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Resumo/Abstract : 
 

 

The objective of this paper is to estimate the impact of carbon dioxide emissions from fossil fuel combustion activities 
on economic activity in Portugal in order to evaluate the economic costs of policies designed to reduce carbon 
dioxide emissions. We find that energy consumption has a significant impact on macroeconomic activity. In fact, a 
one ton of oil equivalent permanent reduction in aggregate energy consumption reduces output by €6,340 over the 
long term, an aggregate impact which hides a wide diversity of effects for different fuel types. More importantly, and 
since carbon dioxide emissions are linearly related to the amounts of fuel consumed, our results allow us to estimate 
the costs of reductions in carbon dioxide emissions from different energy sources. We estimate that marginal 
abatement costs for carbon dioxide are €45.62 per ton of carbon dioxide per year for coal, €66.52 for oil, €91.07 for 
gas, €191.13 for electricity and €254.23 for biomass. An important policy implication is that, once the overall 
economic costs of reducing carbon dioxide emissions are considered, fuel switching is a no-regrets environmental 
policy capable of reducing carbon dioxide emissions without jeopardizing economic activity and indeed with the 
potential for generating favorable economic outcomes 
 
Palavras-chave/Keywords:   carbon dioxide emissions, energy and the economy, environmental policy, fuel-

switching, vector autoregressive model 
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1. Introduction 
 
 

Carbon dioxide emissions from fossil fuel combustion in Portugal reached 56.950 Mt 

CO2 in 2006, according to the Agencia Portuguesa do Ambiente (2006a) (Portuguese 

Institute for the Environment, APA hereafter). For the period 1990-2006 they account for 

96.2% of total greenhouse gas emissions in the energy sector – the remainder being 

methane and nitrogen oxide emissions, and for 68.5% of total greenhouse gas emissions - 

the remainder being due to industrial processes, fugitive emissions from fuels, solvent 

and other product use, agriculture, and waste.  

Environmental policies to reduce carbon dioxide emissions from fossil fuel 

combustion have traditionally focused on investment in research, development, and 

deployment of energy-efficient technologies, on restructuring the composition of fuel 

demand, and on reducing energy consumption. Naturally, the choice and design of such 

policies is bound to have an important impact on economic activity [see, for example, 

Manne and Richels (1992), Nordhaus (1993), Grubb et al. (1993), Gaskins and Weyant 

(1993), Zhang and Folmer (1998), Jorgenson (1998), Hue and Xu (2000) and Lasky 

(2003)]. Furthermore, not all policy alternatives are equally feasible in general and much 

more so in the case of a small economy like Portugal. 

Energy-efficiency improvements have the potential for bringing significant gains in 

productivity while reducing the consumption of fossil fuels and greenhouse gas emissions 

[see, for example, Barker, et al. (2007) and Scott et al. (2008)]. Nevertheless, their scope 
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is rather limited. The development of energy-efficient technologies is more of a long-

term prospect and more outside the scope of small or developing economies. Ultimately, 

policy instruments that promote fuel switching tend to be the policies of choice. 

International studies, however, have often concluded that the fuel switching necessary to 

ensure deep cuts in emissions would increase direct energy system costs as a result of a 

regulatory-induced shift to more expensive but cleaner fuels. This highlights the 

perceived trade-off between reducing carbon dioxide emissions from fossil fuel 

combustion activities and economic growth [see, for example, Chen et al. (2005)].  

The objective of this paper is to contribute to the design of environmental policy 

instruments, and particularly, fuel-switching policies, which minimize the economic costs 

of regulation while effectively reducing emissions. We do so by focusing on the 

economic impact of final energy demand by type. Then, since carbon dioxide emissions 

are linearly related to the amounts of fuel consumed, our estimates of the economic 

impact of energy consumption allow us to estimate the marginal abatement costs for 

carbon dioxide emissions from fossil fuel combustion by energy source and gain an 

appreciation of the costs of policies directed at specific emission sources.  

We obtain the economic impact of energy demand by estimating a series of vector 

auto-regressive (VAR) models relating output, employment and private investment to 

aggregate energy demand or disaggregate energy demand for different types of energy. 

This allows us to highlight the dynamic feedback mechanisms among the different 

variables and captures both direct and indirect channels through which energy 

consumption affects output.  As an input to production, energy directly affects output. On 

the other hand, energy may affect production indirectly through its impact on other inputs 
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- capital and labor. To this effect, empirical evidence suggests that during periods of high 

energy prices, the tendency is for firms to switch to less energy-intensive capital 

equipment and for more labor-intensive industries to develop [see, for example, 

Jorgenson (1998)].  

Our methodological approach follows very much the recent trends in the literature. 

Recent advances in times-series analysis have stimulated research into the nature of the 

relationship between energy consumption and economic activity via the concept of 

Granger-causality [see, for example, Masih and Masih (1996), Cheng and Lai (1997), 

Asafu-Adjaye (2000), Stern (1993, 2000), and Oh and Lee (2004)]. Although the general 

results are mixed, the importance of the dynamic relationship between energy 

consumption and output is clear. In fact, bi-directional causality has served as the basis 

for generating forecasts of energy consumption based, at least partially, on the level of 

economic activity [see, for example, Crompton and Wu (2005), Francis et al. (2007), and 

Perobelli et al (2007)]. As a result, vector auto-regressive models have become a standard 

approach for forecasting energy consumption [see, for example, Energy Information 

Administration (2002)].    

Our paper extends the literature to consider the impact of shocks to the demand for 

specific types of energy due to climate policy measures on output, employment and 

private investment. Climate policy induced reductions in energy consumption generate a 

series of responses in economic activity which define the economic costs of regulation. 

As a result, we can consider not only the carbon content of the fuel when designing 

policies to reduce greenhouse gas emissions, but the impact of that source of energy on 

the economy as well. This allows us to prioritize policies that minimize the costs of 
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compliance with environmental regulation and better understand the economic costs of 

fuel switching policy measures.  

 

2. Data and Preliminary Empirical Results   

 

 This section describes the basic data set, presents the results of the unit root and 

cointegration tests, and addresses the issue of VAR model specification.  

 

2.1 Data: sources and description 

We use annual data for the period 1977 to 2003 for output, employment, and private 

investment, as well as aggregate and disaggregated final demand for energy.  Because 

this sample period includes years before and after Portugal joined the European Union in 

1986, we consider throughout the empirical analysis the possibility of a structural break 

in 1986. Economic data was obtained from the Banco de Portugal (1997), Commission of 

the European Communities (1999) and Ministério das Finanças (2006). Data for final 

demand for energy was obtained from the Energy Balance Sheets published by Direcção 

Geral de Energia (Portuguese Department of Energy, DGE hereafter) and is measured in 

103 tons of oil equivalent (toe hereafter). Aggregate final demand for energy is defined as 

the sum of final demand for petroleum and its derivatives, coal, gas, biomass, and 

electricity.  See Table 1 for the evolution of the composition of the final demand for 

energy. 

Data for the final demand for energy products is compiled and published by the DGE.  

In 1990, the DGE changed its data collection methodology in order to better reflect the 
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distinction between primary and final energy demand.  As a result, the DGE makes 

available two data sets – one for the period between 1971 and 1993 and another for the 

period between 1990 and 2003 - with a four-year overlap.  The data collection 

methodology and presentation differs significantly between the two periods and in order 

to ensure consistency between the two series, several methodological issues are taken 

into consideration as will be mentioned below.  

