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Capitulo 1

O sistema de numeros reais

1.1 BREVES NOCOES DA TEORIA DE CONJUNTOS

Vamos comegar por recordar algumas nocoes do que, em Matemaética, se designa por Teoria de
Conjuntos.

Uma coleccao de ’objectos’ é frequentemente identificada como sendo um novo ’objecto’ chamado
conjunto. De um ponto de vista formal, trata-se de uma palavra que nao esta sujeita a definicao
e, portanto, requer axiomas e regras de forma a evitarem-se inconsisténcias.

Informalmente, podemos definir conjunto como uma coleccao de objectos que fica determinada
quando sao conhecidos os seus membros.

Ainda informalmente, se um determinado ser vive num determinado mundo dizemos que per-
tence a esse mundo. Podemos falar no mundo da musica, o mundo do desporto, o mundo da
politica, etc. De uma forma natural, vemos que dentro do mundo do desporto existe o mundo
dos futebolistas, ou dos ginastas, ou dos jogadores de bilhar... Ou ainda, pode dar-se o caso de
futebolistas que sao musicos, ou politicos que fazem tiro ao alvo...

Matematicamente, sendo A um conjunto, traduzimos a relacdo de pertenga relativamente a esse
conjunto pelo simbolo € dizendo 'z pertence a A’, ou 'z é um elemento de A’ ou, ainda, 'z esta
em A’; simbolicamente,

r € A

Dado um determinado objecto x é possivel, em principio, decidir se x pertence ou nao a A. E;

este tltimo caso (ndo pertence a A) representa-se por = ¢ A.

7
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Os conjuntos podem ser definidos essencialmente de duas formas distintas:

e em extensdo: quando enumeramos todos os seus elementos, como em

1
A:=11,2.3.4.56 Bi=<—: N :
{7 737 ) b }7 {n+1 ne }7

e em compreensdo: quando apresentamos uma propriedade definida num dado conjunto;

por exemplo,

C:={x e X: p(zr) é verdadeira}, D :={q € N: ¢ é multiplo de 3}.

Podemos estabelecer dois tipos de relacoes entre conjuntos, digamos A, B e C'. Se A e B tém
os mesmos elementos, isto é, se os elementos de A sao elementos de B e reciprocamente, se os
elementos de B sao elementos de A, diremos que A = B. Esta relagdo de igualdade entre dois

conjuntos verifica as seguintes propriedades:

e Reflexiva: A = A;
e Simétrica: A= B seesdse B=A;

e Transitiva Se A=B e B=Centao A=2C.

Outra relagao que podemos estabelecer entre conjuntos é a relagdo de inclusdo : dizemos que A
esta contido em B, ou que A é um subconjunto de B, e escrevemos A C B, se todo o elemento
de A é também um elemento de B

A relacao de inclusao entre conjuntos é:
e Reflexiva: A C A;
e Anti-simétrica: Se A C Be B C A entao A = B;

e Transitiva: Se AC Be BC C entao A C C.
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Na verdade, A= B seesése AC Be B C A. Esta é de facto a forma de provar que A = B.
De modo a evitar inconsisténcias ¢ necessario distinguir entre elementos e subconjuntos e,
consequentemente, entre as formas verbais 'pertence a’ e ’estd contido em’. Por exemplo, se x
pertence a A escrevemos de forma equivalente z € A ou {z} C A, mas nao x C A.

Um conjunto pode ter 'muitos’ elementos, 'poucos’ ou nenhum. O conjunto que nao contém
nenhum elemento é designado por conjunto vazio e é representado por () ou {}. Se um conjunto
A é constituido por um nimero finito de elementos A = {ay, as, ..., a,} dizemos que o conjunto

A é finito.

OBSERVACAO 1.1. O conjunto vazio é subconjunto de qualquer conjunto.
De facto, seja A um conjunto arbitrdrio, precisamos de mostrar que todo o elemento de () é elemento
de A. Ora, a tinica maneira de tal afirmacao ser falsa é encontrarmos um elemento em () que ndo

seja elemento de A, mas tal € certo que nao sucede pois ) nao tem elementos.

Para quantificar um conjunto recorremos a nocao de cardinal. O cardinal de um conjunto A,
que se representa por card(A), indica-nos o nimero de elementos que constituem esse conjunto.
Os conjuntos podem ser identificados como objectos e, como tal, podem por sua vez ser membros

de outros conjuntos. Assim, podemos falar do conjunto

A={{2}, {2, 3}, {5, 6}}
cujos elementos sao os conjuntos {2}, {2, 3} e {5, 6} e o seu cardinal é card(A) = 3.

OBSERVAGAO 1.2. Dado um conjunto A, indicamos com P(A) o conjunto cujos elementos sao
todos os subconjuntos de A. Ou seja, dizer que B € P(A) equivale a dizer que B C A. P(A)
designa-se por conjunto das partes de A e nunca € vazio pois, contém pelo menos o conjunto

vazio e o préprio A. Por exemplo, se A= {1, 2, 3} entao

P(A) =10, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, A}

OBSERVAGAO 1.3. No restante tezto, faremos uso do quantificador universal ¥ (’para todo’ ou
‘qualquer que seja’) e do quantificador existencial 3 (‘existe pelo menos um’). Assim como 0s

simbolos l6gicos da conjunc¢ao N\ (’e’) e da disjungdo V (‘ou’).
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1.1.1 OPERACOES ENTRE CONJUNTOS

Sejam A, B e C trés conjuntos. Definimos a reunido de A com B como sendo o conjunto

constituido por elementos que pertencem a A ou a B e representamos por AU B,

AUB:={z:2€ AV z € B}.

Figura 1.1: Reuniao de dois conjuntos.

Figura 1.2: Interseccao de dois conjuntos.

A interseccdo entre A e B é o conjunto de todos os pontos que pertencem simultaneamente a

Aea B,

ANB:={z:2€ A NzxeB}.

Dois conjuntos A e B sao disjuntos se nao tém elementos comuns, ou seja, A N B = 0.
As operagoes de reuniao e interseccao de conjuntos gozam das seguintes propriedades distribu-

tivas

AN(BUC) = (ANnB)U(ANCQC)

Au(BNC) = (AuB)N(AUQ).

A diferenga entre A e B, A\B, é o conjunto formado pelos elementos de A que nao pertencem

a B,

AB:={x:2€ANx¢B}.
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A B

Figura 1.3: Diferenca entre dois conjuntos.

Se A C X, o complementar X\ A de A em X é o conjunto de pontos em X que ndo pertencem

a A. Formalmente,

reX\A seesése ze€X Nz ¢gA

Uma vez fixado o conjunto X, o complementar de qualquer subconjunto A C X é representado
por

A= X\A.

Sendo A e B dois conjuntos nao-vazios, definimos o produto cartesiano de A por B, denotado
por A X B, como o conjunto constituido por todos os pares ordenados (a, b) tais que a € A e

b € B, isto é,

Ax B={(a,b): a€ A, be B}.

EXEMPLO 1.1. Seja A = {1, 2, 3} e B={a, b}. Entao AxB = {(1, a),(1, b),(2, a),(2, b), (3, a),(3, b)}.

O produto cartesiano de A por si préprio, A x A, representa-se por A%; por exemplo, o plano

cartesiano é representado por,
R?=RxR={(r,y): z,y € R}

Cada ponto do plano representa um par ordenado de nimeros reais e, reciprocamente, cada

par ordenado de ntimeros reais representa um ponto do plano.

ExXERcicio 1.1. Represente graficamente o produto cartesiano [—2, 2] x R.
1.2 OS CONJUNTOS DOS NUMEROS NATURAIS, INTEIROS E RACIONAIS

O sistema de ntimeros mais simples é o conjunto dos nimeros naturais {1, 2, 3,. .. } identificado

pela letra N. A adigdo e a multiplicagdo s@o operagoes em N, no sentido em que a soma e o
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produto de dois niimeros naturais da origem a um niimero natural. Contudo, a subtraccao pode
nao fazer sentido se apenas tivermos ao nosso dispor niumeros naturais. Por exemplo, 3 — 7
nao tem significado em N. Assim, teremos de considerar o conjunto mais amplo dos nimeros
inteiros (Z) ..., —3,-2,—1,0,1,2,3,...

Embora a adicao, a multiplicacao e a subtrac¢ao facam sentido no conjunto dos niimeros inteiros
a divisao nao pode ser definida para quaisquer dois niimeros inteiros. Por exemplo, a expressao
3 + 7 nao representa um numero inteiro. Entdo, passamos para o conjunto (mais amplo) Q,
formado por todos os nimeros da forma g onde p e ¢ s@o numeros inteiros e g é diferente de 0.

Este é o conjunto dos niimeros racionais,

Q::{g:p,qu e qsé()}.

Assim, de forma a dar resposta a cada uma das limitacoes, os conjuntos de ntmeros foram
sendo progressivamente ampliados,

NcCZcQ.

Em geral, os niimeros que encontramos no dia-a-dia — pregos, temperaturas, juros, velocidades,
pesos, etc. — sao numeros racionais. No entanto, também existem ntimeros que nao sao racio-

nais como veremos.

1.2.1 DizZIMAS FINITAS E INFINITAS
Chamamos dizima finita a uma expressao da forma
ag-a10s3 - . . Ay
onde ag € Z,n € Neay,...,a, € {0,1,2,...,9}. Por definigao atribuimos a esta expressao o

seguinte significado:

a a an — — —n
ao.alag...an:a0+1—(1]+ﬁ20+---+1—0n:a0+a1><10 'ha, x 1072+ - 4a, x 107

Assim, uma dizima finita representa sempre um numero racional.



TEXTO DE APOIO DE MATEMATICA 1. O SISTEMA DE NUMEROS REAIS 13

Por dizima infinita, entendemos uma expressao da forma ag.a1as ... onde ag € Z e, para cada
ie€N,a;€{0,1,2,...,9}.
Podemos determinar o niimero racional definido, por exemplo, pela dizima infinita x = 2.777--- =

2.7 calculando 10z — z. De facto, subtraindo membro a membro,

10z = 27.777...
(=) = = 2.777...
9z = 25.000...

Assim, a dizima infinita 2.777... é a representagao decimal do niimero racional %5.
Vejamos outro exemplo. Para a dizima x = 1.20101010--- = 1.201 podemos, usando um

raciocinio idéntico, calcular

1000z = 1201.010101...
(=) 10z =  12.010101...
990z = 1189.000000. ..

1189

portanto, 990z = 1189 e, concluiriamos que x ¢ o racional 5.

EXERCICIO 1.2. Escreva 0.232323... como um quociente de dois niimeros inteiros.

Uma dizima que tenha uma sequéncia de digitos que se repete denomina-se de dizima periddica
e, pelo que anteriormente se expos, vé-se que constitui um nimero racional. Reciprocamente,
demonstra-se que qualquer ntimero racional pode ser representado por uma dizima infinita
periédica (toda a dizima finita é infinita peridédica). Isto permite a caracterizacao dos nimeros
irracionais através de dizimas infinitas nao-periddicas.

