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Resumo/ Abstract: 
In this paper we propose a general framework to deal with the presence of covariate mea-surement 
error in endogenous stratifield samples. Using Chesher’s (2000) methodology, we develop 
approximately consistent estimators for the parameters of the structural model, in the sense that their 
inconsistency is of smaller order than that of the conventional estimators which ignore the existence of 
covariate measurement error. The approximate bias corrected estimators are obtained by applying the 
generalized method of moments (GMM) to a modifeld version of the moment indicators suggested by 
Imbens and Lancaster (1996) for endogenous stratified samples. Only the specification of the 
conditional distribution of the response vari-able given the latent covariates and the classical additive 
measurement error model assumption are required, the availability of information on both the marginal 
probability of the strata in the population and the variance of the measurement error not being 
essential. A score test to detect the presence of covariate measurement error arises as a by-product of 
this approach. 
Monte Carlo evidence is presented which suggests that, in endogenous stratified samples of moderate 
sizes, the modified GMM estimators perform well. 
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1 Introduction

In many research settings, empirical researchers are often faced with the problem of making in-

ferences from endogenous stratified (ES) samples. In this nonrandom sampling scheme, different

subsets of the underlying population of interest are sampled with different frequencies, the selec-

tion being based on the variable of interest and, possibly, other variables. In contrast to random

sampling (RS), where each unit of the population has the same probability of being sampled, with

ES sampling individuals are not equally likely to be included in the sample, which is particularly

convenient to deal with situations where a random sample of the target population would only

include a few sampling units associated to some values of the variable of interest. For example, if

the aim is modeling travel demand, it is very common for one or more modes of travel to have a

very low market share, which would require the collection of a very large random sample to assure

a reasonable number of individuals making each choice. Instead, to reduce data collection costs,

often the sample is stratified on mode choice.

Despite the substantial development in inference methods for ES samples, see inter alia Manski

and Lerman (1977), Manski and McFadden (1981), Cosslett (1981a,b), Imbens (1992), Imbens

and Lancaster (1996) and Wooldridge (1999, 2001), little attention seems to have been paid to the

possible presence of covariate measurement error (CME), an issue which affects many econometric

data. To the best of our knowledge, the few existing approaches to this problem rely on very strong

assumptions, requiring, for example, the specification of a precise form for the relation between

the error-free variables and their error-prone measures and the availability of a validation sample,

in which both measures are available for some sampling units. Furthermore, only a particular class

of ES samples has been considered, namely the case of binary logistic choice-based (CB) samples,

where inference procedures are specially simple since, after correcting for CME, the stratification

can be ignored and estimation techniques used under RS may be employed; see inter alia Carroll,

Gail and Lubin (1993), Wang and Carroll (1996), Roeder, Carroll and Lindsay (1996), Muller and

Roeder (1997), and Wang, Wang and Carroll (1997).

The main aim of this paper is the development of appropriate estimation procedures to deal

with the presence of CME in ES samples without making such strong assumptions. In fact, we

merely require two of the assumptions made in the papers cited before: the specification of a struc-

tural model, characterized by the error-free conditional distribution of the variable of interest given

the covariates, and the existence of CME of the classical additive kind, such that the measurement

error and the true covariates are independent. Using Chesher’s (1991) methodology, we obtain

an approximate form of the contaminated distributions for a small error variance, which allows

us to accommodate CME in the standard model for ES samples. The approximations employed
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do not require the specification of the exact form of the error distribution, being only dependent

on the variance of the measurement error and on the log-density derivatives of both the error-free

distributions of the covariates and the response variable given the covariates. However, the speci-

fication of the distribution of the latent covariates can be avoided by nonparametrically estimating

the derivatives of its log-density as in Chesher (1998, 2000, 2001). Furthermore, knowledge of the

variance of the measurement error is not essential, although the availability of this information

allows more efficient estimators to be obtained.

This flexible setting, in which only the formulation of the structural model is required, permits

the development of approximately consistent estimators for the parameters of the structural model,

in the sense that their inconsistency is of smaller order than that of the conventional estimators

which ignore the existence of CME. The approximate bias corrected estimators are extension of

Imbens and Lancaster’s (1996) efficient GMM estimators for ES samples. Following Chesher’s

(2000) procedures to deal with CME in random samples, the moment indicators suggested by

those authors are modified in such a way that, when evaluated at the observable error-prone

variables, their expected value, taken under the approximation for the joint contaminated sampling

distribution of the variable of interest, the error-prone covariates and the stratum indicator, is

approximately zero. This base set of corrected moment indicators can be utilized when both the

marginal probability of the strata in the population and the variance of the measurement error

are unknown, in which case they are jointly estimated with the other parameters of interest. In

case one or both of these quantities are known, the available information can be incorporated in

the estimation procedure, allowing more efficient estimators to be obtained.

The most closely related work to ours, Santos Silva (1999), uses small parameter approxima-

tions to address the more general problem of unobservables, which may be due not only to CME

but also to neglected heterogeneity, in endogenous samples, which include not only ES samples

but also truncated and length biased samples, for example. It provides an extensive analysis of the

effects of unobservables in maximum likelihood (ML) estimators based on the sampling conditional

distribution of the response variable given the contaminated covariates, as well as a score test for

the detection of the presence of unobservables. However, in our paper, the analysis of ES samples

is not undertaken conditional on the covariates, which allow us to obtain more efficient estimators

than the ones that would arise from the formulation developed by Santos Silva (1999).

Special attention is given to the CB binary logit model, where the practice of employing the

same estimation techniques as in RS, only correcting for the CME, is widely spread. In this paper

we show that a similar strategy, which only requires a simple modification of the RS procedure,

can be successfully implemented using our method in both the cases where the variance of the
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measurement error is known and unknown. For this reason, and also because the use of corrected

GMM estimators in RS is very recent, we frequently address the RS case studied by Chesher (2000),

where, in contrast to the first papers dealing with the correction of estimating equations for CME,

due to Nakamura (1990) and Buonaccorsi (1996), the availability of replicate measurements for

the observed error-prone covariates to obtain a prior estimate of the variance of the measurement

error is not required.

The remainder of the paper is organized as follows. Section 2 formalizes the likelihood functions

which take into account the presence of CME in ES samples. Section 3 develops GMM estimation

procedures appropriate for this framework. Simplified versions of these procedures to deal with

the particular cases of RS and CB logistic samples are presented in section 4. Section 5 reports

some Monte Carlo evidence on the performance in practice of some of the proposed estimators.

Finally, section 6 concludes. The appendix contains some cumbersome calculations which were

suppressed from the main text.

2 Model specification

This section develops an extended version of the standard model for ES samples, based on small

error variance approximations, which accommodates CME. The approximations derived show how

the error-prone and the error-free models are related, which provides a very convenient framework

to investigate the impact of CME in this sampling design.

2.1 Background

Consider a sample of i = 1, ...,N individuals and let Y be the response variable of interest,

continuous or discrete, and X a vector of k exogenous variables. Both Y and X are random

variables defined on Y ×X with population joint density function

fYX (y,x) = fY |X (y|x, θ) fX (x) , (1)

where the conditional density function fY |X (y|x, θ) is known up to the parameter vector of interest
θ and the marginal density function fX (x) is unknown.

ES sampling involves the partition of the population into strata, from each of which a random

sample is drawn. For simplicity, suppose that the strata are defined only in terms of the response

variable. Assume the existence of J non-empty and possibly overlapping strata, which are subsets

of Y ×X . Each stratum is designated as Cs = Ys×X , for s ∈ S, S = {1, ..., J}, and Ys is a subset
of Y. The probability of a randomly drawn observation lying in stratum Cs is

Qs =

Z
X

Z
Ys

fY |X (y|x, θ) fX (x)dydx. (2)
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Assuming that the sample is drawn according to the multinomial sampling scheme, the agent

who collects the sample defines the probability Hs of observing an unit from stratum s.1 In this

setting, the sampling density function of Z = (Y,X,S) is given by

hZ (z) =
Hs

Qs
fY |X (y|x, θ) fX (x) , (3)

(y, x) ∈ Cs, s ∈ S. On the other hand, the marginal density function of X induced by this sampling

scheme is given by

hX (x) =
X
s∈S

Z
Ys
hZ (z) dy = fX (x) bX (x) , (4)

where

bX (x) =
X
s∈S

Hs

Qs

Z
Ys
fY |X (y|x, θ) dy (5)

reflects the bias induced by the nonrandom sampling design over the population density function

of X, fX (x). Only when the sample is self-weighted, in which case Hs equals Qs, does ES

sampling become equivalent to RS because both the sampling densities (3) and (4) are reduced

to, respectively, the population versions fYX (y,x) and fX (x).

Throughout this paper we give special attention to the case where the response variable takes

values on a set of (C + 1) mutually exclusive alternatives, Y ∈ {0, 1, ..., C}, in which ES sampling
takes the designation of CB sampling because the strata are determined by the alternative chosen.

Actually, most papers dealing with ES sampling address the case of CB sampling; see, for example,

Manski and Lerman (1977), Manski and McFadden (1981), Cosslett (1981a,b) and Imbens (1992).

2.2 Model incorporating covariate measurement error

Denote the observable covariates, possibly mismeasured, with the superscript ∗. Assume that,
instead of the latent covariates X, we observe X∗ according to

X∗ = X + U , (6)

where X and U are k-dimensional vectors of, respectively, error-free variates and unobservable

measurement errors, which have an absolute continuous joint distribution. Assume also that U is

defined on U , the third absolute moments of U are finite, X and U are independently distributed,

E (U) = 0, and E (UU 0) = Σ = [σjk], where Σ is a positive semi-definite k × k matrix. If part

of X is measured without error, the appropriate terms in Σ are set to zero. Furthermore, assume

1For a detailed discussion on the three most popular sampling shemes for collecting ES samples, multinomial

sampling, standard stratified sampling and variable probability sampling, see, for example, Cosslett (1993) and

Imbens and Lancaster (1996).
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that the density function of the unobservable measurement error U , fU (u), is unknown to the

econometrician.

