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a b s t r a c t

We provide a new existence theory of multiple positive solutions valid for a wide class of
systems of boundary value problems that possess a coupling in the boundary conditions.
Our conditions are fairly general and cover a large number of situations. The theory is illus-
trated in details in an example. The approach relies on classical fixed point index.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The problem of the existence of positive solutions for systems of local and nonlocal boundary value problems (BVPs) has
received an increased attention by researchers, see for example the papers of Agarwal et al. [1–3], Ahmad and Graef [4], Ahmad
and Nieto [5], Henderson et al. [14], Lan and Lin [23], Precup [28,29], Yang and Kong [36], Yang and Zhang [37] and references
therein. Between systems of BVPs of particular interest are those where the boundary conditions (BCs) are coupled. Systems
with coupled BCs can be applied to Lotka–Volterra models, reaction-diffusion phenomena and interaction problems, see for
example the works of Amann [7], Leung [24] and Mehmeti and Nicaise [27]. A recent paper in this line of research is the one
by Asif and Khan [8], who study the four-point coupled system

u00ðtÞ þ f1ðt;uðtÞ;vðtÞÞ ¼ 0; t 2 ð0;1Þ;
v 00ðtÞ þ f2ðt;uðtÞ; vðtÞÞ ¼ 0; t 2 ð0;1Þ;
uð0Þ ¼ 0; uð1Þ ¼ d12vðg12Þ;
vð0Þ ¼ 0; vð1Þ ¼ d22uðg22Þ:

ð1Þ

The authors prove, via the well-known Guo–Krasnosel’skiı̆ theorem on cone compression-expansion, the existence of one
positive solution of the system (1) by means of an associated auxiliary system of Hammerstein integral equations, namely
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uðtÞ ¼
Z 1

0
F1ðt; sÞf1ðs;uðsÞ; vðsÞÞdsþ

Z 1

0
G1ðt; sÞf2ðs;uðsÞ; vðsÞÞds;

vðtÞ ¼
Z 1

0
F2ðt; sÞf2ðs;uðsÞ;vðsÞÞdsþ

Z 1

0
G2ðt; sÞf1ðs;uðsÞ;vðsÞÞds:

ð2Þ

An integral representation of the type (2) is also used in the papers [9,38]. Yuan et al. in [38] study, by means of a nonlinear
alternative of Leray–Schauder type and the Guo–Krasnosel’skiı̆ fixed-point theorem, the existence of one or two positive
solutions for a semi-positone system of fractional differential equations subject to four-point BCs. In [9] Cui and Sun study,
via fixed point index theory, the existence of one positive solution for the system

u00ðtÞ þ f1ðt;uðtÞ; vðtÞÞ ¼ 0; t 2 ð0;1Þ;
v 00ðtÞ þ f2ðt;uðtÞ;vðtÞÞ ¼ 0; t 2 ð0;1Þ;
uð0Þ ¼ 0; uð1Þ ¼ b12½v �;
vð0Þ ¼ 0; vð1Þ ¼ b22½u�;

ð3Þ

where bij½�� are linear functionals defined via (positive) Stieltjes measures.
We mention that Stieltjes integrals are also used in the framework of nonlinear coupled BCs in the paper of Kang and Wei

[18] (where the Leggett and Williams fixed point theorem is used) and in two recent papers of Goodrich [11,12] (who uses
the Guo–Krasnosel’skiı̆ fixed-point theorem); one interesting feature of [11,12] is the possibility to use signed measures, in
the line of the paper by Webb and Infante [32].

Here we provide a new approach for a wide class of systems of BVPs that possess, along the coupling in the nonlinearities
of the differential equations, also a coupling in the BCs and we prove, under suitable conditions, existence of multiple non-
negative solutions. Our idea is to give an existence theory valid for systems of perturbed Hammerstein integral equations of
the type

uðtÞ ¼ c11ðtÞb11½u� þ c12ðtÞb12½v � þ
Z 1

0
k1ðt; sÞg1ðsÞf1ðs;uðsÞ;vðsÞÞds;

vðtÞ ¼ c21ðtÞb21½v � þ c22ðtÞb22½u� þ
Z 1

0
k2ðt; sÞg2ðsÞf2ðs;uðsÞ;vðsÞÞds;

ð4Þ

where cij are continuous functions and bij½�� are linear functionals defined via Stieltjes measures. A system of perturbed Ham-
merstein integral equations similar to (4) is investigated by Infante and Pietramala in [16], with the intent of dealing with
BVPs with nonlinear BCs, allowing a coupling in the nonlinearities f1 and f2 but not in the BCs. The methodology of [16] relies
on an extensions of the results of [32] to the context of systems.