The data for petroleum and its derivatives includes liquefied petroleum gas, gasoline, 

diesel and fuel oil. Although the dominant use of petroleum and its derivates is as an 

energy source, they are also used as raw materials in the production of, for example, 

plastics and asphalt. Petroleum derivatives used as raw materials are not considered in 

our data, with the exception of fuel oil. This is because prior to 1985 the DGE accounting 

methodology did not distinguish between fuel oil used for energy and non-energy 

purposes. Petroleum and its derivatives account for an average of 66.3% of total final 

energy demand for the sample period and show a declining trend from 69.6% between 

1977 and 1985 to 63.9% in the final years of the sample period.    

The data on final demand for coal includes domestic production and imports of 

anthracite and bituminous coal. This data set is rather consistent methodologically 

throughout the sample period and therefore no adjustments to the published data were 

necessary. Coal constitutes 4.5% of total final energy demand for the sample period. Its 

weight in total final energy consumption has shown some fluctuations, starting at 3.9% in 

the beginning of the sample period reaching a high of 6.0% for 1986 to 1997 and 

decreasing to 2.1% in the last five years of the sample period. The virtual extinction of 

the domestic coal mining industry - the last coal mine in Portugal producing primarily 
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low grade anthracite closed in 1994 - largely contributed to the steady decline in coal 

consumption, particularly after 1986.  

Data for gas includes coke gas, blast furnace gas, city gas and natural gas. Natural gas 

distribution infrastructure developed rapidly after 1998 to become an important 

component of the energy system in Portugal. The demand for gas itself has increased 

significantly with the introduction of natural gas. In fact, the average share of gas in total 

final energy consumption for the period 1977-1985 was 1.2% and rose to 5.8% between 

1998 and 2003. Gas consumption grew, on average, at an average annual rate of 24.1% 

after the introduction of natural gas in 1998. In our empirical analysis below we fully 

consider the possibility of a structural break in 1998 consistent with the introduction of 

natural gas. 

Final demand for biomass includes registered purchases up until 1993, after which, 

data is based upon household surveys and thus reports both purchases and collection of 

biomass and forest waste. In order to generate a consistent series in levels, the growth 

rate of biomass consumption after 1990 is applied to the earlier level data. We find that 

the implied growth rate during the overlapping period 1990-1993 is consistent, albeit 

with relatively insignificant deviations. The use of biomass has decreased in relative 

importance over the sample period.  Between 1977 and 1985, biomass consumption 

represents 8.7% of total final energy demand while in the final years of the sample period 

biomass consumption accounts for only 6.1% of total final energy demand.  

Data for electricity consumption includes cogeneration and heat until 1993, after 

which they are accounted for separately. The level values for the overlapping years of 

1990 - 93 show an average variation of 1.04% between the two samples, the growth rates 
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show larger variability in the order of 20%. As such we consider level data for electricity 

generation until 1993 after which the new data in growth rates is considered to extend 

this series. Electricity demand has grown in terms of its relative importance in total 

energy consumption. It represents 16.6% of total final energy demand between 1977 and 

1985 and 22.0% for the last years of the sample period.   

 
2.2 Unit root and cointegration analysis 
 

This section considers the main results from the unit root and cointegration tests. We 

use the Augmented Dickey-Fuller (ADF) t-test to test the null hypothesis of a unit root in 

the different variables. The optimal lag structure is chosen using the BIC, and 

deterministic components and 1986 and 1998 dummies were included if statistically 

significant.  

We started by applying the ADF t-tests to output, employment, private investment 

and aggregate as well as each of the different types of energy consumption, in log-levels, 

and consistently found that we cannot reject the null hypothesis of non-stationarity at the 

5% level of significance – see Table 2. We then tested for stationarity of all the variables 

in growth rates – see also Table 2.  The ADF t-tests suggest that the null hypothesis of a 

unit root in the growth rates can be rejected for all variables at the 5% significance level.   

We take this evidence as a strong indication that stationarity in growth rates is a good 

approximation for all variables.  

We also test for cointegration among the different variables - output, employment, 

private investment and each one of the energy variables.  Due to our relatively small 

sample we use the Engle-Granger procedure, which is less vulnerable than the Johansen 
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procedure to the small sample bias toward finding cointegration when it does not exist 

[see, for example, Gonzalo and Lee (1998) and Gonzalo and Pitarakis (1999)].     

Following the standard Engle-Granger procedure, we perform four tests for each of 

the six cases - aggregate analysis and disaggregated for each of the five types of energy - 

each one with a different endogenous variable. This is because it is possible that one of 

the variables enters the cointegrating relationship with a statistically insignificant 

coefficient.  In this case, a test that uses such a variable as the endogenous variable would 

not detect cointegration. The optimal lag structure was chosen using the BIC, and 

deterministic components and 1986 and 1998 dummies were included if statistically 

significant.  We apply the ADF t-test to the residuals of the different regressions.  Test 

results – see Table 3 - uniformly suggest that at the 5% level of significance it is not 

possible to reject the null hypothesis of no-cointegration.  

 

2.3 VAR specifications and estimates 
 

We have determined that all of the variables in log-levels are stationary in growth 

rates and that they are not cointegrated.  Accordingly, we follow the standard procedure 

in the literature and determine the specifications of the VAR models in growth rates of 

the original variables.    

We estimate six VAR models, all of which include output, employment and 

investment. In addition, each of the models includes an energy variable – aggregate 

energy demand or one of five different types of energy demand. The model specifications 

are determined using the BIC - see the test results on Table 4. In terms of the 

deterministic components the BIC criterion leads to the selection in all cases of a VAR 
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specification with a constant and a trend.  Also, we find that the best VAR specifications 

include in all cases a structural break in 1986 and, in the cases of the aggregate model and 

of the model for gas, a structural break in 1998 as well.   

 

 

 
3.   Identifying and Measuring the Effects of Energy Demand Shocks  

 
 

We use the impulse-response functions associated with the estimated VAR models to 

examine the effects of innovations in energy demand. This methodology allows dynamic 

feedbacks among the different variables to play a critical role, both in the identification of 

the shocks in energy demand and in measuring the effects of such shocks.   

 

3.1 Identifying shocks in energy demand 

The key methodological issue in determining the effects of energy demand on 

economic performance is identifying shocks in energy demand that are truly exogenous, 

i.e., that are not contemporaneously correlated with innovations in the remaining 

variables. We have in mind shocks induced by the introduction of environmental 

regulation, from, for example, the policy instruments considered within the APA’s 

National Program for Climate Change (2006b) for Portugal with the objective of reducing 

carbon dioxide emissions from fossil fuel combustion activities. In dealing with this 

issue, we draw from the standard approach in the monetary policy literature [see, for 

example, Christiano, Eichenbaum and Evans (1996, 1998), and Rudebusch (1998)] 

adapted in Pereira (2000, 2001) to the analysis of the effects of public investment. 
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The econometric counterpart to this idea is to imagine a policy function, which relates 

the rate of growth of energy demand to the relevant information set.  In our case, the 

relevant information set includes past and current observations of the growth rates of 

output, employment and private investment. The residuals from this policy function 

reflect the unexpected component of the growth in energy demand and are uncorrelated 

with innovations in the other variables. 

In the central case, we assume that the relevant information set for energy demand 

includes past but not current values of the other variables. This is equivalent, in the 

context of the standard Choleski decomposition, to assuming that shocks in energy 

demand lead shocks in the other variables. As such, shocks in energy demand induced by 

environmental regulation designed to reduce carbon dioxide emissions, while affecting 

contemporaneously the economic performance of the economy are not affected 

contemporaneously by such economic performance. This identification strategy seems to 

be rather reasonable conceptually. Furthermore, when current values of the other 

variables are included in the policy functions, in no case are such variables statistically 

significant. This suggests that our identification strategy is rather reasonable also from a 

statistical perspective. Nevertheless, and for the sake of completeness, when we report 

our general results we also include the range of results across all alternatives within the 

Choleski decomposition framework.  

