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Using a covariant spectator quark model that describes the recent lattice QCD data for the �

electromagnetic form factors and all available experimental data on �N ! � transitions, we analyze

the charge and magnetic dipole distributions of the � baryon and discuss its shape. We conclude that the

quadrupole moment of the� is a good indicator of the deformation and that the�þ charge distribution has

an oblate shape. We also calculate transverse moments and find that they do not lead to unambiguous

conclusions about the underlying shape.
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I. INTRODUCTION

The determination of the shape of a baryon is an inter-
esting problem that addresses complex technical issues,
both from the experimental and theoretical point of view
[1,2]. Recently, for example, there has been particular
interest (and controversy) about possible deviations from
a spherically symmetric shape of the nucleon. In this work
we will address another interesting question, namely
whether the � baryon has a spherical shape or not, and
maybe more importantly, what we mean by that.

Information on a baryon’s shape is encoded in its elec-
tromagnetic form factors, which can be measured, at least
in principle. The electromagnetic form factors describe
how a particle interacts with a photon, and the number of
independent form factors depends on the particle’s spin. A
particle with spin-1=2, such as the nucleon, is characterized
by only two form factors, namely the electric charge GE0

and magnetic dipole GM1, whereas a particle with
spin-3=2, such as the �, has altogether four form factors,
namely, in addition to GE0 and GM1, also electric quadru-
pole GE2 and magnetic octupole GM3 form factors.

Higher-order form factors and moments can provide a
measure of the deformation of an extended particle. For
instance, nonvanishing values of the electric quadrupole
moment and of the magnetic octupole moment, which are
proportional to GE2ð0Þ and GM3ð0Þ, respectively, indicate a
deviation of the charge and magnetic dipole distributions
from the spherically symmetric form [3].

At this point, it is important to distinguish between
‘‘spectroscopic’’ and ‘‘intrinsic’’ moments, the former
being the observable values of the corresponding electro-
magnetic form factor at zero momentum transfer, whereas
the latter refer to quantities calculated from charge or
magnetic density distributions, which are not directly
observable [1,2]. For instance, nucleons or spin-1=2 nuclei
do not possess an electric quadrupole or magnetic octupole
moment, and therefore they cannot be deformed if finite

higher spectroscopic moments are used as criteria for
deformation. On the other hand, their intrinsic density
distribution may not be spherically symmetric, giving
rise to nonvanishing intrinsic higher moments [1,2,4].
The situation is somewhat simpler in the case of the �,

the lightest baryon with spin-3=2 and first candidate for a
nonvanishing electric quadrupole moment, because its in-
trinsic and spectroscopic quadrupole moments differ only
by a constant factor [1,5]. Thus, there is a strong motivation
to estimate the � electric quadrupole moment. Previous
studies on the deformation of the � can be found in
Refs. [2,5–15].
It is only in the nonrelativistic limit that the spatial

distributions of the charge and magnetic densities are
related to the electromagnetic form factors through a
Fourier transform, such that information about the shape
of the density distributions can be accessed through form
factor data: in the Breit frame, the charge distribution is the
Fourier transform of GE0, and the magnetic dipole density
is the Fourier transform of GM1 [16,17].
However, this interpretation has its limitations. In a

relativistic description, the spatial distribution of charge
or magnetic densities depends on the reference frame.
When an absorbed photon imparts only a small momentum
to the baryon, this frame dependence can be ignored, but in
the general relativistic case there is no direct relation
between form factors and coordinate-space densities. It
was to address this difficulty that alternative concepts to
measure deformation were proposed, such as transverse
densities and moments [5,18–21] and spin-dependent den-
sity distributions [22].
Transverse density distributions were introduced

recently within the context of a light-front description of
the electromagnetic current. In this formulation, the charge
and magnetic density distribution of a particle is described
as seen from a light-front moving towards the particle.
The longitudinal direction is effectively eliminated by
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projecting the density onto the transverse plane, which is
not subject to Lorentz contraction.

For spin polarizations in the transverse plane, radially
asymmetric transverse density distributions can be
obtained, which may then be analyzed in terms of multi-
poles. However, it is not clear how exactly they are con-
nected to the intrinsic deformation of the particle’s density
distribution in its rest frame. For instance, just as in a
number of previous model calculations, a recent lattice
QCD study found a negative value of the electric quadru-
pole moment of the �þ baryon in the state with spin
projection 3=2, implying an oblate intrinsic deformation
relative to the spin direction, whereas the corresponding
transverse charge density field pattern shows a prolate
shape [5].

It has been suggested that information about deforma-
tion should be deduced by comparing the transverse
moments to the so-called ‘‘natural’’ moments of structure-
less, elementary particles. In this formulation, a particle is
defined as elementary if its light-cone helicity is nontri-
vially conserved at tree level. The argument given to sup-
port this assumption is that in a composite particle the
elementary constituents can jump between orbital states
and thereby change the particle’s total helicity, whereas
this is not possible if the particle has no constituents [18].

For such a structureless particle with spin 3=2 and
charge e� (specified in units of the proton charge), the
natural moments—labeled here with the superscript
(nat)—are [18]

GðnatÞ
E2 ð0Þ ¼ �3e�; GðnatÞ

M3 ð0Þ ¼ �e�; (1.1)

besides

GðnatÞ
E0 ð0Þ ¼ e�; GðnatÞ

M1 ð0Þ ¼ 3e�: (1.2)

In the example of the �þ with spin projection 3=2, a
negative sign of GE2ð0Þ is consistent with a prolate trans-

verse charge density distribution if GE2ð0Þ>GðnatÞ
E2 ð0Þ. In

general, the transverse electric quadrupole moment is only
a function of the anomalous electromagnetic moments
[18], and a nonzero value indicates a deviation from a
pointlike structure when viewed from the light-front.

The question remains what the transverse moments can
tell us about the intrinsic density deformation in the rest
frame. In the following we present the intrinsic three-
dimensional rest-frame densities obtained in covariant
model calculations of the � baryon, and we will return to
this question when we discuss our results.