We illustrate our theory with an example of a system of second and fourth order ordinary differential equations

u00ðtÞ þ g1ðtÞf1ðt;uðtÞ;vðtÞÞ ¼ 0; t 2 ð0;1Þ;
v ð4ÞðtÞ ¼ g2ðtÞf2ðt;uðtÞ;vðtÞÞ; t 2 ð0;1Þ;

ð5Þ

subject to the nonlocal boundary conditions

uð0Þ ¼ b11½u�; uð1Þ ¼ b12½v �;
vð0Þ ¼ b21½v�; vð1Þ ¼ 0; v 00ð0Þ ¼ 0; v 00ð1Þ þ b22½u� ¼ 0:

ð6Þ

The system of ordinary differential equations (5), with local BCs, can be used as a model for the stationary states of a one-
dimensional bridge, with a coupling between the cable and the roadbed. Here the cable is seen as vibrating string and the
roadbed as a vibrating beam, see for example the papers of Lazer and McKenna [20], Lü et al. [25], Sun [30] and the doctoral
thesis of Matas [26]. The boundary conditions (6) involve functionals of the form

bij½w� ¼
Z 1

0
wðsÞdBijðsÞ;

and include, as special cases, m-point and integral conditions, when

bij½w� ¼
Xm

j¼1

dijwðgijÞ and bij½w� ¼
Z 1

0
dijðsÞwðsÞds:

For previous work on Riemann–Stieltjes integral BCs we refer the reader, for example, to the papers of Karakostas and
Tsamatos [19] and Webb [31,33]. We point out that nonlocal conditions have a physical interpretation; for example the cou-
pled condition

uð0Þ ¼ uð1Þ ¼ vð1Þ ¼ v 00ð0Þ ¼ vð0Þ ¼ 0; v 00ð1Þ þ duðgÞ ¼ 0;

models a feedback control mechanism, where the bending moment in the right end of the beam is related to the displace-
ment registered in a point g of the string.
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We prove our results by means of the classical fixed point index theory (see for example the review of Amann [6] and the
book of Guo and Lakshmikantham [13]) and also make use of ideas from the papers [16,17,32].

2. Positive solutions for systems of integral equations

In order to utilize the classical fixed point index theory to find positive solutions of the system of integral equations

uðtÞ ¼ c11ðtÞb11½u� þ c12ðtÞb12½v � þ
Z 1

0
k1ðt; sÞg1ðsÞf1ðs;uðsÞ;vðsÞÞds;

vðtÞ ¼ c21ðtÞb21½v � þ c22ðtÞb22½u� þ
Z 1

0
k2ðt; sÞg2ðsÞf2ðs;uðsÞ; vðsÞÞds;

ð7Þ

we make the following hypotheses on the terms that occur in (7):

� For every i ¼ 1;2; fi : ½0;1� � ½0;1Þ � ½0;1Þ ! ½0;1Þ satisfies Carathéodory conditions, that is, fið�;u;vÞ is measurable for
each fixed ðu;vÞ and fiðt; �; �Þ is continuous for almost every (a.e.) t 2 ½0;1�, and for each r > 0 there exists /i;r 2 L1½0;1�
such that

fiðt;u; vÞ 6 /i;rðtÞ for u;v 2 ½0; r� and a:e: t 2 ½0;1�:

� For every i ¼ 1;2; ki : ½0;1� � ½0;1� ! ½0;1Þ is measurable, and for every s 2 ½0;1� we have

lim
t!s
jkiðt; sÞ � kiðs; sÞj ¼ 0 for a:e: s 2 ½0;1�:

� For every i ¼ 1;2, there exist a subinterval ½ai; bi�# ½0;1�, a function Ui 2 L1½0;1�, and a constant ci 2 ð0;1�, such that

kiðt; sÞ 6 UiðsÞ for t 2 ½0;1� and a:e: s 2 ½0;1�;
kiðt; sÞP ciUiðsÞ for t 2 ½ai; bi� and a:e: s 2 ½0;1�:

� For every i ¼ 1;2; giUi 2 L1½0;1�; gi P 0 a.e., and
R bi

ai
UiðsÞgiðsÞds > 0.