As only the covariates are contaminated and the strata are only defined in terms of the variable

of interest, which is assumed to be error-free, the design of the strata is not affected by the

mismeasurement. Thus, for each individual, one observes Z∗ = (Y,X∗, S), i.e. the error-free

variable of interest, the mismeasured covariates and the error-free stratum indicator.

To proceed with likelihood-based inference, one needs to specify the likelihood function which

describes the observed data Z∗. However, the simple evaluation of the joint sampling density of Z

in (3) at the observable Z∗, hZ (z∗) = Hs
Qs

fY |X (y|x∗, θ) fX (x∗), does not provide a valid likelihood
function because, in general, in presence of CME, the shape of the distributions of the observable

variables is distorted when compared to that of its error-free version; see, for example, Chesher

(1991). In fact, to model the contaminated data, we have to consider the contaminated joint

density function of Z∗, which is denoted here as hZ∗ (z∗). By writing the contaminated sampling

joint density of the observable Z∗ and the measurement error U ,

hZ∗U (z
∗, u) =

Hs

Qs
fY |X (y|x∗ − u, θ) fX (x

∗ − u) fU (u) , (7)

it becomes obvious that, unless fU (u) is specified, in which case the integration of (7) over U
yields

hZ∗ (z
∗) =

Hs

Qs

Z
U
fY |X (y|x∗ − u, θ) fX (x

∗ − u) fU (u) du, (8)

the obtention of hZ∗ (z∗) is not straightforward.2 However, by employing Chesher’s (1991) method,

we may obtain an asymptotic approximation for (8) that does not depend on fU (u). This ap-

proach, which uses an approximate likelihood function to describe the contaminated data, has

already been used for endogenous sampling [Santos Silva (1999)], in the analysis of duration re-

sponse measurement error [Dumangane (2000), Dumangane and Chesher (2001) and Chesher,

Dumangane and Smith (2002)], in the study of the impact of CME in quantile regression [Chesher

(2001)], and in the analysis of the effect of measurement error on measures of welfare inequality

and poverty [Chesher and Schluter (2002)].

The approximation for (8) results from a second order Taylor series expansion of (7) around

Σ = 0, followed by a marginalization of the resulting approximation with respect to U ,

hZ∗ (z
∗) =

Hs

Qs
fY |X (y|x∗, θ) fX (x∗)

h
1 + σjkm

jk
Y X (y, x

∗)
i
+ o (Σ)

= hZ (z
∗)
h
1 + σjkm

jk
Y X (y, x

∗)
i
+ o (Σ) , (9)

2Note that even if fU (u) were specified, often hZ∗ (z
∗) would have a very complicated form.
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with

mjk
Y X (y, x

∗) = 0.5
h
ljkY |X (y|x∗, θ) + ljY |X (y|x∗, θ) lkY |X (y|x∗, θ) + 2ljY |X (y|x∗, θ) lkX (x∗)

+ljkX (x
∗) + ljX (x

∗) lkX (x
∗)
i
, (10)

where superscripts denote derivatives with respect to the latent covariates which are mismeasured,

lY |X (y|x∗, θ) = ln fY |X (y|x∗, θ), lX (x∗) = ln fX (x
∗), o (Σ) is such that lim

max(σjj)→0
o(Σ)

max(σjj)
= 0,

and the Einstein summation convention is employed with summation over repeated subscripts and

superscripts.

The O (Σ) approximation in (9), denoted as haZ∗ (z
∗), does not depend on fU (u). It is written in

terms of the latent likelihood function hZ (z) evaluated at Z∗ and a distortion term σjkm
jk
Y X (y, x

∗)

which is function of the variance of U and the derivatives of the error-free log-densities fY |X (y|x, θ)
and fX (x) evaluated at the observable variables. This distortion is only eliminated when the

covariates are correctly measured, in which case we observe Z and, as Σ = 0, (9) becomes identical

to the error-free sampling joint density hZ (z) given in (3).

By integrating (9) over Ys and summing over S, we obtain the contaminated marginal density
of the error-prone covariates in the sample,

hX∗ (x
∗) =

X
s∈S

Z
Ys

Hs

Qs
fY |X (y|x∗, θ) fX (x∗) dy + σjk

X
s∈S

Z
Ys

Hs

Qs
fY |X (y|x∗, θ) fX (x∗)mjk

Y X (y, x
∗) dy

+o (Σ)

= fX (x
∗) bX (x∗) + 0.5σjk

X
s∈S

Hs

Qs

Z
Ys

n
f jkY |X (y|x∗, θ) fX (x∗) + 2f jY |X (y|x∗, θ) fkX (x∗)

+fY |X (y|x∗, θ) f jkX (x∗)
o
dy + o (Σ) , (11)

which now presents two sources of distortions relative to the underlying marginal density of X

in the population, fX (x). One source of bias, bX (x) given in equation (5), is only due to the

sampling design and is also present when all the variables are properly measured; see the latent

sampling density hX (x) in (4). The other source of deformation, given by the second term in (11),

reflects the combined effects of the ES sampling design and the CME.

As widely discussed [see, for example, Chesher (1991, 1998) and Dumangane (2000)], additive

approximations of the type of (9) may not produce a proper density function, in the sense that

they may not be positive and integrate to one. Thus, they may not be used directly for ML

estimation. However, this problem can be circumvented by re-expressing (9) as an augmented

density in the class defined by Chesher and Smith (1997)

haugZ∗ (z
∗) = hZ (z

∗)Ψ
h
σjkm

jk
Y X (y, x

∗)
i
q (Hs,Qs, θ,Σ)

−1 + o (Σ) , (12)

where Ψ (w) is a positive valued function with finite derivatives of all orders, ∇wΨ (0) 6= 0, and
q (Hs,Qs, θ,Σ) =

P
s∈S

R
Ys
R
X∗ hZ (z

∗)Ψ
h
σjkm

jk
Y X (y, x

∗)
i
dx∗dy, which is assumed to exist.
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In the next section, rather than maximizing the log-likelihood function obtained from the

approximation in (12), we correct the moment conditions employed by Imbens and Lancaster

(1996), which, in the absence of measurement error, result from the maximization of the log-

likelihood function based on (3). This correction consists of subtracting their expectation taken

with respect to haZ∗ (z
∗) in (9) from them. However, as we show later, (12) will be very useful to

specify the quantities required for the efficient version of the score test sensitive to CME derived

in subsection 3.3.

When the design is self-weighting, as Hs = Qs, hZ∗ (z∗) and haugZ∗ (z
∗) in, respectively, (9) and

(12) give the approximations for the contaminated joint density function fYX∗ (y, x
∗), the error-

prone version of fYX (y, x) in (1). As the weighting nature of the sampling scheme is eliminated,

the analysis can then be conducted conditional on the contaminated covariates, as is usual in RS.

Thus, in this setting, the features of the contaminated dataset may be simply described by the

error-prone conditional density of the variable of interest given the contaminated covariates,

fY |X∗ (y|x∗) = fY |X (y|x∗, θ)
·
1 + σjkm

RS
jk

Y X (y, x∗)
¸
+ o (Σ) (13)

or

faugY |X∗ (y|x∗) = fY |X (y|x∗, θ)Ψ
·
σjkm

RS
jk

Y X (y, x∗)
¸
q (θ,Σ)−1 + o (Σ) , (14)

with

mRS
jk

Y X (y, x∗) = 0.5
h
ljkY |X (y|x∗, θ) + ljY |X (y|x∗, θ) lkY |X (y|x∗, θ) + 2ljY |X (y|x∗) lkX (x∗)

i
(15)

and q (θ,Σ) =
R
Y fY |X (y|x∗, θ)Ψ

h
σjkm

RS
jk

YX (y, x∗)
i
dy. Both (13) and (14) are embedded in,

respectively, (9) and (12). The self-weighting eliminates the ratio Hs
Qs
, while conditioning on

the covariates suppresses fX (x∗) as well as the terms ljkX (x
∗) and ljX (x

∗) lkX (x
∗) contained in

mjk
Y X (y, x

∗); for a detailed discussion of inference based on small error variance approximations

under RS see, for example, Chesher (1991, 1998)

3 Generalized method of moments estimation

In the previous section we showed that the presence of CME in ES samples distorts the joint

sampling distribution hZ (z) in (3) as a consequence of the bias induced in both fY |X (y|x, θ) and
fX (x). Hence, it is expected that, in general, due to the failure of distributional assumptions,

all the conventional likelihood-based estimators for ES samples, for example, those proposed by

Manski and Lerman (1977), Manski and McFadden (1981), Cosslett (1981a,b), Imbens (1992),

and Imbens and Lancaster (1996), are inconsistent for the parameters of interest. Moreover, as

CME affects the shape of both the conditional expected value and the conditional median of the
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variable of interest given the latent regressors [see, for example, Chesher (1991, 1998)], both the

weighted least squares and the weighted least absolute deviation estimator, which are encompassed

by Wooldridge’s (1999, 2001) weighted M-estimators, are also inconsistent.

This section addresses the problem of CME in the efficient GMM estimation setting proposed

by Imbens and Lancaster (1996) for ES samples. The motivation for modifying these estimators

instead of the other cited alternatives is twofold. First, in contrast to all the other estimators,

with the exception of those proposed by Wooldridge (1999, 2001), they are appropriate for any ES

sample, not only for those where the variable of interest is discrete. Second, they are asymptotically

efficient, a property only shared by Cosslett’s (1981a,b) estimators.