The policy functions for aggregate energy demand as well as the different types of 

energy demand are reported in Table 5. These policy functions relate the growth in the 

energy demand variables to the evolution of output, employment and private investment, 

with a one year lag, according to the selected VAR specification. We find that aggregate 
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changes in energy demand are positively correlated with lagged changes in output and 

that most of the other effects are not statistically significant – changes in private 

investment seem to have significant lagged negative effects in the case of coal and 

biomass and positive in the case of petroleum, but these effects seem to cancel out and do 

not persist at the aggregate level.   

  

3.2 Measuring the effects of innovations in energy demand variables 
 

We consider the macroeconomic impact of a one percentage point, one-time shock to 

the rates of growth of the different types of energy demand. We expect these shocks to 

have at least temporary effects on the growth rates of the other variables. However, even 

temporary effects on the growth rates of the other variables translate into long-term 

permanent level effects for these variables. The impulse-response functions associated 

with the VAR estimates and the policy functions described above as well as the 

corresponding 90% bands that characterize the likelihood shape are presented in Figures 

1 – 6. We observe that without exception the accumulated impulse response functions 

converge within a very short time period suggesting that most of the growth rate effects 

occur within the first few years after the shocks occur.  

The error bands surrounding the point estimates for the accumulated impulse 

responses convey uncertainty around estimation and are computed via bootstrapping 

methods. We consider 90% intervals although bands that correspond to a 68% posterior 

probability are the standard in the literature (Sims and Zha, 1999). Employing one 

standard deviation bands narrows the range of values that characterize the likelihood 

shape and only serves to reinforce and strengthen our results. Further evidence exists that 
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nominal coverage distances may under represent the true coverage in a variety of 

situations (Kilian, 1998). Nevertheless, the corresponding 90% error bands for our 

accumulated impulse response functions display a high degree of precision in our 

estimates. It is important to highlight that our estimates for the effect of innovations in 

coal demand show a range of variation that reinforce the very small impact it has on the 

economy and includes zero effects.    

We estimate the long-term elasticities of the different economic variables with respect 

to each type of energy demand.  The long-term refers to the time horizon over which the 

growth effects of the innovations disappear, i.e., the accumulated impulse-response 

functions converge. The accumulated elasticities, therefore, represent the long-term 

accumulated percentage point changes in the different variables for one long-term 

accumulated percentage point change in energy demand once all the dynamic feedback 

effects have been considered. The estimated elasticities are reported in Table 6. 

In turn, the corresponding marginal products measure the changes - in thousands of 

euros in private investment and output and in the number of long-term permanent jobs - 

for a one ton of oil equivalent accumulated increase in final energy demand. We obtain 

these figures by multiplying the average ratios of private investment, employment and 

output to energy demand, for the last ten years, by the corresponding elasticities. The 

decision to consider the average of the past ten years is designed to reflect the relative 

scarcity of final demand for the various types of energy considered without letting these 

ratios be overly affected by business cycle variations. Given the introduction of natural 

gas in 1998 and the sharp decline in the Portuguese coal mining industry in the last 

decade, however, the marginal product for both gas and coal were obtained from the last 
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five years of the sample. The estimated marginal products are reported in Table 7.  See 

section 6 below for a discussion of the sensitivity of our results to the period chosen for 

the computation of the marginal effects. 

 
 

4. On the Economic Effects of Shocks in Energy Demand 
 
 

Within our methodological framework, changes in final energy demand affect 

economic performance throughout time while, simultaneously, changes in output, 

employment and investment affect energy demand through the policy function. The 

results we now present represent the final outcome of this dynamic process and fully 

incorporate all of the dynamic feedbacks resulting from the initial exogenous innovation 

in the relevant energy demand variable. 

 

4.1 Effects of shocks to aggregate energy consumption 

The top section of Table 7 presents the effects of an exogenous shock to aggregate 

final energy demand on private investment, employment and output. The empirical 

results suggest that, over the long-term, energy demand crowds in both private 

investment and employment. The elasticity of private investment with respect to 

aggregate energy demand is 2.34, which corresponds to a long-term marginal product of 

€3,550 per toe of final energy demand. In turn, the elasticity of employment with respect 

to aggregate energy demand is 0.48 which suggests that, over the long term, 0.0083 

permanent jobs are created for each additional toe of final energy demand (or 1 job per 

120.5 toe).  Clearly then, final demand for energy has a significant positive impact on 
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output over the long-term with an estimated elasticity of output with respect to energy 

demand of 0.97, which corresponds to a long-term marginal product of €6,340 per toe.  

Our results for the impact of shocks to aggregate energy demand on employment and 

output suggest that energy demand has a positive influence on long-term labor 

productivity in the economy. As such, the long-term responsiveness of output is greater 

than the long-term responsiveness of employment. Specifically, in the long term the 

labor-output ratio in the economy responds to shocks to energy demand with an elasticity 

of 0.49. 

 
4.2 Effects of shocks to different types of energy consumption 

 
Having established that aggregate energy demand has a significant impact on 

economic performance, and in order to facilitate compliance with environmental 

regulation and appreciate the potential costs associated with fuel switching measures, it is 

important to identify the oeconomic impact of the various sources of energy individually. 

Indeed, the aggregate effects of energy demand on private investment, employment and 

output hide a wide diversity of effects by type of energy. Consider again Table 7 and note 

that while all of the sources of energy show a strong and statistically significant impact 

on macroeconomic activity the effect of coal on economic activity may be overstated.  

Private investment generally responds positively to exogenous shocks in most types 

of energy demand. The strongest effects come from shocks to electricity, petroleum, and 

biomass demand, with elasticities of 1.11, 1.01, and 0.99.  In turn, the elasticity of private 

investment with respect to shocks in gas consumption is substantially smaller at 0.13 and 

the elasticity with respect to coal is actually negative at -0.58.  
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In terms of the marginal effects on private investment, biomass and electricity 

consumption have the largest impact with long-term marginal products of €22,710 and 

€7,900 per toe, respectively. Gas and petroleum consumption have a smaller, yet 

important impact on private investment activities, increasing private investment by 

€3,056 and €2,360 per toe respectively. Coal demand, however, reduces private 

investment by €4,265.    

Exogenous shocks to energy demand have an important impact on employment levels 

as well. The strongest effect results from electricity consumption with an elasticity of 

0.44, followed by petroleum consumption, with an elasticity of 0.32, biomass 

consumption with 0.03 and gas consumption with 0.02. On the other hand, the estimated 

elasticity of employment with respect to coal consumption is small and negative with a 

value of -0.01.  

Exogenous shocks in the demand for electricity have the largest impact on 

employment in terms of the marginal effects of shocks to final energy demand. An 

increase in electricity consumption creates 0.0348 new jobs per toe (1 job per 28.7 toe). 

In turn, shocks in the demand for petroleum and biomass generate 0.0084 and 0.0083 

new jobs per toe, respectively (1 job per 119.0 and 120.5 toe) while an increase in gas 

consumption by a toe corresponds to the creation of 0.0044 new jobs over the long-term 

(1 job per 227.3 toe). As with private investment, increased coal consumption has a 

negative impact on employment, leading to a loss of 0.0042 jobs (1 job per 238.1 toe).  

