtyps,nmast,nnodm,ntypm,rhs,trm,trm2) where:

– mnods is the global node of a slave degree-of-freedom.

– mtyps is the global type of a slave degree-of-freedom.

– nmast is the number of master DOFs corresponding to mnods.

4To simplify the routines, we retain the multiplications by 1 for self-masters

P. Areias and T. Rabczuk

Algorithm 6 Verify if a given digraph given by pold and dold is acyclic and perform a
topological ordering

doftop (na ,p,d,acyclic ,top)

m=1

do i=1,na

if(d(p(i)). ne.i)then

do j=p(i),p(i+1)-1

if(d(j).gt.0) ind(d(j))= ind(d(j))+1

end do

end if

end do

ik=0

do i=1,na

if(ind(i).eq.0) then

ik=ik+1

l(na+1-ik)=i

end if

end do

mk=na

do while (ik.ne.0)

i=l(mk)

mk=mk -1

ik=ik -1

top(m)=i

m=m+1

if(d(p(i)). ne.i)then

do j=p(i),p(i+1)-1

ig=d(j)

if(ig.gt.0) then

ind(ig)= ind(ig)-1

if(ind(ig).eq.0) then

ik=ik+1

l(mk+1-ik)=ig

end if

end if

end do

end if

end do

if(m.eq.na+1) then

acyclic =.true.

else

acyclic =. false.

end if

do i=1,na/2

i1=top(na+1-i)

top(na+1-i)=top(i)

top(i)=i1

end do

end

P. Areias and T. Rabczuk

Algorithm 7 Conversion from pold, dold to p, d (collapse)

...

do i=1,n

ieq=top(i)

k=0

do j=pold(ieq),pold(ieq +1)-1

k=k+p(dold(j))

enddo

p(ieq)=k

enddo

mudlis (n,p) ! creates pointers

do i=1,n

if(pold(i+1).eq.pold(i)+1) then

if(dold(destp(i)). eq.i)d(p(i))= dold(pold(i))

end if

enddo

do i=1,n

ieq=top(i)

l=0

do j=pold(ieq),pold(ieq +1)-1

jeq=dold(j)

do k=p(jeq),p(jeq +1)-1

l=l+1

d(p(ieq)-1+l)=d(k)

enddo

enddo

enddo

...

– nnodm (size nmast) is the list of global nodes corresponding to each degree-of-
freedom.

– ntypm (size nmast) is the list of global types corresponding to each degree-of-
freedom.

– rhs is the value b⋆.

– trm is the matrix T⋆.

– trm2 is the derivative T ′
⋆.

Contrary to the cliques, multiple-point constraints are subsequently sorted and therefore
their numbers are not required.

5 Numerical Tests

Several examples are herein computed in order to fully illustrate our approach in the
following areas: i) single rigid body dynamics, ii) multi-body dynamics combining rigid
and deformable parts, iii) element implementation and iv) computational fracture in 2D
and shells with control equations.

P. Areias and T. Rabczuk

At the apex 2

1686 nodes
7767 tetrahedral elements

Mesh:

θ

1

x3

x1

ψ̇

2
x2

θ
φ

θ0 = 7.5◦

ψ̇0 = 199.76 rad/s

I3 = 6.28319× 10−9 Kg m2
I1 = 6.82773× 10−9 Kg m2

ρ = 8000 Kg/m3
g = 9.8 m/s2
H/2 = 2× 10−3 m

θ0 = 7.5◦

R = 5× 10−3 m

Horizontal for toy top, u̇0=0.05 m/s

Apex 2: Fixed for Lagrange top

Figure 8: Lagrange and toy tops: relevant geometrical data and mass properties.

5.1 Single rigid body dynamics: Lagrange and toy tops.

Basic applications of our algorithm to rigid body dynamics (a verification example
was shown in subsection 2.2) are presented. Two tops (Lagrange and toy top) are tested
and, for the Lagrange top, results are compared with the numerical solution of the exact
problem statement. The Lagrange top has three degrees-of-freedom (three Euler angles)
and the toy top has five degrees-of-freedom (three Euler angles and two displacement
components at the contact tip). Rodrigues parameters are obtained from Euler angles.
The same geometry for the top is adopted in both cases: two shallow cones joined at the
bases. Initial angular velocity is imposed and a single rigid-body constraint is adopted.
Figure 8 summarizes the relevant data for this problem. For the Lagrange top, results are
shown in Figure (9) for the apex 1 trajectory and compared with the solution of the exact
problem. Excellent results can be observed. Two time steps are used for the toy top (cf.
Figure 10) with good agreement between the results of the two time steps for both apices
1 and 2.