The estimators proposed by Imbens and Lancaster (1996) for ES samples without measurement

error maximize the log-likelihood based on (3) assuming that the covariates follow a discrete

distribution which is jointly estimated with the parameters of interest. After some transformations,

the dependence on the discrete distribution is removed from the score functions, which are then

used as moment indicators in GMM estimation. The resulting set of moment indicators is

gHt (z) = Ht − I(s=t) (16)

gθ (z) = ∇θ ln fY |X (y|x, θ)−∇θ ln bX (x) (17)

gQt (z) = Qt −
R
Yt fY |X (y|x, θ)dy

bX (x)
(18)

gQJ (z) = 1− bX (x)
−1 , (19)

where I(s=t) takes the value 1 for s = t and 0 for s 6= t, t = 1, ..., J−1, ∇θ denotes derivative with

respect to θ, and the vector of parameters of interest is γ = (H, θ,Q), with H = (H1,..., HJ−1)

and Q = (Q1,..., QJ).3 The objective function to be minimized is

ΥN (γ) = gN (γ)
0WNgN (γ) , (20)

where gN (γ) = 1
N

PN
i=1 gγ (zi) is the sample counterpart of the moment conditions EhZ [gγ (zi)] =

0, the expectation being taken with respect to the sampling joint density (3), which is henceforth

denoted by hZ (z, γ) to emphasise the dependence on γ, the moment indicators gγ (zi) are given

in (16)-(19), and WN is a positive semi-definite weighting matrix. Imbens and Lancaster (1996)

prove that the resulting optimal estimator, γ̂, obtained from the use of the weighting matrix

WN = Ω−1N in (20), where ΩN is a consistent estimator of Ω = EhZ

£
gγ (z) gγ (z)

0¤, converges
almost surely to the true value γ0 and is asymptotically normal,

√
N
¡
γ̂ − γ0

¢ d→ N
h
0,
¡
G0Ω−1G

¢−1i
, (21)

3Note that HJ = 1− J−1
s=1 Hs. With non-overlapping strata QJ = 1− J−1

s=1 Qs, in which case Q has dimension

(J − 1) and the moment indicator (19) can be suppressed from the system (16)-(19).
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where G = EhZ

£∇γgγ (z)
0¤.

The set of moment indicators (16)-(19) is valid both when the marginal probability of each

stratum in the population, contained in vector Q, is known or unknown. In the former case, these

probabilities are substituted in the moment indicators and the vector Q is suppressed from the

vector of parameters of interest γ, which becomes γ = (H, θ), generating a case of overidentifying

moment conditions. In the latter, the parameters to be estimated are γ = (H, θ,Q), which

generates a just-identified problem.

In this section, following Dumangane and Chesher (2001), we first derive a Kiefer and Skoog-

type (1984) measure for the inconsistency of Imbens and Lancaster’s (1996) GMM estimators when

the presence of CME is ignored. Then, subsection 3.2 extends these GMM estimators to deal with

contaminated data by correcting the original moment conditions so that their expectation taken

under the contaminated distribution of Z∗ is approximately zero. Subsection 3.3 suggests a score

test for the detection of CME. Finally, subsection 3.4 describes a nonparametric procedure for

the estimation of the derivatives of the log-density of the latent covariates required for GMM

estimation and for the score test.

3.1 Inconsistency of Imbens and Lancaster’s (1996) generalized method of mo-

ments estimators

In presence of CME, Imbens and Lancaster’s (1996) GMM estimators γ̂, which merely replace X

by X∗ in moment indicators (16)-(19), do not converge to the true value γ0. Below we use small

parameter approximations to obtain an expression for the bias suffered by these estimators when

the presence of CME is not acknowledged. To the best of our knowledge, Kiefer and Skoog (1984),

in the ML context, were the first to use this methodology to measure the effects of model misspec-

ification; see also Chesher, Lancaster and Irish (1983) and Levine (1985), as well as Stefanski’s

(1985) proposal for M-estimators. Recently, Dumangane and Chesher (2001) extended Kiefer and

Skoog’s (1984) approach to obtain the distortions caused by response measurement error in the

GMM framework, which we now adapt for the ES setting.

Let γ
¡
φ0
¢
denote the probability limit to which Imbens and Lancaster’s (1996) estimators

γ̂ converge, where φ0 =
¡
γ0, σ0

¢
is the true value of φ = (γ, σ), with σ defined as a vector of

dimension D containing all the different nonzero elements of matrix Σ.4 The vector of parameters

φ is present in haZ∗ (z
∗) of (9), which is henceforth denoted as haZ∗ (z

∗, φ) to stress this dependence.

Naturally, γ
¡
γ0, 0

¢
= γ0. Moreover, since the proportion of the strata in the sample is only defined

4Note that σjk = σkj for k 6= j. Thus, D =
(k∗+1)k∗

2
, 0 ≤ k∗ ≤ k, for k∗ defined as the number of mismeasured

covariates.
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in terms of the error-free variable of interest Y , the vector H contained in γ is still consistently

estimated with CME. In fact, the moment indicators (16) do not depend on the mismeasured

variable, not being, thus, affected by measurement error.

Using small parameter approximations, γ
¡
φ0
¢
may be written as

γ
¡
φ0
¢
= γ0 + σjk

dγ
¡
φ0
¢

dσjk

¯̄̄̄
¯
γ(φ0)=γ0

+ o (Σ) , (22)

where the second term is the inconsistency measure suggested by Kiefer and Skoog (1984). To

obtain this measure, we need to consider the implicit equations for γ
¡
φ0
¢
,

EhZ∗

h
gγ(φ0) (z

∗)
i
= 0, (23)

where gγ(φ0) (z
∗) are the moment indicators given in (16)-(19) evaluated at Z∗ and EhZ∗ [.] denotes

expectation taken with respect to hZ∗ (z∗). Calculating this expectation using the approximation

haZ∗ (z
∗, φ) in (9), we obtain

X
s∈S

Z
Ys

Z
X∗

gγ(φ0) (z
∗)hZ (z∗, γ)

h
1 + σjkm

jk
Y X (y, x

∗)
i
dx∗dy = 0. (24)

Totally differentiating (24) with respect to γ
¡
φ0
¢
and σjk and evaluating the resulting expres-

sion at γ
¡
φ0
¢
= γ

¡
γ0, 0

¢
= γ0, yields

X
s∈S

Z
Ys

Z
X∗

h
∇γ0gγ0 (z

∗)hZ
¡
z∗, γ0

¢
dγ
¡
φ0
¢
+ gγ0 (z

∗)mjk
Y X (y, x

∗)hZ
¡
z∗, γ0

¢
dσjk

i
dx∗dy = 0,

(25)

which may be re-expressed as

Gdγ
¡
φ0
¢
= −EhZ

h
gγ0 (z

∗)mjk
Y X (y, x

∗)
i
dσjk, (26)

where G, defined below (21), is evaluated at Z∗ and γ0. Pre-multiplying both sides of (26) by G0W ,

where W is the probability limit of the weighting matrix WN employed in the GMM objective

function (20), and solving for
dγ(φ0)
dσjk

¯̄̄̄
γ(φ0)=γ0

, it follows that

dγ
¡
φ0
¢

dσjk

¯̄̄̄
¯
γ(φ0)=γ0

= − ¡G0WG
¢−1

G0WEhZ

h
gγ0 (z

∗)mjk
Y X (y, x

∗)
i
. (27)

Thus, the Kiefer and Skoog’s (1984) type inconsistency measure of Imbens and Lancaster’s (1996)

estimators, given by (27) multiplied by σjk, is function of the variance of the measurement er-

ror and of expectations taken under the latent joint density hz (z, γ) in (3) of the error-free

quantities gγ0 (z
∗)mjk

Y X (y, x
∗) and ∇γgγ0 (z

∗) evaluated at Z∗. Note that in case the vector

γ = (H, θ,Q) is estimated, the just-identified nature of the GMM problem allows us to reduce

11



(27) to −G−1EhZ

h
gγ0 (z

∗)mjk
Y X (y, x

∗)
i
, while when Q is known, optimal GMM estimation of

γ = (H, θ) is performed and W is replaced by Ω−1 = EhZ

£
gγ0 (z

∗) gγ0 (z∗)
0¤−1 in (27). In this

setup, the probability limits for γ̂ =
³
Ĥ, θ̂, Q̂

´
and γ̂ =

³
Ĥ, θ̂

´
are given by, respectively,

γ
¡
φ0
¢
= γ0 − σjkG

−1EhZ

h
gγ0 (z

∗)mjk
Y X (y, x

∗)
i
+ o (Σ) . (28)

and

γ
¡
φ0
¢
= γ0 − σjk

¡
G0Ω−1G

¢−1
G0Ω−1EhZ

h
gγ0 (z

∗)mjk
Y X (y, x

∗)
i
+ o (Σ) . (29)

The term σjkEhZ

h
gγ (z

∗)mjk
Y X (y, x

∗)
i
present in both the inconsistency measures in (28) and

(29), from now on denoted as bφ (z∗), may be seen as an approximation for the expectation of the

original moment indicators gγ (z) evaluated at Z∗, EhZ∗ [gγ (z
∗)]. In effect, using approximation

haZ∗ (z
∗, φ) in (9) to calculate this expectation, we find

EhZ∗ [gγ (z
∗)] =

X
s∈S

Z
Ys

Z
X∗

gγ (z
∗)h (z∗, γ)

h
1 + σjkm

jk
Y X (y, x

∗)
i
dx∗dy + o (Σ)

