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Abstract In this talk | provide a short overview of applications of & called Covariant Spectator Theory
to two- and three-nucleon systems. It is a quasi-potertiatélism based on relativistic quantum field theory,
and can be derived from a reorganization of the completeeB8tipeter series. In this framework, we con-
structed two one-boson-exchange models, called WJC-1 ar@ 2y for the neutron-proton interaction that
fit the 2007 world data base, containing several thousandswfon-proton scattering data below 350 MeV,
with a x2/Ngata Close to 1. The close fit to the observables implies that tles@ishifts derived from these
models can be interpreted as new phase-shift analysed) wéicbe used also in nonrelativistic frameworks.
Both models have a considerably smaller number of adjusfabiameters than are present in realistic nonrel-
ativistic potentials, which shows that the inclusion ofitality actually helps to achieve a realistic description
of the interaction between nucleons. This became also etvidecalculations of the three-nucleon bound
state, where the correct binding energy is obtained withdditional irreducible three-body forces which are
needed in nonrelativistic calculations. In addition, c#dtions of the electromagnetic form factors of helium-
3 and of the triton in complete impulse approximation als@giery reasonable results, demonstrating the
Covariant Spectator Theory's ability to describe the strecof the three-nucleon bound states realistically.
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1 Covariant Spectator Theory of Two- and Three-Nucleon Systems

The purpose of this talk is to give a brief overview of recergtults we obtained in relativistic calculations of
two-nucleon (&) and three-nucleon [ systems in the framework of the covariant spectator théOBT).

As will be demonstrated, we found simple one-boson-exchd@@BE) models of the nucleon-nucleddN)
interaction that provide a more efficient description of i observables than nonrelativistic models. This
efficiency applies also to the\Bbound state, which can be well described withoNtf8rces. The obtained
simplification depends crucially on relativity.

One way of introducing the two-body CST is to start from thenifestly covariant Bethe-Salpeter (BS)
equation for the scattering amplitutie of two particles with masses; andmy, which can be written in the
general formM = Vgs+ VssGgsM, whereVgs is a complete kernel consisting of an infinite number of two-
body-irreducible boson-exchange diagrams. The propa@ois the product of the propagators of the two
particles. This equation can then be recast into anotheévagat form,M = Vcst+ VestGestM, in which a
different propagatoGcst and an accordingly modified kernétstis used. For the case of spin-1/2 particles,
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Fig. 1 On the left, a diagrammatic representation of the Covagectator equation (2) with particle 1 on-shell (the onlishe
particle is indicated with ). The second line shows the definition of the antisymmaedrkaarnelV 1, with i, = (—)', where

I is theNN isospin. On the right, a diagramatic representation of thea@ant Spectator equation for thil ®ound state vertex
function I with particles 1 and 2 on-shell (labeled with-g. Here particle 1 is the spectator to the last two-body auton
between particles 2 and 3, described by the scattering fardehM with particle 3 off-shell.

the replacement is

11 1
m—p,Mm—p, m—p,’

which places particle 1 in intermediate states on its mas#i Eh-3]. This reduces the dimension of the
integration over intermediate momenta from four to threkileynaintaining the manifest covariance of the
equation. The new kern&lcst contains again an infinite number of diagrams, which are neo+body
irreducible with respect to the propagatetst. What originally motivated this choice of propagator was—
apart from the simplification of the integrations—the existe of cancellations between ladder and crossed-
ladder diagrams in scalar theories@f-type, where two heavier particles with unequal massesamgaa
third lighter one. Truncation of the kernétstto OBE level is therefore expected to converge faster than th
corresponding “ladder approximation” in the BS equatiothWs.

Also, unlike the BS equation in ladder approximation, theT@8o-body equation has the correct one-
body limit: when one particle becomes infinitely massives tivo-body equation reduces to a relativistic
one-body equation for the light particle moving in an effexzpotential created by the massive particle.

