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a b s t r a c t

In this paper we present sufficient conditions for the existence of periodic solutions of the
higher order fully differential equation

u(n) (x) = f (x, u (x) , u′ (x) , . . . , u(n−1) (x)),

with n ≥ 3, x ∈ [a, b] and f : [a, b] × Rn
→ R a continuous function verifying a Nagumo-

type growth condition.
A new type of lower and upper solutions, eventually non-ordered, allows us to obtain,

not only the existence, but also some qualitative properties on the solution. The last section
contains two examples to stress the application to both cases of n odd and n even.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this work we consider the higher order periodic boundary value problem composed by the fully differential equation

u(n) (x) = f

x, u (x) , u′ (x) , . . . , u(n−1) (x)


(1)

for n ≥ 3, x ∈ I := [a, b], and f : I × Rn
→ R a continuous function and the periodic boundary conditions

u(i) (a) = u(i) (b) , i = 0, 1, . . . , n − 1. (2)
Higher order periodic boundary value problems have been studied by several authors in the last decades, using different

types of arguments and techniques, as it can be seen in [1–3] for variational methods, in [4–17], for first and higher order
equations and in [18–20] for a linear or quasi-linear nth order periodic problem. A fully nonlinear differential equation of
higher order as in (1) was studied in some works, such as, for instance, [21], for f a bounded and periodic function verifying
different assumptions for n even or odd.Moreover, in [22], the nonlinear part f of (1)must verify the following assumptions:

(A1) There are continuous functions e(x) and gi(x, y), i = 0, . . . , n − 1, such that

|f (x, y0, . . . , yn−1)| ≤ e(x) +

n−1
i=0

gi(x, yi)

with

lim
|y|→∞

sup
x∈[0,1]

|gi(x, y)|
|y|

= ri ≥ 0, i = 0, 1, . . . , n − 1.
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(A2) There is a constantM > 0 such that, for x ∈ [0, 1],

f (x, y0, 0, . . . , 0) > 0, for y0 > M,

and

f (x, y0, 0, . . . , 0) < 0, for y0 < −M.

(A3) There are real numbers L ≥ 0, α > 0 and ai ≥ 0, i = 1, . . . , n − 1, such that

|f (x, y0, . . . , yn−1)| ≥ α |y0| −

n−1
i=1

ai |yi| − L,

for every x ∈ [0, 1] and (y0, . . . , yn−1) ∈ Rn.

The arguments followed in this paper allow more general nonlinearities, namely, f does not need to have a sublinear
growth in y0, . . . , yn−1 (as in (A1)) or change sign (as in (A2)). In fact, condition (10) in our main result (see Theorem 4)
refers an, eventually, opposite monotony to (A2) and improves the existent results in the literature for periodic higher order
boundary value problems. In short, our technique is based on lower and upper solutions not necessarily ordered, in the
topological degree theory, like it was suggested, for example, in [23,24], and has the following key points:

• A Nagumo-type condition on the nonlinearity, useful to obtain an a priori estimation for the (n − 1)th derivative and to
define an open and bounded set where the topological degree is well defined.

• A new kind of definition of lower and upper solutions, required to deal with the absence of a definite order for lower and
upper functions and their derivatives up to the (n − 3)th order. We remark that with such functions it is only required
boundary data for the derivatives of order n− 2 and n− 1. Therefore the set of admissible functions for lower and upper
solutions is more general.

• An adequate auxiliary and perturbed problem, where the truncations and the homotopy are extended to some mixed
boundary conditions, allowing an invertible linear operator and the evaluation of the Leray–Schauder degree.

The last section contains two examples to emphasize that these results cover some cases in the literature where it is
needed to particularize if n is odd and/or even.

2. Definitions and a priori bounds

It is introduced in this section, a Nagumo-type growth condition, initially presented in [25], and now useful to obtain an
a priori estimate for the (n − 1)th derivative.

Definition 1. A continuous function f : I × Rn
→ R is said to satisfy the Nagumo type condition in

E =

(x, y0, . . . , yn−1) ∈ I × Rn

: γi (x) ≤ yi ≤ Γi (x) , i = 0, 1, . . . , n − 2

, (3)

with γi (x) and Γi (x) continuous functions such that,

γi (x) ≤ Γi (x) , for i = 0, 1, . . . , n − 2 and every x ∈ I, (4)

if there exists a real continuous function hE : [0, +∞ [→] 0, +∞[ such that

|f (x, y0, . . . , yn−1)| ≤ hE (|yn−1|) , for every (x, y0, . . . , yn−1) ∈ E, (5)

with 
+∞

0

s
hE (s)

ds = +∞. (6)

In the following we denote

∥w∥∞ := sup
x∈I

|w(x)|.