In this work we used relativistic quark-diquark model
wave functions of the � baryon that were constructed
within the covariant spectator theory [23] to calculate
charge and magnetic density distributions, both in momen-
tum and coordinate space. Thus we have direct information
about their shape. In particular, we compared two
models, one which includes only S-waves and is therefore
spherically symmetric, and another that includes D-wave

components that induce a small deformation. We deter-
mined then how this shape information manifests itself in
the higher moments, as well as in the corresponding trans-
verse moments. We want to emphasize that our moments
are not calculated at tree level and contain anomalous
contributions. Therefore they do not reduce to the natural
values of Eqs. (1.1) and (1.2).
With a spherically symmetric spatial wave function,

where the quark and diquark are in a relative S-wave
[24], we obtained

GE2ð0Þ ¼ 0; GM3ð0Þ ¼ 0: (1.3)

This result does not depend on any specific model parame-
ters, but holds in general as long as only S-waves are
present.
Once higher orbital angular momentum components are

included in the quark-diquark wave function, nonvanishing
values of GE2ð0Þ and GM3ð0Þ are generated [25,26]. This
indicates that it is possible to relate deviations from spheri-
cal symmetry in the charge (dipole moment) distribution to
the value of the electric quadrupole (magnetic octupole)
moment, similar to what was found in the nonrelativistic
limit. The calculated values of the transverse quadrupole
and octupole moments on the other hand do not seem to
give any clear indication on the deformation of the density
distributions.
This paper is organized as follows: The covariant spec-

tator quark model is introduced in Sec. II. In Sec. III, we
relate the electromagnetic form factors with the experi-
mentally accessible polarized helicity amplitudes. In
Sec. IV we discuss the deformation of the � as determined
from transverse densities, and in Sec. V we present the
results obtained from the usual three-dimensional den-
sities. In Sec. VI we draw our conclusions.

II. SPECTATOR QUARK MODEL

We apply a quark model obtained in the covariant
spectator formalism [4,23,27–36], and parameterized to
describe the � baryon, as discussed in detail in
Refs. [25,26,37–40]. The � wave function is a mixture of
an S state (L ¼ 0) and twoD states (L ¼ 2, coupled to core
spin 1=2 and 3=2) for the quark-diquark system [38,39], of
the general form

�� ¼ N½�S þ a�D3 þ b�D1�: (2.1)

In this equation, a is the admixture coefficient of the D3
state (quark core with spin-3=2) and b the admixture
coefficient of the D1 state (quark core with spin-1=2).
The momentum and spin indices are suppressed for sim-
plicity. The S- and D-state wave function components
are written in terms of spin, orbital angular momentum,
and isospin operators, multiplied by scalar functions, c S,
c D3, and c D1. In our covariant spectator model, the
diquark four-momentum is on-mass-shell, and therefore
these scalar functions depend only on the square of the
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quark four-momentum, ðP� kÞ2, where P and k denote the
� and the diquark four-momentum, respectively.

Assuming each of the � wave function components in
(2.1) to be normalized to 1, the overall normalization

constant becomes N ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2 þ b2

p
. This specific

form of the wave function was introduced in
Refs. [38,39] and two different parameterizations were
studied in Refs. [25,26]. Here we will use the model of
Ref. [39], because it gives a more consistent description of
the valence quark contribution of the � to the �N ! �
reaction, both in the physical region and in the regimes
accessible in lattice QCD calculations with heavy pions. In
this model, the two D-state probabilities are both about
0.89% (a ¼ 0:08556 and b ¼ 0:08572). For more details
on the model we refer to Refs. [26,39].

The internal structure of the constituent quarks is
described in terms of quark electromagnetic form factors,
parametrized through a vector meson dominance mecha-
nism and included in an effective quark current j

�
q

[4,34,39,40]. Employing the wave function (2.1) and the
quark current j�q , in the covariant spectator formalism we
write the electromagnetic current [4,24,37] as

J� ¼ 3
X
�s

Z
k

���ðPþ; k; s0Þj�q��ðP�; k; sÞ

¼ � �u�ðPþ; s0Þ
��
F�
1ðQ2Þg�� þ F�

3ðQ2Þq
�q�

4M2
�

�
��

þ
�
F�
2ðQ2Þg�� þ F�

4ðQ2Þq
�q�

4M2
�

�
i���q�
2M�

�
u�ðP�; sÞ;

(2.2)

where Pþ (P�) represents the final (initial) four-
momentum, q ¼ Pþ � P� is the transferred momentum,
Q2 ¼ �q2, M� is the mass of the �, and �s the diquark
polarizations. For the covariant integration over the on-
mass-shell diquark momentum k we use the abbreviation

Z
k
�

Z d3k

ð2�Þ32Es

; (2.3)

with Es ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

s þ k2
p

, where ms is a model parameter that
corresponds to a mean value of the spectator diquark mass
[4,31]. The asymptotic states u� are the Rarita-Schwinger
vector states [41]. Throughout this paper we follow
the convention used in our previous work that the diquark
polarization indices, �s, on the wave functions are
suppressed.

The multipole � form factors can be written as linear
combinations of F�

i , i¼1; . . . ;4 [24,26,42,43]. For Q2¼0,
to first order in the admixture coefficients a and b, one
finds [26]

GE0ð0Þ ¼ N2e�

GM1ð0Þ ¼ N2ðe� þ 	�Þ
GE2ð0Þ ¼ 3ðaN2Þe�I 0

D3

GM3ð0Þ ¼ ðe� þ 	�ÞN2½aI 0
D3 þ 2bI 0

D1�;

(2.4)

where

e� ¼ 1

2
ð1þ �T3Þ; 	� ¼ 1

2
ð	þ þ 	� �T3ÞM�

MN

;

	þ ¼ 2	u � 	d; 	� ¼ 2

3
	u þ 1

3
	d; (2.5)

with �T3 ¼ diagð3; 1;�1;�3Þ, andMN is the nucleon mass.
The factors I 0

D1 and I
0
D3 are defined in terms of the overlap

integrals between the initial S-state and the finalD-state, as

I 0
D3 ¼ lim


!0

1




Z
k
bðk; q; PþÞc D3ðPþ; kÞc SðP�; kÞ

I 0
D1 ¼ lim


!0

1




Z
k
bðk; q; PþÞc D1ðPþ; kÞc SðP�; kÞ;

with 
 ¼ Q2

4M2
�

. The function bðk; q; PþÞ, whose detailed

form is given in Ref. [38], reduces to k2Y20ðk̂Þ in the limit
Q2 ! 0, where Y20ðzÞ is the familiar spherical harmonic.
The model described above was applied in Ref. [26] to

calculate the � electromagnetic form factors, and its
results were compared successfully to the recent lattice
QCD simulations of Refs. [5,44]. Although the model is
still incomplete because important degrees of freedom,
such as meson (pion in particular) cloud effects, are not
included, it agrees well with the lattice QCD data for GE0

and GM1 [5,44] and is also consistent with the unquenched
GE2 data [5]. This success can be due to an effective
suppression of pion cloud effects in the �� ! � reaction,1

in contrast to the �N ! � transition where the opening of
the �N channel is crucial [37–39]. It is also possible that
effective pion cloud effects are already included ade-
quately through the vector meson dominance mechanism
which models the effective quark current j�q .