For systems with more than two particles, the CST procediaeep all particles but one on mass shell,
which leads to a consistent description. For instance, 8¢ tbree-body equation satisfies the property of
cluster-separability, without which a two-body CST amydie could not be used consistently in the kernel of
a three-body equation. For a brief recent review of the C®TRe. [4].

In our applications ttNN scattering, the specific form of the CST equation for thetecag amplitude of
two nucleons with mass, with particle 1 on-shell in both the initial and final staite[5]
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whereP is the conserved total four-momentum, apdy’, andk are relative four-momenta related to the
momenta of particles 1 and 2 tpg = 2P+ p, p» = %P— p, andMj, is the matrix element of the Feynman
scattering amplitude between positive energy Dirac spinbparticle 1. The covariant kerngh, (which is
also referred to as the “potential”) is explicitly antisyretrized, ensuring that the amplitudds, satisfy the
generalized Pauli principle. The propagator for the offtsparticle 2 is

(m+ kz)my

Ga(k,P) =G, (ko) = TP ic h?(kz), 3)

with ko = P —kq, k% = . Itis dressed by the off-shell nucleon form fachgk,), which can be related to the
self-energy of the off-shell nucleon, and which is normedizo unity wherk3 = n?.

The propagator of an off-shell particle can be decompogediositive and negative energy contributions,
which separates the CST equations into positive- and negatiergy channels. Negative-energy states are
related to the “Z-graphs” of time-ordered perturbatiorotlyeln this sense, the solutions of (2) automatically
include Z-graphs to all orders.

The CST equations for theNdbound state were formulated in a way suitable for a pracsoaltion
in Ref. [6]. One obtains a homogeneous equation for the xdutection I’ of the 3 bound state, shown
graphically in Fig. 1. All relativistic effects can be calatedexactly in CST, and the full Dirac structure of



the nucleons is also taken into account. The C8lTeguation was solved numerically for the first time in
Ref. [7], for a family of older OBE potentials. Since then, chyprogress has been made in the development
of more accurate CSNN interaction models, which will be described in the follogiisection.

2 High-Precision np Kernels

The first covarianNN OBE kernels in CST, based on the exchange of either four amsisons, were pub-
lished in 1992 [5]. Since then, the applied numerical teghes and the structure of the kernels were gradually
improved, and thep data base considerably enlarged. The two new models WJ@-WVag-2 [8] represent
the most recent worldp data with a precision that is on par with all commonly usedalisgic” potentials.

The kernels are sums of OBE contributions. For bosons withriting (outgoing) moment (p;), the
individual boson contributions are of the form

AL (p1, ki) ® AD(p2, ka)
VE(p, ki P) = ,6 —1= 22722 £ (Ap, Q) - 4
12(P. K P) = & et | (M, q) 4)

Here,b = {s, p,v,a} denotes the boson type (scalar, pseudoscalar, vectolvaximr),q= p1 — ki = ko —
p2 = p— k the momentum transfemny, the boson mass;, a phase factorp = 1 for isoscalar bosons and
&6 =T1-To=—1-2(—) for isovector bosons, ant{Ap, q) a boson form factor depending on a form factor
mass/\,. The axial vector bosons are treated as contact interagtaith a structure as in (4), but with the
propagator replaced by a constant.

For example, the boson-nucleon vertex for scalar mesorfdtie @eneral form

mpi+m_}(i} 7

2m 2m

/\F(pa,lq)=gs—vs{ (5)
wheregs andvs are coupling constants. Note that terms proportionak iontribute only if the nucleon is off
mass shell on at least one side of the vertex. These termbexefdre called “off-shell couplings.” Similar
couplings are included for vector and pseudoscalar mestmexges. In the case of pseudoscalar exchange,
the offshell coupling strength parametrizes a mixing betwpseudoscalar and pseudovector coupling. For
the detailed forms of all numerator functiong © A see Ref. [8].

The replacement af® by —|g?| in the propagators and form factors is a covariant rededimiti the region
¢? > 0 that removes all singularities and can be justified by ailéetatudy of the structure of the exchange
diagrams [8].