Assim, por exemplo,

x = 7.02002000200002 . . .

representa um numero irracional.

EXERCICIO 1.3. Escreva um nidmero irracional compreendido entre 5.3 e 5.34.
1.3 Os NUMEROS REAIS

Se ao conjunto dos nimeros racionais acrescentarmos o conjunto dos nimeros irracionais obte-

remos o conjunto dos numeros reais, R.
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EXERCICIO 1.4. Ordene os sequintes nimeros reais por ordem crescente

0.56, 0.56, 0.566, 0.565565556..., 0.566, 0.56656665666..., 0.565566555666 ...

Os ntumeros irracionais surgem quando tentamos resolver certas equagoes quadraticas. Por
exemplo, 22 = 2. Niao existe nenhum nimero racional cujo quadrado seja 2.

Com a inclusao dos niimeros irracionais chegamos a um sistema numérico suficientemente amplo
para representar quantidades que variam de forma continua e que permite compreender uma

representacao numérica da recta geométrica ou de um ponto na recta.

1.3.1 A REPRESENTACAO DE NUMEROS REAIS EM PONTO FLUTUANTE

Nas aplicagoes cientificas ha necessidade de recorrer a nimeros muito grandes e a niimeros muito

pequenos; por exemplo, a constante de Avogadro e a massa de um electrao, respectivamente,
602214179000000000000000 mol ™ e 0.00000000000000000000000000000091095 kg.

A representacao destas constantes obriga a um grande niimero de digitos, a maioria dos quais sao
zero. Para resolver estas dificuldades de representacao de niimeros muito grandes ou ntimeros

muito pequenos usa-se a chamada notacao cientifica, onde um nimero real z é expresso na forma
T = Fa;.a0aza4 - - - X 107

com aq, as, as, -+ € {0,1,2,...,9}, p um nimero inteiro e a; # 0. Os algarismos a direita do
ponto decimal constituem a mantissa do ntimero.
Deste modo, a constante de Avogadro e a massa de um electrao serao escritas em notacao

cientifica na forma
6.02214179 x 10¥mol™" e 9.1095 x 10~* kg.

Naturalmente, a notagao cientifica como a acabamos de apresentar nao pode ser implementada
numa calculadora nem num computador por mais potente que seja pois, para cobrir todos os

numeros reais, a mantissa e o expoente exigiriam um numero infinito de algarismos. Assim, a
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notacao cientifica é modificada no sentido de se utilizar um nimero finito de algarismos para
a mantissa e um numero finito de algarismos para o expoente, obtendo-se a representacdo em
ponto flutuante.

Um ntmero com a representacao decimal em ponto flutuante +0.a1as . ..a, x 10P diz-se ter k
algarismos significativos.

Como a memoéria de uma calculadora ou computador é finita, tem de limitar o ntmero de
algarismos significativos com os quais trabalha. Tal procedimento pode levar a um tipo de erro
conhecido como erro de arredondamento.

E importante compreender que um simples cédlculo envolvendo apenas as operagoes elementares
pode reduzir o nimero de algarismos significativos e, por conseguinte, conduzir a perda de
informacgao. Tal perda de algarismos significativos, ou simplesmente perda de significancia,
pode ocorrer, por exemplo, quando se subtraem dois ntimeros muito préximos um do outro,
que se designa por cancelamento subtractivo.

Por exemplo, 0.124 e 0.123 tém trés algarismos significativos enquanto que a sua diferenca,
0.1 x 1072, tem apenas um algarismo significativo. O exemplo seguinte ilustra como o resultado

de um conjunto de operacoes pode ser afectado pelos arredondamentos.
EXEMPLO 1.2. Qual o resultado de calcular
z = 0.412 x 0.300 — 0.617 x 0.200

numa calculadora que usa apenas trés algarismos significativos? Qual o erro relativo cometido?

Resolugao O produto 0.412 x 0.300 com trés algarismos significativos é 0.124 e 0.617 x 0.200 é 0.123.
Portanto, numa calculadora com trés digitos x é calculado como 0.124 — 0.123 = 0.1 x 10~2. Claro
que x é realmente igual a 0.1236 — 0.1234 = 0.2 x 1073, como se pode verificar com uma calculadora
usual.

Para quantificarmos o erro relativo cometido usamos a seguinte expressao

|z — 7|

|z|
onde x representa o valor exacto e T representa o valor aproximado.
Neste caso, o erro relativo cometido é,

02 x107% — 0.1 x1072|

4
0.2 x 10-3]

ou, em termos percentuais, 400%.
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1.3.2 INTERVALOS

Sea, beR, a<b, oconjunto de todos os x tais que a < x < b diz-se um intervalo fechado com

extremidades a, b e representa-se por [a, b, isto é,

la, b] :={x € R: a<x<b}.
Sea, be R, a<b, oconjunto

la, bj={z €R: a <z <b}

diz-se intervalo aberto de extremidades a, b. E também usual a notagao (a, b) para representar
um intervalo aberto.
De forma idéntica podemos definir os intervalos semi-abertos ]a, b] e [a, b[.
Introduzindo os simbolos +00 e —co e a notacao

la, +oo[={x € R: z > a}, la, +oo[={x € R: z > a},

| —o0,a[={zreR: z<a}, | —o00,al={zreR: x<a},
podemos também falar de intervalos com extremidades a e +00 ou —oo, ou ainda, de R como
o intervalo | — 0o, +0oo[ de extremidades —oo e +00.
Um intervalo diz-se limitado se ambas as extremidades sao finitas e ilimitado se pelo menos uma
das extremidades é —oo ou +-00.
Contudo, para definirmos conjunto limitado precisamos de recorrer a duas nocoes: a de majo-
rante e a de minorante de um conjunto.

Seja X um conjunto nao-vazio, X C R. Dizemos que M € R é um majorante de X se
M > x, para qualquer x € X.

Neste caso, X diz-se majorado (ou limitado superiormente). O menor dos majorantes do conjunto
X é designado por supremo de X e representado por sup(X). Se o supremo de X pertence a
X entao toma o nome de maximo de X.

Analogamente, m € R é um minorante de X se

m < x, para qualquer x € X.
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Neste caso, diz-se que X é minorado (ou limitado inferiormente). O maior dos minorantes do
conjunto X é designado por infimo de X e representado por inf(X). Se o infimo de X pertence

a X entdo toma o nome de minimo de X.

EXEMPLO 1.3. Determine em R, caso existam, o conjunto dos majorantes, o conjunto dos mino-

rantes, o supremo, o infimo, o mdzrimo e o minimo do conjunto S = [0, 1[.

Resolugao O conjunto dos majorantes de S é U = [1, +oo[ pois, qualquer seja z € S, x < u sendo u
um elemento qualquer fixado de U. O supremo de S é sup(S) =1 e S nao tem méaximo.
O conjunto dos minorantes de S é L =] — 0o, 0] pois, qualquer seja = € S, x > £ sendo ¢ um elemento

qualquer fixado de L. O infimo de S é inf(S) =0 e min = 0 é o minimo de S.

O conjunto X diz-se limitado se for majorado e minorado, isto é, se existirem niimeros reais m
e M tais que

m < x < M, para todo x € X,

ou seja, X é um conjunto limitado se e s6 se X C [m, M].

No caso do exemplo anterior, o conjunto S é limitado, pois, é majorado e minorado.
1.4 ALGUMAS NOCOES TOPOLOGICAS EM R

J& vimos que podemos associar ao sistema de ntimeros reais um sentido geométrico que nos
permite visualizd-lo como uma recta, ou seja, podemos associar um numero real a um ponto
da recta e, reciprocamente, associar um ponto da recta a um numero. Tendo presente esta
imagem, podemos interpretar |z — y| como a distancia entre dois pontos z e y. Em particular,

o médulo (ou valor absoluto) de um nimero indica a distancia desse ntimero a origem.
OBSERVAGAO 1.4. (a) Dado o nimero real positivo r, a expressao |x| < r indica o conjunto
dos pontos cuja distancia a origem € inferior a r,
g <r & z<r A z>-r
& re|l—oo, r[N]—r +oo]

& rel-rrL
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(b) |x| > r indica o conjunto dos pontos cuja distancia a origem € superior a r

lz|>r & z>r V z<-r

& x €] —o00, —r[U]r, +o0ol.
ExERcicio 1.5. Escreva o conjunto W = {z € R : |z — 6| < 2} sob a forma de intervalo.

A nocao de distdncia desempenha um papel fundamental na teoria dos limites. Por exemplo,
se (x,) é uma sucessdo de numeros reais e € R, entdo a condi¢ao x, — = quando n — oo
significa que podemos tornar o nimero |z,, —z| tdo pequeno quanto queiramos quando tomamos
n suficientemente grande.

Refira-se que R nao é o tnico sistema matematico no qual faz sentido a nocao de distancia.
Existem muitos outros e, sempre que possamos definir uma funcao distancia, podemos definir
limite e continuidade.

A ideia de distancia entre dois nimeros reais conduz-nos as nog¢oes importantes de vizinhanca
e ponto interior.

Observemos que, se a ¢ um ponto arbitrario da recta e € um nimero real positivo fixado,
entao os pontos cuja distancia a a é inferior a € sao os todos aqueles, representados por x, que

verificam a desigualdade |x — a| < ¢ ou, equivalentemente,
a—e<zr<a-te.

Seja ¢ € R. Chamamos vizinhanca de raio ¢ > 0 do ponto ¢ ao intervalo |c — ¢, ¢ + €[, que
designaremos por V.(c). A qualquer conjunto V' que contenha uma vizinhanga de raio € do

ponto ¢ chamamos simplesmente vizinhanga de c.

EXEMPLO 1.4. Identifique a vizinhan¢a de raio 0.5 do ponto 2.1.

Resolucgao.
Vos(21)={zeR: |z —2.1| <05} =]1.6, 2.6][.

EXERCICIO 1.6. Awerigue se 7 pertence a vizinhanga de raio 0.04 de 3.1.
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Seja X um subconjunto de R e ¢ um ntumero real. Diz-se que ¢ é um ponto interior de X se

existe pelo menos uma vizinhanga de ¢, V.(c), contida em X, isto é, Je > 0: V.(c) C X.
EXERcicIo 1.7. O mimero 0 ndo € ponto interior do intervalo [0, 1]. Justifique.

Diz-se que ¢ é um ponto exterior de X se for interior do complementar de X, R\ X, o que
equivale a dizer que existe pelo menos uma vizinhanca de ¢, V.(c¢), que nao contém pontos de
X, ouseja, 3e > 0: V()N X = 0.

O ponto ¢ diz-se ponto fronteiro de X se ¢ nao for interior nem exterior de X. Assim, ¢ € R é
ponto fronteiro de X se e s6 se qualquer vizinhanga de ¢, V.(c), contém pontos de X e de R\ X,
isto é, Ve > 0, V.(c) N X # 0 # V.(c) N (R\X).