III. FORM FACTORS AND
HELICITYAMPLITUDES

The electromagnetic form factors of a baryon are invari-
ant functions of Q2. They are independent of the reference
frame and of the initial or final polarization of the baryon.
Note that these functions are not directly measured in an
experiment. What can be measured are cross sections in a

1A similar effect can be seen in the nucleon form factors. In
some models, the pion cloud contributions are around 10%
[29,30]. Even in models where pion cloud contributions to the
nucleon magnetic moments are significant (� 40%) [28], the
difference between the results with the pion cloud and the results
when the pion cloud effect is removed differ by only about 5%
[28,29].
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particular frame, from which helicity transition amplitudes
between two different or equal polarization states of the
baryon can be deduced.

In a process like �� ! �, there are only 3 independent
components of the current, as a consequence of current
conservation. These components can be chosen to be J0, Jx

and Jy, or, alternatively, J0, Jþ and J�, with J� � � 1ffiffi
2

p �
ðJx � iJyÞ. Note that J� is associated with the photon
polarizations � ¼ � that involve a change of the
baryon polarization (� 1), and J0 with � ¼ 0 where
the baryon polarization is conserved.

The transition amplitude for spin projections s and s0 is

J�ðs0; sÞ ¼ � �u�ðPþ; s0Þ½O���ð��Þ��u�ðP�; sÞ; (3.1)

where the operator O��� is implicitly defined through
Eq. (2.2), and ð��Þ� are the photon polarization vectors,

with ð��Þ0 ¼ ð1; 0; 0; 0Þ and ð��Þ� ¼ � 1ffiffi
2

p ð0; 1;�i; 0Þ.
We will work in the Breit frame, where the photon

four-momentum is q ¼ ð0; 0; 0; QÞ, with Q ¼ ffiffiffiffiffiffi
Q2

p
, the

photon three-momentum q points along the positive
z-direction, and the initial and final total momenta are

P� ¼ ðM�

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 


p
; 0; 0;� 1

2QÞ.
The spin nonflip components of the current (s0 ¼ s)

are [5]2

J0ðs; sÞ ¼ GE0ðQ2Þ � 2

3
fsðsÞ
GE2ðQ2Þ; (3.2)

for s ¼ � 1
2 , � 3

2 , with fsð� 3
2Þ � 1 and fsð� 1

2Þ � �1.

One can combine the two independent amplitudes as a
symmetric combination of matrix elements

J0S ¼
1

2

�
J0
�
þ 3

2
;þ 3

2

�
þ J0

�
þ 1

2
;þ 1

2

��
¼ GE0ðQ2Þ;

(3.3)

and an asymmetric combination

J0A ¼ 1

2

�
J0
�
þ 3

2
;þ 3

2

�
� J0

�
þ1

2
;þ1

2

��
¼ �2

3

GE2ðQ2Þ:

(3.4)

In the limit Q2 ! 0, the first equation yields GE0ð0Þ,
whereas GE2ð0Þ cannot be obtained directly from the
amplitudes at Q2 ¼ 0 because 
 goes to zero.

Similarly, the magnetic form factors are obtained from
the spin-flip current matrix elements J�ðs0; sÞ. Again, there
are only two independent amplitudes related with GM1 and
GM3 for Q

2 � 0 (see Refs. [5] for details).
In a nonrelativistic formalism, the baryon’s shape, and in

particular any possible deformation—deviation from a
spherically symmetric form—would depend on the spin
projection along the z-axis. One can then define an electric

charge distribution, �Eðr; sÞ, associated with each spin
projection (� 3

2 or � 1
2 ) and define an intrinsic electric

quadrupole momentum [1] as

Q�ðsÞ ¼
Z

d3r�Eðr; sÞr2Y20ðr̂Þ: (3.5)

When Q�ðsÞ � 0, its sign indicates whether the system is
oblate (Q�ðsÞ< 0) or prolate (Q�ðsÞ> 0) if e� > 0
(the opposite shape if e� < 0). Note in particular that the
shapes for s ¼ þ 3

2 and for s ¼ þ 1
2 can be different (see for

instance Ref. [10]). Whenever the quadrupole magnetic
moment is referred to without explicitly mentioning the
polarization state, the maximum projection is assumed [1].

IV. TRANSVERSE DENSITY DEFORMATION

The interpretation of electromagnetic form factors as
Fourier transforms of charge and magnetic distribution
densities is valid only in the nonrelativistic limit. If the
absorbed photon imparts a significant momentum transfer
to the struck system, the boost of the final state wave
function relative to the one of the initial state can no longer
be neglected, which spoils this simple interpretation.
In order to still be able to extract information about distri-
bution densities from the measured form factors, the con-
cept of a transverse density distribution was introduced
[19–21].
By going to an infinite momentum frame, the depen-

dence on the longitudinal component of the momentum is
eliminated, and the deformation is defined in terms of
densities in the space of the two transverse impact parame-
ters, bx and by. Taking the transverse spin projection

(s? ¼ � 1
2 , � 3

2 ) oriented in the x direction, the transverse

electric quadrupole moment Q?
� ðs?Þ is [5]

Q?
�

�
s? ¼ þ 3

2

�
¼ 1

2
f2½GM1ð0Þ � 3e��

þ ½GE2ð0Þ þ 3e��g
�
e

M2
�

�
: (4.1)

For s? ¼ þ 1
2 one obtains Q

?
� ðþ 1

2Þ ¼ �Q?
� ðþ 3

2Þ.
In the previous equation, ½GM1ð0Þ � 3e�� is interpreted

as the electric quadrupole moment induced by the mag-
netic moment in the light-front frame, and ½GE2ð0Þ þ 3e��
as the polarization effect due to the internal structure, also
seen in that frame [5]. Using the natural values for GE2ð0Þ
and GM1ð0Þ, Eqs. (1.1) and (1.2), from Eq. (4.1) we con-
clude that Q?

� ðþ 3
2Þ ¼ 0 for a structureless particle with

spin 3=2 seen from the light-front.
Similarly, the transverse magnetic octupole moment

becomes [5]

O?
�

�
s? ¼ þ 3

2

�
¼ 3

2
f�GM1ð0Þ �GE2ð0Þ

þGM3ð0Þ þ e�g
�

e

2M3
�

�
: (4.2)2In Refs. [5] the normalization is �u�ðP; sÞu�ðP; sÞ ¼ �2M�

for P ¼ ðM�; 0Þ. Here we use �u�ðP; sÞu�ðP; sÞ ¼ �1.
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For s? ¼ þ 1
2 , one has O?

� ðþ 1
2Þ ¼ �3O?

� ðþ 3
2Þ. A

spin-3=2 particle without structure in the light-front has a
vanishing transverse magnetic octupole moment.

The authors of Refs. [5] suggest that the electric quad-
rupole and magnetic octupole moments of the � should be
compared with their natural values, given in Eqs. (1.1) and
(1.2), and that deformation should be defined in terms of a
positive or negative deviation from those reference values.
Equations (4.1) and (4.2) depend indeed on these differ-
ences, but what they describe is not the full deformation
in three-dimensional coordinate space. Instead, because
the transverse density is defined in the two-dimensional
ðbx; byÞ plane, they measure an asymmetry of the density

between the spin direction (along the x-axis) and the
perpendicular direction (along the y-axis) in the xy-plane.