Given the impact of each type of energy on private investment and employment, the 

relative importance of their impact on output is no surprise. Electricity consumption has 

the strongest effect with an output elasticity of 0.66 while the output elasticities with 
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respect to petroleum and biomass consumption are 0.40 and 0.24, respectively.  In turn, 

the output elasticities of gas consumption and coal consumption with respect to output 

are much smaller at 0.04 and 0.01, respectively. The positive impact of coal on output 

highlights uncertainty in the parameter estimates, particularly when we consider the 

negative impact induced by the final demand for coal on private investment and 

employment. This reflects the fact that the error bands surrounding the point estimates for 

coal include zero.  

Of the various types of energy considered, shocks to the demand for biomass and 

electricity have the largest impact on output in terms of their marginal products. Increases 

in final demand for biomass and electricity by a toe generate a long term increase in 

output of approximately €23,340 and €19,950, respectively. The remaining effects are 

substantially smaller.  The effects of increased gas and petroleum consumption on output 

are €4,257 and €4,040 per toe, respectively. Coal consumption increases output by 

€3,332 per ton but may in fact have a substantially smaller effect.  

 

 
5. On the Effects of Reductions in Carbon Dioxide Emissions  

 

The economic impact of policies to reduce carbon dioxide emissions from fossil fuel 

combustion activities will depend on the type of energy that is targeted by regulation. 

Thus, the impact of each type of energy on the macroeconomic variables considered is 

central to estimating the economic costs of fuel switching measures. 

Reducing carbon dioxide emissions from fossil fuel combustion activities requires a 

reduction in the consumption of fossil fuels that contain large amounts of carbon. As 
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mentioned above, this can be achieved through a direct reduction in the quantity of fuel 

consumed or through fuel-switching. This section seeks to explore the relationship 

between fuel consumption, carbon dioxide emissions and economic performance by 

estimating marginal abatement costs for carbon dioxide emissions resulting from 

reductions in fossil fuel consumption from policies targeting specific sources of energy. 

 

5.1 On the carbon content of different fossil fuels 

The hydrogen and carbon contained in fossil fuels generates the potential for heat and 

energy production. Carbon is released from the fuel upon combustion; 99.0% of the 

carbon released from the combustion of petroleum, 99.5% from natural gas, and 98.0% 

from coal, oxidizes to form carbon dioxide. Thus, the carbon emitted from fossil fuel 

combustion activities, once oxidized, can be used to compute the carbon dioxide 

emissions by considering the ratio of the molecular weight of carbon dioxide to carbon. 

Together, the quantity of fuel consumed, its carbon factor, oxidation rate, and the ratio of 

carbon dioxide to carbon are used to compute the amount of carbon dioxide emitted from 

fossil fuel combustion activities in a manner consistent with the Intergovernmental Panel 

for Climate Change (2006) reference approach. These considerations suggest a linear 

relationship between carbon dioxide emissions and fossil fuel combustion activities.  

Table 8 presents the relevant information for determining the carbon dioxide emission 

factor for each source of energy under consideration. We convert tons of oil equivalent 

units to tera-joules of energy to ensure that that the carbon emission factor is in the 

appropriate units. We then adjust for incomplete combustion via the oxidation rate and 

determine the total amount of carbon that is released to the atmosphere. Finally, because 
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we are ultimately interested in the quantity of carbon dioxide released into the 

atmosphere, we multiply the quantity of carbon by 44/12, the ratio of the molecular 

weight of carbon dioxide (CO2 – 12 + 16 (2))  to carbon (12).  

This information allows us to determine the impact of reducing carbon dioxide 

emissions from fossil fuel combustion activities through a reduction in each of the types 

of energy considered. We determine the aggregate impact over a twenty year period and 

present results on an annual basis. Petroleum combustion generates 3.04 tons of CO2 per 

toe. Coal contains the largest quantity of carbon and as a result generates 4.04 t CO2 per 

toe. Natural gas, on the other hand, contains the least carbon relative to its hydrogen 

content and therefore has the lowest emission factor generating 2.34 t CO2 per toe.  

In specific circumstances the carbon released upon the combustion of biomass may be 

equal the carbon uptake of the sink during growth and as such biomass combustion as a 

fuel source is not included in the national greenhouse gas inventories. As a result, a 

closed circuit of biomass growth and combustion to satisfy energy demand is often 

recommended as an appropriate method for reducing greenhouse gas emissions. 

Although not constrained by climate policy, the effective utilization of biomass for 

energy consumption is limited by land and water requirements. Generally, the emission 

factor for biomass considered in the national greenhouse gas inventories is 4.59 t CO2 per 

toe (APA, 2006a). 

The case of electricity is more complex. Carbon dioxide emissions from electricity 

consumption depend largely on the composition of the fuels used in generation and the 

thermal efficiency of the conversion technologies. Electricity generation in Portugal is 

primarily fuelled by thermal sources - coal, diesel, fuel oil, natural gas, waste, and 
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biomass - and by hydropower and wind. Thermal power and hydropower tend to exhibit 

an inverse relationship in Portugal consistent with the availability of hydrological 

resources and precipitation trends. In 2002, hydropower accounted for 17.8% of total 

electricity generation, a substantial decrease in comparison to 2001 when hydropower 

accounted for 31.5% of total electricity generation. As such the average annual emission 

factor for electricity generation over the past ten years is used to determine the effect of 

reductions in carbon dioxide emissions from electricity generation.  

The carbon dioxide emission factor for electricity was constructed from the energy 

balances complied by the DGE and the APA.  Primary energy demand for use in 

electricity generation, including thermal, hydrological and renewable energy resources, 

give a complete picture of the quantity of carbon dioxide produced in the electric power 

industry. Each fuel’s carbon dioxide emission factor is used to compute total carbon 

dioxide emissions from fossil fuel combustion in the industry. Naturally, the emission 

factor for hydrological and renewable energy resources is equal to zero. Total carbon 

dioxide emissions are then divided by total electricity demand to determine the industry’s 

emission factor, 5.22. 

Notice that the aggregate emission factor for electricity is greater than the emission 

factor for each fuel source used in the generation of electric power. This results from 

inefficiencies in transmission and particularly in generation of electricity. Thermal 

efficiencies approach a technical limit and improve with plant size and vintage, but even 

under these conditions a greater quantity of the primary fossil fuel vectors, coal, fuel oil 

and diesel is required to produce one ton of oil equivalent of electricity, which produces 

the high emissions factor for this industry.  
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Finally, following a procedure analogous to the computations above allows us to 

obtain an aggregate energy carbon dioxide emission factor for the economy. An 

approximate carbon dioxide emission factor for aggregate energy consumption can be 

calculated by dividing total carbon dioxide emissions in the economy by aggregate 

energy demand.  The implied average aggregate emissions intensity for aggregate energy 

consumption in the economy between 2000 and 2003 is 3.31 t CO2 per toe. 

At the aggregate level, carbon dioxide emissions from the final demand for petroleum 

account for 59.8% of total carbon dioxide emissions between 1993 and 2003. Electricity 

is the second largest source contributing 33.7% of the total carbon dioxide emissions. In 

turn, the final demands for coal and gas consumption generate 4.0% and 2.5%, 

respectively. Carbon dioxide emissions from biomass are not included in the national 

inventory report and have therefore been excluded from total carbon dioxide emissions 

used to compute the emission factor for aggregate energy consumption.  

  
5.2 Effects of reductions in carbon dioxide emissions by type of fossil fuel  

Marginal abatement costs for carbon dioxide emissions from the combustion of 

petroleum, coal, gas, biomass and electricity are presented in Table 9. These costs reflect 

the impact of carbon dioxide emissions from the final demand for the various 

disaggregate energy sources on private investment, employment and output. Reductions 

in final demand for coal and petroleum have the lowest cost to economic activity per ton 

of carbon dioxide abatement. On the other hand, reducing the final demand for electricity 

and biomass implies significantly greater macroeconomic costs, with natural gas 

somewhere in between. 