The a priori bound is given by the next lemma:

Lemma 2 ([24, Lemma 1]). Consider γi, Γi ∈ C (I, R), for i = 0, 1, . . . , n − 1, such that (4) holds and E is defined by (3).
Assume that, for some k > 0, there is hE ∈ C ([0, +∞[, [k, +∞[), such that

+∞

η

s
hE (s)

ds > max
x∈I

Γn−2 (x) − min
x∈I

γn−2 (x) ,
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where η ≥ 0 is given by

η := max


Γn−2 (b) − γn−2 (a)
b − a

,
Γn−2 (a) − γn−2 (b)

b − a


.

Then there exists R > 0 (depending on γn−2, Γn−2 and hE) such that for every continuous function f : E → R verifying (5) and
for every u (x) solution of (1) such that

γi (x) ≤ u(i) (x) ≤ Γi (x) , i = 0, 1, . . . , n − 2,

for every x ∈ I , we haveu(n−1)


∞
< R.

In this paper, upper and lower solutions, not necessarily ordered, are used. In fact, by applying adequate auxiliary
functions not only we get some order to define the branches where the solution and its derivatives are localized, but also
we can deal with more general boundary conditions.

Definition 3. The function α ∈ Cn (I) is a lower solution of problem (1)–(2) if

(i) α(n) (x) ≥ f

x, α0 (x) , α1 (x) , . . . , αn−3 (x) , α(n−2) (x) , α(n−1) (x)


where

αi (x) := α(i) (x) −

n−3
j=i

α(j)


∞
(x − a)j−i , i = 0, . . . , n − 3. (7)

(ii) α(n−1) (a) ≥ α(n−1) (b) , α(n−2) (a) = α(n−2) (b) .
The function β ∈ Cn (I) is an upper solution of problem (1)–(2) if

(iii) β(n) (x) ≤ f

x, β0 (x) , β1 (x) , . . . , βn−3 (x) , β(n−2) (x) , β(n−1) (x)


where

βi (x) := β(i) (x) +

n−3
j=i

β(j)


∞
(x − a)j−i , i = 0, . . . , n − 3. (8)

(iv) β(n−1) (a) ≤ β(n−1) (b) , β(n−2) (a) = β(n−2) (b) .

Remark that although α and β are not necessarily ordered, the auxiliary functions αi and βi are well ordered for
i = 0, . . . , n − 3. In fact, by (7) and (8),

αi(x) ≤ 0 ≤ βi(x), for every i = 0, . . . , n − 3 and x ∈ I.

Moreover, there is no need of data on the values of the lower solution α or the upper solution β and their derivatives
until order (n − 3) in the boundary. In fact, this is a key point to have more general sets of admissible functions as lower or
upper solutions to problem (1)–(2).

3. Existence of periodic solutions

The main theorem provides an existence and location result for problem (1)–(2) in the presence of lower and upper
solutions, not necessarily ordered.

Theorem 4. Assume that α, β ∈ Cn (I) are lower and upper solutions of (1)–(2) such that

α(n−2) (x) ≤ β(n−2) (x) , ∀x ∈ I. (9)

Let f : I × Rn
→ R be a continuous function verifying a Nagumo-type condition in

E∗ =


(x, y0, . . . , yn−1) ∈ I × Rn

: αi ≤ yi ≤ βi, i = 0, 1, . . . , n − 3,
α(n−2)

≤ yn−2 ≤ β(n−2)


and

f (x, α0, . . . , αn−3, yn−2, yn−1) ≥ f (x, y0, . . . , yn−3, yn−2, yn−1)

≥ f (x, β0, . . . , βn−3, yn−2, yn−1) (10)

for fixed (x, yn−2, yn−1) ∈ I × R2 and αi ≤ yi ≤ βi, i = 0, 1, . . . , n − 3.
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Then problem (1)–(2) has at least a periodic solution Cn (I) such that

αi (x) ≤ u(i) (x) ≤ βi (x) , i = 0, 1, . . . , n − 3,

and

α(n−2) (x) ≤ u(n−2) (x) ≤ β(n−2) (x) ,

for x ∈ I.