� For every i; j ¼ 1;2; bij½�� is a linear functional given by

bij½w� ¼
Z 1

0
wðsÞdBijðsÞ;

involving Riemann–Stieltjes integrals; Bij is of bounded variation and dBij is a positive measure.
� For every i; j ¼ 1;2; cij 2 C½0;1�; cijðtÞP 0 for every t 2 ½0;1�; bi1½ci1� < 1 and there exists cij 2 ð0;1� such that

cijðtÞP cijkcijk1 for every t 2 ½ai; bi�;

where kwk1 :¼maxfjwðtÞj; t 2 ½0;1�g.

We work in the space C½0;1� � C½0;1� endowed with the norm

kðu;vÞk :¼maxfkuk1; kvk1g:

Let eK i :¼ fw 2 C½0;1� : wðtÞP 0 for t 2 ½0;1� and min
t2½ai ;bi �

wðtÞP ~cikwk1g;

where ~ci ¼minfci; ci1; ci2g, and consider the cone K in C½0;1� � C½0;1� defined by

K :¼ fðu;vÞ 2 eK 1 � eK 2g:

For a positive solution of the system (7) we mean a solution ðu;vÞ 2 K of (7) such that kðu;vÞk > 0.
Under our assumptions, we show that the integral operator

Tðu; vÞðtÞ ¼
T1ðu;vÞðtÞ
T2ðu;vÞðtÞ

� �
:¼

c11ðtÞb11½u� þ c12ðtÞb12½v � þ F1ðu;vÞðtÞ
c21ðtÞb21½v � þ c22ðtÞb22½u� þ F2ðu;vÞðtÞ

� �
; ð8Þ

where

Fiðu; vÞðtÞ :¼
Z 1

0
kiðt; sÞgiðsÞfiðs;uðsÞ;vðsÞÞds;

leaves the cone K invariant and is compact.

Lemma 1. The operator (8) maps K into K and is compact.
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Proof. Take ðu;vÞ 2 K such that kðu;vÞk 6 r. Then we have, for t 2 ½0;1�,

T1ðu; vÞðtÞ ¼ c11ðtÞb11½u� þ c12ðtÞb12½v� þ
Z 1

0
k1ðt; sÞg1ðsÞf1ðs;uðsÞ;vðsÞÞds

therefore

kT1ðu;vÞk 6 kc11k1b11½u� þ kc12k1b12½v � þ
Z 1

0
U1ðsÞg1ðsÞf1ðs;uðsÞ; vðsÞÞds:

Then we obtain

min
t2½a1 ;b1 �

T1ðu; vÞðtÞP c11kc11k1b11½u� þ c12kc12k1b12½v � þ c1

Z 1

0
U1ðsÞg1ðsÞf1ðs;uðsÞ;vðsÞÞds P ~c1kT1ðu;vÞk:

Hence we have T1ðu;vÞ 2 eK 1. In a similar manner we proceed for T2ðu;vÞ.
Moreover, the map T is compact since the components Ti are sum of two compact maps: the compactness of Fi is well-

known and, since ci1 and ci2 are continuous, the perturbation ci1ðtÞbi1½u� þ ci2ðtÞbi2½v � maps bounded sets into bounded
subsets of a finite dimensional space. h

We use the following (relative) open bounded sets in K:

Kq ¼ fðu; vÞ 2 K : kðu;vÞk < qg;

and

Vq ¼ fðu;vÞ 2 K : min
t2½a1 ;b1 �

uðtÞ < q and min
t2½a2 ;b2 �

vðtÞ < qg:

The set Vq (in the context of systems) was introduced by Infante and Pietramala [15] and is equal to the set called Xq=c by
Franco, Infante and O’Regan [10]. Xq=c is an extension to the case of systems of a set given by Lan [22]. The advantage of the
notation Vq is that sheds light on the fact (see also the paper by Infante and Webb [17]) that choosing c as large as possible
provides a weaker condition to be satisfied by the functions fi in Lemmas 3 and 4. Note that Kq � Vq � Kq=c , where
c ¼minf ~c1; ~c2g. We denote by @Kq and @Vq the boundary of Kq and Vq relative to K.