To see how much information about the deformation of
the � is contained in these higher transverse moments, we
have calculated them for two covariant spectator quark-
diquark models with significantly different shapes. The
first, model II of Ref. [37], includes only S-states in the
quark-diquark wave function, which is therefore spheri-
cally symmetric. We call it here model ‘‘Spectator-S’’. The
second model, presented in Ref. [39], is deformed, because
apart from S-states it includes also D-states. We refer to it
here as model ‘‘Spectator-SD’’.

The spherical model Spectator-S yields [24] for the �þ

GE0ð0Þ ¼ 1; GM1ð0Þ ¼ 3:29; (4.3)

and the quadrupole and octupole moments vanish. For
model Spectator-SD one obtains [26]

GE0ð0Þ ’ 1; GM1ð0Þ ¼ 3:27

GE2ð0Þ ¼ �1:70; GM3ð0Þ ¼ �1:72:
(4.4)

From these values we can calculate the transverse elec-
tric quadrupole and the magnetic octupole moments. The
results are presented in Table I, together with lattice QCD
data obtained by the MIT-Nicosia group [5] with three
different methods, for pion masses in the range m� ¼
350–410 MeV. The positive sign ofQ?

� ðþ 3
2Þ for all lattice

calculations suggests a transverse distribution elongated
in the spin direction. The same transverse deformation
is produced by model Spectator-SD. However, the trans-
verse quadrupole moment for the pure S-wave model
Spectator-S is not zero as one might expect. Instead, it
also predicts a deformation in the spin direction although
not so strong as in the previous case. Thus, whereas zero or
nonzero values of electric quadrupole and magnetic octu-
pole moments distinguish clearly between spherical and
deformed � states, the corresponding transverse moments
do not provide the same information. This is a quantitative
illustration that the transverse moments are not an unam-
biguous measure of deformation.

As for the transverse octupole moment, our result,
O?

� ðþ 3
2Þ< 0, suggests a deformation perpendicular to

the spin axis. This is true for both Spectator quark models,
with and without D-states. The numerical values are
very close, which means that O?

� does not discriminate

much between models with spherical or deformed wave
functions.
At the moment, no lattice calculations of O?

� are avail-

able. But we can use the form factor data of the Adelaide
group [44] at Q2 ¼ 0:23 GeV2 in Eq. (4.2), replacing e�
by GE0ðQ2Þ, for a rough estimate. We obtain O?

� ðþ 3
2Þ ¼

ð�23:8� 22:3Þ e
2M3

�

, which is consistent with our result—

although with large statistical uncertainty—and also sug-
gests a deformation perpendicular to the spin direction. For
a more rigorous comparison with our predictions we have
to wait for future lattice calculations.

V. DEFORMATION IN SPECTATOR
QUARK MODELS

In this section, we calculate the � charge densities from
wave functions obtained in a covariant spectator quark
model, and we illustrate to what extent the distortion
caused by the D-wave contributions manifests itself both
in the momentum-space and coordinate-space densities.
There is no need to make use of electromagnetic form
factors to characterize deformation in this case, because
the densities are calculated directly from the wave func-
tions. Thereby we sidestep the usual problems in relating
densities and form factors, namely that the latter involve
wave functions in different reference frames. The former is
the Fourier transform of the latter only in the nonrelativ-
istic limit, whereas we are interested in the general, rela-
tivistic case.
Because the covariant spectator theory is more naturally

formulated in momentum space, in the following we start
our discussion of � charge densities in the momentum-
space representation where the wave functions were devel-
oped [4,38]. Then we perform a Fourier transform of the
wave function and discuss the densities in coordinate
space.

TABLE I. Transverse electric quadrupole moment Q?
� ðþ 3

2Þ in
units of e

M2
�

, and transverse magnetic octupole moment O?
� ðþ 3

2Þ
in units of e

2M3
�

, for the �þ.

Q?
� ðþ 3

2Þ O?
� ðþ 3

2Þ
Lattice QCD:

Quenched [5] 0:83� 0:21
Wilson [5] 0:46� 0:35
Hybrid [5] 0:74� 0:68
Spectator quark models:

Spectator-S [24] 0.29 �3:44
Spectator-SD [26] 0.92 �3:38
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A. Momentum space

The components of the �wave function of Eq. (2.1) can
be written [38] as

�SðP; k; sÞ ¼ �c SðP; kÞð"�PÞ�u�ðP; sÞ; (5.1)

�D3ðP; k; sÞ ¼ c D3ðP; kÞ�D3ðP; k; sÞ; (5.2)

�D1ðP; k; sÞ ¼ c D1ðP; kÞ�D1ðP; k; sÞ; (5.3)

where the isospin state, which is a common factor in all
wave functions, is omitted, and we use the notation

�Dð2SÞðP; k; sÞ ¼ �3ð"�PÞ�ðP SÞ��D��u�ðP; sÞ; (5.4)

where S ¼ 1
2 ,

3
2 is the core spin and P the four-momentum

of the �. In Eqs. (5.1) and (5.4), "�P is the diquark polar-
ization vector in the fixed-axis representation [27]. In the
last equation, P S is a projector onto the state S ¼ 1

2 or

S ¼ 3
2 , and D is the spectator D-state operator. More

details can be found in Ref. [38].
The scalar functions c S, c D3, and c D1 regulate the

momentum distribution of the quark-diquark system.
Because both the � baryon and its diquark constituent
are on-mass-shell, these functions depend only on
ðP� kÞ2. It is convenient to express them in terms of the
dimensionless variable

 ¼ ðM� �msÞ2 � ðP� kÞ2
M�ms

; (5.5)

where ms is the diquark mass. Following Ref. [39], we use
the parametrizations

c SðP; kÞ ¼ NS

msð�1 þ Þ3 ; (5.6)

c D3ðP; kÞ ¼ ND3

m3
sð�2 þ Þ4 ; (5.7)

c D1ðP; kÞ ¼ ND1

m3
s

�
1

ð�3 þ Þ4 �
�D1

ð�4 þ Þ4
�
: (5.8)

The momentum range parameters �i (i ¼ 1; . . . ; 4), given
in units of ms, determine the long- and short-range depen-
dence of the wave functions in coordinate space. The
normalization constants NS, ND3, and ND1 are determined
by the conditions

R
k jc Sð �P;kÞj2¼1,

R
kk

4jc D3ð �P;kÞj2¼1,
and

R
k k

4jc D1ð �P; kÞj2 ¼ 1, where �P ¼ ðM�; 0Þ is the total
four-momentum of the � baryon in its rest frame. The
coefficient �D1 is determined through the orthogonality
between the � and nucleon states [4,38,39].

