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INTRODUCTION  

 The study of capillary-driven flows is a subject of great 
interest due to its widespread applications in oil recovery, 
hydrology, catalysis, membranes, among others [1]. The 
dynamic invasion of fluid into a capillary tube was first stu-
died analytically by [2] and [3]. The so-called Lucas-
Washburn equation describes the time penetration of liquid 
into a capillary. While this approach holds promise for des-
cribing the long-time capillary flow, it neglects the influence 
of the forces that prevail in the initial stage of the flow. 
Other authors [4,5] studied the thermodynamic and kinetic 
effects on capillary penetration in systems of limited size. In 
addition, Ichikawa and Satoda [6] characterized the interface 
dynamics of capillary flow. The capillary rise dominated by 
inertial forces was investigated by [7], and Zhmud et al. [8] 
presented an overview of the solutions for the different time 
regimes. Other authors, Siebold et al. [9] and Chan et al. 
[10] have performed capillary experiments to study the effect 
of the dynamic contact angle and to determine the factors 
that influence the significance of gravity, respectively. Rais-
kinmaki et al. [11] included the effect of entrance pressure 
loss on the capillary driven flow. An approach that accounts 
for non-equilibrium effects on capillary pressure was propo-
sed by [12]. Others [13] developed a model for the capillary 
rise in porous media which incorporates dynamic saturation 
gradients in the media. Based on experiments, Cheng et al. 
[14] showed a connection between the capillary pressure and 
the fluid interfacial area in porous media. Other studies [15] 
extended the equilibrium capillary pressure based on the first 
law of thermodynamics to a fractal porous media. The dy-
namic capillary rise due to hydrostatic effects was studied by 
[16]. 
 Research on tree-shaped capillary networks, though da-
ting back one century [17], is still a topic of great interest 
due to its widespread applications in physics, biology, geol-
ogy and engineering. The simulation of fluid flow through 
these structures requires an accurately knowledge of the  
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pressure distribution of a fluid through the structure. Studies 
performed in porous media point out the dependence of cap-
illary pressure on the rate change of moisture inside the me-
dia, suggesting that departures from equilibrium are depend-
ent on the movement of fluid interfaces (see for example, 
Beliaeve and Hassanizadeh [12], Deinert et al. [15] and Fan 
et al. [18]). Therefore, capillary pressure is an essential 
quantity that deserves further analysis. 

 Here we focus on tree-shaped networks. The interest in 
tree-shaped flow networks is spreading through different 
fields. Trees for cooling in electronics were studied by 
[19,20]. Applications for single-phase flow and two-phase 
flow have been proposed by [19,21,22]. Concepts for tree-
shaped heat and mass exchangers were proposed by Coppens 
et al. [23] and Tondeur et al. [24]. 

 This paper combines the thermodynamics and geometric 
characteristics of the system to describe capillary pressure in 
tree-shaped networks. Based on the approach developed, the 
non-equilibrium and equilibrium effects on the capillary 
pressure are identified. Besides, the equilibrium capillary 
pressure is defined in terms of readily measurable parame-
ters. The influence of geometric parameters of the tree-
shaped network is studied to obtain a better understanding of 
this quantity. 
TREE-SHAPED NETWORKS: 

Geometric and Operational Parameters  

 The geometric parameters of the tree-shaped network are 
defined in Fig. 1. This network has N branches of ducts, 
from level 0 to level n. Each duct branches into m daughter 
branches at the next level. The ducts are round capillary tu-
bes of different radii (Ri) and lengths (Li; i=0,1,…,n). The 
radii and lengths of the ducts are sized relative to one ano-
ther, in accordance with [17,25,26]: 
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Abstract: This study analyzes the pressure in capillary tree-shaped networks, based on the thermodynamics and the 
geo metric description of the network. The presence of equilibrium and non-equilibrium effects on pressure is 
accounted. In particular, the presence of equilibrium effects is shown to be essential for describing the pressure in 
the network. An approach to the definition of equilibrium capillary pressure is presented in terms of interfacial energies of the 
phases but also in terms of the geometry characteristics of the tree-shaped network. Among others, the equilibrium
 capillary pressure is shown to depend on number of branching levels and number of daughter branches. Finally, 
a criterion is established to evaluate the importance of equilibrium and non-equilibrium effects on the capillary pressure.  
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where ar and bl are scale factors independent of i. The rela-
tionship between the size of the first duct (level 0) and the 
size of the ducts at level i is given by 
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Fig. (1). Tree-shaped capillary network (N=3; m=2).  