In the next Lemma we make use of the notation

KijðsÞ :¼
Z 1

0
kiðt; sÞdBijðtÞ; i; j ¼ 1;2;

and we prove that the index is 1 on Kq.

Lemma 2. Assume that

ðI1
qÞ there exists q > 0 such that for every i ¼ 1;2

kci1k1bi1½ci2�bi2½1�
ð1� bi1½ci1�Þ

þ kci2k1bi2½1� þ f 0;q
i

1
mi
þ kci1k1
ð1� bi1½ci1�Þ

Z 1

0
Ki1ðsÞgiðsÞds

� �
< 1; ð9Þ

where

f 0;q
i ¼ sup

fiðt;u;vÞ
q

: ðt; u;vÞ 2 ½0;1� � ½0;q� � ½0;q�
� �

and
1

mi
¼ sup

t2½0;1�

Z 1

0
kiðt; sÞgiðsÞds:

Then the fixed point index, iKðT;KqÞ, is equal to 1.

Proof. We show that lðu;vÞ – Tðu;vÞ for every ðu;vÞ 2 @Kq and for every l P 1; this ensures that the index is 1 on Kq. In
fact, if this does not happen, there exist l P 1 and ðu;vÞ 2 @Kq such that lðu;vÞ ¼ Tðu;vÞ. Assume, without loss of generality,
that kuk1 ¼ q and kvk1 6 q. Then

luðtÞ ¼ c11ðtÞb11½u� þ c12ðtÞb12½v � þ F1ðu;vÞðtÞ

and therefore, since vðtÞ 6 q, for all t 2 ½0;1�,

luðtÞ 6 c11ðtÞb11½u� þ c12ðtÞb12½q� þ F1ðu;vÞðtÞ ¼ c11ðtÞb11½u� þ qc12ðtÞb12½1� þ F1ðu; vÞðtÞ: ð10Þ

Applying b11 to both sides of (10) gives

lb11½u� 6 b11½c11�b11½u� þ qb11½c12�b12½1� þ b11½F1ðu; vÞ�:

Thus we have

ðl� b11½c11�Þb11½u� 6 qb11½c12�b12½1� þ b11½F1ðu; vÞ�;

G. Infante et al. / Commun Nonlinear Sci Numer Simulat 17 (2012) 4952–4960 4955
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that is

b11½u� 6 q
b11½c12�b12½1�
ðl� b11½c11�Þ

þ b11½F1ðu;vÞ�
ðl� b11½c11�Þ

:

Substituting into (10) gives

luðtÞ 6 c11ðtÞ q
b11½c12�b12½1�
ðl� b11½c11�Þ

þ b11½F1ðu;vÞ�
ðl� b11½c11�Þ

� �
þ qc12ðtÞb12½1� þ F1ðu; vÞðtÞ

¼ q
c11ðtÞb11½c12�b12½1�
ðl� b11½c11�Þ

þ c11ðtÞ
ðl� b11½c11�Þ

Z 1

0
K11ðsÞg1ðsÞf1ðs;uðsÞ;vðsÞÞdsþ qc12ðtÞb12½1� þ F1ðu;vÞðtÞ:

Since l P 1, one has 1
l�b11 ½c11 �

6
1

1�b11 ½c11 �
and therefore

luðtÞ 6 q
c11ðtÞb11½c12�b12½1�
ð1� b11½c11�Þ

þ c11ðtÞ
ð1� b11½c11�Þ

Z 1

0
K11ðsÞg1ðsÞf1ðs;uðsÞ; vðsÞÞdsþ qc12ðtÞb12½1� þ F1ðu;vÞðtÞ:

Taking the supremum of t on ½0;1� gives

lq 6 q
kc11k1b11½c12�b12½1�
ð1� b11½c11�Þ

þ qf 0;q
1

kc11k1
ð1� b11½c11�Þ

Z 1

0
K11ðsÞg1ðsÞdsþ qkc12k1b12½1� þ qf 0;q

1
1

m1
:

Using the hypothesis (9) we obtain lq < q. This contradicts the fact that l P 1 and proves the result. h

We give a first Lemma that shows that the index is 0 on a set Vq, here we assume that the nonlinearities f1; f2 have the
same growth.

Lemma 3. Assume that

ðI0
qÞ there exist q > 0 such that for every i ¼ 1;2

fi;ðq;q=cÞ
ci1kci1k1
ð1� bi1½ci1�Þ

Z bi

ai

Ki1ðsÞgiðsÞdsþ 1
Mi

 !
> 1; ð11Þ

where

f1;ðq;q=cÞ ¼ inf
f1ðt;u; vÞ

q
: ðt;u; vÞ 2 ½a1; b1� � ½q;q=c� � ½0;q=c�

� �
;

f2;ðq;q=cÞ ¼ inf
f2ðt;u; vÞ

q
: ðt;u; vÞ 2 ½a2; b2� � ½0;q=c� � ½q;q=c�

� �
and

1
Mi
¼ inf

t2½ai ;bi �

Z bi

ai

kiðt; sÞgiðsÞds:

Then iKðT;VqÞ ¼ 0.

Proof. Let eðtÞ � 1 for t 2 ½0;1�. Then ðe; eÞ 2 K. We prove that

ðu; vÞ – Tðu; vÞ þ lðe; eÞ for ðu;vÞ 2 @Vq and l P 0:

In fact, if this does not happen, there exist ðu;vÞ 2 @Vq and l P 0 such that ðu;vÞ ¼ Tðu; vÞ þ lðe; eÞ. Without loss of gener-
ality, we can assume that for all t 2 ½a1; b1� we have

q 6 uðtÞ 6 q=c; min uðtÞ ¼ q and 0 6 vðtÞ 6 q=c:

Then, for t 2 ½a1; b1�, we obtain

uðtÞ ¼ c11ðtÞb11½u� þ c12ðtÞb12½v � þ
Z 1

0
k1ðt; sÞg1ðsÞf1ðs;uðsÞ; vðsÞÞdsþ leðtÞ

and therefore

uðtÞP c11ðtÞb11½u� þ F1ðu;vÞðtÞ þ leðtÞ: ð12Þ

Applying b11 to both sides of (12) gives

b11½u�P b11½c11�b11½u� þ b11½F1ðu; vÞ� þ lb11½e�:

This can be written in the form

ð1� b11½c11�Þb11½u�P b11½F1ðu; vÞ� þ lb11½e�;

4956 G. Infante et al. / Commun Nonlinear Sci Numer Simulat 17 (2012) 4952–4960
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that is

b11½u�P
b11½F1ðu; vÞ�
ð1� b11½c11�Þ

þ lb11½e�
ð1� b11½c11�Þ

:

Thus, (12) becomes

uðtÞP c11ðtÞb11½F1ðu;vÞ�
ð1� b11½c11�Þ

þ lc11ðtÞb11½e�
ð1� b11½c11�Þ

þ F1ðu;vÞðtÞ þ leðtÞ

¼ c11ðtÞ
ð1� b11½c11�Þ

�
Z 1

0
K11ðsÞg1ðsÞf1ðs; uðsÞ;vðsÞÞdsþ lc11ðtÞb11½e�

ð1� b11½c11�Þ
þ
Z 1

0
k1ðt; sÞg1ðsÞf1ðs;uðsÞ;vðsÞÞdsþ l:

Then we have, for t 2 ½a1; b1�,

uðtÞP c11kc11k1
ð1� b11½c11�Þ

�
Z b1

a1

K11ðsÞg1ðsÞf1ðs;uðsÞ; vðsÞÞdsþ lc11kc11k1b11½e�
ð1� b11½c11�Þ

þ
Z b1

a1

k1ðt; sÞg1ðsÞf1ðs;uðsÞ; vðsÞÞdsþ l

P
c11kc11k1
ð1� b11½c11�Þ

�
Z b1

a1

K11ðsÞg1ðsÞf1ðs;uðsÞ; vðsÞÞdsþ
Z b1

a1

k1ðt; sÞg1ðsÞf1ðs;uðsÞ;vðsÞÞdsþ l:

Taking the minimum over ½a1; b1� gives

min
t2½a1 ;b1 �

uðtÞP qf1;ðq;q=cÞ
c11kc11k1
ð1� b11½c11�Þ

�
Z b1

a1

K11ðsÞg1ðsÞdsþ qf1;ðq;q=cÞ
1

M1
þ l

¼ q f1;ðq;q=cÞ
c11kc11k1
ð1� b11½c11�Þ

�
Z b1

a1

K11ðsÞg1ðsÞdsþ f1;ðq;q=cÞ
1

M1

 !
þ l:

Using the hypothesis (11) we obtain q ¼mint2½a1 ;b1 �uðtÞ > qþ l, a contradiction. h

The following Lemma also shows that the index is 0 on Vq; the idea here is similar to the one in Lemma 4 of [16]: this time
we have to control the growth of just one nonlinearity fi, at the cost of having to deal with a larger domain. For other results
on the existence of solutions with different growth on the nonlinearities see the works [28,29] and the paper by Yang [35].

Lemma 4. Assume that

ðI0
qÞ

H there exist q > 0 such that for some i ¼ 1;2

f 	i;ð0;q=cÞ
ci1kci1k1
ð1� bi1½ci1�Þ

Z bi

ai

Ki1ðsÞgiðsÞdsþ 1
Mi

 !
> 1; ð13Þ

where

f 	i;ð0;q=cÞ ¼ inf
fiðt; u;vÞ

q
: ðt; u;vÞ 2 ½ai; bi� � ½0;q=c� � ½0;q=c�

� �
:

Then iKðT;VqÞ ¼ 0.

Proof. Suppose that the condition (13) holds for i ¼ 1. Let eðtÞ � 1 for t 2 ½0;1�. Then ðe; eÞ 2 K . We prove that

ðu;vÞ– Tðu; vÞ þ lðe; eÞ for ðu;vÞ 2 @Vq and l P 0:

In fact, if this does not happen, there exist ðu;vÞ 2 @Vq and l P 0 such that ðu;vÞ ¼ Tðu; vÞ þ lðe; eÞ. So, for all
t 2 ½a1; b1�;min uðtÞ 6 q and for t 2 ½a2; b2�;min vðtÞ 6 q. We have, for t 2 ½0;1�,

uðtÞ ¼ c11ðtÞb11½u� þ c12ðtÞb12½v� þ
Z 1

0
k1ðt; sÞg1ðsÞf1ðs;uðsÞ;vðsÞÞdsþ leðtÞ

and, as in the proof of Lemma 3,

uðtÞP c11ðtÞ
ð1� b11½c11�Þ

�
Z 1

0
K11ðsÞg1ðsÞf1ðs; uðsÞ;vðsÞÞdsþ lc11ðtÞb11½e�

ð1� b11½c11�Þ
þ
Z 1

0
k1ðt; sÞg1ðsÞf1ðs;uðsÞ; vðsÞÞdsþ l:

Then we have

min
t2½a1 ;b1 �

uðtÞP qf 	1;ð0;q=cÞ
c11kc11k1
ð1� b11½c11�Þ

�
Z b1

a1

K11ðsÞg1ðsÞdsþ qf 	1;ð0;q=cÞ
1

M1
þ l

¼ qf 	1;ð0;q=cÞ
c11kc11k1
ð1� b11½c11�Þ

�
Z b1

a1

K11ðsÞg1ðsÞdsþ qf 	1;ð0;q=cÞ
1

M1
þ l:
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Using the hypothesis (13) we obtain mint2½a1 ;b1 �uðtÞ > qþ l P q, a contradiction. h

The above Lemmas can be combined to prove the following Theorem, here we deal with the existence of at least one, two
or three solutions. We stress that, by expanding the lists in conditions ðS5Þ; ðS6Þ below, it is possible to state results for four
or more positive solutions, see for example the paper by Lan [21] for the type of results that might be stated. We omit the
proof which follows from the properties of fixed point index.