P. Areias and T. Rabczuk

Lagrange top ∆t = 5× 10−4 s
Analytical solution

−mgH cos (θ)

+ I3
2

[

ψ̇ + φ̇ cos (θ)
]2

L = I1
2

[

θ̇2 + φ̇2 sin2 (θ)
]

x

MPC

y

-0.0002

0.00020.0004 0.00080.0006

-0.0004

-0.0002-0.0004-0.0006

-0.0006

-0.0008

0.0008

0.0006

0.0004

0.0002

0

-0.0008
0

Figure 9: Apex 1 trajectory for the Lagrange top.

L = 1
2

(
ωT [In] · ω +mẋG · ẋG

)

+mgH cos(θ)

0.004

0.006

0.008

0.01

0.012

0.014

-0.0004 -0.0003 -0.0002 -0.0001 0 0.0001 0.0002 0.0003 0.0004

u
2

u1

Small step, bottom
Large step, bottom

Large step, top
Small step, top

∆t (small)=5× 10−4 s
∆t (large)=1× 10−3 s

0

0.002

Figure 10: Apex 1 and 2 displacement components for the toy top.

P. Areias and T. Rabczuk

5.2 Multi-body dynamics: universal joint

The universal joint is analyzed with a combination of rigid body and deformable parts.
With the proposed algorithm, each component can be either considered rigid or deformable
according to the focus and interest of analysis. As Figure 11 illustrates, we consider
the central cross-shaft as either rigid or deformable and the remaining components as
rigid. Imposed constant angular velocity at one of the shafts produces a transient torque
response followed by a periodic torque response corresponding to the variable output
angular velocity. This transient response was found to be significantly different between
case I and case II. Figure 12 shows this difference. Excellent agreement between the
theoretical output angular velocity and the measured one can be seen in Figure 13.

5.3 Quasi-static crack propagation control and geometrical elements

Quasi-static fracture processes are simulated using either displacement (or rotation)
control or crack-opening-displacement control (cf. [5] where the ALE procedure is de-
scribed). This is ideal for the use of MPC. Two problems are solved. The first problem is
the one proposed by Bocca et al. [11], with relevant data shown in Figure 14. Multiple-
point constraints are used to force anti-symmetry conditions: the same mouth opening at
the edge of notches A and B: ∆uB = ∆uA. Good agreement with the experimental crack
paths is shown in Figure 15. A comparison with the measurements of Bocca et al. [11]
is shown in Figure 16 along with the results by the cracking particle method of Rabczuk
and Belytschko [22]. Note that geometrical elements are used to retain mesh quality after
element splitting.

In the following fracture example, we test the control algorithm with the quasi-brittle
shell fracture algorithm recently presented in CFRAC 2011 [7]. Relevant data for this
problem is shown in Figure 19. A Rankine-based criterion is adopted (coupled with
isotropic damage - here represented by the void fraction variable f) as recently discussed
in [6]. Note that constrained geometrical elements are used to retain mesh quality after
element splitting (see [5, 7] for further details). Two initial meshes are employed: one
containing 5440 and another with 10270 triangular elements. A sequence of deformed
meshes of the shell is shown in Figure 18 as well as the void fraction (f) contour plot.
Very large displacements and rotations are observed with exceptional robustness. To
confirm mesh-insensitivity, we show the control displacement/pressure results in Figure
19 for both meshes.

P. Areias and T. Rabczuk

X

Y

Z

X

Y

Z

65609 tetrahedral elements

7014 nodes
35068 tetrahedral elements

Mesh in the cross-shaft:

∅0.02 m

0.
1
m

0.01 m

ρ = 8000 Kg/m3

0.015 m

Case I: E = +∞

Case II: E = 200 GPa

ν = 0.3

Rigid

0.4
6 m

∅0.02 m Rigid

β

Mesh:
14055 nodes

∅0.02 m

β = π
6

0.46 m

X

Y

Z

1.729e-03

7.148e+06

1.430e+07

2.145e+07

2.859e+07
von-Mises

Figure 11: Universal joint: geometry and relevant problem data. The von-Mises equivalent stress at the
cross-shaft (the only deformable part) is shown.