 
 

21 

We estimate that uniform standards across all energy sources would generate 

aggregate marginal abatement costs of €95.74 per ton of carbon dioxide. Private 

investment would fall by €53.55; over the long term, 0.0025 permanent jobs would be 

lost for every ton of carbon dioxide abatement from uniform standards across the final 

demand for each type of energy (1 job for every 400 tons of CO2). These aggregate 

effects, however, hide a wide range of effects for policies targeting the final demand for 

specific sources of energy.  

The macroeconomic impacts of policy innovations in the demand for petroleum are 

relatively modest. As a result, marginal abatement costs for carbon dioxide emissions 

from petroleum combustion activities are also relatively low. Carbon dioxide abatement 

activities associated with petroleum consumption would reduce private investment by 

€38.83 and eliminate 0.0028 jobs over the long term per ton of carbon dioxide (1 job for 

every 357.1 tons of CO2). Environmental policies that focus carbon abatement activities 

on reducing petroleum consumption would cost €66.52 per ton per year.  

Marginal abatement costs for carbon dioxide from coal combustion activities are 

€45.62 per ton per year, but may be substantially overstated. Because coal has a negative 

impact on private investment and employment, environmental policies that target coal 

consumption increase private investment by €52.90 per ton and create 0.0010 new jobs (1 

job for every 1,000.0 tons of CO2).      

While gas generally has the lowest carbon emission factor of all fossil fuels, it has a 

very small impact on the economy. Marginal abatement costs for policies that target gas 

consumption are €91.07 per ton per year. These costs reflect a €65.38 per ton of CO2 
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reduction in private investment and the loss of 0.0019 jobs (1 job for every 526.3 tons of 

CO2).  

Biomass has a large impact on economic activity. Although biomass is not accounted 

for in national greenhouse gas inventories, we consider the private investment, 

employment and output potential of the carbon embodied in biomass energy resources 

and the potential for economic growth therein. The carbon embodied in biomass 

generates €254.23 output per ton of carbon dioxide emitted. One ton of carbon dioxide 

resulting from biomass combustion increases private investment by €247.32 and creates 

0.0018 new jobs (1 job for every 555.6 tons of CO2). 

Electricity consumption has a large impact on economic performance. In fact, each 

ton of carbon dioxide reduced through abatement activities targeting reductions in 

electricity consumption costs €191.13. Similarly, each ton of carbon dioxide abatement 

resulting from policies directed at reducing electricity consumption reduces private 

investment by €75.64 and eliminates 0.0067 jobs (1 job for every 149.3 tons of CO2). 

In general our results suggest that the significant macroeconomic cost differentials 

associated with final demand for the various energy sources considered can be exploited 

in order to achieve a net reduction in carbon dioxide emissions while promoting 

economic growth through selective fuel switching activities. Specifically, our results 

suggest that emission reductions achieved through reductions in coal and oil demand 

have substantially lower economic costs than equal emission reductions due to cuts in 

gas, electricity or biomass consumption.   

As a way of illustrating the point, our results allow us to estimate the impact of the 11 

Mt reduction in carbon dioxide emissions from fossil fuel combustion activities necessary 
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to comply with the Portuguese commitment under the European Union Burden Sharing 

Agreement and which is considered within the National Program for Climate Change in 

2006 (Resolucao do Conselho de Ministros n. 104/2006; APA 2006c).  Uniform 

standards across all final demand energy consumers would reduce GDP by 1.053 billion 

euros, or 0.73%.  

Given the cost differentials among the various types of energy, however, uniform 

standards are far from efficient. In fact, it is clearly possible to simultaneously reduce 

emissions while promoting economic activity through well designed fuel switching 

measures. To illustrate our point, consider for example, policy measures that promote 

fuel switching in cement manufacturing or the chemicals and plastics industry can reduce 

carbon dioxide emissions from fossil fuel combustion by 2,500 tons by reducing the 

consumption of coal by about 3.8% in the chemical and plastics industry, or 1,237 tons 

(5000 tons of CO2 from coal), and offsetting part of the reduction in energy demand by 

an increase in natural gas consumption of 1070 tons (2500 tons of CO2 from natural gas) 

for a net increase in GDP of 21,054 euros. In fact, given the fact that we cannot 

conclusively say that the impact of coal consumption is different from zero and the range 

of likely values is relatively limited, the potential gains may be significantly greater. Of 

course, further work would be necessary in order to optimize fuel switching policies by 

considering the substitution elasticities, the impact of decreasing marginal returns as well 

as incentive schemes that can address equity issues in order to implement these types of 

fuel switching policies. 

 

5.3  On the Robustness of the Estimates of the Marginal Abatement Costs 
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A key consideration in understanding the relationship between energy consumption 

and economic performance, and therefore on the effects of reductions in carbon dioxide 

emissions, is the relative scarcity of the energy source under consideration.  In the 

computations of the marginal effects of shocks in energy demand and thereby on the 

marginal abatement costs for different sources we considered the energy to output ratios 

for a number of years toward the end of the sample period.  The idea is to capture the 

scarcity at the margin – the last years of the sample – while minimizing business cycle 

variations by not subjecting our estimates to peculiarities associated with a single year, 

the last year or the sample period.  In Table 10 we report the sensitivity of our estimates 

to the period considered in their computation. 

Due to the relative stability of petroleum, biomass, electricity, in the computation of 

the marginal effects for these fuel types, we consider the average over the last ten years. 

Naturally our results are not very sensitive to the time horizon considered. As we 

consider shorter periods closer to the end of the sample, petroleum and electricity we find 

progressively but only slightly decreasing marginal product and marginal abatement cost 

estimates.  The opposite is true with biomass. At any rate, our estimates for petroleum, 

biomass, and electricity are very stable and robust. 

Coal and gas, however, present a significantly different situation. On one hand, the 

introduction and expansion of natural gas transportation and distribution infrastructure 

after 1998 has contributed to a very significant increase in the final demand for natural 

gas. This sharp increase in the consumption of natural gas clearly induces a sharply 

decreasing trend in the estimates of its effect on output and of its marginal abatement 

costs. On the other hand, the absolute decline in the Portuguese coal mining industry in 
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the recent past together with reductions in the final demand for coal leads to sharply 

increasing estimates of its marginal effect on output and of its marginal abatement costs.  

Our results discussed in the body of the paper assume ten year averages for the 

computation of the effects of petroleum, biomass, and electricity and five years for coal 

and gas.  Our main conclusion based on these results is that emission reductions achieved 

through reductions in coal and oil demand have substantially lower economic costs than 

equal emission reductions due to cuts in gas, electricity or biomass consumption.  An 

important question, however, is how robust this conclusion is to the choice of the time 

period for which these figures are calculated.  If we were to consider ten-year averages 

for all fuel types we would reach the same qualitative conclusion although the marginal 

abatement costs of gas consumption would be much higher than reported and for coal 

much lower.  If on the other hand we were to consider only the last year of the sample we 

would be more inclined to consider the costs of reducing coal consumption as on the high 

end and the costs of reducing gas on the lower end – a reversal of the main conclusion for 

these two types of fuel.  Again, it is important to highlight that these results may 

substantially overstate the impact of coal on the economy as the likelihood curves include 

the possibility of coal having no effect whatsoever.  At any rate, the central point that 

there are substantial fuel switching opportunities capable of reducing emissions and 

indeed generating favorable economic outcomes would stand. 