= EhZ [gγ (z
∗)] + σjkEhZ

h
gγ (z

∗)mjk
Y X (y, x

∗)
i
+ o (Σ)

= σjkEhZ

h
gγ (z

∗)mjk
Y X (y, x

∗)
i
+ o (Σ)

= bφ (z
∗) + o (Σ) . (30)

Thus, bφ (z∗) may be interpreted as the approximate bias in the original moment indicators in-

curred by the presence of measurement error.5 The approximate biases in moment indicators

(16)-(19), derived in appendix 7.1, are given by, respectively,

bHt (z
∗) = 0 (31)

bθ (z
∗) = σjkEfX

(X
s∈S

Hs

Qs

Z
Ys

mRS
jk

YX (y, x∗)
·
∇θfY |X (y|x∗, θ)−

fY |X (y|x∗, θ)
bX (x∗)X

s∈S

Hs

Qs
∇θfY |X (y|x∗, θ)

#
dy

)
(32)

bQt (z
∗) = −σjkEfX

"R
Yt fY |X (y|x∗, θ)dy

P
s∈S

Hs
Qs

R
Ys fY |X (y|x∗, θ)m

jk
Y X (y, x

∗)dy
bX (x∗)

#
(33)

bQJ (z
∗) = −σjkEfX

"P
s∈S

Hs
Qs

R
Ys fY |X (y|x∗, θ)m

jk
Y X (y, x

∗)dy
bX (x∗)

#
, (34)

where EfX [.] denotes expectation taken with respect to fX (x). The distortion in gHt (z
∗) is

zero because these moment indicators are not a function of the mismeasured variable. As far as
5Recall that, previously, we had already defined another bias function, bX (x) [see equation (5)], which has a very

different nature from that in (30) because it concerns only the distortion imposed by endogenous sampling over the

marginal density of X, fX (x).

12



the other moment indicators are concerned, the bias bφ (z∗) is eliminated only when there is no

mismeasurement, in which case σ = 0. In these conditions, as EhZ∗ [gγ (z
∗)] = 0, the distortion

terms in the probability limits (28) and (29) are suppressed and γ
¡
φ0
¢
= γ0.

In this subsection we demonstrated that, in presence of CME, the bias in the original moment

indicators, bφ (z∗), causes the inconsistency of conventional GMM estimators. In the subsequent

subsections it will be shown that the approximate bias functions in (31)-(34) are a crucial element

not only in the modification of moment indicators (16)-(19) to handle CME, but also in the

implementation of an efficient version of a score test sensitive to the presence of this form of

measurement error.

3.2 Correction of Imbens and Lancaster’s (1996) moment indicators

A direct adaptation of Imbens and Lancaster’s (1996) method to handle CME would require the

calculation of the set of first order conditions resulting from the maximization of a log-likelihood

function based on the O (Σ) approximation in (12) with respect to the vector of parameters

(H, θ, π, σ), where π is a vector containing the probability mass parameters associated with fX (x∗)

at the given set of support points. Then, the resulting set of score functions would have to be

transformed in order to remove their dependence on π and, together with two extra sets of moments

associated with the estimation ofQ and the elements of σ, they would be used as moment indicators

for GMM estimation.

Alternatively, as we do here, we may employ Chesher’s (2000) method, which avoids dealing

with the complicated function (12); see also Dumangane (2000) and Dumangane and Chesher

(2001), who follow the same approach to handle response measurement error in duration models,

correcting the score functions of models commonly employed in that area. The idea is very simple.

As shown in (30), the expectation of the original moment indicators evaluated at Z∗ taken with

respect to the approximate contaminated density haz∗ (z
∗, φ) is not zero but bφ (z∗)+o (Σ). Hence, if

we subtract bφ (z∗) from the original moment indicators, the resulting modified moment indicators,

g∗φ (z
∗) = gγ (z

∗)− bφ (z
∗) , (35)

have expectation EhZ∗

h
g∗φ (z

∗)
i
= o (Σ). Although this expectation is not zero with CME, (35)

may be used to obtain approximately consistent estimators.

To implement this approach, we need to calculate both the expectations and the quantities

lkX (x
∗) and ljkX (x

∗) present in bφ (z∗), which involve the marginal distribution of the covariates. In

order to avoid the specification of fX (x), one may estimate the expectations by simple averages or,

following Cosslett (1993), take averages with the weight Qsi
Hsi
. Moreover, lkX (x

∗) and ljkX (x
∗) may

be estimated nonparametrically as described in subsection 3.4. On the other hand, the modified

13



moment indicators (35) depend also on the variance of the measurement error, which often is

unknown in practical situations. In order to make possible its estimation simultaneously with the

parameters of interest γ, we introduce a further set of moment indicators, denoted g∗σjk (z
∗), which

corresponds to the set of score functions for σ obtained from the log-likelihood function based on

haZ∗ (z
∗, φ) in (9). Thus, in presence of CME, we suggest the utilization of the base set of modified

moment indicators given by

g∗Ht
(z∗) = Ht − I(s=t) (36)

g∗θ (z
∗) = ∇θ ln fY |X (y|x∗, θ)−

1

bX (x∗)

X
s∈S

Hs

Qs

Z
Ys

©∇θfY |X (y|x∗, θ) + σjkm
RS

jk

Y X (y, x∗)£∇θfY |X (y|x∗, θ) bX (x∗)−∇θbX (x
∗) fY |X (y|x∗, θ)

¤ª
dy + o (Σ) (37)

g∗Qt
(z∗) = Qt− 1

bX (x∗)

Z
Yt
fY |X (y|x∗, θ)dy

"
1− σjk

X
s∈S

Hs

Qs

Z
Ys
fY |X (y|x∗, θ)mjk

Y X (y, x
∗) dy

#
+o (Σ)

(38)

g∗QJ
(z∗) = 1− 1

bX (x∗)

"
1− σjk

X
s∈S

Hs

Qs

Z
Ys
fY |X (y|x∗, θ)mjk

Y X (y, x
∗) dy

#
+ o (Σ) (39)

g∗σjk (z
∗) =

mjk
Y X (y, x

∗)
1 + σjkm

jk
Y X (y, x

∗)
+ o (Σ) , (40)

which is composed of (16), modified versions of (17)-(19) calculated in appendix 7.2, and the

additional moment indicators (40) concerned with the estimation of the variance of U . Naturally,

with correct measurement, as Σ = 0, moment indicators (36)-(39) coincide with their original

counterparts (16)-(19) proposed by Imbens and Lancaster (1996).

The system (36)-(40) can be solved using standard GMM procedures. The modified GMM

(MGMM) estimators φ̂ are obtained by minimizing an objective function analogous to that

in (20), with gN (γ) replaced by g∗N (φ) =
1
N

PN
i=1 g

∗
φ (z

∗
i ), which is the sample counterpart of

EhZ∗

h
g∗φ (z

∗)
i
, the moment indicators g∗φ (z

∗) being given in (36)-(40). As EhZ∗

h
g∗φ (z

∗)
i
= o (Σ),

only when CME is absent the MGMM estimators will be consistent for the parameters of interest.

With CME, the probability limit of the MGMM estimators φ̂ is φ∗ and not the true value φ0. In

fact, following Dumangane and Chesher (2001), it is straightforward to show that the probability

limit of the MGMM estimators is6

p lim φ̂ = φ∗ = φ0 + o (Σ) . (41)

6These authors extend for the GMM framework a result derived by Chesher and Santos Silva (2002), who

obtained the order of inconsistency of a quasi-ML estimator for the parameters of interest of a logit model for taste

variation. The demonstration for our case of CME is similar to that of Dumangane and Chesher (2001) for response

measurement error because the operations we propose in the next subsection to circumvent the specification of the

derivatives of the log-density of X, lkX (x
∗) and ljkX (x∗), do not change the order of the approximation haZ∗ (z

∗, φ)

in (9); see also appendix 7.3.
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Obviously, φ̂ suffer from some inconsistency, which depends on the magnitude of the variance

of the measurement error Σ. However, the asymptotic bias of these approximate estimators is

less than that of the GMM estimators which ignore the presence of CME; compare (41) with the

probability limits γ
¡
φ0
¢
of (28) and (29) obtained previously.

Analogously to ES sampling with no measurement error, if Q or σ, or both quantities, are

known, their values are substituted in (36)-(40), and the vector φ of estimated parameters is re-

duced, respectively, to (H, θ, σ), (H, θ,Q), or (H, θ). The resulting overidentifying system imposes

restrictions concerning the known quantities, allowing more efficient estimators to be obtained

relative to the case where all the parameters would have to be estimated. When neither Q or σ

are known, a just-identified GMM estimator for φ = (H, θ,Q, σ) needs to be calculated.

3.3 A score test to detect covariate measurement error

This subsection outlines a score test sensitive to CME for the GMM estimation framework proposed

previously.7 The idea is testing if the D elements of vector σ are zero. The null hypothesis is

H0 : σ = 0, for which the score test statistic [see Newey and McFadden (1994, Theorem 9.2.)] is

given by

T = Ng∗0NΩ
∗−1
N G∗NV

∗
NG

∗0
NΩ

∗−1
N g∗N , (42)

where g∗N ≡ g∗N (φ) and Ω
∗
N ,G

∗
N and V

∗
N are consistent estimators of, respectively, Ω

∗ = EhZ∗

h
g∗φ (z

∗)

g∗φ (z
∗)0
i
, G∗ = EhZ∗

h
∇φg

∗
φ (z

∗)0
i
and V ∗ =

³
G∗0Ω∗−1G∗

´−1
, all of them evaluated at consistent

estimators of the parameters of the restricted model, φ̂ = (γ̂, 0). Under the null hypothesis, T

converges in distribution to a chi-square random variable with D degrees of freedom. Note that,

under H0, the moment indicators g∗N in (36)-(40) are reduced to, respectively, (16)-(19) and

g∗σjk (z
∗)
¯̄̄
σjk=0

= mjk
Y X (y, x

∗) , (43)

which may also be obtained from the maximization of the log-likelihood based on (12), the aug-

mented density defined by Chesher and Smith (1997). Hence, the implementation of the efficient

version of the test is very simple since, under H0, the covariance between (16)-(19) and (43) is

given by the approximate bias functions (31)-(34) with σjk suppressed.