P. Areias and T. Rabczuk

Time (s)

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
-12000

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

E = 200 GPa (Case II)

E = +∞ (Case I)

∆t = 2× 10−4 s

ω1 = 500 rad/s

L
on

gi
tu
d
in
al

to
rq
u
e
(N

m
)

-12000

Figure 12: Universal joint: response to constant angular velocity at the input shaft.

Present analysis

Exact solution: ω2

ω1

= cos β/(1− sin2β cos2 θ1)

0.8

1.2

1.4

1.6

1.8

2

2.2

0 2 4 6 8 10 12 14 16 18

0.6

ω
2
/ω

1

θ1

0.4

1

Figure 13: Universal joint: ratio between angular velocities, comparison with exact solution.

P. Areias and T. Rabczuk

A

B

h = 100 mm

c/b = 0.8

∆uB = ∆uA

0.1666F

c
l = 4b

b
=
20
0
m
m

MPC
control 0.8333F

E = 27000 N/mm2

ν = 0.18
ft = 2 N/mm2

GF = 0.1 N/mm

a = 0.2b

Figure 14: Four-point bending of a concrete beam: geometry, boundary conditions, multiple-point con-
straints (∆uB = ∆uA) and material properties. Also shown is the final deformed mesh 10× magnified.

P. Areias and T. Rabczuk

Experimental envelope (Bocca et al. 1991)

Present model (with MPC control)

Figure 15: Four-point bending of a concrete beam: crack paths compared with the envelope of experi-
mental results by Bocca, Carpintieri and Valente [11].

MPC-based control

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 0.05 0.1 0.15 0.2
Displacement of the loaded point (mm)

Bocca et al. Experimental
Bocca et al. Numerical

Rabczuk 68000 particles

F
or
ce

(N
)

0

Figure 16: Four-point bending of a concrete beam: load-displacement results, compared with the results
of Bocca, Carpintieri and Valente [11] and the cracking particle method of Rabczuk and Belytschko [22]
with their 68000 particle analysis.

P. Areias and T. Rabczuk

z

y

x

Symmetry

Symmetry

Control node radial velocity

H (cylindrical surface)=0.025 m
H (bottom)=0.07 m

E = 200 GPa
ν = 0.3

fcrit = 0.1
g ≡ 1− ε1max

ε1
− f

I: 2808 nodes, 5440 elements
II: 5256 nodes, 10270 elements

2 m

Closed bottomLongitudinal
symmetry

ḟ g = 0

g ≤ 0

Meshes:

Initial axial crack (0.05 m)

lc = 0.1 m
ε1max = 0.03

ḟ ≥ 0

R0.5 m

Figure 17: Quasi-brittle fracture of a cylindrical shell: relevant data and discretization.

Z
X
Y

Z
X
Y

Y Z

X 0.000e+00

2.500e-02

5.000e-02

7.500e-02

1.000e-01
Void fraction

Z
X
Y

Z
X
Y

u control = 6× 10−2 m

p = 1.4 MPa
u control = 14× 10−2 m

u control = 0
p = 0 MPa

p = 17.3 MPa
u control = 3× 10−2 m

p = 4.2 MPa

Detail of the mesh (with ALE)

Figure 18: Quasi-brittle fracture of a cylindrical shell: sequence of deformed meshes.

P. Areias and T. Rabczuk

5256 nodes

Initial meshes:

2808 nodes

0.14

50

100

150

200

250

P
re
ss
u
re
,
p
(M

P
a)

Control node displacement (m)
0 0.02 0.04 0.06 0.08 0.1 0.12

0

Figure 19: Quasi-brittle fracture of a cylindrical shell: control displacement/pressure results.