Theorem 5. The system (7) has at least one positive solution in K if either of the following conditions hold.

ðS1Þ There exist q1;q2 2 ð0;1Þ with q1=c < q2 such that ðI0
q1
Þ ½or ðI0

q1
ÞH�; ðI1

q2
Þ hold.

ðS2Þ There exist q1;q2 2 ð0;1Þ with q1 < q2 such that ðI1
q1
Þ; ðI0

q2
Þ hold.

The system (7) has at least two positive solutions in K if one of the following conditions hold:
ðS3Þ There exist q1;q2;q3 2 ð0;1Þ with q1=c < q2 < q3 such that ðI0

q1
Þ ½or ðI0

q1
ÞH�; ðI1

q2
Þ and ðI0

q3
Þ hold.

ðS4Þ There exist q1;q2;q3 2 ð0;1Þ with q1 < q2 and q2=c < q3 such that ðI1
q1
Þ; ðI0

q2
Þ and ðI1

q3
Þ hold.

The system (7) has at least three positive solutions in K if one of the following conditions hold:

ðS5Þ There exist q1;q2;q3;q4 2 ð0;1Þ with q1=c < q2 < q3 and q3=c < q4 such that ðI0
q1
Þ ½or ðI0

q1
ÞH�; ðI1

q2
Þ; ðI0

q3
Þ and ðI1

q4
Þ hold.

ðS6Þ There exist q1;q2;q3;q4 2 ð0;1Þ with q1 < q2 and q2=c < q3 < q4 such that ðI1
q1
Þ; ðI0

q2
Þ; ðI1

q3
Þ and ðI0

q4
Þ hold.

Remark 1. Note that, if the nonlinearities f1 and f2 have some extra positivity properties, a solution ðu;vÞ achieved by means
of the above Theorem has further positivity properties. For example, if the condition ðS1Þ holds and moreover we assume that
f1ðt;0;vÞ > 0 in ½a1; b1� � f0g � ½0;q2� and f2ðt;u;0Þ > 0 in ½a2; b2� � ½0;q2� � f0g, the solution ðu;vÞ of the system (7) is such
that kuk1 and kvk1 are strictly positive. The Remark 2 of [16] should read accordingly.

3. An application to coupled systems of BVPs

We study the existence of positive solutions for the system of second order differential equations

u00ðtÞ þ g1ðtÞf1ðt;uðtÞ;vðtÞÞ ¼ 0; t 2 ð0;1Þ;
v ð4ÞðtÞ ¼ g2ðtÞf2ðt;uðtÞ;vðtÞÞ; t 2 ð0;1Þ;

ð14Þ

with the nonlocal boundary conditions

uð0Þ ¼ b11½u�; uð1Þ ¼ b12½v �;
vð0Þ ¼ b21½v �; vð1Þ ¼ 0; v 00ð0Þ ¼ 0; v 00ð1Þ þ b22½u� ¼ 0:

ð15Þ

We rewrite this differential system in the integral form

uðtÞ ¼ ð1� tÞb11½u� þ tb12½u� þ
Z 1

0
k1ðt; sÞg1ðsÞf1ðs; uðsÞ;vðsÞÞds;

vðtÞ ¼ ð1� tÞb21½v � þ
1
6

tð1� t2Þb22½u� þ
Z 1

0
k2ðt; sÞg2ðsÞf2ðs;uðsÞ;vðsÞÞds;

where

k1ðt; sÞ ¼
sð1� tÞ; s 6 t;

tð1� sÞ; s > t;

�
and k2ðt; sÞ ¼

1
6 sð1� tÞð2t � s2 � t2Þ; s 6 t;
1
6 tð1� sÞð2s� t2 � s2Þ; s > t;

(
are non-negative continuous functions on ½0;1� � ½0;1�.