Following Dumangane and Chesher’s (2001) approach, we could use the moment indicators

g∗σjk (z
∗)
¯̄̄
σjk=0

in (43) to obtain alternative estimating functions for σ. In fact, g∗σjk (z
∗)
¯̄̄
σjk=0

may be modified to produce moment indicators for the estimation of σjk according to the same

7This type of test to detect measurement error was proposed in the ML framework by Chesher (1990) and applied,

for example, in Santos Silva (1999) and Chesher, Dumangane and Smith (2002) in the context of, respectively,

endogenous samples and duration models.
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principle utilised to modify the original moment indicators by Imbens and Lancaster (1996), which

is based on equation (35). The bias function for this case is bσjk (z
∗) = σjkEhZ

h
mjk

Y X (y, x
∗)2
i
=

σjkEfX

hP
s∈S

Hs
Qs

R
Ys m

jk
Y X (y, x

∗)2 fY |X (y|x, θ) dy
i
and the resulting moment indicators are g∗σjk (z

∗) =

mjk
Y X (y, x

∗) − σjk
P

s∈S
Hs
Qs

R
Ys m

jk
Y X (y, x

∗)2 fY |X (y|x, θ) dy + o (Σ). Note that if we had consid-

ered taking a simple average of mjk
Y X (y, x

∗)2 to estimate EhZ

h
mjk

Y X (y, x
∗)2
i
, instead of averagingP

s∈S
Hs
Qs

R
Ys m

jk
Y X (y, x

∗)2 fY |X (y|x, θ) dy to estimateEfX

hP
s∈S

Hs
Qs

R
Ys m

jk
Y X

³
(y, x∗)2 fY |X (y|x, θ) dy

¤
,

the moment indicators for σ would be given by g∗σjk (z
∗) = mjk

Y X (y, x
∗)−σjkm

jk
Y X (y, x

∗)2+ o (Σ),

which contains an O (Σ) approximation for the formulation we propose in (40). So, both ap-

proaches may be considered approximately equivalent.

Both the score test and the estimators suggested require the derivatives of the log-density of

the error-free covariates evaluated at the observed covariates, lkX (x
∗) and ljkX (x

∗). As the error-free

marginal distribution of the covariates fX (x) is unknown to the researcher, the next subsection

suggests a nonparametric procedure to estimate these quantities.

3.4 Nonparametric estimation of the features of fX (x)

Any regression model incorporating CME based on asymptotic approximations for a small error

variance is a function of the derivatives of the log-density of the error-free covariates. Hence, unless

the econometrician is prepared to specify fX (x), all estimators and specification tests require

the estimation of these derivatives in a first stage; see Chesher (1998, 2000, 2001). Following

these papers, we adopt Barron and Sheu’s (1991) nonparametric method based on sequences of

exponential families to estimate lkX (x
∗) and ljkX (x

∗). However, our problem is more complicated

since, while under RS the features of fX (x∗) can be estimated using error-prone data described

by fX∗ (x
∗) = fX (x

∗) + 0.5σjkf
jk
X (x∗) + o (Σ), under ES sampling the available data conforms

with the more complex sampling density hX∗ (x∗) of (11), which prevents direct estimation of the

derivatives of interest as in RS.

Our approach consists of writing the aimed features, lkX (x
∗) and ljkX (x

∗), in terms of estimable

or known quantities which may be substituted in either the moment indicators (37)-(40) or the

test statistics (42), in such a way that the order of the approximation error in hZ∗ (z
∗) of (9) is

not increased. The resulting expressions for lkX (x
∗) and ljkX (x

∗), derived in appendix 7.3, are

lkX (x
∗) = lkhX∗ (x

∗)− lbkX (x
∗) (44)

and

ljkX (x
∗) = ljkhX∗ (x

∗)− lbjkX (x
∗) , (45)

where lkhX∗ (x
∗) = [lnhX∗ (x∗)]k, ljkhX∗ (x

∗) = [lnhX∗ (x∗)]jk, lbkX (x) = [ln bX (x)]
k, and lbjkX (x) =

[ln bX (x)]
jk. Both (44) and (45) are functions of the conditional density function fY |X (y|x, θ),
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which is assumed known, the strata marginal probabilities in the sample,Hs, and in the population,

Qs, which may be either known or estimated, and the derivatives lkhX∗ (x
∗) and ljkhX∗ (x

∗), which

may by estimated nonparametrically by Barron and Sheu’s (1991) method, as described next.

When X is a scalar random variable, we may write the unknown density hX∗ (x∗) as

rX∗ (x
∗) = h0X∗ (x

∗) exp

(
MX
l=1

βlωl (x
∗)− ln

Z 1

0
h0X∗ (x

∗) exp

"
MX
l=1

βlωl (x
∗)

#
dx∗

)
, (46)

where h0X∗ (x
∗) is a reference probability density with support on [0, 1],M defines the length of the

exponential series, ωl (x∗), l = 1... M , are bounded and linearly independent functions spanning

a linear space of functions, β = (β1,..., βM) is a vector of unknown parameters, and M/N → 0.

Omitting irrelevant terms, the log-likelihood based on (46) may be rewritten as

ln rX∗ (x
∗) =

MX
l=1

βl [ωl (x
∗)− ω̄l]− ln

Z 1

0
exp

(
MX
l=1

βl [ωl (x
∗)− ω̄l]

)
dx∗, (47)

where ω̄l is the sample mean of the lth Legendre polynomial. Note that maximizing (47) is identical

to minimizing

R (β) =

Z 1

0
exp

(
MX
l=1

βl [ωl (x
∗)− ω̄l]

)
dx∗.

The calculation of the integral in R (β) may be avoided by using the approximation

R (β)a =
1

T + 1

T+1X
t=1

exp

(
MX
l=1

βl

·
ωl

µ
t− 1
T

¶
− ω̄l

¸)
. (48)

Using the uniform density on [0, 1] as reference density and Legendre polynomials in ωl (x
∗),

the log-density derivatives are simply

lkhX∗ (x
∗) =

MX
l=1

βlω
k
l (x

∗) (49)

and

ljkhX∗ (x
∗) =

MX
l=1

βlω
jk
l (x

∗) . (50)

Thus, our procedure consists of estimating nonparametrically lkhX∗ (x
∗) and ljkhX∗ (x

∗) in a first

stage, which are then substituted into (44) and (45), respectively. Next, we may replace lkX (x
∗)

and ljkX (x
∗) by, respectively, (44) and (45) inmjk

Y X (y, x
∗) contained in both the moment indicators

(37)-(40) and the test statistics in (42). In our Monte Carlo experiments, similarly to Chesher

(1998), we set T = 100 and M = 6.
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4 Particular cases

4.1 Random sampling

In the end of subsection 2.2, we showed that the RS model specification can be seen as a particular

case of that suggested for ES samples by merely setting Hs
Qs
= 1 and conditioning the analysis on

the covariates. Thus, it is natural that a simplified version of the GMM procedures described in

section 3 is appropriate to deal with RS. Namely, the vector of parameters of interest is reduced to

φ = (θ, σ), all expectations are now taken over fY |X∗ (y|x∗) instead of hZ∗ (z∗, φ), and mjk
Y X (y, x

∗)

of (10) can be replaced by mRS
jk

Y X (y, x∗) of (15) in all formulas.

In this RS setup, GMM estimation of θ ignoring the presence of CME uses the moment

indicator gθ (z∗) of (17) with the second term suppressed, gRSθ (z∗) = ∇θ ln fY |X (y|x∗, θ), which
corresponds to standard ML estimation based on the likelihood fY |X (y|x, θ) evaluated at (Y,X∗).

The probability limit γ
¡
φ0
¢
= θ

¡
θ0, σ0

¢
to which this naive RS ML estimator for θ converges can

be written from (28) as

γ
¡
φ0
¢
= θ0 − σjkG

−1EfY |X

·
∇θ ln fY |X (y|x∗, θ)mRS

jk

Y X (y, x∗) |X
¸
+ o (Σ) . (51)

where G = EfY |X [−∇θθ0 ln fY |X (y| x∗, θ) |X]. Hence, the approximate bias function for θ, corre-
sponding to bθ (z∗) of (32), is now reduced to:

bRSθ (z∗) = σjk

Z
Y
∇θfY |X (y|x∗, θ)mRS

jk

YX (y, x∗)dy. (52)

When CME is acknowledged, the estimation of the vector of parameters of interest φ = (θ, σ)

(or φ = θ if σ is known) is based upon a reduced version of (37) and (40):

gRS
∗

θ (z∗) = ∇θ ln f (y|x, θ)− σjk

Z
Y
∇θfY |X (y|x∗, θ)mRS

jk

Y X (y, x∗) dy + o (Σ) (53)

and

gRS
∗

σjk
(z∗) =

mRS
jk

Y X (y, x∗)

1 + σjkm
RS

jk

Y X (y, x∗)
+ o (Σ) . (54)

The MGMM estimators based on (53)-(54) coincide with those proposed by Chesher (2000), being

an alternative to the estimator suggested by Buonaccorsi (1996), who, assuming the existence of

repeated observations of the error-prone covariates to estimate the variance of the measurement

error, proposes a modification for estimating functions of the class gBθ (y, x) =
h
y −EfY |X (y|x, θ)

i
d (x, θ), where d (x, θ) is a weighting function. The method suggested by Chesher (2000), im-

plemented in this paper, allows the modification of any estimation function, including those of

Buonaccorsi (1996), and presents the additional advantage of not requiring the availability of re-

peated measurements on X∗, since the variance of U can be estimated from the moment indicators
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(54); for a comparison of the performance in practice of both Buonaccorsi’s (1996) and Chesher’s

(2000) estimators, see the Monte Carlo simulation study of subsection 5.2. It is also relevant to

note that in the next subsection we show that a GMM estimator for the slope parameters of CB

logit models with CME may be based on the system (53)-(54) instead of the more extended version

(36)-(40) proposed previously for ES samples.