 
 

6. Conclusions 
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The objective of this paper is to empirically estimate the impact of reductions in 

carbon dioxide emissions from fossil fuel combustion activities on economic 

performance in Portugal in order to evaluate the economic costs of policies to reduce 

carbon dioxide emissions and to identify the main guidelines in designing such policies. 

We are particularly interested in assessing the possible existence of a trade-off between 

reductions in carbon dioxide emissions and economic performance when one considers 

the overall economic costs of climate policies by considering the differences in the 

economic impact and carbon content across different fuel types. 

Empirical results suggest that unanticipated shocks in energy demand have a 

significant impact on private investment, employment and output. A permanent one ton 

of oil equivalent decrease in aggregate energy consumption decreases output in the long 

term by €6,340.  This aggregate result, however, hides a great disparity of disaggregate 

effects. In fact, a permanent one ton of oil equivalent reduction in biomass and electricity 

consumption reduces output in the long term by €23,340 and €19,950 respectively. Gas, 

petroleum and coal consumption, on the other hand, have a much smaller impact on 

economic activity. A one time, one ton of oil equivalent reduction in gas consumption 

reduces output by €4,260; a reduction in petroleum consumption reduces output by 

€4,040; and a reduction in coal consumption reduces output by €3,330.  These results 

suggest that although increases in energy consumption have positive economic effects 

across the board, policies that are designed to promote economic performance are better 

served if based on increased consumption of biomass and electricity.   

These results allow us to estimate the costs of environmental policies designed to 

reduce carbon dioxide emissions from fossil fuel combustion activities because carbon 
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dioxide emissions are linearly related to the fuel vector consumed. We estimate that a 

uniform reduction across each type of energy would lead to an aggregate marginal 

abatement cost of €95.74 per ton of carbon dioxide. This is a first rough estimate of the 

overall economic costs of policies designed to reduce carbon dioxide emissions.  At this 

level one may conclude that uniform, across the board reductions in carbon emissions 

would have a clear negative effect on economic activity.  Hence, at the aggregate level 

there is clear evidence for a trade-off between economic performance and a reduction in 

carbon emissions. 

Naturally, due to the diverse economic impact of different fuels as well as their 

different carbon content, the aggregate marginal abatement costs hide a wide variety of 

disaggregated results. The marginal abatement costs for carbon dioxide emissions are 

€66.52 per ton of carbon dioxide per year for emissions from oil, €45.62 from coal, 

€91.07 from gas, €254.23 from biomass, and €191.13 from electricity.  Clearly, emission 

reductions achieved through reductions in coal and oil demand have substantially lower 

economic costs than equal emission reductions due to cuts in gas, electricity or biomass 

consumption. As a corollary, the macroeconomic impact of policies designed to reduce 

carbon dioxide emissions will depend crucially on the type of fuel targeted by each policy 

and the choice of such policies must be sensitive to their macroeconomic impact, in 

addition to the their feasibility, potential capacity for emission reductions, and direct 

costs.  

There is, however, a more important policy implication from our disaggregated 

results. The sharp differences in the marginal abatement costs across different types of 

fuels suggests that restructuring the composition of fuel demand could be a very powerful 
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tool in minimizing the economic costs of reducing carbon dioxide emissions. Although 

direct energy system costs may increase as a result of a regulatory induced shift to higher 

cost, low carbon fuels, our results clearly indicate that, once the impact of energy 

consumption on economic activity is considered, fuel switching is a no regrets 

environmental policy option capable of reducing carbon dioxide emissions from fossil 

fuel combustion activities while minimizing or even eliminating the economic costs of 

such reductions.  To put in another words, fuel switching has the potential to be a way out 

of the trade-off identified at the aggregate level between reductions in carbon dioxide 

emissions and economic performance.  

Specifically, our empirical results suggest that policies should focus on shifting 

energy demand from low marginal abatement cost fuels such as coal and petroleum to 

fuels such as natural gas and electricity with high marginal abatement costs and marginal 

effects on the economy. Biomass, although limited by land and water requirements as 

well as conservation and biodiversity concerns, also represents a very powerful avenue 

for satisfying final energy demand while substituting away from fossil fuels. Such fuel 

switching is consistent with reducing overall carbon emissions without jeopardizing 

economic performance but more importantly introduces the possibility of designing fuel 

switching policies in a way that both reduces carbon dioxide emissions and enhances 

economic performance. 

It should be noted that traditional fuel switching policies based exclusively on the 

carbon content of different fuels could also suggest a greater use of natural gas, electricity 

and biomass and a lesser use of coal and oil. Our results based on the overall economic 
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impact of such policies, however, suggest that the underlying costs of fuel switching 

measures are significantly lower than those traditionally considered. 

By establishing the relevance of fuel switching in Portugal, this study opens the door 

to several natural extensions which would allow us to fine tune our policy conclusions. 

First, one should consider the impact of carbon dioxide emissions from fossil fuel 

combustion activities on economic activity by sector. Second, the results may also be 

extended to assess the regional decomposition of these effects in order to assess the 

geographical incidence of the costs of reducing greenhouse gas emission in Portugal. In 

both cases the extensions would provide sector-specific and region-specific estimates of 

the marginal abatement costs for carbon dioxide emissions from energy consumption, 

contributing to the design of environmental policies and an appreciation of the incidence 

of compliance costs in climate policy by understanding the impact of fuel consumption. 

Besides the issue of fuel switching, the implications for possible markets for tradable 

emission permits would be equally important by highlighting the possible existence of 

arbitrage opportunities across sectors or regions.   

Finally, and although the results in this paper are very important form a policy 

perspective in Portugal, their interest is not merely parochial. From a conceptual 

perspective, we shift the focus of the policy design from the consideration of the carbon 

content of each fuel to the economic cost of reducing a given amount of carbon emissions 

for each fuel. In this context, the exact identification of the marginal abatement costs for 

different fuels and the potential for fuel switching as a way out of the perceived trade off 

between reducing carbon dioxide emissions and promoting robust economic performance 

are questions with universal relevance. Furthermore, the potential for fuel switching, 
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while important for advanced industrialized nations, may be particularly important for  

developing nations where the difficulties in promoting fuel efficiency are more 

pronounced and the resources for investing in the development and deployment of energy 

efficient technologies more limited. At last but not the least, the application of this 

approach at the international level would allow for the identification of arbitrage 

opportunities across countries for possible markets for tradable emission permits.  
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Table 1:  Decomposition of Final Energy Demand 

 
            (% of total final energy demand) 

  
Petroleum Share 

 
Coal Share 

 
Gas Share 

 
Biomass Share 

 
Electricity Share 

 
 

1977 70.74 4.37 1.09 9.13 14.67 

1978 70.28 4.18 1.12 9.14 15.29 

1979 70.77 3.89 1.03 8.34 15.98 

1980 70.53 3.60 1.00 8.46 16.40 

1981 70.97 2.90 1.21 8.59 16.33 

1982 71.30 2.30 1.09 8.66 16.65 

1983 69.03 3.48 1.31 8.61 17.57 

1984 67.93 4.23 1.23 8.52 18.09 

1985 65.20 5.89 1.23 9.17 18.49 

1986 62.62 7.20 1.26 10.44 18.49 

1987 62.95 7.31 1.16 10.11 18.47 

1988 63.24 7.32 1.14 9.63 18.66 

1989 63.24 7.02 1.04 9.83 18.87 

1990 64.59 6.29 0.90 8.86 19.37 

1991 65.22 6.00 0.83 8.39 19.56 

1992 65.90 5.83 0.86 8.00 19.40 

1993 66.24 5.62 0.87 7.83 19.43 

1994 65.82 5.66 0.66 7.66 20.19 

1995 65.86 5.05 0.77 7.51 20.80 

1996 66.08 5.05 0.79 7.27 20.82 

1997 66.70 4.04 1.09 7.02 21.13 

1998 66.47 3.26 2.52 6.61 21.14 

1999 64.82 2.81 4.20 6.39 21.77 

2000 63.30 3.30 5.96 5.94 21.50 

2001 63.65 1.45 6.87 5.98 22.05 

2002 63.13 1.11 7.45 5.78 22.52 

2003 62.06 0.88 7.93 5.90 23.24 

  