O ponto ¢ diz-se ponto aderente de X se qualquer vizinhanga de ¢, V.(c¢), contém pontos de X,
ou seja, Ve > 0, V.(c) N X # (. Claramente, todo o ponto que pertenga a X é aderente a X.
Os conjuntos constituidos por pontos com cada uma destas caracteristicas tém designacoes
correspondentes. Assim, o conjunto dos pontos interiores de X C R chama-se interior de X
e representa-se por int(X). O conjunto dos pontos exteriores de X chama-se exterior de X e
representa-se por ext(X). O conjunto dos pontos fronteiros de X denomina-se fronteira de X e
representa-se por fr(X). Por ultimo, o conjunto dos pontos aderentes a X chama-se aderéncia
de X, ou fecho de X, e representa-se por X.

O ponto ¢ € R diz-se ponto de acumula¢ao do conjunto X C R quando qualquer vizinhanga de
¢, V-(¢), contém pelo menos um ponto de X distinto de ¢, ou seja, Ve > 0, V.(c)N(X\{c}) # 0.
Ou seja, quando na vizinhanga de ¢ se retira ¢ ainda restam pontos do conjunto. Naturalmente,
¢ é ponto de acumulacao de X se e sé se qualquer vizinhanga de ¢ contém uma infinidade de

pontos de X.

EXERcicIO 1.8. Serd verdadeira ou falsa a sequinte afirmacdo: “nenhum conjunto finito pode ter

pontos de acumulacao”? Justifique.

Ao conjunto dos pontos de acumulagao de um conjunto X dé-se o nome de derivado de X e

representa-se por X'.
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11 1
EXEMPLO 1.5. Seja X = {1, 373 } Entao X' = {0}.
n

Um ponto ¢ € X que nao é ponto de acumulagao de X diz-se um ponto isolado de X.

EXERCICIO 1.9. Determine em R o interior, a fronteira, o exterior, a aderéncia, o conjunto derivado
e os pontos isolados de cada um dos sequintes conjuntos

(a) X =]0,1] (b) X =1[0,1]

(¢c) X =40, 0.5, 0.75, 1} (d) X =10, +o0].
EXEMPLO 1.6. Determine em R o interior, o exterior, a fronteira, a aderéncia e o derivado do

conjunto A = [0, 1]U]2, 3[U {6, 10}.

Resolugao. Comecamos por procurar os pontos interiores de A.

Seja ¢ €] — 00, 0]. Entao ¢ nao é ponto interior de A porque nao é possivel encontrar pelo menos uma
vizinhanca de ¢ contida em A, isto é, fe > 0: V.(c) C A.

Seja ¢ €]0, 1[. Entao ¢ é ponto interior de A pois, é possivel encontrar uma vizinhanga de ¢, V:(c),
que esteja contida em A. Basta tomar, por exemplo, € = min{3|c|, 3|c — 1|}.

Seja ¢ € [1, 2]. Neste caso, ¢ nao serd ponto interior de A visto ndo ser possivel encontrar pelo menos
uma vizinhanca de ¢ contida em A.

Seja ¢ €]2, 3[. Entao ¢ é ponto interior de A pois, é possivel definir uma vizinhanga de ¢, V:(c),
contida em A. Basta tomar £ = min{3|c — 2|, 3|c — 3|}.

Seja ¢ € [3, +00[. Entao ¢ nao é ponto interior de A porque nao é possivel encontrar uma vizinhanga
de ¢ contida em A.

Logo, int(A4) =]0, 1[U]2, 3[.

Vamos agora determinar os pontos exteriores de A.

Seja ¢ €] — oo, 0. Entao ¢ é ponto exterior de A pois, é possivel definir uma vizinhanca de ¢, V(c),
que nao contenha pontos de A. Para tal, basta tomar, por exemplo, ¢ = %]c]

Seja ¢ = 0. Entdo ¢ ndo é ponto exterior de A pois, qualquer vizinhanga de ¢ contém pontos de A.
Pelo mesmo motivo, também néao sdo pontos exteriores de A: 1, 2, 3, 6, e 10.

Sabemos que pontos interiores, exteriores e fronteiros se excluem mutuamente. Logo, nao necessitamos
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de analisar os intervalos |0, 1] e ]2, 3[.

Seja ¢ €]1, 2[. Entao ¢ é ponto exterior de A pois, é possivel encontrar uma vizinhanca de ¢, V:(c),
que nao contenha pontos de A, isto é, 3¢ > 0 : V-.(¢) N A = (. Basta tomar, por exemplo, ¢ =
min{i|c — 1|, 1c — 2|}.

Seja ¢ €13, +00[\{6, 10}. Entao ¢ é ponto exterior de A pois, é possivel encontrar uma vizinhanga de
¢, V(c), que ndo contenha pontos de A. Tomemos, por exemplo, ¢ = min{3|c— 3|, 2|c—6|, 3|c—10|}.

Logo, ext(A) =] — 00,0[U]1, 2[U]3, +o0[\{6, 10}.

Os pontos fronteiros de A sao 0, 1, 2, 3, 6 e 10. De facto, seja ¢ € {0, 1, 2, 3, 6, 10}. Entéao ¢ é ponto
fronteiro de A pois, qualquer vizinhanca de ¢ contém pontos de A e de R\ A.

Logo, fr(A) = {0, 1, 2, 3, 6, 10}.

Determinemos a aderéncia de A. Sabemos que A = int(A) U fr(A). Logo, A = [0, 1] U[2, 3] U {6, 10}.

De facto, se ¢ € [0, 1] U [2, 3] U {6, 10} qualquer vizinhanca de ¢ contém pontos de A.

Por dltimo, vamos determinar os pontos de acumulacao de A. Procuramos todos os pontos ¢ para
os quais, qualquer vizinhanga de ¢, Ve(c), contém pelo menos um ponto de A distinto de ¢, isto é,

Ve > 0, V-(c) N (A\{c}) # 0. Obtemos assim, A’ = [0, 1] U [2, 3].

1.4.1 CONJUNTOS ABERTOS E FECHADOS

Um conjunto X C R diz-se aberto quando todos os seus pontos sao interiores, isto é, int(X) =
X. Por outras palavras, X é aberto se e s6 se todo o elemento de X possuir uma vizinhancga
contida em X, isto é, se Ve € X,3e > 0 : V.(¢) C X. Podemos interpretar a vizinhanca
V.(c) C X como uma espécie de ‘'margem de seguranga’ de um ponto ¢, dentro da qual ele se
pode movimentar sem correr o risco de sair do conjunto X. Naturalmente, essa margem de
seguranca nao ¢ a mesma para todos os pontos de X.

Um conjunto X C R é fechado se e s6 se todo o ponto aderente de X pertence a X, ou seja,
X =X.

Os conjuntos fechados gozam da seguinte propriedade: um conjunto X C R é fechado se e s6

se o seu complementar R\ X é aberto.
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Os conjuntos R e () sao simultaneamente abertos e fechados.

EXEMPLO 1.7. Seja A =]0, 1{U]2, 5[. Entdo A é um conjunto aberto.

Com efeito, para todo o ¢ € A tem-se ¢ €]0, 1] ou ¢ €]2, 5. Em qualquer dos casos, existe uma
vizinhanca de ¢ contida em A. Basta tomar, por exemplo,

e = i min{|c|, [c — 1, |e—2], |c— 5|}

1.5 EXERCICIOS E COMPLEMENTOS
1. Seja A = {x : 3z = 6}. Indique o valor légico da afirmagao A = 2. Justifique.

2. Seja M = {r, s, t}. Averigue se cada uma das afirmagcoes é verdadeira ou falsa e justifique.

(a)reM (byrc M (c){r}eM (d) {r} Cc M.
3. Explique a diferenca entre ), {0} e {0}.

4. Considere os seguintes conjuntos:

A =1{10,20,30,40}, B ={20,40,80,90}, C = {30,40,50,80}.

(a) Determine:
(i) AUB (ii) AUC (iii)) BUC

(iv) BUB (v) (AuB)UC (vi) AU (BUCQC).
(b) Determine:

1) ANB (i) ANC (iii) BN C

(iv) BN B (v) (AnB)NnC (vi) AN (BNC).

(c¢) Aplicando a defini¢do de diferenga entre dois conjuntos, determine:
(1) A\B (i1) C'\A (iii) B\C

(iv) B\A  (v) B\B.
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d.

10.

11.

Considere os seguintes conjuntos no universo dos niimeros naturais inferiores a 10:
A=1{1,2,3,4}, B ={2,4,6,8}, C =1{3,4,5,6}.
Determine:
(a) A (b) B (c) (ANC)°
(d) (AuB)®  (e) (A9)° () (B\C)".
Represente sob a forma de intervalo os seguintes conjuntos
(a) {reR: 1<z <3} (b){zeR: |z —2| <5}
(c){teR:t>1} (d) {fueR: |u—4] > 6}
(e) {yeR: |y+4| <10} (f) {seR: |s—2| >8}.
Represente cada um dos seguintes conjuntos na recta real
(a){zreR: 2z -5<x+4} (b) {reR: z>-2e2*<9}
(c){teR:(t—5)2<§} () {yeR: Ty+4>2+1)

(e) {r eR: |3z +9| < 15} () {w e R: 2w —12] > 1}.

. Escreva cada um dos intervalos indicados na forma {x € R: |z — ¢| < r} ou

{zeR: |z—¢ <r}

(@) [-1,3]  (B) [3,4v2] (o) (-7, 7+2)  (d) (1= V2 7).

Determine em R, caso existam, o conjunto dos majorantes, o conjunto dos minorantes, o

supremo, o infimo, o maximo e o minimo dos conjuntos

(a) | — o0, 1] (b) {n € N: 2n > 15}.
Escreva sob a forma de conjunto Vy2(3). Represente-o geometricamente.

Determine em R o interior, a aderéncia e o derivado dos seguintes conjuntos.
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(a) A=] -1, 1)\{0} (b)) B={reR: 2? <4}

(c)C={reR:0<|z—3] <5} (d) D={z€eR: 2* >z}

-1
(@) E={zeR: |z —1]> |z} (DF:{xeR:i+3>xiQ}
12. Determine os pontos de acumulacao de cada um dos seguintes conjuntos.
(a) N (b)Ja,b]  (c) R\Q.
13. Determine o conjunto A tal que:
(a) A e A’ sejam disjuntos (b) AC A’ isto é, A C A’ mas A # A’

(c) A/ C A (d) A=A

14. Determine em R o interior, a aderéncia e o derivado do conjunto (R\] — 1, +o0[) N Q.



Capitulo 2

Sucessoes, séries e funcoes reais de
variavel real

2.1 SUCESSOES

Imaginemos que analisamos uma célula que, por mitose, se divide a cada 120 minutos.
Supondo que no inicio da observacao existia apenas uma célula, como ird variar o nimero de
células ao longo do tempo?

Vamos chamar ao instante em que comecamos a observagao, instante ¢ = 0. Para t = 0 existia
apenas uma célula. Apds 120 minutos, a célula divide-se em duas logo, temos duas bactérias
para t = 120. Duas horas depois cada uma das células se divide, resultando em quatro células
para t = 240, e assim sucessivamente.