The adaptation of the score test proposed in subsection 3.3 to detect CME in random datasets

is straightforward by using the simplifications suggested before. Obviously, now the moment

indicators of interest for the implementation of the test are (53) and (54) evaluated at σ = 0,

respectively, gRS
∗

θ (z∗)
¯̄
σjk=0

= gRSθ (z∗) = ∇θ ln fY |X (y|x∗, θ) and

g∗σjk (z
∗)
¯̄̄
σjk=0

= mRS
jk

Y X (y, x∗) . (55)

The covariance between these two sets of moment indicators required by the efficient version of

the test is given by the approximate bias function in (52) with σjk suppressed.

Finally, notice that, also in this setup, the implementation of both the MGMM estimators and

the score test requires the nonparametric estimation of lkX (x
∗) contained in the term mRSjk

YX (y, x∗)

of (53)-(55). In this case Barron and Sheu’s (1991) method described at the end of subsection 3.4

provides directly a nonparametric estimator for lkX∗ (x
∗), which is then replaced in lkX (x

∗).8

4.2 Choice-based binary logistic samples

In CB samples, when the variable of interest conditional on the error-free covariates is described

by a binary logit model and a validation sample is available, Carroll, Gail and Lubin (1993),

Wang and Carroll (1996), Roeder, Carroll and Lindsay (1996), Muller and Roeder (1997), and

Wang, Wang and Carroll (1997), based on the results of Prentice and Pyke (1979) for CB samples

with correct measurement, propose a range of ML-based estimators where the sampling scheme is

ignored and estimation proceeds as in RS, only accounting for the existence of CME.

This section investigates the estimation of this class of models in our framework, in which

the regression model is written in terms of small parameter asymptotic approximations and the

econometrician does not possess a validation sample. In absence of measurement error, RS esti-

mation of logit models with CB samples is justified by the fact that the conditional probability

of Y given X is coincident in the population and in the sample, apart from a distortion in the

intercept term. Thus, the idea here is examining whether with CME, for a sufficiently small Σ,

an analogous property holds, i.e. whether both the approximations of the contaminated version

8Note that this method now considers fX∗ (x
∗) as the unknown density of interest, from which lkX∗ (x

∗) is

estimated according to (49).
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of the conditional probability of Y given X∗ coincide in the population and the sample. As in

Chesher (1991), the former approximation may be expressed by

P ∗1 = P
h
1 + σjkΛ

jk (1− P )
i
+ o (Σ) (56)

and

P ∗0 = (1− P )
³
1− σjkΛ

jkP
´
+ o (Σ) , (57)

where P ∗1 = PrY |X∗ (1|x∗, θ, σ), P ∗0 = PrY |X∗ (0|x∗, θ, σ), P = PrY |X (1|x∗, θ) =
³
1 + e−x∗0θ

´−1
,

with x∗ containing a constant term, and Λjk = 0.5θjθk
h
1− 2P + 2

θj
lkX (x

∗)
i
. Denoting the prob-

ability of observing Y = 1 in the sample and in the population as, respectively, H and Q,

the approximate conditional probability of observing response Y = 1 in the sample given X∗,

PCB∗
1 = PrCBY |X∗ (1|x∗, θ,Σ), is

PCB∗
1 =

H
QP

∗
1

H
QP

∗
1 +

1−H
1−QP

∗
0

+ o (Σ)

=

µ
1 +

Q

H

1−H

1−Q

1− P ∗1
P ∗1

¶−1
+ o (Σ) . (58)

WhenΣ is sufficiently small, to order o (Σ), in (56) P ∗1 ' P and in (58) PCB∗
1 '

³
1 + Q

H
1−H
1−Q

1−P
P

´−1
=³

1 + Q
H

1−H
1−Q e

−x0θ
´−1

. Thus, it is clear that, apart from the shift of − ln
³
Q
H

1−H
1−Q

´
in the constant

term, PCB∗
1 approximately coincides with P , describing a logit model, which allow us to use the

RS moment indicators (53) and (54) given in subsection 4.1 to estimate the slope parameters of

interest as well as the intercept terms displaced by − ln
³
Q
H

1−H
1−Q

´
. Note, however, that (53) and

(54) contain lkX (x
∗), which, as in CB samples the sampling density of the covariates, hX∗ (x∗),

deviates from fX∗ (x
∗), has to be substituted for (44), instead of being directly estimated as in

RS; see subsection 3.4. Moreover, as lbX (x∗)k in (44) is a function of Qy, this method may only

be used when this marginal probability is known.

In this setting, although the RS ML estimator corrected for CME may not be applied, the

general estimation procedures for ES samples are substantially simplified, since the use of the

extended system of moment indicators in (36)-(40) is circumvented. Relative to previous papers

on CB logistic samples, though our estimator is slightly more complicated, since it involves the

nonparametric estimation of lkX (x
∗), it offers the advantage of not requiring a validation sample,

relying only on the assumption that the logit formulation adopted for the structural model is

correct. Furthermore, note that most of the estimators cited at the beginning of this subsection

require not only the specification of the structural model, but also the formulation of a conditional

distribution or a conditional expected value describing the relation between the observable and

the error-free covariates.
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5 Performance in practice

In this section we undertake three Monte Carlo simulation studies to investigate the small sample

behaviour of some of the MGMM estimators described previously. Subsection 5.1 considers binary

logit and probit models with CB sampling, while subsection 5.2 studies binary logit models based

on RS.

5.1 Binary models with choice-based sampling

The main aim of this subsection is to assess the performance in practice of some of our MGMM

estimators for ES samples with CME. First, we consider binary logit models, where the simplified

estimation procedures described in subsection 4.2 may be employed. Then, we simulate binary

probit models, where the complete methodology proposed in subsection 3.2 must be utilized. In

both cases the binary CB samples generated involve two strata, stratum 1 and stratum 0, with

individuals choosing, respectively, alternative Y = 1 and Y = 0. The probability of observing

an unit from the former (latter) stratum in the sample and in the population is, respectively, H

(1−H) and Q (1−Q). Q was set equal to 0.9 and, for each experiment, two sampling designs

were considered, characterized by H = {0.5, 0.7}. The sampling scheme where H = 0.5, usually

termed the equal shares design because the proportion of each strata in the sample is identical,

is claimed to be close to an optimal design, in the sense that minimizes the asymptotic variance

of the estimators; see Cosslett (1981a), Lancaster and Imbens (1991) and Imbens (1992). All

experiments, implemented in S-Plus, are based on 1000 replications for a sample size of 500.

5.1.1 Logit model

In this first set of experiments the variable of interest Y , conditional on X, is distributed as logit

with PrY |X (1|x, θ) =
¡
1 + e−θ0−xθ1

¢−1
and the marginal choice probability Q is assumed known.

The error-free covariate was generated with mean 3 and variance 4, either as a mixture of normal

distributions, where the variate is N (2, 1.2915) with probability 0.7 and N (5.333, 1.2915) with

probability 0.3, or Student
q

4
3t (3). In order to produce Q = 0.9, θ0 was set equal to 0, while

θ1 was fixed to 1.3 and 1.0 with, respectively, the former and latter distribution assumed for X.

The error-prone observed covariate was generated from X∗ = X + U , where U is distributed

independently of both X and Y . In all experiments, the variance of U , denoted as σ, was set equal

to 0.25. In designs a and c, U follows a N (0, 0.25) distribution while in b and d, U is
q
0.25
3 t (3).

Table 1 summarizes the experimental designs just described.

Table 1 about here
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Three different estimators were calculated: the naive GMM estimator (which in this case is a

ML estimator), denoted NE, and the MGMM estimators for known and unknown σ, respectively

termed MEa and MEb. For the two MGMM estimators, the derivatives of the log-density of the

covariates evaluated at the observed values ofX∗, denoted as l1X , were nonparametrically estimated

in a first step by following the procedures described in subsection 3.4. Both the MGMM estimators

are based on the following individual moment indicators, which were written from equations (53)

and (54),

g∗θ0 (z
∗) =

p

P (1− P )

·
y − P − 0.5σθ21p

µ
p1

p
+
2

θ1
l1X

¶¸
+ o (Σ) (59)

g∗θ1 (z
∗) =

xp

P (1− P )

·
y − P − 0.5σθ21p

µ
p1

p
+
2

θ1
l1X

¶¸
+ o (Σ) (60)

g∗σ (z
∗) =

θ21p(y−P )
P (1−P )

³
p1

p +
2
θ1
l1X

´
2 + σ

θ21p(y−P )
P (1−P )

³
p1

p +
2
θ1
l1X

´ + o (Σ) , (61)

where P = PrY |X (1|x∗, θ), p = ∇θ0P and p1 = ∇θ00p. In the MEa case, σ was replaced by its

known value, while for the MEb case it was estimated simultaneously with the other parameters

of interest. With regard to the NE, the moment indicators employed are (59) and (60) with σ = 0.