1977-85 69.64 3.87 1.15 8.74 16.61 

1986-97 64.87 6.03 0.95 8.55 19.60 

1998-03 
 

63.91 
 

2.14 
 

5.82 
 

6.10 
 

22.04 
 

 
1977-03 

 
66.25 

 
4.45 

 
2.10 

 
8.07 

 
19.14 

 

Source: Authors’ computation based on DGE data.   
 
 

 
 
 
 
 
 
 



 
 

36 

 
 
 

Table 2:  ADF Unit Root Tests 
 

 
Log-levels 

 
DET 

 
BIC 

 
ADF t 

 
 

GDP 
 

Constant and Trend 
 

lags: 1 
 

-3.1257 
 

Employment 
 

Constant and Trend 
 

lags: 0 
 

-1.9030 
 

Investment 
 

Constant and Trend 
 

lags: 1 
 

-3.4990 
 

Aggregate Energy 
 

Constant and Trend 
 

lags: 5 
 

-3.5624 
 

Petroleum 
 

Constant and Trend 
 

lags: 0 
 

-2.5829 
 

Coal 
 

Constant and Trend 
 

lags: 0 
 

0.3522 
 

Gas 
 

Constant and Trend 
 

lags: 1 
 

-1.4740 
 

Biomass 
 

Constant 
 

lags: 0 
 

-2.0510 
 

Electricity 
 

Constant and Trend 
 

lags: 3 
 

-2.9491 
 

 
Growth rates 

 
DET 

 
BIC 

 
ADF t 

 
 

GDP 
 

Constant 
 

lags: 3 
 

-5.1023 
 

Employment 
 

Constant 
 

lags: 0 
 

-4.5980 
 

Investment 
 

Constant 
 

lags: 5 
 

-3.5624 
  

Aggergate Energy 
 

Constant 
 

lags: 5 
 

-5.1452 
 

Petroleum 
 

Constant 
 

lags: 0 
 

-2.9603 
 

Coal 
 

Constant and Trend 
 

lags: 0 
 

-4.1918 
 

Gas 
 

None 
 

lags: 0 
 

-2.3307 
 

Biomass 
 

Constant and Trend 
 

lags: 0 
 

-4.2982 
 

Electricity 
 

Constant 
 

lags: 1 
 

-3.4092 
 

Note: Critical values: 
  None:  -2.66 for 1%; -1.95 for 5%; and -1.60 for 10%. 
  Constant:  -3.58 for 1%; -2.93 for 5%; and -2.60 for 10% 
  Constant and Trend:  -4.15 for 1%; -3.50 for 5%; and -3.18 for 10%.               
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               Table 3: Engle-Granger Tests of the Null Hypothesis of No-Cointegration 

 
 

Variable 
 

Minimum t-statistic 
 

GDP -1.64638 

Employment -2.18545 

Private Investment -1.67941 

Agg energy -3.31716 

GDP -1.25187 

Employment -1.56301 

Private Investment -2.41569 

Petroleum -2.71969 

GDP -2.92396 

Employment -3.3455 

Private Investment -1.70835 

Coal -3.11514 

GDP -2.41214 

Employment -2.58828 

Private Investment -1.35407 

Gas -2.44642 

GDP -1.70812 

Employment -1.64519 

Private Investment -2.26883 

Biomass -2.30818 

GDP -1.6049 

Employment -2.16762 

Private Investment -1.80992 

Electricity -1.92389 

Note: Critical values -4.61, -5.04 and -5.95  respectively for 10%, 5% and 1% 
 

 
 
 
 
 
 
 
 
 
 



 
 

38 

 
 
 

Table 4: BIC Tests for the VAR Specification 
 

VAR with ...  Dummy None Constant Constant and Trend 

--- -29.43059 -29.81750 -30.24883 

1986 -29.59091 -30.28714 -30.80473 

1999 -29.91158 -30.44715 -30.52606 
∆ Aggregate Energy VAR(1) 

1986, 1999 -30.24449 -30.73582 -30.90924 

--- -28.91055 -29.11829 -29.26935 
∆ Petroleum VAR(1) 

1986 -29.09068 -29.40695 -29.71740 

--- -24.31833 -24.52800 -24.62713 
∆ Coal VAR(1) 

1986 -24.44948 -24.79949 -25.05929 

--- -23.57165 -23.77050 -23.93248 

1986 -23.67860 -24.06731 -24.53598 

1999 -23.96515 -24.22931 -24.29211 
∆ Gas VAR(1) 

1986, 1999 -24.18798 -24.57198 -24.66575 

--- -27.48262 -27.62640 -27.75147 
∆ Biomass VAR(1) 

1986 -27.60528 -27.97342 -28.13746 

--- -29.40741 -29.73422 -29.90792 
∆ Electricity VAR(1) 

 1986 -29.63911 -29.94140 -30.23025 

           
 

 
 

Table 5: Policy functions for Final Energy Consumption 
 

 
 

Dummy  
1986 

Dummy  
1999 Constant Trend ∆y(-1) ∆l(-1) ∆ip(-1) 

0.00960 0.00673 0.03018 -0.00636 0.55936 -0.06244 0.04271 
∆ Aggregate Energy 

(0.55135) (0.44913) (1.98963)** (-0.43495) (1.79319)** (-0.26068) (0.56001) 

0.01888  0.01659 -0.00099 0.22170 -0.14668 0.16301 
∆ Petroleum 

(1.11089)  (1.14929) (-0.91642) (0.60207) (-0.59658) (1.61113)* 

0.13606  0.19321 -0.01683 2.20795 -2.19353 -1.55889 
∆ Coal 

(0.73553)  (1.27456) (-1.27456) (0.58274) (-0.68222) (-1.46612)* 

-0.16230 0.20824 -0.04888 0.01093 -0.89479 2.57325 1.31234 
∆ Gas 

(-0.51372) (0.66956) (-0.18256) (0.41013) (-0.17040) (0.59707) (0.93361) 

0.01496  0.01614 -0.00123 1.18250 -0.46663 -0.46663 
∆ Biomass 

(0.37448)  (0.45760) (-0.46091) (1.42479)* (-0.74692) (-2.06714)** 

0.00003  0.04638 -0.00059 -0.21950 0.24322 0.09307 
∆ Electricity 

(-0.00170)  (2.82961)** (-0.57633) (-0.52895) (0.85491) (0.97690) 
    Note: t-statistics in parenthesis.  
* *significant at 10% level;  ** significant at 5% level. 
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Table 6: Long-term Accumulated Elasticities with Respect to Energy Consumption 
 

 
 

Private investment 
 

Employment 
 

 
Output 

 

Aggregate energy consumption    

Central case 2.33517 0.48084 0.97402 

Range of variation [-0.69657 ; 2.33517] [0.11040 ; 0.48085] [0.12443 ; 0.97402] 

Petroleum consumption    

Central case 1.00693 0.31714 0.40249 
Range of variation [-0.35445 ; 0.34628] [0.002048 ; 0.317143] [-0.16773 ; 0.40249] 

Coal consumption    

Central case -0.58221 -0.00526 0.01089 

Range of variation [-0.58221 ; 0.21112] [-0.01127 ; 0.022616] [0.00298 ; 0.10893] 

Gas consumption    

Central case 0.13156 0.01750 0.043744 

Range of variation [0.06302 ; 0.13156] [0.01044 ; 0.017503] [0.02770 ; 0.04374] 

 Biomass consumption    

Central case 0.99149 0.03151 0.23780 

Range of variation [0.41024 ; 1.12882] [-0.05781 ; 0.28106] [0.07829 ; 0.29346] 

Electricity consumption    
Central case 1.11494 0.43736 0.65733 

Range of variation [-1.21347 ; 1.11494] [0.05945 ; 0.43736] [-0.04243 ; 0.65733] 
Note:  Central case refers to the central orthogonalization assumption while range of variation refers to all possible values under the 
Choleski decomposition approach. 
 