Obtemos deste modo uma sequéncia de valores da populacao de células correspondendo a

instantes igualmente intervalados,
1, 2, 4, 8 16, 32,

2.1.1 DEFINICOES E GENERALIDADES

Suponhamos que S e T sao dois conjuntos nao-vazios. Uma fun¢do f no conjunto S e com
valores no conjunto 7' é uma regra que associa a cada elemento de S um tnico elemento de T'.
Escrevemos f: S — T e lemos 'f aplica S em T".

O conjunto S denomina-se dominio de f, D, e T' é o conjunto de chegada de f. O contradominio

25
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(ou imagem) de f é o conjunto D = {f(z) : z € S} de todos os valores em T" que a funcio
assume.

Uma sucessao ¢ uma funcao de dominio N e tomando valores no conjunto dos ntiimeros reais,

uv:N — R
n +— u(n).
E usual a notacao u, = u(n) para representar o termo de ordem n. Nao confundir o termo u,,
com a sucessao (uy).
Uma sucessao pode ser definida por uma expressao analitica através da qual podemos encontrar
cada elemento ou termo da sucessao. Tal expressao ¢ designada por termo geral da sucessao.

EXERCICIO 2.1. Escreva os seis primeiros termos da sucessio (uy,) dada pelo termo geral

1+ (=1)™n
e,

Up =

Dizemos que a sucessdo (u,) estd definida por recorréncia, ou recursivamente, se conhecidos os

termos uy, . .., u, da sucessao, o termo u, 1 € expresso em funcao daqueles.
EXERcICIO 2.2. E famosa a denominada sucessio de Fibonacci b definida por:

up =1, ug=1, up=1up—1+ up—2.
FEscreva os dez primeiros termos desta sucessao.

Uma sucessao (u,) diz-se majorada, ou limitada superiormente, se existir um nimero real L tal
que u, < L para todo o n € N. Dizemos que L é um majorante da sucessao (u,).
Analogamente, uma sucessao (u,) é minorada, ou limitada inferiormente, se existir um ntmero
real ¢ tal que ¢ < u,, para todo o n € N. Dizemos que ¢ é um minorante da sucessdo e que (u,,)
é minorada por /.

Se (u,) é majorada e minorada, entao diremos simplesmente que (u,) é limitada. Neste caso,

existe um nimero M > 0 tal que |u,| < M e, diremos que (u,) é limitada por M.

p 2n
EXERCICIO 2.3. Mostre que a sucessao u, = ——— € limitada.
3n + 16

!Consultar, por exemplo, http://www.educ.fc.ul.pt/icm/icm99/icm41 /suc-fib.htm
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Uma sucessao (u,) diz-se crescente quando u; < us < ug < -+ < Uy < Upry < ..., isto é,
quando 1 — u, > 0 para todo n € N.

Analogamente, quando u; > ug > ug > -+ > Uy > Upyy > ..., ou seja, quando U, — U, < 0
para todo n € N, a sucessao (u,) diz-se decrescente.

Se nas relagoes anteriores pudermos usar o sinal de igualdade diremos que se trata de uma
sucessao crescente, ou decrescente, em sentido lato.

Se uma sucessao € crescente ou decrescente, em sentido estrito ou lato, dizemos que é mondtona,

em sentido estrito ou lato.

EXERCICIO 2.4. A sucessio do exercicio 2.1 é minorada, ndo € majorada e ndo é mondtona. Justi-

fique.

EXERCICIO 2.5. Estude a sucessao u, = % quanto a monotonia.

2.1.2 LIMITES DE SUCESSOES

Quando se estuda a evolucao de uma populacao ao longo do tempo, estamos muitas vezes
interessados no seu comportamento a longo prazo. Concretamente, se N; é o tamanho da
populagao no instante ¢, com ¢t = 0,1, 2, ..., pretendemos saber como é que N; se comporta a
medida que ¢ vai aumentando. Podemos traduzir matematicamente esta ideia dizendo 'quando
t tende para infinito’. E somos conduzidos a nocao de limite.

Intuitivamente, dizer que o nimero real a é limite da sucessao (u,,) significa afirmar que, para
valores muito grandes de n, os termos u, tornam-se, e mantém-se, tao proximos de a quanto
se deseje. Com um pouco mais de rigor: estipulando-se um ’erro’ por meio de um numero real
positivo ¢, existe um indice ny tal que todos os termos u,, da sucessao que tém indice n maior
que ng sao valores aproximados de a com erro inferior a .

Chegamos assim a seguinte defini¢do. Diz-se que o nimero real a é limite da sucessao (u,) de
numeros reais, e escreve-se lim,,_, ., u,, = a, quando para qualquer niimero real positivo e, dado

arbitrariamente, for possivel encontrar um nimero natural ngy tal que para todos os indices n
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superiores a ng, a distancia do termo u,, a a é inferior a ¢, isto é,

Ve >0, dngeN:n>ny=|u,—al<e. (2.1)

Observemos que se lim,,_,, 4, = a entdo qualquer vizinhanca V.(a) de centro a e raio € > 0,
contém todos os termos u, da sucessao, com excepcao de no maximo um numero finito de
indices n.

Quando lim,,_,, u, = a diz-se que a sucessao (a,) converge para a e escreve-se G, — a.

Uma sucessao que possui limite diz-se convergente. Caso contrario, diz-se divergente.

1 1 1

EXEMPLO 2.1. Discutamos a convergéncia da sucessio 1, 5, 5, 7, - - -

Seja uy, = % paran =1,2,3,... Os termos u, tornam-se cada vez mais proximos de 0. Vamos provar

que lim wu, = 0.
n—oo

Neste caso, a = 0 e tomemos € é um dado ntimero real positivo arbitrario. Precisamos de mostrar que
é possivel encontrar ng de modo que, para qualquer termo de ordem n > ng tem-se \% - 0] <e, ou
seja, % < €. Que equivale a escrever n > % Assim, se escolhermos para ng 0o maior nimero natural
nao superior a % fica provado o pretendido, isto é, lim,,_oo u, = 0.

Como ilustracao, suponhamos que € = 0.01. Entao, pelo demonstrado atras, basta tomarmos ng = 100.
E, para qualquer termo de ordem superior a 100 a sua distancia a 0 é inferior a 0.01. De facto, assim

é. Suponha-se o termo wu19;. Entao, |W11 — 0] =0.0099 < 0.01, como esperavamos.

, _ . 3+ 5n _ .
EXERCICIO 2.6. Considere a sucessao u, = s’ Mostre, aplicando a defini¢do, que u, — -3
—8n

Entre as sucessoes divergentes, destacamos um tipo que se comporta com certa regularidade, a
saber, aquelas cujos valores se tornam e se mantém arbitrariamente grandes positivamente ou
arbitrariamente grandes negativamente.

Seja (u,) uma sucessdo de nuimeros reais. Diremos que 'u,, tende para +00’, e escreveremos
lim, o u, = 400, quando, para qualquer nimero real A dado arbitrariamente, pudermos
encontrar um nimero natural ng tal que se n > ngy entao u,, > A. Ou seja, para qualquer A > 0
dado, existe apenas um numero finito de indices n tais que u,, < A.

Evidentemente, se lim,, o, u, = +00 entao (a,) ndo é majorada mas é minorada.

Uma propriedade muito til no estudo da convergéncia de uma sucessao ¢ a que nos diz que:
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qualquer sucessdo limitada e mondtona é convergente.

EXERcICIO 2.7. Aplique a propriedade anterior para estudar a convergéncia da sucessao

n%—3n+2

Un = 931

2.1.3 PROPRIEDADES ARITMETICAS DOS LIMITES

Uma sucessao nao pode possuir dois limites distintos, ou seja, se lim,, .o, u,, = a e lim,, .o, U, = b
entao a = b. Referimo-nos a esta propriedade dizendo que existe unicidade de limite.

As propriedades seguintes permitem-nos efectuar o calculo de limites sem a necessidade de
recorrer sistematicamente a definicao.

Se (uy,) e (v,) sdo duas sucessoes convergentes, isto é, lim,, o u, = a, lim, ,o, v, = b, e c € R

é uma constante, entao

(i) lim (u, +v,) = a + b;

n—o0

(ii) lm (c-uy,) =c-q;
n—o0

(iii) lim (uy, -v,) = a - b;
n—o0

(iv) lim In %, se b # 0.

EXERCICIO 2.8. Aplique as propriedades dos limites para determinar

n3+4n —6
im ——————
n—oo  3n3 + 2n

Observe que nao podemos aplicar directamente a propriedade (iv).

Outra propriedade bastante 1til no calculo do limite de uma sucessao ¢é a seguinte:

Sejam (u,) e (v,) duas sucessdes tais que lim,, ,, 1, =0
e (v,) é limitada. Entdo lim,, o (u, - v,) = 0.
nsen(2n)

EXERCICIO 2.9. Determine lim 5
n—oco N4+ 1
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2.2  SERIES DE NUMEROS REAIS
Consideremos (u,) a sucessao definida por
1 1 1 1 1
-2 2 e = 2.9
27 47 8 167 327 oo (2:2)

Construimos agora a sucessao (5,,) a partir da soma dos primeiros termos de (u,),

1
5125

1 1 3
=517

1 1 1 7
=TT
gL, 1 1 1 1
YT o486 16
PRI S S S SR SR
"2 4 8 16 n 2n

Trata-se de uma sucessao obtida a partir de (u,) em que o termo de ordem n resulta da adi¢ao
dos n primeiros termos de (u,,).

Em geral, sendo (u,) uma sucessdo de nitmeros reais, podemos associar a esta uma outra
sucessao de termo geral

Sn:u1+u2+"'+una

a que chamaremos sucessdo das somas parciais de (u,).

Chamamos série a sucessao de pares ordenados (u,, S,), que representamos por

[eS)
E Unp-
n=1

Se a sucessdo (S,) tiver limite em R, isto é, lim, ,o, S, = S, dizemos que a série > - u, é

convergente, e escrevemos

i Uy, = S.
n=1
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Sendo S designado por soma da série.

Se a sucessao (5,,) é divergente, diremos que a série é divergente.

Chama-se natureza de uma série a propriedade que ela tem de ser convergente ou divergente.
A natureza de uma série nao se altera se modificarmos um ntmero finito dos seus termos.

A nocao de série é uma extensao da nocao de adicao a uma infinidade de parcelas.

No quadro seguinte estao indicados os valores das somas dos n primeiros termos da sucessao

(2.2), ou seja, a sucessao das somas parciais de (2.2),

n | Soma dos n primeiros termos
1 0.50000000
2 0.75000000
3 0.87500000
4 0.93750000
5 0.96875000
6 0.98437500
7 0.99218750
10 0.99902344
15 0.99996948
20 0.99999905
25 0.99999997

Podemos verificar que adicionando um cada vez maior nimero de parcelas, o valor das somas
parciais torna-se cada vez mais proximo de 1.

Deste modo, parece razoavel escrever que a soma desta série ¢ igual a 1,
Z L + ST
on 8 16 2n '
n=1
Demonstraremos adiante que, de facto, assim é.

EXERcicIO 2.10. Estude a convergéncia da série Y oo, n.