Table 2 reports the mean and the median bias in percentage terms along with the standard

deviation across the replications for the estimates of the slope coefficient θ1. Figure 1 shows the

estimated sampling distributions of NE, MEa, and MEb. In all cases, the naive estimators display

considerable mean and median downward biases, always greater than 9.4%. These two statistics

are substantially less for our two modified estimators. In fact, the smallest reduction in the mean

and median biases of NE occurs in experiments c for H = 0.5 where, even so, these statistics are

reduced to, respectively, 46% and 50% in MEa and 50% and 65% in MEb. These conclusions are

also illustrated in Figure 1, where the sampling distributions of both MEa and MEb are always

more centrally located around the true value of θ1 than that of NE, which lies substantially beneath

this value in all cases. As expected, MEa shows, in general, a better performance in terms of mean

and median biases than MEb, since it incorporates information on σ.

Table 2 about here

Figure 1 about here

As for the standard deviations of both the MGMM estimators, as usual in estimators account-

ing for measurement error [see, for example, the simulation experiments in Chesher (1998) and

Hausman, Abravaya and Scott-Morton (1998)], they appear inflated when compared with those of

the inconsistent naive estimators. This occurs because the former estimators reflect the additional

variability in the data induced by CME. Moreover, once again, the favorable influence of including
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additional information on σ is evident, the sampling variability of MEa being always smaller than

that of MEb. Note also that in all the estimators considered, the standard deviations are lower

for H = 0.5 than for H = 0.7, which certainly is a result of the close to optimality characteristic

of the former sampling scheme.

5.1.2 Probit model

In this framework, we assume that Y |X is described by a probit model with no intercept, such

that PrY |X (1 |x , θ) = Φ (xθ).9 The generation of the contaminated covariate follows the design

previously coded as a (see Table 1) and, to obtain Q = 0.9, θ was set equal to 0.75. Furthermore,

we assume that σ is unknown to the researcher, the situation which exhibited the worst results

in the previous Monte Carlo experiments because, in the two MGMM estimators, σ needs to be

estimated simultaneously with the other parameters of interest.

As the endogeneity of the sample has to be taken into account in probit models, we calculated

the estimators for ES samples for both the cases where there is information on Q and when this

parameter has to be estimated. When Q is known (unknown), we considered GMM estimators

ignoring the presence of CME and correcting for this problem, denoted, respectively, as NEa

(NEb) and MEa (MEb). Thus, in these experiments, Q is the source of additional information.

The derivatives of the log-density of X evaluated at X∗, denoted l1X and l2X , were estimated as

described in subsection 3.4 and the base set of individual moment indicators corresponding to

(36)-(40) is

g∗H (z
∗) = H − y (62)

g∗θ (z
∗) =

xp

P (1− P )

½
y − H

Q

1

bX (x)

·
P + 0.5σθ2p

µ
p1

p
+
2

θ
l1X

¶
1−H

1−Q

¸¾
+ o (Σ) (63)

g∗Q (z
∗) = Q− P

bX (x)

½
1− 0.5σ

·
θ2p

µ
H

Q
− 1−H

1−Q

¶µ
p1

p
+
2

θ
l1
¶
+
h
l2X +

¡
l1X
¢2i

b (x)

¸¾
+ o (Σ)

(64)

g∗σ (z
∗) =

θ2p(y−P )
P (1−P )

³
p1

p +
2
θ l
1
X

´
+ l2X +

¡
l1X
¢2

2 + σ
h
θ2p(y−P )
P (1−P )

³
p1

p +
2
θ l
1
X

´
+ l2X +

¡
l1X
¢2i + o (Σ) , (65)

where P = PrY |X (1|x∗, θ), p = ∇xθP and p1 = ∇xθp. Note that in CB sampling designs where

each choice defines one stratum
P

s∈S Qs = 1. Thus, the moment indicator (39) was suppressed.

Moreover, to obtain NEa and NEb, only the moment indicators (62)-(64) need to be considered

with σ = 0, which thus coincide with those of Imbens’ (1992) simulation study concerning GMM

9We did not use an intercept term in these experiments in order to reduce the computational time. Obviously, in

the experiments concerning logit models, discussed in the previous subsection, an intercept was considered because

only in that case estimation could be undertaken as if the sampling were random.
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estimators for CB samples. For both NEa and MEa, estimation was performed with Q replaced

by its known value in (62)-(65).

Table 3 and Figure 2 contain, respectively, the mean and the median bias in percentage terms

and the standard deviation of the estimates of θ across replications, and the estimated sampling

distributions of NEa, NEb, MEa, and MEb. They suggest very different comments for the cases

where Q is known and unknown. In the former case, NEa presents relatively small mean and

median biases, which, even so, were substantially reduced by our MEa at a cost of a small increment

in the dispersion. In the latter situation, NEb is seriously downward biased. The MEb eliminate

part of this bias, which in the worst case (see MEb for H = 0.70), is reduced to approximately

65% in the mean and 34.1% in the median. Despite this improvement, note that, for H = 0.5

the mean and median biases of MEb are approximately three times superior than that of the

naive estimator which combines information on Q, NEa. Moreover, MEb also exhibits very large

standard deviations across the replications. Thus, some care must be taken when applying them

in samples of the size considered here.

Table 3 about here

Figure 2 about here

In these experiments, the benefits of including additional information concerning the marginal

choice probabilities Q are apparent. On the one hand, the naive estimators become clearly more

robust to the presence of CME. On the other hand, MEa presents a very promising performance,

which is specially encouraging if we take into account that σ is estimated, a situation, which, in

general, leads to a degradation of the Monte Carlo simulation results.

5.2 Binary logit models with random sampling

The goal of this subsection is twofold. Firstly, we intend to briefly examine the performance in

practice of the MGMM estimators in binary logit models using RS, in which case they coincide with

Chesher’s (2000) estimators. To the best of our knowledge, in this framework, no simulation study

concerning discrete choice models had been undertaken. Secondly, we compare the performance of

these MGMM with that of Buonaccorsi’s (1996) estimator, which is simpler to implement, since

it does not require the employment of nonparametric estimation in a first stage to obtain the

derivatives of the log-density of the latent covariates, but always needs prior information on σ.

Again, the logit model for Y given X is characterized by PrY |X (1|x, θ) =
¡
1 + e−θ0−xθ1

¢−1
and the observed covariates are defined as X∗ = X + U , where U is distributed independently of

both X and Y . X and U were generated in three different ways, summarized in Table 4. Firstly
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we considered the design previously coded as a. Then, we adopted one of Buonaccorsi’s (1996)

designs, which assumes that X is a N (0, 0.1) variate and U is N (0, 0.1/3).10 In the third type of

experiments, relative to the previous design, we just altered the variance of X to 1 and that of U

to 1/3. In experiment a the parameters of interest were fixed as θ0 = 0 and θ1 = 1.3, as before,

while in the others, as in Buonaccorsi (1996), θ0 = −1.4 and θ1 = 1.4.

Table 4 about here

In this setting, CME is the only sampling problem that has to be taken into account in inference.

In addition to the three estimators for RS previously considered in subsection 5.1.1 for the logit

model, NE, MEa, and MEb, we also employ Buonaccorsi’s (1996) estimator for CME, denoted as

BE. The estimation procedures for obtaining NE are the same as described in that subsection.

Concerning the two MGMM estimators, MEa and MEb, now the nonparametric estimates of l1X

are used directly in the moment indicators (59)-(61); see the directions for estimation with RS in

subsection 3.4. Finally, BE was implemented by using the moment indicators (59) and (60) with

l1X replaced by, respectively, 1 and 1
X∗ . Experiments were conducted in S-Plus, involving samples

sizes of 300 and 1000 repetitions for each setting.

The statistics exhibited in Table 5, as well as the graphs in Figure 3, concerning estimates of

θ1, show that the behaviour of the naive estimators is again unacceptable in terms of bias. As for

the estimators accounting for measurement error, BE show a smaller variability across replications,

probably due to not requiring the nonparametric estimation of l1X . Comparing the results for the

mean and median bias of the two estimators where σ is assumed known, BE and MEa, the former

does better only in experiment b, showing larger mean and median biases in the other two cases,

where the variance of the error-free covariate is larger. Moreover, BE has the disadvantage that

in scheme a all statistics are slightly worse than those of NE, which creates serious doubts about

its usefulness. Thus, in this example, the global behaviour of MEa is better, even with the larger

σ of design c, which is encouraging, as we employ approximations based on small σ.

Table 5 about here

Figure 3 about here

On the other hand, the results for MEb, which involve the estimation of σ, are also promising

and very similar to those of MEa in designs a and b. However, its performance decays substantially

in design c, due to the increase in σ. Even so, relative to NE, mean and median biases are reduced

by more than 50% in all cases.
10Note that, in contrast to that paper, we did not consider repeated measurements of X∗.

25



6 Conclusion

In this paper we have proposed a general framework to deal with the presence of CME in ES

samples. First, a regression model to describe the observed data was specified by using Chesher’s

(1991) asymptotic approximations for a small error variance. Then, we considered Imbens and Lan-

caster’s (1996) efficient GMM estimators originally proposed for ES samples properly measured.

After identifying the sources of bias of these estimators in the presence of CME, we suggested a

modification to them in order to obtain approximately consistent estimators and outlined a score

test sensitive to CME.

We found that the inconsistency of Imbens and Lancaster’s (1996) estimators when the co-

variates’ contamination is not acknowledged, obtained by a Kiefer and Skoog-type (1984) measure

adapted for the GMM framework, is a function of the approximate expectation of the moment

indicators proposed by the former authors, taken with respect to the contaminated sampling joint

distribution of the variable of interest, the error-prone covariates, and the stratum indicator. This

approximation may be interpreted as the approximate bias induced by CME in the original mo-

ment indicators. Using Chesher’s (2000) method, by subtracting this approximate bias function

from the original moment indicators, we obtained modified moment indicators for which the ex-

pectation taken under the approximate distribution of the observed data is approximately zero.