 One basic feature of tree-shaped networks is that pairing, 
or bifurcation of ducts (dichotomy), is an optimized feature 
of the flow architecture (see for example [17,25]). Therefore, 
m takes a value of 2. If the flow is laminar and fully devel-
oped, the minimization of flow resistance yields the scale 
factor ar=2-1/3, which in physiology is known as Hess-Murray 
law [26]. Moreover, for bifurcations (m=2) the scale factors 
bl and ar range from 2-1 to 2-1/3, respectively. If the flow is 
turbulent, ar and bl are 2-3/7 and 2-1/7, respectively [25]. In 
both flows it seems that is a geometric ratio of R/L3 which is 
preserved.  
 The total number of branches is  
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with q = n+1 and the volume of the whole network is 
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where vs is a shape factor (i.e., ). Substituting Eqs. (3) and 
(4) into (6) we obtain 
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 In a similar procedure, the surface area is 
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 Here m is the number of branches, n is the final bran-
ching level and as is a shape factor (e.g., ). Equations (7) 
and (8) show the volume and the surface area of the tree-
shaped network in terms of the geometric characteristics of 
the first duct, number of branches and scale factors.  

CAPILLARY PRESSURE: 

Thermodynamic Model  

 We assume a wetting fluid entering in a capillary tube 
under a pressure pw, and that this fluid distributes itself by 
displacing a non-wetting fluid at pressure pn. The first law of 
thermodynamics, for the system under study, can be mathe-
matically expressed by [27]  
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where U is the internal energy of the fluid, T is the fluid 
temperature, Vw is the volume of wetting fluid, Vn is the vo-
lume of non-wetting fluid, A is the interfacial area of the 
fluid, S is the entropy of the fluid,  is the interfacial energy 
of the wetting fluid in contact with the i non-wetting phase 
and the first right-hand term denotes the power done by force 
F to move the solid-fluid interfaces. 

 Consider a slow, capillary-driven flow under isothermal 
conditions. Under these conditions, it is reasonable to consi-
der that the internal energy and the entropy of the fluid are 

constant [15]. Therefore, as 0VV n
.

w
.

=+  , Eq. (9) can be 
written as 
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 In summary, Eq. (10) shows how the capillary pressure 
Pc results of the motion of the solid-fluid interfaces (non-
equilibrium effect), as well as of the interfacial energy of the 
wetting fluid in contact with the non-wetting phases and the 
fluid interfacial area (equilibrium effect).  
 According to [15,18] the first right-hand term of Eq. (10) 
is related to the contact line velocity and the volume of wet-
ting fluid. Therefore, Eq. (10) can be rearranged to yield 
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where  is a coefficient that accounts for the movement of 
fluid-solid contact lines and VW/V is the moisture content. 
Therefore, the first right-hand term accounts for the non-
equilibrium effects (i.e., the change of fluid-solid contact 
lines and the change of moisture content in time), and the 
second right-hand term accounts for the change of interfacial 
areas with fluid volume (equilibrium effects)  
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 Equation (12) represents the so-called equilibrium capil-
lary pressure [15,18] and shows that this pressure depends 
both on the interfacial energy of the wetting fluid and on the 
variation in fluid interfacial areas with respect to fluid vo-
lume. Therefore, it is also a function of network’s saturation. 
These results are in agreement with several studies (see for 
example [12,15,18,28]), which recognize that the interfaces 
play a key role in describing the multiphase fluid flow.  

EQUILIBRIUM FLUID PRESSURE IN A TREE-

SHAPED NETWORK  

 Consider a tree-shaped network as shown as in Fig. 1. In 
order to obtain the equilibrium capillary pressure, we must 
provide the variation in fluid interfacial area with fluid (net-
work) volume. Therefore, a description of the geometry of 
the network is required. 

 Consider a two-phase flow where a liquid (e.g., water, 
wetting phase) displaces air (non-wetting phase) in a tree-
shaped network. To implement Equation (12) we need to 
determine A/ V and this can be obtained from the geometry 
of the tree-shaped network. In a similar procedure to that 
described above, the interfacial area with corresponding pore 
volume for a situation where a liquid displaces air are ex-
pressed as 
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Fig. (2). Dependence of P0R0 on branching level n for different 
number of daughter branches m.  