Por vezes é conveniente considerar séries do tipo Y " u, ou, mais geralmente, Zzozp U, onde
p € um inteiro. As defini¢oes ja dadas, estendem-se facilmente a estes tipos de séries.
Podemos efectuar operacoes envolvendo séries.

Se > 7 jun ey " vy, sdo séries convergentes, entao também o sao as séries » - ¢ u, (onde

¢ é uma constante), > o~ (u, +v,) € > (u, — vy,), € temos
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(1) Zc-un:cZun;

n=1 n=1
(1) S ) = w3
n=1 n=1 n=1

2.2.1 SERIE GEOMETRICA
Consideremos agora a sucessao u, = ar”™ onde a # 0 e r sao ntimeros reais dados,
a, ar, ar® ..., ar", ... (n € Np)

Em particular, trata-se de uma progressao geométrica onde cada termo é obtido do precedente

.1 . ~ . . Un+1
multiplicando-o por um valor constante, designado razdo, isto é, r = ———.
un

Podemos considerar a sucessao das somas parciais de (u,,),

SOZCL
S =a+ar

Sy = a+ ar + ar?

S,=a+ar+ar®+---+ar"

Somos assim conduzidos a um tipo importante de série que se designa por série geométrica

atar+art+-ta o=y a",  a#0. (2.3)
n=0

oo
EXEMPLO 2.2. A série g on € uma série geométrica coma=1er = %
n=0

Vamos estudar a natureza do tipo de séries (2.3).

Procuramos primeiramente uma expressao para S,. Se r # 1, entao temos

S, = a+ar+ar®+---+ar"

rS, = ar +ar® + -+ ar™ + ar"tL.
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Subtraindo membro a membro estas duas equagoes, obtemos

S, —1S, = a—ar"™
a(l —rntt
= 5 = d=)
1—r
Estudamos agora os quatro casos: |r| <1,r=—1,r=1e|r| > 1.

(i) Se —1 < r < 1, sabemos que 7" — 0 quando n — oo, de modo que

. a a . a
lim S, = lim r"*t =

n—00 1—r 1 —7rn-00 1—7“.

Logo, quando |r| < 1 a série geométrica é convergente e a sua soma ¢ igual a 7%

(ii) Se r = —1, (.S,) é uma sucessao cujos termos sao iguais a a para n par e iguais a 0 para

n impar. Esta sucessao nao tem limite e, portanto, a série é divergente.

(iii) Ser =1, entdo S, =a+a+---+a = (n+ 1)a = %00, consoante o sinal de a. Como

lim,, ., S, nao existe, a série geométrica diverge neste caso.

(iv) Para |r| > 1, (r"*!) tende para infinito, (S,) nao converge e a série resulta divergente.

EXERcicIO 2.11. Determine a soma da série geométrica

2.2.2 SERIE DE MENGOLI

Outro tipo de séries sao aquelas que se podem escrever na forma

o0

Z(un — Untk),

n=1

onde k£ é um numero natural fixado, chamadas séries de Mengoli, redutiveis ou telescépicas.
EXEMPLO 2.3. Mostre que a série

= 1

nzl n(n+1)’

— € uma série de Mengoli;

— € convergente e determine a sua soma.
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Calculamos a sucessao das somas parciais de forma a aplicar a definigao de série convergente.

1 1 1 1 1
S = = oo S
" Z;z'(wrl) Tx2 2x3 3x4a " +n(n+1)
Podemos simplificar esta expressao se utilizarmos a decomposicao em fracgoes parciais

1 1 1

i(i+1) ¢ i+1

Logo, encontramos

1
Sn = ;i(i—i—l)

.
_|_ -
n n+1

donde,

lim S, = lim (1— L >:1—O:

n—oo n—o0

Por conseguinte, a série dada é convergente e

o
Znn—|—1

n=1

2.2.3 SERIE DE DIRICHLET

Considerando a sucessao

1 1 1 1
]-7 ) o P ) 5>
9" 16 n?
podemos construir a série
1+1+1+1+ +1+ —001
49 16 n2 =t

Esta série faz parte de um outro tipo de séries designado por séries de Dirichlet.
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Chama-se série de Dirichlet a uma série da forma

em que « é um numero real fixo.
A série (2.4) é divergente se a < 1 e é convergente se a > 1.
A série

o0

> % (2.5)

é um caso particular de (2.4) quando a = 1 e é designada por série harménica.

EXEMPLO 2.4. Vamos mostrar que a série (2.5) € divergente.

E conveniente considerarmos as somas parciais So, Sy, Sg, Sig, 532, ... € mostrar que estes termos
crescem consecutivamente.

Sy = 1+§
Sy = 1+1+<1+1>>1+1+<1+l>:1+2
2 3 4 2 4 4 2
Sy = 1+1+<1+1)+<1+1+1+1>
2 3 4 5 6 7 8
S P O
2 4 4 8 8 &8 8
1 1 1 3
= 1+§+§+§:1+§
S5 = 1+1+<1+1>+<l+ +l>+<l+ +i>
2 3 4 ) 8 9 16
2 4 4 8 8 16 16
U N B S
2 2 2 2

Analogamente encontrariamos

5 6
532>1+§, SG4>1+§,

e, em geral,
n
Son > 1+ —.
2
Mostramos assim que Syn — oo quando n — oo e, portanto, (S,) é divergente. Logo, a série harménica

¢é divergente.
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[e. 9]

1
EXEMPLO 2.5. A série E — € convergente pois trata-se de uma série de Dirichlet com a =2 > 1.
n
n=1

OBSERVAGAO 2.1. Nao € possivel, em geral, determinar uma expressio para as somas parciais
donde se possa deduzir facilmente a natureza da série. Assim, somos levados a estabelecer
propriedades e critérios que permitam determinar a natureza de uma S€rie sem Tecorrer o

cdlculo das somas parciais. Esse estudo estd, no entanto, fora do ambito do nosso programa.
2.3 FUNCOES REAIS DE VARIAVEL REAL

Nesta seccao abordaremos algumas nogoes associadas ao conceito de funcao, a composicao de

funcoes e a fungao inversa e, por ltimo, limite e continuidade de uma funcao.

2.3.1 GENERALIDADES

Ja definimos funcao, na seccao 2.1.1, como um certo tipo de correspondéncia entre dois con-
juntos. Agora, vamos considerar que esses conjuntos sao o conjunto dos nimeros reais. Uma
funcao cujo dominio é um conjunto de nimeros reais diz-se uma funcdo de variavel real. Se o
seu conjunto de chegada é o conjunto dos ntimeros reais entao dizemos que tem valores reais
ou que é uma func3o real.
Definimos o grafico de uma funcao real de variavel real f como o subconjunto de pontos do
plano,

graf(f) = {(z, y) € R : y = f(x)}.
EXERCICIO 2.12. Represente o grdfico da fungdo I tal que I(z) designa o maior inteiro ndao superior
azx.
Daqui em diante, utilizaremos o termo ’'funcao’ para designar 'funcao real de variavel real’
definida em R ou num seu subconjunto.
Se X é um subconjunto do dominio de f, chamamos a funcao = — f(z), z € X, a restricdo de
f a X, e representamo-la por f|x.

Uma funcao P diz-se um polinémio ou fun¢do polinomial se

P(z) = apa" + ap1x" " 4 -+ apr® + a1z + a, an 7 0
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(a) f(z)=a® —a+1 (b) f(z) =2* —32% +x

(c) flx) = 32® — 252 + 60z (d) fz) =1

Figura 2.1: Graficos de algumas fungoes.

onde n é um numero inteiro nao-negativo, chamado grau do polinémio, e os nimeros ag, ay, ..., a,

sao constantes designadas por coeficientes do polinémio.

Se n = 1, obtemos a fun¢do afim f(z) = ax + b; quando n = 2 obtemos a fun¢do quadratica

f(z) = ax® + bz + c.

Outros exemplos de fungées polinomiais estao representadas na figura 2.1(a), (b) e (c).
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Uma fun¢ao racional define-se pelo quociente de duas fungoes polinomiais P e @),

Plz)
Qlz)’

As funcoes representadas na figura 2.1(d) e (e) s@o fungoes racionais.

f(2) = para Q(x) # 0.

Uma fungdo exponencial é uma funcao da forma f(z) = a®, onde a base a é uma constante

positiva. Na figura 2.1(f) estd representado o grifico de f(z) = 2.

Chamamos fun¢do logaritmica a uma fungao da forma f(x) = log, x onde a base b é uma con-

stante positiva. O dominio desta fungao é |0, +o0[ e o contradominio é R.

Na figura 2.2 estao representadas a funcao exponencial e a fun¢ao logaritmica na base e, deno-

tada por In.

In(2z)

Figura 2.2: Funcgoes exponencial e logaritmica de base e.

Uma funcao f diz-se periddica se existe uma constante positiva 6 tal que

[l +0) = [f(x),

para todo o z no dominio de f. Se # é o menor niimero verificando esta propriedade dizemos
que o periodo de f é 6.

As funcoes trigonométricas sao exemplos de funcoes periddicas.

Além das fungoes trigonométricas ji conhecidas — seno, cosseno e tangente (Figura 2.3(a)-

(c)) — existem outras trés fungoes designadas por cossecante, secante e cotangente (Figura
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(a) sen(x) (b) cos(z)
(c) tg(x) (d) cosec(x)
(e) sec(z) (f) cotg(z)

Figura 2.3: Fungoes trigonométricas

2.3(d)-(f)) definidas do seguinte modo,

1 1 cote(x) = 1 cos(x)
sec(z) = cos(z)’ te() tg(z)  sen(x)

cosec(z) = sen(z)

Estas fungoes estao definidas para todo o x real excepto nos pontos onde os denominadores se

podem anular.

Os valores das fungoes trigonométricas do angulo = no circulo trigonométrico unitario (figura
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H
B F
B
P
Do :
v
o c A a

Figura 2.4: Representacao das linhas trigonométricas do angulo x no circulo unitdrio.

2.4) correspondem a medida de segmentos. Assim,

sen(z) = medida de OD
cos(r) = medida de OC
tg(r) = medida de AE
cosec(r) = medida de OH
sec(r) = medida de OG
cotg(r) = medida de BF

Esta representagao torna pratico o estudo do comportamento das fungoes trigonométricas em
cada quadrante através do comprimento dos respectivos segmentos, atendendo a que esses

segmentos se situam sobre as rectas abaixo descriminadas:

seno eixo dos yy

COSSeno eixo dos xx

tangente recta vertical tangente ao circulo em A, intersecgdo com a recta OP
cosecante eixo dos yy, interseccao com a recta tangente ao circulo em P
secante eixo dos xx, interseccao com a recta tangente ao circulo em P

cotangente recta horizontal tangente ao circulo em B, interseccao com a recta OP.

s

Por exemplo, no caso da fungao cossecante vemos que entre 0 e 5 tem valores entre +oo e 1

sendo, por conseguinte, decrescente nesse intervalo. No intervalo [Z, 7| é crescente, variando

929
31
2

entre [1, +00[. Varia entre —oo e —1 em ], 2F]. Por tltimo, no intervalo [3%, 2| terd valores

entre —1 e —o0.
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Seja f : D C R — R uma fungao real definida num dominio D. A fungao f diz-se par se
flz) = f(=x), VeeD,

e diz-se impar se

f(z) =—f(—z), VYxeD.