Thus, we suggest the use of the traditional GMM techniques based on them to obtain approx-

imately consistent estimators for the parameters of interest. A component of the approximate

bias function is also employed in the efficient version of the score test to detect the presence of

contamination.

All the major contributions of this paper require the calculation of the referred to approximate

bias function. Though these calculations are often complicated, as they involve derivatives of the

structural model and the nonparametric estimation of features of the error-free distribution of the

covariates, once these functions are obtained, the score test for the presence of measurement error

is easily implemented and, when the null hypothesis of absence of contamination is rejected, the

employment of the MGMM estimators proposed here is straightforward.

The flexibility of this approach is especially visible in two levels. On the one hand, relative

to the model specified for ES samples, it merely employs one additional mild assumption on the

measurement error model, which requires that the measurement error is independently distributed

from the latent covariates. On the other hand, neither the population marginal probability of each

stratum nor the variance of the measurement error need to be known, although when this kind of

information is available, it may be easily incorporated in the estimation procedure, allowing more

efficient estimators to be obtained.
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Monte Carlo evidence was presented which suggests that, in ES sampling designs of moderate

sizes, the MGMM estimators perform well. In these experiments, the bias reduction is substantial,

in particular in situations where available information on either the strata marginal probabilities

or the variance of the measurement error is incorporated in the estimation procedure.

7 Appendix

7.1 Calculation of the approximate bias functions

The approximate bias function (32) is calculated from the general formula σjkEhZ

h
gγ (z

∗)mjk
Y X (y, x

∗)
i

as

bθ (z
∗) = σjkEhZ

h
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where the suppression of the terms ljkX (x
∗) and ljX (x

∗) lkX (x
∗) inmjk

Y X (y, x
∗) exploits the fact thatP

s∈S
Hs
Qs

R
Ys gγ (z

∗) fY |X (y|x∗, θ) dy = 0.
The calculation of both (33) and (34) is similar, using the fact that EhZ

h
mjk

Y X (y, x
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i
= 0:
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bQJ (z
∗) = σjkEhZ

h
gQJ (z

∗)mjk
Y X (y, x

∗)
i

= σjkEfX

"X
s∈S

Hs

Qs

Z
Ys
gQJ

(z∗) fY |X (y|x∗, θ)mjk
Y X (y, x

∗)dy

#

= σjkEhZ

h
mjk

Y X (y, x
∗)
i
− σjkEfX

"
1

bX (x∗)

X
s∈S

Hs

Qs

Z
Ys

fY |X (y|x∗, θ)mjk
Y X (y, x

∗)dy

#

= −σjkEfX

"
1

bX (x∗)

X
s∈S

Hs

Qs

Z
Ys

fY |X (y|x∗, θ)mjk
Y X (y, x

∗)dy

#
.

7.2 Calculation of the modified moment indicators

The corrected moment indicators (36)-(39) are obtained from (35) and employ the bias functions

in (32)-(34) with EfX [.] estimated by simple averages:
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7.3 Using the derivatives of the log-density of X∗ instead of X in approximation

haZ∗ (z
∗)

Consider the sampling density of X∗, hX∗ (x∗), given in (11). The respective log-density is

lnhX∗ (x
∗) = lnhX (x

∗) + 0.5σjk
hjkX (x

∗)
hX (x∗)

+ o (Σ)

= lX (x
∗) + ln bX (x∗) + 0.5σjk

hjkX (x
∗)

hX (x∗)
+ o (Σ)

and its derivatives are

lthX∗ (x
∗) = ltX (x

∗) + lbtX (x
∗) + 0.5σjk

"
htjkX (x∗)
hX (x∗)

− hjkX (x
∗)htX (x

∗)
hX (x∗)2

#
+ o (Σ) (66)

and

lvthX∗ (x
∗) = lvtX (x

∗) + lbvtX (x
∗) + 0.5σjk

"
htjkX (x∗)
hX (x∗)

− hjkX (x
∗)htX (x

∗)
hX (x∗)2

#v
+ o (Σ) , (67)

where t = 1, ..., k, v = 1, ..., k, lbkX (x) = [ln bX (x)]
k and lbjkX (x) = [ln bX (x)]

jk are evaluated at

X∗

Writing (66) and (67) as, respectively,

ltX (x
∗) = lthX∗ (x

∗)− lbtX (x
∗)− 0.5σjk

"
htjkX (x∗)
hX (x∗)

− hjkX (x
∗)htX (x

∗)
hX (x∗)2

#
− o (Σ)

and

lvtX (x
∗) = lvthX∗ (x

∗)− lbvtX (x
∗)− 0.5σjk

"
htjkX (x∗)
hX (x∗)

− hjkX (x
∗)htX (x

∗)
hX (x∗)2

#v
− o (Σ)

it follows that, in haZ∗ (z
∗) of (9),

σjkl
j
Y |X (y|x∗, θ) lkX (x∗)− σjkl

j
Y |X (y|x∗, θ)

h
lkhX∗ (x

∗)− lbkX (x
∗)
i
= o (Σ) ,

σjkl
jk
X (x

∗)− σjk

h
ljkhX∗ (x

∗)− lbjkX (x
∗)
i
= o (Σ) ,

and

σjkl
j
X (x

∗) lkX (x
∗)− σjk

h
ljhX∗ (x

∗)− lbjX (x
∗)
i h

lkhX∗ (x
∗)− lbkX (x

∗)
i
= o (Σ) .

Thus, the order of approximation haZ∗ (z
∗) is not increased by the replacement of lkX (x

∗) and

ljkX (x
∗) by, respectively,

h
lthX∗ (x

∗)− lbtX (x
∗)
i
and

h
lvthX∗ (x

∗)− lbvtX (x
∗)
i
.
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Table 1: Experimental designs employed with binary CB samples

Experiment designation X (mean=3,variance=4) U (mean=0,variance=0.25)
a Mixed normal Normal
b Mixed normal Scaled Student t(3)
c Scaled Student t(3) Normal
d Scaled Student t(3) Scaled Student t(3)

Table 2: Logit model with CB sampling - summary statistics for the slope parameter from 1000

replications

Q=0.9, σ=0.25
Experiment H Estimator Bias St. D.

Mean Median
a 0.70 NE -0.133 -0.140 0.109

MEa -0.003 -0.014 0.142
MEb -0.036 -0.044 0.164

0.50 NE -0.128 -0.132 0.105
MEa -0.019 -0.020 0.120
MEb -0.020 -0.015 0.130

b 0.70 NE -0.118 -0.119 0.118
MEa 0.018 0.012 0.158
MEb -0.034 -0.045 0.164

0.50 NE -0.112 -0.115 0.112
MEa 0.005 0.005 0.131
MEb -0.014 -0.013 0.140

c 0.70 NE -0.106 -0.110 0.092
MEa -0.022 -0.030 0.112
MEb -0.045 -0.062 0.138

0.50 NE -0.115 -0.120 0.087
MEa -0.053 -0.060 0.101
MEb -0.058 -0.078 0.125

d 0.70 NE -0.094 -0.099 0.096
MEa -0.008 -0.016 0.120
MEb -0.041 -0.063 0.131

0.50 NE -0.101 -0.102 0.091
MEa -0.037 -0.039 0.105
MEb -0.046 -0.063 0.123

Table 3: Probit model with CB sampling - summary statistics for the parameter of interest from

1000 replications

Experiment a, θ=.75, Q=0.9, σ=0.25
H Estimator Bias St. D.

Mean Median
0.70 NEa -0.033 -0.035 0.031

NEb -0.124 -0.129 0.052
MEa -0.008 -0.011 0.036
MEb -0.043 -0.085 0.107

0.50 NEa -0.047 -0.049 0.027
NEb -0.121 -0.123 0.049
MEa -0.027 -0.030 0.029
MEb -0.008 -0.003 0.094
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Table 4: Experimental designs employed with binary logistic random samples

Experiment designation X U
a Mixed normal (mean=3,variance=4) Normal (mean=0,variance=0.25)
b Normal (mean=0,variance=0.1) Normal (mean=0,variance=0.1/3)
c Normal (mean=0,variance=1) Normal (mean=0,variance=1/3)

Table 5: Logit model with RS - summary statistics for slope parameter from 1000 replications

Experiment Estimator Bias St. D.
Mean Median

a NE -0.127 -0.137 0.213
BE -0.155 -0.170 0.228
MEa 0.038 0.007 0.315
MEb 0.022 -0.006 0.309

b NE -0.245 -0.251 0.432
BE -0.007 -0.012 0.588
MEa -0.038 -0.046 0.622
MEb 0.016 0.049 0.670

c NE -0.298 -0.304 0.156
BE -0.160 -0.166 0.187
MEa -0.029 -0.041 0.262
MEb -0.115 -0.149 0.298
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Figure 1: Logit model with CB sampling - estimated sampling distributions for the slope parameter estimates

Notes: NE  (solid line), MEa  (dashed line) and MEb  (dot-dashed line). The vertical dotted line indicates the true value of the slope parameter.

a) H = 0.5

b) H = 0.7
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Figure 2: Probit model with CB sampling - estimated sampling distributions for the parameter estimates

Notes: The vertical dotted line indicates the true value of the parameter.
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Figure 3: Logit model with RS - estimated sampling distributions for the slope parameter estimates

Notes: NE  (solid line), BE  (dotted line), MEa  (dot-dashed line) and MEb  (dashed line). The vertical dotted line indicates the true value of the slope parameter.