WJC-1 is our model with the best fit, whereas WJC-2 uses thdleshaumber of parameters without
significantly deteriorating the quality of the fit. Table losls that we achieved excellent fits for the most
complete data base op scattering, and with a considerably smaller number of aalle parameters than
other realistic potential models. In fact, in view of tfé/Ngaa= 1.06 of model WJC-1, the corresponding
phase shifts can be considered a new phase shift analysik wisludes many more data than the “standard”
Nijmegen 93 analysis [9] to which all realistic potential dets were fitted. Note that our phase shifts, shown
in Fig. 2, can be used outside the framework of CST, just like@ther phase shift analysis.

Table 1 Comparison of precisionp models and the 1993 Nijmegen phase shift analysis. The éhstrm specifies the model,
the second the number of adjustable parameters (in the €ése first four models for bothp and pp data), and the third the
year of the data base (data prior to this year are includealur@ns four to six are the obtained/Ngata for various data bases
(identified by their year), where the number of included daiven in parentheses. Our calculations are in bold face.

Model X?/Naate Ndata)

Reference Npars  Year | 1993 2000 2007

PWA93 39 1993| 0.99(2514) — —
1.09(3011) 1.12(3336) 1.13(3788)

Nijm | 41 1993 | 1.03(2514) — —

AV18 40 1995 | 1.06(2526) — —

CD-Bonn 43 2000 — 1.02(3058) —

WJC-1 27 2007| 1.03(3011) 1.05(3336) 1.06(3788)

WJC-2 15  2007| 1.09(3011) 1.11(3336) 1.12(3788)
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Fig. 2 Phase shifts ofp scattering for partial waves with < 2. The solid and dashed lines respresent the results of sodel
WJC-1 and WJC-2, respectively. The dotted line shows the&lien multienergy phase shift analysis of 1993[9].

The deuteron binding energy was used as a constraint durdtting of the CSTNN kernels, and
therefore they reproduce the experimental binding enefdsy 6= 2.2246 MeV automatically. The deuteron
vertex functions can be related to the well-known nonreistic S- and D-state deuteron wave functions
u(p) andw(p), respectively. In addition one obtains spin singlet anplétiP-wavesys(p) andv;(p), which
are of relativistic origin. Tables with the numerical vaduand convenient parameterizations using analytic
functions, both in momentum and coordinate space, are givRef. [10].

3 Three-Nucleon Binding Energies and Electromagnetic Form Factors

An interesting problem in few-nucleon physics is the iniapibf realistic NN potentials to explain the ex-
perimental triton binding enerdy; = 8.48 MeV. The potentials with the Iowextz/Ndatafits of theNN data
produce binding energies between 7.6 and 8 MeV. A possilgiaeation is that R forces are not negligible.
However, models for 8 forces introduce additional parameters which are usuadlilysted to reproduce the
triton binding energy, and therefore the calculations éopdictive power.

The CST calculations of Ref. [7] showed that the scalar béHscoupling terms of Eq. (5) in a relativistic
NN kernel not only improve the fit to thlN data, but the model with the best fit, called W16, also predict
the correct triton binding energy withoulN3forces. These terms are not present in nonrelativisticribgo
because they require nucleons to go off mass shell. Surglysiboth new high-precision models WJC-1
and WJC-2—uwithE; = 8.48 MeV andE; = 8.50 MeV, respectively—again predict the experimental bigdi
energy very closely, even though their detailed structacttheir parameters differ quite significantly from
each other and from the old model W16. It appears unlikelytthia is a mere coincidence. Figure 3 shows
the changes iiy?/Ngaa@ndE; whenvy is held fixed at certain values while all other potential paeters are
refitted, confirming the importance of this mechanism inbrkernels.