O grafico de uma fungao par é simétrico em relagao ao eixo das ordenadas e o grafico de uma
fungao fmpar é simétrico relativamente a origem. A fungao cos(x) é par e a funcao sen(x) é

impar.
EXERcicIO 2.13. Averigue se a fungdo f(z) = 325 — 2523 + 60z ¢ par ou impar.

Uma funcao f diz-se crescente numa parte X do seu dominio se, para x, y € X, r < y implica
que f(z) < f(y). Se se verificar que para x < y, entao f(x) > f(y), diremos que f é decrescente
em X.

A funcao f diz-se mondtona em X se é crescente ou decrescente em X.

Os valores de z € X tais que f(z) = 0 s@o designados por zeros da fungao. Graficamente,
correspondem aos pontos onde o grafico da funcao intersecta o eixo do xx. Uma funcao pode

nao ter zeros (por exemplo, f(z) =z + 1).

EXERCICIO 2.14. Faca um estudo das funcgées cossecante, secante e cotangente quanto a dominio,

contradominio, monotonia e zeros.

Diz-se que f é majorada em X se o conjunto f(X) é majorado: isto é, existe um nimero real
L tal que f(z) < L, para todo o x € X. Se f é majorada, f(X) tem um supremo, que se diz
o supremo de f em X, e que se representa por sup f(x). O sup f(z) quando é valor de f num
ponto de X, diz-se 0 maximo de f em X. - -

Dizemos que a fungao f tem um maximo global ou absoluto em ¢ € Dy se f(x) < f(c) para todo
ox € Dy.

Se, dado um ponto ¢ € Dy, existir um € > 0 tal que, para qualquer x €|c — ¢, ¢ +¢[N Dy, se

tem f(x) < f(c), diremos que ¢ é um maximo local ou relativo de f.
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Méximo

f(X)

Minimo

0 X T

Figura 2.5: Maximo e minimo de uma fungao.

Diz-se que f é minorada em X se o conjunto f(X) é minorado, isto é, se existe um numero
real ¢ tal que f(z) > ¢, para todo o x € X. Se f é minorada, f(X) tem um infimo, que se
diz o infimo de f em X e que se representa por l}g)f{ f(z). O m12)f(]‘1(:1€) quando é valor de f num
ponto de X, diz-se o minimo de f em X. Diremos que a fun¢ao f tem um minimo em ¢ € X
se f(x) > f(c) para todo o =z € X.

Dizemos que a funcao f tem um minimo global ou absoluto em ¢ € Dy se f(c) < f(x) para todo
ox € Dy.

Se, dado um ponto ¢ € Dy, existir um € > 0 tal que, para qualquer = € |c — ¢, ¢ + [N Dy, se
tem f(x) < f(c), diremos que ¢ é um minimo local ou relativo de f.

Uma fungdo f diz-se limitada num intervalo se existir uma constante M tal que |f(z)] < M

para todos os pontos x nesse intervalo.

Dadas duas funcgoes é possivel construir uma nova funcao efectuando operacgoes entre elas.
Assim, sejam f e g duas fungoes com dominios Dy e D,, respectivamente, e ¢ uma constante.

Entao, as fungoes cf, f+g, f — g, fge % sao definidas da seguinte forma:

(cf)(x) =cf(z), com dominio D.r= Dy;
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(fxg)(x) = f(x) £ g(x), com dominio D¢y, = DsN Dy;
(fg9)(z) = f(z) g(z), com dominio Dy, = Dy N Dy;
(i) (x) = %, com dominio D§ ={zreDrNDy: g(x)#0}.

g

ExERcicIo 2.15. Dadas as fungées f(x) = \/z e g(x) = V4 — 22, determine as fun¢ées f+g, f — g,

f
fgeg.

Figura 2.6: Gréfico das fungoées seno hiperbdlico, cosseno hiperbdlico e tangente hiperbdlica.

Algumas combinagoes de fungdes exponenciais aparecem com frequéncia em Matematica e vale
a pena atribuir a essas combinagoes nomes especiais e estudéa-las como exemplos de novas
fungoes. Estas combinagoes sdo designadas seno hiperbdlico (senh), cosseno hiperbdlico (cosh),
tangente hiperbdlica (tgh), cossecante hiperbdlica (cosech), secante hiperbdlica (sech) e cotangente

hiperbdlica (cotgh), definidas da seguinte maneira,

xT

senh(z) = S5F=  cosh(z) = “H— tgh(e) = S = S

COS@Ch(l‘) = m SeCh(fE) = Coslll(l‘) COtgh<x> = tghl(x)'
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O termo ’hiperbdlico’ é devido ao facto de que estas funcoes estao relacionadas geometricamente
com a hipérbole de modo analogo ao que as funcoes trigonométricas estao relacionadas com o

circulo.

ExXERcicio 2.16. Deduza as sequintes propriedades das funcoes hiperbdlicas
(a) cosh®(z) — senh?(z) = 1; (b) senh(—z) = —senh(z);

(c¢) cosh(—x) = cosh(x); (d) cosh(z) + senh(z) = e*.
2.3.2 COMPOSICAO DE FUNCOES

Dadas duas fungoes reais f : D CR — R e g: F C R — R tais que g(E) C D, podemos

definir a funcao
fog: ECR—R, (fog)x)=f(g(z)),
denominada fun¢dao composta de f com g. Repare-se que a composigao fog exige que a imagem
g(E) esteja contida no dominio de f,
D, C Dy,
pois, s6 assim podemos garantir que todos os elementos z em E tém imagem (f o g)(x).

X 909 f(a(9)

N S N S

fog

Figura 2.7: Composicao de fungoes: f o g.

EXEMPLO 2.6. Se f(z) =z e g(x) = 2% + 1 determine: (a) fog; (b) go f.

Resolugao (a) Vamos determinar o contradominio de g, Dy, = [1, 4-00], e o dominio de f, Dy = [0, +-o0[.
Como [1, 4+00[C [0, +0o[ podemos definir a composigao f o g.
Assim, (f o g)(x) = f(g(x)) = f(a® +1) = Va® + 1.

b) Determinamos o contradominio de f, D', = [0, +o0o[, ¢ o dominio de g, D, = R. Como [0, +co[C R
f 9
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podemos definir a composicao g o f.

Logo, (g0 f)(x) = g(f(2)) = g(vVa) = (vVa)’ + 1 =2+ 1.

EXEMPLO 2.7. A composi¢io f og com f(x) = /1 —z e g(z) = 2% ndo tem sentido em R, pois,
D = [0,+0o[Z] — o0,1] = Dy. Mas jd poderemos definir a composicio se considerarmos a restricio

de g ao intervalo [0, 1], gljo,1]- Justifique.

2.3.3 INJECTIVIDADE E FUNCAO INVERSA

Seja f : D C R — R uma fungao real tal que, para quaisquer x1, o € D, se x1 # x5 entao
f(x1) # f(xe). A fungao f diz-se injectiva: para cada y € f(D) existe um unico z € D tal que
f(z) = y. Ou seja, objectos distintos tém imagens distintas. Podemos definir a injectividade,
de uma forma equivalente a anterior, dizendo que se f(x1) = f(x3) entdo x; = xs.

Se f é uma funcao injectiva podemos definir uma nova funcao, designada por fun¢do inversa de

f, e representada por f~!, da seguinte forma,
flE=fD)CR—R, [fla)=y (<= fly)=2)

Se a funcao f admite inversa dizemos que f é invertivel.
Geometricamente, se f é uma funcao invertivel, os graficos de f e f~! sdo simétricos em relacao

a recta y = .

EXEMPLO 2.8. Determine a funcdo inversa de f : [0, +oo[— R, f(x) = 2% + 1.

Em primeiro lugar, verificamos que a funcao é injectiva. Para tal, vamos assumir que f(x1) = f(x2)
para provarmos que ri = To:

flz)=f(zs) & 2P+1=23+1 < 2%=2

Aplicando a raiz cibica a ambos os membros obtemos 1 = 2, pois « € [0, +00[, 0 que nos permite
concluir que f tem inversa. Vamos agora determinéa-la.
Primeiro, escrevemos a equacao y = f(x)

Y= 3+ 1.
Seguidamente, resolvemos a equagao para x

P=y-1 o z=3y-1
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0 1 2 x 0 2 4 6 x

(a) flz) =2 +1 (b) fNz) =z -1

Figura 2.8: Grdfico da fungao e da sua inversa (Exemplo 2.8).

O contradominio de f é [1, +oo[ que se torna o dominio de f~!, pelo que escremos

il 40— R, flz)= V-1

2.3.4 TFUNCOES TRIGONOMETRICAS INVERSAS

Como vimos no paragrafo anterior, apenas podemos definir a inversa de uma funcao se ela for
injectiva. Vamos ver agora como poderemos definir as fungoes trigonométricas inversas sabendo
que as fungoes trigonométricas, sendo fungoes peridédicas, nao sao injectivas no seu dominio.
Deste modo, vamos necessitar de considerar a restricao de cada uma dessas fungoes a uma parte
do seu dominio onde seja injectiva.

Consideremos a restricdo da fungao seno ao intervalo [—7,7]. A restricdo da fungao seno a
este intervalo é injectiva. Logo, podemos definir a sua inversa sen' : [-1,1] — [—-%, %]

Designamos esta fun¢do por arco cujo seno é z, que se representa por arcsen(x) (figura 2.9(a)).

EXEMPLO 2.9. Determine arcsen(@).

jus
29

; A — V2 o 6
Procuramos um angulo z € [—3, §] tal que sen(z) = %5*. A resposta é 7.
A restrigdo da funcdo cosseno ao intervalo [0, 7] é injectiva. Podemos entao considerar a sua
inversa cos™' : [-1,1] — [0,7]. Desi funga ' $
: , , 7). gnamos esta fungdo por arco cujo cosseno é x que se

representa por arccos(z) (figura 2.9(b)).

EXEMPLO 2.10. Determine arccos(0).
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% —+ f(z) = arcsen(z)

]
T

-1 1

Figura 2.9: Grdéfico das fungoes: (a) arco-seno; (b) arco-cosseno.

Procuramos um angulo z € [0, 7| tal que cos(x) = 0. A resposta é 7.

EXERcicIO 2.17. Resolva as sequintes equagoes trigonométricas:

(a) 1+ 2sen(3x) = 0; (b) y = cos(1 — 3x).
A funcao tangente tem dominio R\{z € R : x = § 4 k7, k € Z}. Considerando a restricao
, 51, esta nova funcao ¢ injectiva e podemos definir a sua

2
inversa tg~! :] — 0o, +00[—>] — %, Z[. Designamos esta fun¢do por arco cuja tangente é z, que

"""""""""""" [y e B 0,57 -

5 0 5 S 4 3 2 10 1 2 3 4 5
""""""""""" =05 e -0,5m
(a) (b)

Figura 2.10: Graficos das fungées: (a) arco-tangente; (b) arco-cossecante.