Remark 5. The proof that the solution found is nontrivial can be obtained by the location part of the theorem. For example,
if the lower solution is chosen such that α(n−2)(x) > 0, or the upper solution such that β(n−2)(x) < 0, for some x ∈ [a, b],
then the periodic solution of (1)–(2) is nontrivial, as it can be seen forward.

Proof. Consider the homotopic and truncated auxiliary equation

u(n) (x) = λf

x, δ0 (x, u (x)) , . . . , δn−2


x, u(n−2) (x)


, u(n−1) (x)


+ u(n−2) (x) − λδn−2


x, u(n−2) (x)


(11)

where the continuous functions δi, δn−2 : R2
→ R, i = 0, . . . , n − 3, are given by

δi (x, yi) =


βi (x) , yi > βi (x)
yi, αi (x) ≤ yi ≤ βi (x)
αi (x) , yi < αi (x)

with αi and βi defined in (7) and (8), respectively,

δn−2 (x, yn−2) =

β(n−2) (x) , yn−2 > β(n−2) (x)
yn−2, α(n−2) (x) ≤ yn−2 ≤ β(n−2) (x)
α(n−2) (x) , yn−2 < α(n−2) (x)

coupled with the boundary conditions

u(k) (a) = λ ηk

u(k) (b)


, k = 0, . . . , n − 3

u(n−2) (a) = u(n−2) (b) (12)
u(n−1) (a) = u(n−1) (b)

where the functions ηk : R → R, k = 0, . . . , n − 3, are defined by

ηk

u(k) (b)


=

βk (a) , u(k) (b) > βk (a)
u(k) (b) , αk (a) ≤ u(k) (b) ≤ βk (a)
αk (a) , u(k) (b) < αk (a) .

(13)

Take rn−2 > 0 such that, for every x ∈ I

−rn−2 < α(n−2) (x) ≤ β(n−2) (x) < rn−2, (14)

f

x, α0 (x) , . . . , αn−3 (x) , α(n−2) (x) , 0


− α(n−2) (x) − rn−2 < 0, (15)

f

x, β0 (x) , . . . , βn−3 (x) , β(n−2) (x) , 0


− β(n−2) (x) + rn−2 > 0. (16)

Step 1: Every solution of the problem (11)–(12) satisfies in Iu(i) (x)
 < ri, i = 0, . . . , n − 2

independently of λ ∈ [0, 1] , with rn−2 given as above and

rj = ξj + rn−2 (b − a)n−2−j , j = 0, . . . , n − 3, (17)

where

ξj := max


n−3
j=i

βj(a) (b − a)j−i , −

n−3
j=i

αj(a) (b − a)j−i


. (18)

Let u be a solution of (11)–(12).
Assume, by contradiction, that there exists x ∈ I such that

u(n−2) (x)
 ≥ rn−2. Consider the case u(n−2) (x) ≥ rn−2 and

define

max
x∈I

u(n−2) (x) := u(n−2) (x0) (≥ rn−2 > 0) . (19)
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If x0 ∈ ]a, b[, then u(n−1) (x0) = 0 and u(n) (x0) ≤ 0. By (10), (14) and (16), for λ ∈ ]0, 1] the following contradiction holds

0 ≥ u(n) (x0)
= λf


x0, δ0 (x0, u (x0)) , . . . , δn−2


x0, u(n−2) (x0)


, u(n−1) (x0)


+ u(n−2) (x0) − λδn−2


x0, u(n−2) (x0)


≥ λ


f

x0, β0 (x0) , . . . , β(n−2) (x0) , 0


− β(n−2) (x0) + rn−2


> 0.

For λ = 0 the contradiction results from (19):

0 ≥ u(n)(x0) = u(n−2)(x0) ≥ rn−2 > 0.

If x0 = a then

max
x∈I

u(n−2) (x) := u(n−2) (a) (≥ rn−2 > 0) .

By (12),

0 ≥ u(n−1) (a) = u(n−1) (b) ≥ 0,

therefore u(n−1) (a) = 0 and u(n) (a) ≤ 0. Applying the same technique and computations as above, replacing x0 by a, a
similar contradiction is achieved.

The case x0 = b is analogous and so u(n−2) (x) < rn−2, for every x ∈ I . As the inequality u(n−2) (x) > −rn−2, for every
x ∈ I , can be proved by the same argument, thenu(n−2) (x)

 < rn−2, ∀x ∈ I.