In this work, we use the model of Ref. [39], with the
parameters �1 ¼ 0:33660, �2 ¼ 0:35054, �3 ¼ 0:33773,
and �4 ¼ 0:34217. One obtains �D1 ¼ 1:031898, and the
D-state admixture coefficients are a ¼ 0:08556 and
b ¼ 0:08572.

Similarly to the case of the nucleon in Ref. [4], the
momentum-space charge density of the � in its rest frame
is defined as

��ðk; sÞ ¼
X
�s

�y
�ð �P; k; sÞjq��ð �P; k; sÞ; (5.9)

where s ¼ � 1
2 , � 3

2 is the spin projection of the � state,

and jq ¼ 3j1 ¼ 1
2 þ 3

2 
3 the charge operator [4,37].

Remember that implicitly the wave function ��ð �P; k; sÞ
depends also on the diquark polarization �s.
Substituting (2.1) into (5.9) one gets

��ðk; sÞ ¼ N2��;Sðk; sÞ þ a2N2��;D3ðk; sÞ
þ b2N2��;D1ðk; sÞ þ 2aN2��;SD3ðk; sÞ;

(5.10)

where

��;Xðk; sÞ ¼
X
�s

�y
Xð �P; k; sÞjq�Xð �P; k; sÞ; (5.11)

for X ¼ S, D3, D1, and

��;SD3ðk; sÞ ¼
X
�s

�y
D3ð �P; k; sÞjq�Sð �P; k; sÞ: (5.12)

The S andD3 states can either be in the initial or final state,
hence the factor of 2 in the last term of Eq. (5.10).
After performing the spin and isospin algebra, it is help-

ful to isolate the spherically symmetric contribution �S
�

from the angle-dependent terms in the total density, and
one obtains

��ðk;sÞ¼�S
�ðkÞþ2e�aN

2fsðsÞk2

�½c Sð �P;kÞc D3ð �P;kÞ�Ŷ20ðzÞ
�e�b

2N2fsðsÞk4jc D1ð �P;kÞj2Ŷ20ðzÞ; (5.13)

where z ¼ cos�, the function Ŷ20ðzÞ ¼ 1
2 ð3z2 � 1Þ is pro-

portional to the spherical harmonic Y20, and

�S
�ðkÞ ¼ e�N

2½jc Sð �P; kÞj2 þ a2k4jc D3ð �P; kÞj2
þ b2k4jc D1ð �P; kÞj2�: (5.14)

In the rest frame, c X depends only on k2. The second
term in (5.13) is the overlap between the S and theD3 state.
It does not vanish because the states have the same core
spin-3=2. The D1 state on the other hand is always or-
thogonal to S and D3 because its definition includes a
spin-1=2 projector. The last term comes from the overlap
between the initial and final D1 states. The two last terms
of Eq. (5.13) vanish when the angular integration is
performed.
The radially symmetric part of the density can also be

written as

�S
�ðkÞ ¼

1

2

�
��

�
k;þ 3

2

�
þ ��

�
k;þ 1

2

��
; (5.15)
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and the angle-dependent asymmetric component as

�A
�ðkÞ ¼

1

2

�
��

�
k;þ 3

2

�
� ��

�
k;þ 1

2

��

¼ 2ae�N
2k2½c Sð �P; kÞc D3ð �P; kÞ�Ŷ20ðzÞ

� b2e�N
2k4jc D1ð �P; kÞj2Ŷ20ðzÞ: (5.16)

Using (5.14) and (5.16) we can rewrite ��ðk; sÞ as
��ðk; sÞ ¼ �S

�ðkÞ þ fsðsÞ�A
�ðkÞ: (5.17)

From this equation and from fsð� 1
2Þ ¼ �fsð� 3

2Þ it is clear
that the deformation density for s ¼ þ 1

2 has always the

opposite sign of the one for s ¼ þ 3
2 .

For small D-state admixture coefficients a and b, the S
to D3 transition term dominates the asymmetry. This is
consistent with a calculation of the form factors in first
order in a and b where the D3 state is responsible for a
nonzero electric quadrupole form factor [25,26].

The factors c Sc D3 and c 2
D1 in Eq. (5.13) are always

greater than or equal to zero, and therefore the D3- and
D1-state contributions to the deformation enter with oppo-

site signs. The overall factor multiplying Ŷ20ðzÞ can have
either sign, depending on the specific parametrization of
the wave functions and on the spin projection s.

To illustrate the deformation of the � graphically, in
Fig. 1 we show a polar representation of ��ðk; sÞ, for k in
the kx-kz plane (the densities are invariant under rotations
about the kz-axis). The positive kz direction, corresponding
to polar angle � ¼ 0, points upwards. For fixed values of
k ¼ jkj, the length of a straight line from the origin to a
given point on a displayed curve is the respective density,
and its angle with the upward direction is the polar angle �.

In this representation, a distribution ��ðk; �; sÞ with no
�-dependence yields a perfect circle. The three panels of
Fig. 1 show ��ðk; sÞ for k ¼ 0:2, 1.0, and 2.0 GeV, respec-
tively. The perfect circle (solid line) shows the symmetric
distribution �S

�ðkÞ. In each case, the dashed line represents
s ¼ þ 3

2 , and the dotted line s ¼ þ 1
2 . As determined by

Eq. (5.17) the deviations from a spherically symmetric
density for s ¼ þ 1

2 and s ¼ þ 3
2 are equal but with

opposite signs. In the case of the s ¼ þ 3
2 density, the

deformation is along kz for the smaller momenta k ¼ 0:2
and k ¼ 1:0 GeV, but it is along kx for k ¼ 2:0 GeV.
This change in the shape of the deformation with

increasing momentum can be understood from the behav-
ior of the S�D3 and D1�D1 terms in the density of
Eq. (5.13). Figure 2 shows the k-dependence of the mag-
nitudes of 2aN2k2c Sc D3 and b2k4N2c 2

D1, the factors

that multiply Ŷ20 with opposite signs, in comparison with
the symmetric term �S

�ðkÞ. For small k, the S�D3 term

dominates strongly over the D1�D1 term, which is
expected already because it is of first order in the small
D-wave admixture parameter a, whereas D1�D1 is qua-
dratic in b. As k increases, the S�D3 contribution falls
faster than D1�D1, due to the faster falloff of the S-state
wave function. Around k ’ 1:2 GeV both contributions
become equal in magnitude and cancel against each other.
For larger values of k D1�D1 dominates over S�D3,
and changes the deformation from being along kx to being

along kz. However, the coefficients of Ŷ20 at such high
momenta are already very small (note the logarithmic scale
in Fig. 2).
Figure 2 shows also that, at high momenta, the spheri-

cally symmetric part of the density, �S
�ðkÞ, is itself

dominated by its D1�D1 component. Comparing
Eqs. (5.13) and (5.14) we see that the magnitude of the

D1�D1 coefficient of Ŷ20ðzÞ in (5.13), represented by the
dotted line in Fig. 2, is the same as the D1�D1 contri-
bution to the spherically symmetric part of the density in
(5.14). With increasing momentum k, the dotted line seems
to converge to the solid line of the total symmetric con-
tribution. However, it reaches only about 90% of �S

�ðkÞ,
the small D3�D3 contribution being responsible for the
remainder. This ratio of the D1�D1 contribution to
the total spherically symmetric part can be obtained using

the asymptotic ratio j c D3

c D1
j ! 1

1��D1

ND3

ND1
� 1

3 .