P. Areias and T. Rabczuk

6 Concluding remarks

In this work a new algorithm and corresponding code to process both additive and
multiplicative components in an implicit framework. Conditions for solvability were intro-
duced and the two main problems (MPC sequential processing and reaction calculations)
were identified as a path traversal in a directed acyclic graph. Processing by use of clique
format was described in detail and advantages of this method were also discussed. The
most important advantage is the direct access of sparse matrix components by means of
clique addressing. Besides classical applications such as rigid (and multibody) dynamics,
node links and continuation methods were also incorporated. Many other techniques and
ad-hoc features, previously considered unrelated to MPC, are now be included as multi-
plicative components. The main problems with MPC processing were solved, including
the previously required ordering, which is no longer needed. A set of numerical examples
showing a wide variety of applications was presented, making use of our publicly available
software. Results made use of previously algorithms but these are now integrated in the
framework.

7 Software availability

The basic clique and MPC framework is available on Google Code [4] under the LGPL
license. It requires a Fortran 2003 compatible compiler.

Acknowledgments

The authors gratefully acknowledge financing from the “Fundação para a Ciência e a
Tecnologia” under the Project PTDC/EME-PME/108751 and the Program COMPETE
FCOMP-01-0124-FEDER-010267.

REFERENCES

[1] F. Amirouche. Fundamentals of Multibody Dynamics Theory and Applications.
Birkhäuser, 2006.

[2] S.S. Antman. Nonlinear Problems of Elasticity. Springer, Second edition, 2005.

[3] S.S. Antman and R.S. Marlow. Material constraints, lagrange multipliers, and com-
patibility. Archive for Rational Mechanics and Analysis, 116:257–299, 1991.

[4] P. Areias. Simplasmpc. http://code.google.com/p/simplasmpc/.

[5] P. Areias, D. Dias-da-Costa, J. Alfaiate, and E. Júlio. Arbitrary bi-dimensional finite
strain cohesive crack propagation. Computational Mechanics, 45(1):61–75, 2009.

[6] P. Areias, J. Garção, E.B. Pires, and J. Infante Barbosa. Exact corotational shell for
finite strains and fracture. Computational Mechanics, 48:385–406, 2011.

P. Areias and T. Rabczuk

[7] P. Areias, N. Van Goethem, and E.B. Pires. Constrained ale-based discrete fracture
in shells with quasi-brittle and ductile materials. In CFRAC 2011 International
Conference, Barcelona, Spain, June 2011. CIMNE.

[8] V.I. Arnold. Mathematical Methods of Classical Mechanics. Springer, 1989.

[9] K.-J. Bathe. Conserving energy and momentum in nonlinear dynamics: A simple
implicit time integration scheme. Computers and Structures, 85:437–445, 2006.

[10] T. Belytschko, W.K. Liu, and B. Moran. Nonlinear Finite Elements for Continua
and Structures. John Wiley & Sons, 2000.

[11] P. Bocca, A. Carpinteri, and S. Valente. Mixed mode fracture of concrete. Interna-
tional Journal of Solids and Structures, 27(9):1139–1153, 1991.

[12] J.I. Curiskis and S. Valliappan. A solution algorithm for linear constraint equations
in finite element analysis. Computers and Structures, 8:117–124, 1978.

[13] T.A. Davis. Direct Methods for Sparse Linear Systems. SIAM, 2006.

[14] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices. Claren-
don Press, Oxford, 1986.

[15] F.G. Gustavson. Two fast algorithms for sparse matrices: multiplication and per-
muted transposition. ACM Transactions of Mathematical Software, 4(3):250–269,
1978.

[16] D. Jungnickel. Graphs, Networks and Algorithms, volume 5 of Algorithms and Com-
putation in Mathematics. Springer, Second edition, 2005.

[17] A. Klarbring. Models of Mechanics. Springer, 2006.

[18] D. Knuth. The Art of Computer Programming, volume 3. Addison-Wesley, Third
edition, 1997.

[19] S. Nash and A. Sofer. Linear and Nonlinear Programming. McGraw-Hill International
Editions, 1996.

[20] P.E. Nikravesh. Computer-Aided Analysis of Mechanical Systems. Prentice Hall,
1988.

[21] J. Nocedal and S. Wright. Numerical Optimization. Series Operations Research.
Springer, Second edition, 2006.

[22] T. Rabczuk and T. Belytschko. Cracking particles: a simplified meshfree method for
arbitrary evolving cracks. International Journal for Numerical Methods in Engineer-
ing, 61:2316–2343, 2004.

P. Areias and T. Rabczuk

[23] W.C. Rheinboldt. Geometric notes on optimization with equality constraints. Applied
Mathematical letters, 9(3):83–87, 1996.