By integration in [a, x], using (12) and (13) the following relations are obtained

u(n−3) (x) < u(n−3) (a) + rn−2 (x − a) = ληn−3

u(n−3) (b)


+ rn−2 (x − a)

≤ λβn−3 (a) + rn−2 (b − a)
≤ βn−3 (a) + rn−2 (b − a) ≤ ξn−3 + rn−2 (b − a)

and

u(n−3) (x) > u(n−3) (a) − rn−2 (x − a)
≥ αn−3 (a) − rn−2 (b − a) ≥ −ξn−3 − rn−2 (b − a) .

Therefore,u(n−3) (x)
 < rn−3, ∀x ∈ I,

with rn−3 = ξn−3 + rn−2 (b − a) and ξn−3 given by (18).
Following the same technique, by (17) and (18), we haveu(j) (x)

 < rj, j = 0, . . . , n − 3,

with rj given by (17).
Step 2: There exists R > 0 such that every solution u of problem (11)–(12) satisfiesu(n−1) (x)

 < R, ∀x ∈ I,

independently of λ ∈ [0, 1].
For ri, i = 0, . . . , n − 2, given in the previous step, consider the set

E1 =

(x, y0, . . . , yn−1) ∈ I × Rn

: −ri ≤ yi ≤ ri, i = 0, 1, . . . , n − 2


and the function Fλ : E1 → R given by

Fλ (x, y0, . . . , yn−1) = λf (x, δ0 (x, y0) , . . . , δn−2 (x, yn−2) , yn−1) + yn−2 − λδn−2 (x, yn−2) . (20)

As f satisfies a Nagumo-type condition in E∗, consider the function hE∗
∈ C ([0, +∞[, [k, +∞[) for some k > 0, such

that (5) and (6) hold with E replaced by E∗. Thus, for (x, y0, . . . , yn−1) ∈ E1, we have, by (11) and (14),

Fλ (x, y0, . . . , yn−1) ≤ hE∗
(|yn−1|) + 2 rn−2.

For hE1 (w) := hE∗
(w) + 2 rn−2 then

+∞

0

s
hE1 (s)

ds =


+∞

0

s
hE∗

(s) + 2 rn−2
ds ≥

1

1 +
2 rn−2

k


+∞

0

s
hE∗

(s)
ds = +∞,

and so hE1 (w) verifies (6). Therefore, Fλ satisfies theNagumo condition in E1 with hE∗ (w) replaced by hE1 (w), independently
of λ.
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Defining

γi (x) := −ri, Γi (x) := ri, i = 0, . . . , n − 2

the assumptions of Lemma 2 are satisfiedwith E replaced by E1. So there exists R > 0, depending only on ri, i = 0, . . . , n−2,
and ϕ, such that

u(n−1) (x)
 < R, for every x ∈ I.

Step 3: For λ = 1 the problem (11)–(12) has a solution u1(x).
Consider the operators

L : Cn (I) ⊂ Cn−1 (I) → C (I) × Rn

and, for λ ∈ [0, 1] ,

Nλ : Cn−1 (I) → C (I) × Rn

where

Lu =

u(n)

− u(n−2), u (a) , . . . , u(n−1) (a)


and

Nλu =

 λf

x, δ0 (x, u (x)) , . . . , δn−2


x, u(n−2) (x)


, u(n−1) (x)


−λδn−2


x, u(n−2) (x)


,

λη0 (u (b)) , . . . , ληn−3

u(n−3) (b)


, u(n−2) (b) , u(n−1) (b)

 .

As L has a compact inverse it can be considered the completely continuous operator

Tλ :

Cn−1 (I) , R


→


Cn−1 (I) , R


defined by

Tλ (u) = L−1Nλ (u) .

For R given by Step 2, consider the set

Ω =

y ∈ Cn−1 (I) :

y(i)


∞
< ri, i = 0, . . . , n − 2,

y(n−1)


∞
< R


.

By Steps 1 and 2, for every u solution of (11)–(12), u ∉ ∂Ω and so the degree d (I − Tλ, Ω, 0) is well defined for every
λ ∈ [0, 1]. By Mawhin [26, Proposition II.9] and the invariance under homotopy

±1 = d (I − T0, Ω, 0) = d (I − T1, Ω, 0) .

Thus the equation T1 (x) = x, equivalent to the problem given by the equation

u(n) (x) = f

x, δ0 (x, u (x)) , . . . , δn−2


x, u(n−2) (x)


, u(n−1) (x)


+ u(n−2) (x) − δn−2


x, u(n−2) (x)


,

coupled with the boundary conditions

u(k) (a) = ηk

u(k) (b)


, k = 0, 1, . . . , n − 3,

u(n−2) (a) = u(n−2) (b)
u(n−1) (a) = u(n−1) (b) ,

has at least a solution u1 (x) in Ω.