Figure 3 shows contour plots of momentum space
charge densities in the kx–kz plane. The deformation of
the total density ��ðk;þ 3

2Þ, displayed in the upper panel, is
barely visible in this plot, because the spherically

-2000 0 2000

-2000
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2000

k = 0.20 GeV

-1 0 1
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0

1

k = 1.0 GeV

-0.01 0 0.01

-0.01

0

0.01

k = 2.0 GeV

FIG. 1 (color online). Polar plots of ��ðk; sÞ for three fixed values of k ¼ jkj. In each case, the solid line represents �S
�ðkÞ, the dashed

line ��ðk;þ 3
2Þ, and the dotted line ��ðk;þ 1

2Þ. The scale for ��ðk; sÞ along the kx and kz axes is in units of GeV�2.
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symmetric contribution dominates strongly. The lower
panel shows only the much smaller asymmetric part
�A
�ðkÞ, which enhances the density along the kz-direction.
The origin of this enhancement is analyzed in Fig. 4,

where the upper panel shows the D1�D1, and the lower
panel the S�D3 contribution. The D1�D1 channel
density is deformed along kx but at the low momenta
shown in the figure it is overwhelmed by the more than
one order of magnitude larger S�D3 density deformation
along kz.

In summary, at low and intermediate momenta the mo-
mentum space density distribution shows a small deforma-
tion in the kz-direction for the � state with spin projection
s ¼ þ 3

2 , and a small deformation in the kz-direction for

the s ¼ þ 1
2 state. For high momenta the shape of the

deformation is reversed, but this is hardly relevant because
the density is already negligibly small in this region.

B. Coordinate space

We proceed now to the calculation of charge densities of
the � in coordinate space. All densities will be determined
in the rest frame of the �, where the total four-momentum
is �P ¼ ðM�; 0Þ. Using the modified momentum-space
wave function

~��ðk; sÞ � ��ð �P; k; sÞffiffiffiffiffiffiffiffi
2Es

p ; (5.18)

where the relativistic phase-space factor is absorbed into
the definition of the wave function, we can write the
Fourier transform in the same form as for nonrelativistic
wave functions:

~��ðr; sÞ ¼
Z d3k

ð2�Þ3 e
ik	r ~��ðk; sÞ: (5.19)

With this convention for the factors of 2�, the inverse
transform is

~��ðk; sÞ ¼
Z

d3re�ik	r ~��ðr; sÞ: (5.20)

In complete analogy to the momentum-space expression
(5.9), the charge density in coordinate space is given by

~��ðr; sÞ ¼
X
�s

~�y
�ðr; sÞjq ~��ðr; sÞ: (5.21)

As before, one can decompose ~��ðr; sÞ into angular
momentum components S, D3, D1. In the fixed-axis
polarization state basis we are using, there is no
k-dependence in the diquark polarization vector ð"��PÞ�.
This makes the Fourier transform of the S-state (5.1) in
the rest frame particularly simple,

FIG. 3 (color online). Contour plots of momentum-space
charge densities of the � in the kx � kz plane, in units of
GeV�2. The top panel shows the total density ��ðk;þ 3

2Þ. The
bottom panel isolates the angle-dependent part �A

�ðkÞ induced by
the D-states. Note the difference of the density scales in the two
panels.
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k (GeV)

0.0001

0.01

1
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10000

Symmetric

S - D3
D1-D1

FIG. 2 (color online). Comparison of the three contributions to
the total momentum-space density ��ðk; sÞ in Eq. (5.13) in units
of GeV�2. The solid line represents the symmetric contribution,
�S
�ðkÞ, the dashed and dotted lines show the coefficients of

Ŷ20ðzÞ proportional to c Sð �P; kÞc D3ð �P; kÞ and jc D1ð �P; kÞj2,
respectively. In all cases, the common factor e� ¼ 1, and only
the absolute values are plotted.
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~�Sðr; sÞ ¼ �RSðrÞ"��u�ð �P; sÞ; (5.22)

where we have introduced the shorthand "�� to represent
ð"��PÞ�, and

RSðrÞ ¼
Z d3k

ð2�Þ3 e
ik	r c Sð �P; kÞffiffiffiffiffiffiffiffi

2Es

p ; (5.23)

with r ¼ jrj. The factor "�� depends on the diquark polar-
ization �s, which is not shown explicitly. The isospin states
are not affected by the transformation and are also sup-
pressed for simplicity. There is no angle-dependence in the
rest frame wave function c Sð �P; kÞ, therefore RS is also an
S-wave, depending only on r. Boosting the wave function
to another frame would induce an angle-dependence into
c Sð �P; kÞ and consequently also into RS. However, this kind
of relativistic deformation due to Lorentz contraction of
the system along the direction of motion is a separate issue.
We are interested in intrinsic deformations of the �, which
are already present in the rest frame.

Using the familiar expansion of a plane wave into partial
waves,

eik	r ¼ 4�
Xþ1

l¼0

Xl
m¼�l

ilYlmðr̂ÞY�
lmðk̂ÞjlðkrÞ; (5.24)

where jl are the spherical Bessel functions, Eq. (5.23)
becomes

RSðrÞ ¼ 4�
Z k2dk

ð2�Þ3 j0ðkrÞ
c Sð �P; kÞffiffiffiffiffiffiffiffi

2Es

p : (5.25)

The general structure of the complete D-state wave
functions (without isospin) can be written as

~�Dðk; sÞ ¼ c Dð �P; kÞffiffiffiffiffiffiffiffi
2Es

p �Dðk; sÞ; (5.26)

where D stands for D1 or D3. �Dðk; sÞ is the spin wave
function of the D-states. In the rest frame, it can be
represented as [38]

�D1ðk;sÞ¼þ ffiffiffiffiffiffiffi
4�

p
k2"��

X
mls1

�
2ml;

1

2
s1j32s

	
Y2ml

ðk̂ÞU�ð �P;s1Þ

�D3ðk;sÞ¼� ffiffiffiffiffiffiffi
4�

p
k2"��

X
mls1

�
2ml;