EXEMPLO 2.11. Determine arctg(y/3).
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Procuramos um angulo z € ] — 7, 7| tal que tg(z) = V/3. A resposta é g

A fungao cossecante tem dominio R\{k7 : k € Z}. Considerando a restrigao da fun¢ao cosse-
cante ao intervalo [—%, 7] \{0}, esta nova funcdo ¢ injectiva e podemos definir a sua inversa
cosec™! ] —oo, —1J U [1, +oo[— [, Z]\{0}. Designamos esta fungao por arco cuja cossecante

%
é x, que representamos por arccosec(z) (figura 2.10(b)).

A funcao secante tem dominio R\{7 + k7 : k& € Z}. Considerando a restricio da funcao
secante ao intervalo [0, 7] \{%}, esta nova funcdo ¢ injectiva e podemos definir a sua inversa
sec”! :] — o0, —1] U [1, 400[— [0,7] \{5}. Designamos esta fun¢ao por arco cuja secante é z,

que representamos por arcsec(z) (figura 2.11(a)).

""""""""""" [UEF 2 REREE R

T T T T T T T T T
-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 0 5
() (b)

Figura 2.11: Graficos das fungées: (a) arco-secante; (b) arco-cotangente.

A funcdo cotangente tem dominio R\{km : k& € Z}. Considerando a restrigdo da funcao
cotangente ao intervalo |0, 7[, esta nova fungao é injectiva e podemos definir a sua inversa
cotg™! : R —]0, 7[. Designamos esta fungao por arco cuja cotangente é x, que representamos

por arccotg(x) (figura 2.11(b)).
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2.3.5 LIMITE DE UMA FUNCAO

Vamos agora apresentar a definicao formal de limite de uma fungao num ponto. Seja f : D C
R — R uma funcao e a € R um ponto de acumulacao de D.

Dizemos que b € R é o limite de f no ponto a, e escrevemos lim,_,, f(z) = b, se para qualquer
vizinhanga de b, Vs(b), é possivel encontrar uma vizinhanga de a, V.(a), tal que se z distinto
de a pertencer a essa vizinhanga, entao a sua imagem pertencera a Vs(b).

Ou seja, se para qualquer § > 0, existe um € > 0 tal que, se z distinto de a pertence a vizinhanca

de raio € de a, entdao f(z) pertence a vizinhanga de raio § de b,
V6>0 Fe>0 VeeD, 0<|z—a|l<e = |f(z)—0b] <.

Menos formalmente, podemos dizer que podemos obter f(x) arbitrariamente préximo de b para

valores de x suficientemente préximos (mas nao iguais) de a.

0 a—e a a+¢ T

Figura 2.12: Limite de uma funcao num ponto a.

Se lim,_,, f(x) = b € R, entao dizemos que o limite existe e que f(x) converge para b. Se o

limite nao existir, dizemos que f(z) diverge quando = tende para a.

Quando z se aproxima de a apenas por valores inferiores a a, ao limite lim,_,,- f(z) chamamos

limite lateral a esquerda de f no ponto a.
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Quando x se aproxima de a apenas por valores superiores a a, ao limite lim,_,,+ f(z) chamamos

limite lateral a direita de f no ponto a.

Se a € D, podemos concluir que existe lim,_,, f(z) se e 86 se lim f(x) = lim f(z) = f(a).
Tr—a~ T—ra

Y Y Y
f f f
b b b
0 a x 0 a T 0 a T

Figura 2.13: Em qualquer um dos casos lim f(z) = b.

T—a

Podemos caracterizar algumas propriedades operatorias dos limites da seguinte forma. Ad-
mitindo que lim, ., f(z) = b e lim,_,, g(x) = ¢, temos
(a) im(f + ¢)(z) =lim f(z) + limg(z) =b+ ¢
r—a r—a r—a
(b) im(f - g)(x) = lim f(x) X limg(z)=0-c
T—a z—a

lim f(z)
Ol ()= T =0 were

() lim | f(2)] = |lim f(2)] = |y
(¢) lim |f(x)| = 0 = lim f(z) = 0.

EXERCICIO 2.18. Aplicando as propriedades dos limites, determine:

3 +22%2 -1 . 2x
_ (¢) im ———.
r——3+ 2 + 3

. 2 . .
@ e —Ge 0 )1,

Resolucgao da alinea (b)
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lim (23 +22% — 1)

i 34222 -1 _ a2
x—-2 5+ 3x lim (5+ 3x)
r——2
li 34 2(1 21
| Lmp el 2,
5+3 lim =z«
r——2

(-2 +2x (=22 -1
5+3x(-2)

=1

OBSERVAGAO 2.2. Recordemos os sequintes limites:

1 —
(o) lim S0 g () qigg 22008
z—0 T z—0

Sejam X C R, f : X — R e a ponto de acumulacao de X. Diz-se que f tende para +oo
quando z tende para a, e escreve-se lim, ,, = 4+00, quando para qualquer ntimero real positivo
arbitrario L, é possivel encontrar uma vizinhanca de a tal que, qualquer que seja = (diferente
de a) nessa vizinhanga de a, entdo a sua imagem é maior do que L.

Ou seja, se para qualquer L > 0 existe € > 0 tal que se = € Ja—e, a+e[NX\{a} entao f(z) > L,
VL>0 F>0 VeeX 0<|z—al<e = f(z)> L.

Seja X uma parte nao-majorada de R, f : X — R e b um ntimero real. Diz-se que b é o limite
de f(x) quando x tende para +o00, e escreve-se lim,_,, -, = b, quando para qualquer vizinhanca
de b, é possivel encontrar um nimero real x( tal que se x € X é maior do que z(, a sua imagem
estd nessa vizinhanca de b (ver figura 2.1(f)).

Ou seja, lim,_, ., = b, quando para qualquer § > 0, existe um nimero real xy tal que se x € X

e x> xy se tem |f(x) —b| <0,
V6>0 JzgeR VeeX, x>z = |f(x)—b <.

Diz-se ainda que f(z) tende para +oo quando x tende para 400, lim,_, ., f(z) = 400, quando

para qualquer ntimero real positivo L, é possivel encontrar um numero real xy tal que para
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qualquer z > z( a sua imagem ¢é maior que L. Ou seja,
VL>0 dzgeR VeelX, z>zy= f(z)>L.

De forma andloga, definiriamos os limites anteriores considerando —oo em vez de +oc.

EXERCICIO 2.19. Determine limg,_, o 21"”42:%

Resolugao Pela aplicacao directa das propriedades dos limites obtemos uma indeterminagao do tipo
. Entao dividimos o numerador e o denominador pela maior poténcia de x e aplicamos as pro-
priedades dos limites.

2 2 3 5
lim 20" —3r+5 b 22 a3 ot
z5400 x4 —2x +1 xT—+00 2 1
1 5T 3
T T

1\? 1\? n\*
2<lim —) —3<lim —> —|—5<lim —)
T—+00 I T—+00 I T—+00 T

1

EXEMPLO 2.12. A curva logistica descreve a densidade de uma popula¢dao ao longo do tempo, em que
a taxa de crescimento depende do tamanho da populacao.

Neste modelo, a taza de crescimento per capita decresce com o aumento do tamanho da populacao.
Se representarmos por N(t) o tamanho da populagdo no instante t, entdo a curva logistica é dada por

_ K
1+ <ﬁ - 1>e*rt

Os parametros K e r sao nimeros positivos que descrevem a dindamica da populagio e Ny = N(0)
representa o tamanho da populacdo no instante 0, o qual assumimos ser positivo. O grdfico de N estd
representado na figura 2.14.

N(t) , parat>0.

Se estivermos interessados no comportamento da populacdo a longo prazo evoluindo de acordo com o
modelo logistico, precisamos de estudar o que sucede a N(t) quando t — +o00. Verificamos que

K
lim =K

t——+o00 14+ < K 1) et

N(0)
visto que limy_oo e = 0 para r > 0. Isto é, o tamanho da populacdo aproxima-se de K. Este valor

€ designado por capacidade de sustentacdo da populacao.
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Figura 2.14: Grafico da curva logistica com K = 100, Ny =10 er = 1.

2.3.6 ASSIMPTOTAS

Podemos identificar uma assimptota como uma recta relativamente a qual o grafico de uma
funcao se aproxima quando x — a ou x — +00.
Seja f : X C R — R. Diz-se que a recta x = a, paralela ao eixo dos yy passando pela abcissa

a, € uma assimptota vertical ao grafico da fungao f se

lim f(x) =400 ou lim f(z)= +oo.
x—a~ z—at

Diz-se que a recta y = b, paralela ao eixo dos xx passando pela ordenada b, é uma assimptota

horizontal ao grafico da funcao f se verifica algum dos casos

lim f(x)=0b0 ou lim f(x)=0.

T—r—+00 T—r—00
Seja f :]a, +oo[— R. Diz-se que a recta y = mx + b, m # 0, é uma assimptota obliqua ao

grafico de f em 400 se

lim [f(z) — (mz+0)] =0. (2.6)
r—>+00
Analogamente, definimos assimptota obliqua ao grafico de f :] — oo, a[ — R em —oo.

Para provarmos (2.6), definamos w(z) := f(x) — (mx +0b). Se y = max +b é assimptota em +o00

entao, como
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tem-se, passando ao limite,

1@)

m = mglfoo . (2.7)
De (2.6) resulta ainda que
b= lim (f(x)—mz). (2.8)

T—r+400

Reciprocamente, existindo os limites (2.7) e (2.8), a recta max + b é assimptota em +o00, dado

que

lim [f(z) — (mz+0b)] = lim (f(x) —mz)—b=0,

T—>+00 T—r+00
como se pode ver aplicando (2.8). Resultado semelhante se estabelece para a assimptota em
—00.

A figura 2.15 ilustra uma assimptota obliqua em —oo e em +o0.

_1
T

Figura 2.15: Assimptota obliqua da fungao f(z) =xe

EXERCICIO 2.20. Identifique os grdficos apresentados nas figuras 2.16 e 2.17 com as funcoes indi-
cadas. Justifique cada caso.

() hw) =35 B b=  (© @) =4y
@) )= @ B =g () fole) = 2
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Figura 2.17:

2.3.7 FUNCOES CONTINUAS

Seja f: D CR — Rea € D. Dizemos que f é uma fungdo continua no ponto a quando, para

qualquer vizinhanca de f(a), podemos encontrar uma vizinhanga de a, tal que a imagem de

qualquer ponto nessa vizinhanga pertence a vizinhanca de f(a), ou seja,

Vo >0 de>0 VeeD

v —d <z — |f(z) - f(a)] <o,

Se a for um ponto isolado de D, isto é, a € D e a & D', a funcao f é necessariamente continua

em a. Com efeito, tomando um ¢ > 0 tal que V-(a) N D = {a} a condigao |z — a| < e implica

que tera de ser x = a e, obviamente, verifica-se |f(z) — f(a)| =0 < 4.