Step 4: u1 (x) is a solution of (1)–(2)
This solution u1 (x) is a solution of (1)–(2) if it verifies

α(n−2) (x) ≤ u(n−2)
1 (x) ≤ β(n−2) (x) , (21)

αi (x) ≤ u(i)
1 (x) ≤ βi (x) , i = 0, 1, . . . , n − 3, ∀x ∈ I.

Suppose, by contradiction, that there is x ∈ I such that

α(n−2) (x) > u(n−2)
1 (x)

and define

min
x∈I


u(n−2)
1 (x) − α(n−2) (x)


:= u(n−2)

1 (x1) − α(n−2) (x1) < 0.
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If x1 ∈ ]a, b[, then u(n−1)
1 (x1)−α(n−1) (x1) = 0 and u(n)

1 (x1)−α(n) (x1) ≥ 0. Therefore, by (10) and Definition 3, we obtain
the following contradiction

0 ≤ u(n)
1 (x1) − α(n) (x1)

≤ f

x1, δ0 (x1, u1 (x1)) , . . . , δn−3


x1, u

(n−3)
1 (x1)


, α(n−2) (x1) , α(n−1) (x1)


+ u(n−2) (x1) − α(n−2) (x1) − f


x1, α0 (x1) , . . . , αn−3 (x1) , α(n−2) (x1) , α(n−1) (x1)


≤ u(n−2) (x1) − α(n−2) (x1) < 0. (22)

If x1 = a then

min
x∈I


u(n−2)
1 (x) − α(n−2) (x)


:= u(n−2)

1 (a) − α(n−2) (a) < 0.

By Definition 3

0 ≤ u(n−1)
1 (a) − α(n−1) (a) ≤ u(n−1)

1 (b) − α(n−1) (b) ≤ 0

and, therefore,

u(n−1)
1 (a) = α(n−1) (a) , u(n)

1 (a) ≥ α(n) (a) .

Using similar computations to (22), an analogous contradiction is obtained. For the case where x1 = b the proof is
identical and so

α(n−2) (x) ≤ u(n−2)
1 (x) , ∀x ∈ I.

Applying the same arguments, one can verify that u(n−2)
1 (x) ≤ β(n−2) (x), for every x ∈ I , and (21) holds.

Integrating (21) in [a, x], by (7) and (13)

u(n−3)
1 (x) ≥ u(n−3)

1 (a) + α(n−3) (x) − α(n−3) (a)

≥ αn−3 (a) + α(n−3) (x) − α(n−3) (a)

= α(n−3) (x) ≥ α(n−3) (x) −
α(n−3)


∞

= αn−3 (x) .

Analogously for the second inequality in (21), by (8) and (13),

u(n−3)
1 (x) ≤ u(n−3)

1 (a) + β(n−3) (x) − β(n−3) (a)

≤ βn−3 (a) + β(n−3) (x) − β(n−3) (a)

= β(n−3) (x) ≤ β(n−3) (x) +
β(n−3)


∞

= βn−3 (x) ,

and, therefore,

αn−3 (x) ≤ u(n−3)
1 (x) ≤ βn−3 (x) , ∀x ∈ I.

By integration and using the same technique it can be proved that

αi (x) ≤ u(i)
1 (x) ≤ βi (x) , for i = 0, 1, . . . , n − 3 and x ∈ I. �

4. Examples

In the literature nth order periodic boundary value problems with fully differential equations are often considered only
for n even or n odd, like it was mentioned before. So, we introduce two examples, including the odd and even cases.

Example 6. Consider the fifth order fully differential equation

u(v) (x) = − arctan (u (x)) −


u′ (x)


7

3

−


u′′ (x)

5
8

+


u′′′ (x)


8

6

+

u(iv) (x) + 12

 2
3 − 620, (23)

for x ∈ [0, 1], with the boundary conditions

u(i) (0) = u(i) (1) , i = 0, 1, 2, 3, 4. (24)
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The functions α, β : [0, 1] → R given by

α (x) = −
x5

5
+

x4

2
+

x3

6
+

5
2
x2 + x + 1,

β (x) =
x5

5
−

x4

2
+ 6x3 + 12x − 1

are non-ordered lower and upper solutions, respectively, of problem (23)–(24) verifying (9) for n = 5, with the following
auxiliary functions

α0 (x) = −
x5

5
+

x4

2
+

x3

6
−

11
2

x2 −
13
2

x −
119
30

,

α1 (x) = −x4 + 2x3 +
x2

2
− 3x −

13
2

,

α2 (x) = −4x3 + 6x2 + x − 3,

and

β0 (x) =
x5

5
−

x4

2
+ 6x3 + 34x2 + 41x +

157
10

,

β1 (x) = x4 − 2x3 + 18x2 + 34x + 41,
β2 (x) = 4x3 − 6x2 + 36x + 34.