3

2
s1j32s

	
Y2ml

ðk̂Þu�ð �P;s1Þ;

(5.27)

where U� is the spin-1=2 state [37,38]

U�ðP; sÞ ¼ 1ffiffiffi
3

p �5

�
�� � P�

M

�
uðP; sÞ: (5.28)

The angle dependence is contained exclusively in the

factors Y2ml
ðk̂Þ, and the spin states are completely inde-

pendent of k.
The D-state wave functions in coordinate space are then

given by the Fourier transform, which yields

~�D1ðr;sÞ ¼þ ffiffiffiffiffiffiffi
4�

p X
mls1

�
2ml;

1

2
s1j32s

	
Yml

D1ðrÞ½"��U�ð �P;s1Þ�

~�D3ðr;sÞ ¼� ffiffiffiffiffiffiffi
4�

p X
mls1

�
2ml;

3

2
s1j32s

	
Yml

D3ðrÞ½"��u�ð �P;s1Þ�;

(5.29)

where

Yml
D ðrÞ ¼

Z d3k

ð2�Þ3 e
ik	rk2Y2ml

ðk̂Þ c Dð �P; kÞffiffiffiffiffiffiffiffi
2Es

p : (5.30)

Again, in the rest frame c Dð �P; kÞ is also angle indepen-
dent, and the Fourier transform simplifies to

Yml

D ðrÞ ¼ �RDðrÞYlml
ðr̂Þ; (5.31)

where

RDðrÞ ¼ 4�
Z k2dk

ð2�Þ3 k
2j2ðkrÞ c Dð �P; kÞffiffiffiffiffiffiffiffi

2Es

p ; (5.32)

FIG. 4 (color online). Contour plots of momentum space
charge densities of the � in the kx � kz plane, in units of
GeV�2. The upper panel shows the D1�D1 part, the lower
panel the S�D3 part of �A

�ðkÞ. Note the difference of the

density scales in the two panels.
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and the minus sign factored out in (5.31) comes from the il

in (5.24).
We calculated the functions RS, RD3, and RD1 numeri-

cally, and the results are presented in Fig. 5. The S-state
dominates at small distances, but the two D-state wave
functions become comparable in size around r � 1 fm
and dominate for larger values of r. The D-waves start
out with opposite signs, but the D1 wave changes sign at
r � 1:4 fm.

As r goes to zero, the relativistic D-state wave functions

are weakly singular, namely RDðrÞ / r�1=2. This behavior,
which is reminiscent of the singular radial dependence of
the Dirac wave functions of the hydrogen atom [45], does
not cause any problems because the densities remain inte-
grable. The origin of these singularities is the slower falloff
with increasing relative momentum of the relativistic
momentum-space wave functions compared to nonrelativ-
istic wave functions. If we calculate the Fourier transform
of theD-state wave functions in the nonrelativistic limit, at
small r we obtain the regular behavior RDðrÞ / r2.

The total coordinate-space charge density is

~��ðr;sÞ¼N2 ~��;Sðr;sÞþa2N2 ~��;D3ðr;sÞ
þb2N2 ~��;D1ðr;sÞþ2aN2 ~��;SD3ðk;sÞ: (5.33)

The various components are defined in analogy with (5.11)
and (5.12).

The density associated with the S-state is

~��;Sðr; sÞ ¼ e�R
2
S: (5.34)

For the other cases, one uses

X
�s

"�Pð�sÞ"��P ð�sÞ ¼ �g�� þ P�P�

M2
�

; (5.35)

�u�ðP; sÞu�ðP; sÞ ¼ �U�ðP; sÞU�ðP; sÞ ¼ �1; (5.36)

�u�ðP; sÞU�ðP; sÞ ¼ �U�ðP; sÞu�ðP; sÞ ¼ 0; (5.37)

assuming the same polarization in the initial and final
states. The results for D3, D1, and the transition S to
D3 are

~� �;D3

�
r;þ 3

2

�
¼ e�R

2
D3; (5.38)

~� �;D1

�
r;þ 3

2

�
¼ e�R

2
D1½1� Ŷ20ðzÞ�; (5.39)

~� �;SD3

�
r;þ 3

2

�
¼ �e�RD3RSŶ20ðzÞ; (5.40)

for s ¼ þ 3
2 , and

~��;D3

�
r;þ 1

2

�
¼ e�R

2
D3; (5.41)

~��;D1

�
r;þ 1

2

�
¼ e�R

2
D1½1þ Ŷ20ðzÞ�; (5.42)

~��;SD3

�
r;þ 1

2

�
¼ e�RD3RSŶ20ðzÞ; (5.43)

for s ¼ þ 1
2 . The function Ŷ20ðzÞ, with z ¼ cos�, was

defined previously, but the angle � is now to be understood
as the angle between r̂ and the z-axis. More details are
given in the Appendix.
The total density becomes

~��ðr; sÞ ¼ ~�S
�ðrÞ þ fsðsÞ~�A

�ðrÞ; (5.44)

where

~�S
�ðrÞ ¼ N2e�½R2

S þ a2R2
D3 þ b2R2

D1� (5.45)

is again the angle- and spin-projection-independent con-
tribution, and

~�A
�ðrÞ ¼ �2e�aN

2RSRD3Ŷ20ðzÞ � e�b
2N2R2

D1Ŷ20ðzÞ;
(5.46)

the angle-dependent asymmetric component. Equation
(5.46) is the coordinate-space analogue of Eq. (5.16). The
different sign of the term containing the S and D3 wave
functions is due to Eq. (5.31) where RDðrÞ is defined such
that it does not contain the factor il.
Again there are two independent terms proportional to

Ŷ20ðzÞ that cause deformation, one associated with the D1
state, and another with a S to D3 transition. The main
difference to the analogous momentum-space expression
is that both terms come now with a minus sign. Because
RD1 enters squared, the total effect of the two D-state
contributions can be inferred from the sign of the wave
functions RS and RD3 and the sign of a.
When a is positive, as in model Spectator-SD, and RS,

RD3 have the same sign, the two terms in Eq. (5.46) have

0 1 2 3 4
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R
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S-state
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FIG. 5 (color online). Radial S- and D-state wave functions of
the � in coordinate space, calculated through Fourier transforms
according to Eqs. (5.25) and (5.32).
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also the same sign and reinforce each other’s contribution
to the deformation. This is the case in the region up to
r ¼ 4 fm shown in Fig. 5, where both RS and RD3 are
positive. We checked that both RS and RD3 stay positive
in that region when the wave function parameters are
varied within a broad range, such that the direction of
the deformation remains a robust result.

For s ¼ þ 3
2 this means that Ŷ20ðzÞ is multiplied by an

overall negative factor, implying an oblate shape, as shown
in Fig. 6 for r ¼ 0:2, 1.0, and 2.0 fm. For s ¼ þ 1

2 the

coefficient of Ŷ20ðzÞ has the opposite sign, and the defor-
mation is prolate. At r ¼ 0:2 fm the deformation is too
small to be visible in the graph, but it becomes more
pronounced as r increases.