The intervals ½a1; b1� and ½a2; b2� may be chosen arbitrarily in ð0;1Þ. It is easy to check that

k1ðt; sÞ 6 sð1� sÞ :¼ U1ðsÞ; min
t2½a1 ;b1 �

k1ðt; sÞP c1sð1� sÞ;

where c1 ¼ minf1� b1; a1g. Furthermore, see the paper by Webb et al. [34], we have that

k2ðt; sÞ 6 U2ðsÞ :¼
ffiffi
3
p

27 sð1� s2Þ
3
2; for 0 6 s 6 1

2 ;ffiffi
3
p

27 ð1� sÞs3
2ð2� sÞ

3
2; for 1

2 < s 6 1;

8<:
and

k2ðt; sÞP c2ðtÞU2ðsÞ;

where
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c2ðtÞ ¼
3
ffiffi
3
p

2 tð1� t2Þ; for t 2 ½0;1=2�;
3
ffiffi
3
p

2 tð1� tÞð2� tÞ; for t 2 ð1=2;1�;

(

so that

c2 ¼ min
t2½a2 ;b2 �

c2ðtÞ > 0:

The existence of multiple solutions of the system (14)–(15) follows from Theorem 5.
In the next example we illustrate the constants that occur in our theory.

Example 1. Consider the system

u00 þ ð1=8Þðu3 þ t3v3Þ þ 2 ¼ 0; t 2 ð0;1Þ;
v ð4Þ ¼

ffiffiffiffiffi
tu
p
þ 13v2; t 2 ð0;1Þ;

uð0Þ ¼ ð1=2Þuð1=4Þ; uð1Þ ¼ ð1=3Þvð3=4Þ;
vð0Þ ¼ ð1=4Þvð1=3Þ; vð1Þ ¼ v 00ð0Þ ¼ 0; v 00ð1Þ þ ð1=5Þuð2=3Þ ¼ 0:

ð16Þ

In this case the nonlocal conditions are given by the functionals bij½w� ¼ dijwðgijÞ.
The choice ½a1; b1� ¼ ½a2; b2� ¼ ½1=4;3=4� gives

c1 ¼ 1=4; c2 ¼ 45
ffiffiffi
3
p

=128; c11 ¼ c12 ¼ c21 ¼ 1=4; c22 ¼ 45
ffiffiffi
3
p

=128;

m1 ¼ 8; M1 ¼ 16; m2 ¼ 384=5; M2 ¼ 768=5:

We have that b11½c11� ¼ 3=8 and b21½c21� ¼ 1=6.
Since Ki1ðsÞ ¼ di1kiðgi1; sÞ we obtainZ 1

0
K11ðsÞds ¼ 3=64 and

Z 3=4

1=4
K11ðsÞds ¼ 1=32;

Z 1

0
K21ðsÞds ¼ 11=3888 and

Z 3=4

1=4
K21ðsÞds ¼ 3985=1990656:

Then, for q1 ¼ 1=8;q2 ¼ 1 and q3 ¼ 11, we have (the constants that follow have been rounded to 2 decimal places unless
exact)

inf f1ðt;u;vÞ : ðt;u;vÞ 2 ½1=4;3=4� � ½0;1=2� � ½0;1=2�f g ¼ f1ð1=4;0;0Þ > 13:34q1;

sup f1ðt;u; vÞ : ðt;u; vÞ 2 ½0;1� � ½0;1� � ½0;1�f g ¼ f1ð1;1;1Þ < 3q2;

sup f2ðt;u; vÞ : ðt;u; vÞ 2 ½0;1� � ½0;1� � ½0;1�f g ¼ f2ð1;1;1Þ < 59:95q2;

inf f1ðt;u;vÞ : ðt;u;vÞ 2 ½1=4;3=4� � ½11;44� � ½0;44�f g ¼ f1ð1=4;11;0Þ > 13:34q3;

inf f2ðt;u;vÞ : ðt;u;vÞ 2 ½1=4;3=4� � ½0;44� � ½11;44�f g ¼ f2ð1=4;0;11Þ > 140:63q3;

that is the conditions ðI0
q1
ÞH; ðI1

q2
Þ and ðI0

q3
Þ are satisfied; therefore the system (16) has at least two positive solutions in K.
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