The function

f (x, y0, . . . , y4) = − arctan y0 −
(y1)3

7
−

(y2)5

8
+

(y3)6

8
+ (y4 + 12)

2
3 − 620

is continuous, verifies conditions (5) and (6) in

E2 =

(x, y0, . . . , y4) ∈ [0, 1] × R5

: αi ≤ yi ≤ βi, i = 0, 1, 2, α′′′
≤ y3 ≤ β ′′′


with

hE2 (|y4|) = 4.6 × 107
+

π

2
+ (y4 + 12)

2
3

and it satisfies (10).
By Theorem 4 there is a nontrivial periodic solution u (x) of problem (23)–(24), such that

αi (x) ≤ u(i) (x) ≤ βi (x) , for i = 0, 1, 2,
−12x2 + 12x + 1 ≤ u′′′ (x) ≤ 12x2 − 12x + 36, for x ∈ [0, 1] .

Remark that this solution is a nontrivial periodic one because a constant function cannot be the solution of (23).

Example 7. For x ∈ [0, 1] consider the sixth order differential equation

u(vi) (x) = − (u (x))3 − arctan

u′ (x)


−


u′′ (x)

5
− exp(u′′′ (x)) + 50


u(iv) (x)

2p+1
+

u(v) (x) + 1
θ + 2, (25)

with p ∈ N and 0 < θ ≤ 2, along with the boundary conditions

u(i) (0) = u(i) (1) , i = 0, 1, . . . , 5. (26)

The functions α, β : R → R given by

α (x) = −
x4

4!
+ 1 and β (x) =

x4

4!
− 1

are lower and upper solutions, respectively, of problem (25)–(26) verifying (9) for n = 6, with the auxiliary functions given
by Definition 3

α0 (x) = −
x4

4!
− x3 −

x2

2
−

x
6
,

α1 (x) = −
x3

6
− x2 −

x
2

−
1
6
,

α2 (x) = −
x2

2
− x −

1
2
,

α3 (x) = −x − 1
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and

β0 (x) =
x4

4!
+ x3 +

x2

2
+

x
6
,

β1 (x) =
x3

6
+ x2 +

x
2

+
1
6
,

β2 (x) =
x2

2
+ x +

1
2

β3 (x) = x + 1.

The function

f (x, y0, . . . , y5) = − (y0)3 − arctan y1 − (y2)5 − exp(y3) + 50 (y4)2p+1
+ |y5 + 1|θ + 2

is continuous, verifies conditions (5) and (6) in

E3 =


(x, y0, . . . , y5) ∈ [0, 1] × R5

: αi ≤ yi ≤ βi, i = 0, 1, 2, 3
α(iv)

≤ y4 ≤ β(iv)


with

hE3 (|y5|) = 39 +
π

2
+ e2 + |y5 + 1|θ

and satisfies (10).
By Theorem 4 there is a nontrivial periodic solution u (x) of problem (25)–(26), such that

−
x4

4!
− x3 −

x2

2
−

x
6

≤ u (x) ≤
x4

4!
+ x3 +

x2

2
+

x
6
,

−
x3

6
− x2 −

x
2

−
1
6

≤ u′ (x) ≤
x3

6
+ x2 +

x
2

+
1
6
,

−
x2

2
− x −

1
2

≤ u′′ (x) ≤
x2

2
+ x +

1
2
,

−x − 1 ≤ u′′′ (x) ≤ x + 1,
−1 ≤ u(iv) (x) ≤ 1, ∀x ∈ [0, 1].

Remark that this solution is nontrivial because the unique constant solution of (25) is not in the set [α0, β0]. Moreover,
as in the previous example, the functions αi, βi for i = 0, 1, 2, 3 are well ordered despite α (x) and β (x) are not ordered, for
x ∈ [0, 1] .
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