Note that in a true relativistic OBE theory for ttNN interaction, no additional irreducibleN3forces,
which might spoil the nice agreement with the experimeraale fork;, can be derived from the basic vertices
of the theory. However, it is important to remember that tbeoept of N forces is framework-dependent.
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Fig. 3 Results for calculations gf?/Ngata(s0lid circles on curved line and left scale) to a 20@7data base, and triton binding
energyE; (solid squares on straight line and right scale) for WJCHhilfa(left panel) and for WJC-2 family of models (right
panel). The points with the lowegf/Nya are models WJC-1 and WJC-2, respectively. The other modétedwo families
were obtained by fixings at different values and refitting all other parameters. Turees are fits through the actually calculated
points.

Figure 4 illustrates that vertices with off-shell termsetuer with off-shell propagators can transform into
contact vertices and take the form dfl 3orces. But in the framework of the CST they ammpletely deter-
mined fromthe NN interaction and automatically included through the OBE kernel. Ourwalions provide
true predictions of the triton binding energy and of the&ute of the Bl bound state in the form of theN3
vertex function.

To test these vertex functions, we derived the conserved33&durrent in [11], and calculated the elec-
tromagnetic form factors of theN8bound states in “Complete Impulse Approximation* (CIA)sfifor an
older family of vs-dependenNN potentials [12], and then also for the new high-precisiordei® [13]. The
term “impulse approximation” can be misleading becauseti#ein CST includes contributions that in non-
relativistic frameworks appear as interaction currentsr(ferms related to Z-graphs). A good description
of the data over a large range @fcannot be expected in CIA, because interaction currentsigiportant
contributions to the R form factors. Therefore, we compare to calculations by tisa-Blab collaboration,
described in Ref. [14] and labeled “IARC” below. The IARC maktions use a nonrelativistic impulse ap-
proximation with a one-nucleon current and wave functidstaimed from the Argonne AV1RN and Urbana
IX 3N potentials, and also include first-order relativistic eastions. The Coulomb interaction is not included
in the IARC and CST calculations presented here.

Figure 5 shows the isoscalar and isovector charge and ma@hetform factors for models WJC-1 and
WJC-2 in CIA-0 [13] (an approximation to CIA in which th&3sertex function with two off-shell nucleons is
replaced by a vertex function with only one nucleon off mdmly W16 both in CIA and CIA-0, and IARC
for the AV18/UIX interaction. Clearly, CIA-O is an excelleapproximation to CIA for W16. All models
reproduce the correct\8binding energy, and the form factors remain close to eactro@nly WJC-1 shows
some deviations already at relatively sm@llThe reason for this behavior is instructive: WJC-1 is thiy on
model with a mixed pseudoscalar-pseudovenfdN coupling. Its pseudoscalar part induces strong Z-graph-
type currents, which are not present in the other cases.

The AN electromagnetic form factors obtained with our relatigikernels exhibit a very reasonable be-
havior. We can conclude that CST not only predicts tNeb&hding energy correctly, but also yields a sound
description of the structure of thé&N3ound states.

_— e Fig. 4 Boson-nucleon vertices with off-shell coupling can geteet-
vo(p — ! ! fective N forces. In this example, an off-shell nucleon consecutiest
Vo(pp —m) " g \ Goo - -
PY PS » Py changes a scalar meson with two different nucleons. When a scalar off-
. 1 - 1 shell vertex is multiplied with the nucleon propagator, the separate
1 p—m 1 boson-nucleon vertices shrink to a single contact verted,the whole

e —————— ——L——  diagram takes on the form of &Jorce.
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Fig. 5 Isoscalar (first row) and isovector (second row) charge fiawctors of the 8l bound states. In each case, the form factor
is divided by a common scaling functidiq Q) [13]. The solid line is the result fadN model W16 in CIA, the dotted line is
the approximation CIA-O for the same model. The dashed §meadel WJC-1, and the dash-dotted line is model WJC-2, both
in CIA-0. For comparison, the solid line with theoreticatarbars is the result of an IARC calculation by Marcucci lthea

the AV18/UIX potential. All calculations employ the on-sh&ngle-nucleon current. The full circles represent tRpeximental
data [15].
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