Figure 7 shows the magnitudes of the individual

coefficients of Ŷ20ðzÞ, together with the radially symmetric
~�S
�ðrÞ. The S�D3 contribution dominates over D1�D1

at small r, because it is of first order in the small D-state
admixture coefficient a, whereas D1�D1 is of second

order in b. However, with increasing r the S-wave falls
more rapidly than the D-waves, and the D1-term domi-
nates for r> 3 fm.
Finally, Fig. 8 presents contour plots of the charge

densities of the s ¼ þ 3
2 state in the x-z plane. The upper

panel shows the total density, the lower panel only the
much smaller asymmetric contribution which is respon-
sible for the oblate shape.
Our results for the shape of the�þ are in agreement with

those of previous studies, such as the results reported in
Ref. [10] using the cloudy bag model, and the constituent
quark model calculations of Ref. [1]. The oblate shape for
�þ is also consistent with the negative sign of GE2ð0Þ
found in lattice QCD simulations [5,44].
The formalism presented here can be applied to

other systems. For instance, from an analysis of the form
factors of the �� baryon, it can be concluded that the
charge density distribution of the �� also has an oblate
shape [35].

VI. SUMMARYAND CONCLUSIONS

The � is the lowest-mass baryon that can possess a
nonvanishing electric quadrupole moment. In a nonrelativ-
istic framework, the electric quadrupole moment can be
used as an indicator for a particle’s deviation from a
spherically symmetric shape. However, in the general,
relativistic case the connection between shape and
higher spectroscopic moments is more complicated, which
led to the proposal of alternative methods to measure
deformation.
One of these methods suggests to extract information

about deformation from transverse densities, calculated in
the transverse impact-parameter space ðbx; byÞ in the

infinite-momentum frame. It has the advantage that the
transverse density moments Q?

� and O?
� are zero for a

structureless particle in the transverse plane, and therefore
can be used to measure the extension of the particle in
impact-parameter space. However, they do not allow the
classification of the shape in the particle’s rest frame.
In this work we used a different relativistic formalism,

the covariant spectator theory, to investigate the relation
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FIG. 6 (color online). Polar plots of ~��ðrÞ for three fixed values of r ¼ jrj. In each case, the solid line represents ~�S
�ðrÞ, the dashed
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2Þ, and the dotted line ~��ðr;þ 1

2Þ. The scale for ��ðr; sÞ along the x and z axes is in units of GeV3.
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FIG. 7 (color online). Comparison of the three contributions to
the total coordinate-space density ~��ðr; sÞ in Eq. (5.46) in units
of GeV3. The solid line represents the symmetric contribution,
~�S
�ðrÞ, the dashed and dotted lines show the coefficients of Ŷ20ðzÞ

proportional to RSRD3 and R2
D1, respectively. In all cases, the

common factor e� ¼ 1, and only the absolute values are plotted.
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between moments of charge or magnetic density distribu-
tions and the intrinsic shape of these distributions in the �
baryon’s rest frame. We used two covariant quark-diquark
momentum-space wave functions for the �, one consisting
of pure S-waves only, called ‘‘Spectator-S’’, and another
which includes S- and D-waves, called ‘‘Spectator-SD’’.
The electric and magnetic moments and form factors can
be calculated directly from these wave functions, as well as
the momentum space densities. The coordinate space den-
sities are then obtained from the Fourier-transformed wave
functions.

We arrived at the following results:
For the S-wave model Spectator-S one obtainsGE2ð0Þ ¼

GM3ð0Þ ¼ 0, and the electric and magnetic density distri-
butions are spherically symmetric.

The D-wave admixture in model Spectator-SD on the
other hand produces a spatial deformation of the �þ
density distribution, and the quadrupole and octupole
moments become GE2ð0Þ ¼ �1:70 and GM3ð0Þ ¼ �1:72,
respectively. The negative value of the quadrupole moment
corresponds to an oblate density distribution in coordinate
space. We conclude therefore that the higher moments are

good indicators that allow to distinguish deformed from
spherically symmetric systems.
Using the same wave functions and their respective

electric and magnetic moments, we also calculated
the corresponding transverse density quadrupole and octu-
pole moments (Q?

� and O?
� ). For each moment, the

obtained values (see Table I) for models Spectator-S and
Spectator-SD are nonvanishing and of the same sign, and
thus do not show a clear distinction between spherically
symmetric and deformed cases. Since the transverse
moments are nonzero one can conclude that the system is
not seen as a point in impact parameter space when viewed
from the light-front frame, but it is not clear how further
information on its shape could be extracted. In this sense,
the usual three-dimensional density distribution comple-
ments the information contained in the transverse den-
sities, and it is also closer to our intuitive notion of
deformation.
For the specific case of the �þ baryon with spin projec-

tion s ¼ þ 3
2 , the covariant model Spectator-SD predicts

an oblate shape of its density distribution in coordinate
space. This is in agreement with previously obtained
results, both from other quark model calculations and
lattice QCD simulations.
All model parameters were determined through fits to

the available lattice QCD data for the �N ! � transition
form factors at large pion mass, where the uncertain pion
cloud effects are minimal (the experimental data are also
well predicted) [39]. In particular, the coefficients a and b
are determined by the lattice transition form factors for
Q2 � 0, namely a is determined by the electric quadrupole
form factor G�

EðQ2Þ and b by the Coulomb quadrupole
form factor G�

CðQ2Þ. Further improvements in the statisti-

cal quality of the lattice data might alter the magnitudes of
a and b and therefore the extent of the deformation we
predict for the �, but the signs are not in doubt. In this
sense, the nature of the deformation, namely that �þ is
oblate rather than prolate, is a robust prediction of our
model.
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APPENDIX: EXPLICIT EXPRESSIONS FOR
~�D1ðr; sÞ AND ~�D3ðr; sÞ

We list here more explicit expressions of the coordinate-

space � wave functions ~�D1ðr; sÞ and ~�D3ðr; sÞ.
Performing the sums in Eq. (5.29) we get

FIG. 8 (color online). Contour plots of coordinate-space
charge densities of the � in the x–z plane in units of GeV3.
The top panel shows the total density ~��ðr;þ 3

2Þ. The bottom

panel isolates the angle-dependent part ~�A
�ðrÞ induced by the

D-states.
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In the calculation of the density distributions from the
coordinate wave functions we used the following relations:
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C. Lorcé, J. W.Negele, V. Pascalutsa, A. Tsapalis, and
M. Vanderhaeghen, Phys. Rev. D 79, 014507 (2009);
C. Alexandrou, T. Korzec, G. Koutsou, C. Lorcé,
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