 

 
 

Table 7: The Economic Impact of Final Energy Consumption 
 

  
Private Investment 

 
Employment 

 
Output 

 
  

Elasticity 
 

Marginal Product 
 

Elasticity 
 

Jobs Created 
 

Elasticity 
 

Marginal Product 
 

 
Aggregate Energy 
  

 
2.34 

 
3.55 

 

 
0.48 

 
0.00827 

 

 
0.97 

 
6.34 

 
 
Petroleum 

 
1.01 2.36 

 
0.32 0.00844 

 
0.40 4.04 

 
Coal 

 
-0.58 -4.27 

 
-0.01 -0.00418 

 
0.01 3.33 

 
Gas 

 
0.13 3.06 

 
0.02 0.00440 

 
0.04 4.26 

 
Biomass 

 
0.99 22.71 

 
0.03 0.00830 

 
0.24 23.34 

 
Electricity 
 

1.12 7.90 
 

0.44 0.03483 
 

0.66 19.95 
 

Note:  Marginal products measure the long-term permanent effects in thousands of Euros of a permanent increase of one ton of oil equivalent in the 
energy variable considered.   
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Table 8: Carbon Dioxide Emission Factors for Various Fossil Fuels 

 
Fuel Conversion 

     factor        
(TJ/Unit) 

 
Carbon 

Emission 
Factor 
(tC/TJ) 

 
Carbon 
Content 

 

 
Oxidation 

Factor 
Ratio CO2:C 

(CO2 – 44; C – 
12) 

Carbon Dioxide 
Emission Factor 

(t CO2) 

 
Aggregate Energy 
 

 
0.041868 

 

    
3.3098 

 

 
Petroleum 

 
0.041868 

 

 
20.0 0.8374 

 

 
0.990 

 
3.6667 

 
3.0396 

 
 
Anthracite (Coal) 

 
0.041868 

 

 
26.8 1.0509 

 

 
0.980 3.6667 

 
4.0319 

 
 
Natural Gas 0.041868 

 

 
15.3 0.6406 

 

 
0.995 3.6667 

 

 
2.3371 

 
 
Biomass 0.041868 

 

 
29.9 1.2519 

 

 
1.000 3.6667 

 

 
4.5901 

 
 
Electricity 1 

      
5.2191 

 
Anthracite (Coal) 

 
0.041868 

 

 
26.8 1.0509 

 

 
0.980 3.6667 

 
3.7762 

 
Diesel 0.041868 

 
20.2 0.8457 0.990 3.6667 

 
3.0700 

Fuel Oil 0.041868 
 

21.1 0.8834 0.990 3.6667 
 

3.2068 

Natural Gas 0.041868 
 

15.3 0.6406 
 

0.995 3.6667 
 

2.3371 
 

Source: Intergovernmental Panel for Climate Change (2006) 
 
 
 

Table 9: The Economic Impact of Reducing Carbon Dioxide Emissions from Fossil Fuel Combustion 
 

  
Private Investment 

 
Employment 

 
Output 

 
 

 
 
 
 

Emission 
Factor 

 
Marginal 
Product 

Cost per Ton 
of Carbon 
Dioxide 

 
Jobs lost for each ton of 

carbon dioxide 
abatement 

 
Marginal 
Product 

Cost per Ton 
of Carbon 
Dioxide 

Aggregate Energy  
 

3.31 
 

3.55 
 

53.55 
 

0.0025 
 

6.34 
 

95.74 
 

 
Petroleum 

 
3.04 2.36 38.83 0.0028 4.04 66.52 

 
Coal 

 
4.04 -4.27 -52.90 -0.0010 3.33 45.62 

 
Gas 

 
2.34 3.06 91.07 0.0042 4.26 91.07 

 
Biomass 

 
4.59 22.71 247.32 0.0018 23.34 254.23 

 
Electricity 
 

5.22 7.90 
 

75.64 
 

0.0067 
 

19.95 
 

191.13 
 

Note:  Marginal products measure the long-term permanent effects in thousands of Euros of a permanent increase of one 
ton of oil equivalent in the energy variable considered.  Cost per Ton of Carbon Dioxide is measured in Euros per year 

 
 



 
 

41 

Table 10: Diminishing Marginal Product and Marginal Abatement Costs 
 

 

 
Marginal Effects on GDP 

 

  

 
Petroleum 

 
Coal 

 
Gas 

 
Biomass 

 
Electricity 

 
Total 

 

1993-2003 4044.00 2162.10 7310.91 23339.33 19950.18 6337.71 

1994-2003 4049.60 2296.10 6869.24 23679.59 19787.96 6334.53 

1995-2003 4049.30 2479.60 6372.99 24016.42 19637.63 6323.67 

1996-2003 4037.80 2678.40 5847.87 24316.68 19454.88 6292.31 

1997-2003 4033.80 3000.60 5289.74 24662.90 19266.79 6266.33 

1998-2003 4033.00 3332.20 4722.15 24993.91 19053.70 6230.00 

1999-2003 4038.80 3678.90 4256.55 25235.48 18799.61 6192.81 

2000-2003 4022.90 4104.50 3900.36 25393.69 18540.34 6136.05 

2001-2003 4016.00 5972.10 3701.32 25374.57 18260.65 6116.94 

2002-2003 4008.90 6828.60 3545.17 25384.82 17910.53 6072.42 

2003 4002.70 7680.10 3403.48 24870.86 17458.74 6011.10 

 

 
Marginal Abatement Costs 

 

 

 
Petroleum 

 
Coal 

 
Gas 

 
Biomass 

 
Electricity 

 
Total 

 

1993-2003 66.52 26.81 156.41 254.23 191.13 95.74 

1994-2003 66.61 28.47 146.96 257.94 189.57 95.69 

1995-2003 66.61 30.75 136.35 261.61 188.13 95.53 

1996-2003 66.42 33.21 125.11 264.88 186.38 95.06 

1997-2003 66.35 37.21 113.17 268.65 184.58 94.66 

1998-2003 66.34 41.32 101.03 272.26 182.54 94.11 

1999-2003 66.44 45.62 91.07 274.89 180.10 93.55 

2000-2003 66.17 50.90 83.45 276.61 177.62 92.70 

2001-2003 66.06 74.06 79.19 276.40 174.94 92.41 

2002-2003 65.94 84.68 75.85 276.52 171.59 91.73 

2003 65.84 95.24 72.82 270.92 167.26 90.81 
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Figure 1: 
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Figure 5: 
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Figure 6: 
 

 

 

 
 