 Here the subscript a means air, and aa and va are shape 
factors (e.g., 4  and 4/3  for a spherical interface, respecti-
vely). Therefore, according to Equations (7) and (8) and 
Equations (13) and (14), the derivatives A/ V are given by 
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with s=(1/2) as/ vs and a=(2/3) aa/ va. Substituting Eqs. 
(15) and (16) into Eq. (12) yields 
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 Equation (17) presents the equilibrium capillary pressure 
in terms of the radius of the first duct (R0), scale factors (ar, 
bl), branches characteristics (m, n), shape factors ( a, s) and 
interfacial energies ( w,a, w,s) of the respective phase. Equa-
tion (17) is also dependent of the network’s saturation. For a 
saturated network 
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 Based on this formulation, we were able to research some 
aspects concerning the parameters that affect the equilibrium 
capillary pressure. The results are plotted in Figs. 2 to 4.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (3). Dependence of P0R0 on branching level n for different 
scale factors ar (m=2; b1 = 2-1).  
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 Fig. (2) shows the effect of the branching level and the 
number of daughter branches on equilibrium capillary pres-
sure. According to this figure, we come to the conclusion 
that the P0R0 is strongly dependent on n and m. Besides, for 
n  6 the pairing, or bifurcation of ducts (m=2) generates the 
lowest equilibrium capillary pressure. On the other hand, for 
n  12 a network with bifurcating ducts has the highest equi-
librium capillary pressure if compared with higher number of 
daughter branches. For each m there is a certain value of n 
for which increasing the level of branching do not affect the 
equilibrium capillary pressure. This is reached first (i.e., at 
lower branching levels n) for higher number of daughter 
branches.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (4). Dependence of P0R0 on branching level n for different 
scale factors bl (m=2; ar=2-1/3).  

 The effects of scale factor ar and bl are presented in Figs. 
(3) and (4). Fig. (3) reveals that when the scale factor ar in-
creases, the maximum equilibrium capillary pressure occurs 
at higher branching levels n. Besides, for each ar there is a 
certain value of n for which increasing the level of branching 
do not affect the equilibrium capillary pressure. This value of 
n is reached first for lower values of ar. Fig. (4) indicates that 
the equilibrium capillary pressure becomes higher at high 
scale factor bl, which is an expected result since an higher 
scale factor provides a longer network. 
 At this stage, it is also possible to establish a criterion to 
evaluate the importance of equilibrium and non-equilibrium 
effects on the capillary pressure. According to Eqs. (11) and 
(17), the equilibrium pressure is dominant when 
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 The equilibrium capillary pressure persists in time as the 
main driving potential, as long as the geometry of the net-
work obeys this criterion (Eq. 21).  

CONCLUDING REMARKS  

 Capillary fluid flow has been the focus of many studies 
because of its importance in nature and in different complex 
flow structures. This study focused on the understanding of 

capillary pressure in a tree-shaped network. An approach is 
presented by combining the thermodynamics and the geome-
tric description of the tree-shaped network. The non-
equilibrium effects of the capillary, arising from forces ac-
ting on the fluid-solid contact line, are compared with the 
equilibrium effects determined by the change in interfacial 
areas with fluid volume. Finally, an approach is presented 
whereby equilibrium capillary pressure is shown to be rela-
ted with the geometry of the network. 
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NOMENCLATURE  

A = Interfacial area of the fluid 
ar = Scale factors for radius 
bl = Scale factors for length 
F = Force to move the solid-fluid interfaces 
L = Duct length 
m = Number of branches 
N = Branches of ducts 
n = Final branching level  
pn = Pressure of non-wetting fluid 
pw = Pressure of wetting fluid 
R0 = Duct radius of the first duct (level 0) 
R = Duct radius  
S = Fluid entropy 
T = Fluid temperature 
U = Fluid internal energy  
Vn = Volume of non-wetting fluid  
Vw = Volume of wetting fluid 
VW/V = Moisture content 
Greek symbols 

 = Interfacial energy of the wetting fluid in 
contact with the non-wetting phase  

a = Shape factor for area 

v = Shape factor for volume 
 = Coefficient that accounts for the movement 

of fluid-solid contact lines 
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