No caso em que a € D e a € D', dizer que f é continua em a equivale a dizer que lim,_,, f(x)
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f(a).

Uma funcdo f: D C R — R diz-se continua em D (ou apenas continua) se for continua em
todos os pontos de D.

EXEMPLO 2.13. Seja

2 —6zx+5
fay={ ~@=5

4 sex=2>5

se X #5H

Averigue a continuidade da funcgao f.

Resolugao Temos de estudar f em cada ponto ¢ do seu dominio R. Suponhamos, primeiramente, que
¢ # 5. Como o denominador de f nunca se anula quando x esta proximo desse valor de ¢, aplicamos
as propriedades algébricas dos limites para calcular

, > —6c+5
fim @) = ——5— = flo)
Para ¢ = 5, calculamos
. 22 —6x+5 . (z-5)(zr—1) .
m flo) = ——5 — =l ——"5— = lmle-1)=4= /()

Assim, f é continua em ¢ = 5. Como f é continua em cada ponto do seu dominio, concluimos que f

é uma funcao continua.

As fungbes continuas gozam das seguintes propriedades algébricas. Sejam f, g, fungoes continuas
ema € D CR. Entao f+g, f-g,|f| e —f sdo continuas em a. Se g(a) # 0, a funcao / é
g

também continua em a.

EXEMPLO 2.14. Vamos aplicar a sequinte propriedade:

Se f € continua em b e lim,_,, g(x) = b entdo
lim, . f(g(z)) = f(b), ou seja,

lim f(g(z)) = f(ilgbg(x))a

r—a

para calcular o limite

lim arcsen
r—1

1_\/§>.

— X
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Visto a fungao arco-seno ser continua, temos

1 —
lim arcsen ( 1 ) — arcsen

lim >
rz—1 — X =1 1—2x
1 —VE >

(1
(1 a=at e
(15
(3)-

— arcsen

— arcsen

)

m
—11+/z
™
6

Podemos estabelecer a continuidade de uma fungcdo composta da seguinte forma. Consideremos

li
T
1
= arcsen | —
2

as fungoes f : ECR —Reg: D CR — R tais que g(D) C E. Se g é continua em a € D

e f é continua em g(a) € E entdo f o g é continua em a.

EXEMPLO 2.15. Determine onde sao continuas as sequintes fungoes.
2 1

(a) h(z) =" (b) h(z) =sen(7) () h(z) = 1520
Resolucao (a) Se considerarmos g(z) = —z% e f(z) = €%, entdo h(x) = (f o g)(x) estd bem definida.
Como g é uma funcao polinomial, é continua em R, e o seu contradominio é | — co,0]. A funcao f é

continua para todos os valores no contradominio de g (na verdade, é continua em R). Concluimos que

h é continua para todo x € R.

(b) Definamos g(x) = T e f(z) = sen(x). Entao a composigao fog estd definida em R\{0} e h = fog.
A fungao g é continua para todo = # 0. O contradominio de g é R\{0}. A funcado f é continua para

todo o x no contradominio de g. Portanto, h é continua para qualquer z # 0.

(c) Sejam g(z) = Yz e f(x) = 1+2m Entdo h(z) = (fog)(z) para z € R\{—%}. A funcdo g é continua
para todo = € R visto que, g(z) = /z e o radical é impar. O contradominio de g é R. A fungao f é

continua para todo o z real diferente de —3. Como g(—%) = —3, h é continua em R\{—3

2.3.8 TEOREMAS DA CONTINUIDADE

Os teoremas seguintes traduzem resultados importantes verificados pelas funcoes continuas.
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TEOREMA 2.1. Seja D C R. A funcio f : D — R € continua em a € D se e so se

f(zn) — f(a) para qualquer sucessao (x,,) C D tal que x,, — a.

TEOREMA 2.2 (Teorema de Bolzano). Sejam a, b nimeros reais tais que a < b e f : [a,b] — R
uma fun¢ao continua. Entdo, para qualquer & no intervalo fechado de extremidades f(a) e f(b),

existe pelo menos um ¢ € |a, b tal que f(c) =¢&.
O corolario seguinte é particularmente 1til no estudo dos zeros de uma fungao.

COROLARIO 2.1. Sejam a, b nimeros reais tais que a < b e [ : [a,b] — R uma funcao

continua. Se f(a)- f(b) <0 entao existe pelo menos um zero de f em |a,bl.

O teorema seguinte deve-se ao matematico alemao Karl Weierstrass (1815-1897) e garante-nos
a existéncia de maximo e minimo de uma funcao continua definida num intervalo limitado e

fechado.

TEOREMA 2.3 (Teorema de Weierstrass). Toda a fun¢do continua f : D C R — R, num

conjunto limitado e fechado D tem mdzximo e minimo nesse conjunto.

TEOREMA 2.4 (Continuidade da funcao inversa). Seja f uma fun¢do continua e injectiva

definida num intervalo I C R. Entdo f~1 é continua.

2.3.9 APLICACAO DO TEOREMA DE BOLZANO: METODO DA BISSECCAO

Para equagoes da forma f(x) = 0, onde f é uma fungao nao-linear, nao existe, em geral, uma
formula explicita para determinar as raizes da equacgao.

Nestas circunstancias, temos de recorrer a métodos numéricos que nos permitam encontrar
valores aproximados desses zeros com a precisao pretendida. Para ilustrar este procedimento,
vamos apresentar um dos métodos existentes, designado método da bisseccdo. O método da
bissec¢ao consiste em aproximar um zero da func¢ao f, encontrando um intervalo [a, b] tal que
f(a) - f(b) < 0 onde, pelo coroldrio do Teorema de Bolzano, temos a garantia que existe pelo

menos um zero de f nesse intervalo.
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A etapa seguinte consiste em subdividir [a, b] em dois subintervalos [a, c] e [c,b], com 0 mesmo
comprimento. Aplicando novamente o corolario do Teorema de Bolzano descobrimos em qual

dos dois subintervalos se encontra um zero de f. Repetindo sucessivamente o processo de

bisseccao vamo-nos aproximando cada vez mais de um zero da funcao dada.

EXEMPLO 2.16. Determine algumas aprozimacées do zero da fungdo f(x) = x5 — 722 + 3 no intervalo

0, 1].

Intervalo Ponto médio
[0,1] 0.5
[0.5,1] 0.75
[0.5,0.75] 0.625
[0.625,0.75] 0.6875
[0.625,0.6875] 0.65625

Intervalo

Ponto médio

2.4 EXERCICIOS E COMPLEMENTOS

[0.65625, 0.6875]
0.6679688, 0.6699219)]
0.6691284, 0.6691895]
0.6691284, 0.6691303]
0.6691292, 0.6691293]

—_—— — —

0.671875
0.6689453
0.6691589
0.6691294
0.6691292

1. Escreva os termos das sucessoes para n = 0,1, 2, 3.

(a) a, =

1
vn+1

(b) an = (=1)"n

(=n"

(n T 1

(c) an =

(d) a, =n3v/n+1.

2. Escreva os quatro primeiros termos das sucessoes definidas por recorréncia.

(a) ag =1,
(€) ap =2, ans1
(e) ay =1,

Qpi1 = 3y — 2

3. Encontre o termo geral de cada uma das seguintes sucessoes.

(a) 1

11 1

7§7 9757 ga

(c) sen(m), sen(2), sen(3m), sen(4n), sen(57), ...

(d) cos(3), —cos(]), cos(f), —cos(g), cos({5), - -

4. Diga quais das seguintes sucessoes sao limitadas. Justifique.

(a) up, =n+1

1

(c) w, = =

b)ar =1, ap1 =1+ /a,
5
(d)ay =1, apy =ba, — —
Qp,
11 11
b) = - _- =
(b) 2"3 4’5

=
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3n—1 3
5. Mostre, aplicando a definicao, que lim n =-.
n—soodn +5 4

6. Aplique as propriedades do limite de uma sucessao para determinar:

(a) lim (l—i- 1) (b) lim 2n =3 (¢) lim ntl

n—00 \T1 n? n—00 n nooon2 — 1

3

@i [(3)+(3)] @ pm (ViFT-va) @ m (M2 )

7. Calcule o limite ¢ da sucessao u, = # Determine a ordem a partir da qual todos os

termos da sucessao estao a uma distancia de ¢ inferior a 0.01.

8. Determine as trés primeiras somas parciais de cada uma das séries dadas

WYE oYy ©Yc-— @Y

9. Determine a soma das seguintes séries

(a) isn (b) i (%)Z"

n=1

10. Utilize a teoria das séries geométricas para calcular os racionais correspondentes as dizimas

seguintes:

(a) 3.666...  (b) 1.181818. ..

11. Averigue se cada uma das seguintes séries é de Mengoli e, em caso afirmativo, determine

a Sua soma.

> 1 1 =1 - 1
O (i) OXes Ol mogmes

n=1 n=2 n=1

12. Determine o dominio de cada uma das funcoes.

(®) @) = —— ) S0 = 52
OI0=y @I@= i
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13. Escreva a expressao para as fungoes compostas fog e gof, sendo

() fl@) = va+1, gla)=2®—1 (b) fl) =2/T+3, gla)=a+1

T 1 1

Zr1 @ =7 () f(x) = VT T L, gle)= ——.

z—1

(¢) fz) =

14. Verifique que cada uma das fungoes ¢ injectiva nos conjuntos indicados e determine a sua

inversa.
(a) fl@) =2’ -1, R (b) f(z) =2 +1, [0,400)
1
(C) f($) = \/Ea [07 +OO) (d) f(:L‘) = ;7 (07 +OO)'
15. Determine os seguintes limites
cos(x) cos(x)

(a) lim

=2 1 +sen(z)

(c) iy ——3 (d) lim —
ot —1 T
R e 0 m o1
5) _
(g) lim V2 + 3 (h) lim sen(a:)'
x—=4 \Jpr — D — \/5 z—0 tg(gj‘)

(i) 1im< L3 ) (5) Tim &)

z—=0 X
Sol.: (a) 0; (b) oo () & (d) £ (e) 35 (£) 03 (g) 2425 (0) 13 (1) =15 () 1.

16. Determine os seguintes limites

53 — 1 3rt— 2P+ 1
(a)

R E— b) li —_—.
x—1>r-i{loo 4ot + 1 ( ) x—1>1:|—noo x? ($2 + 2)

Jm - (d) xkrjlooe sen(x).

4 1
(f) lim

z——0c0 | + e % '
Sol.: (a) 0; (b) 3; (c) +oo; (d) 0; (e) 4; (f) 0.

17. Estude as funcoes quanto a existéncia de assimptotas.
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x 7o — 1
= b =
@) f@)=—— () f0) = 5515,
/7 Vo +4
© 10 =Y =
18. Seja f : R — R definida por
22 —4
se x # —2
fa)=4 w+2
A se r = —2
Determine A de forma que f seja continua em x = —2.

19. Prove que a fun¢ao f(z) = 2° 4+ 32* — z — 3 tem um zero no intervalo 0, 2[.



Capitulo 3

Calculo diferencial e aplicacoes

3.1 DEFINICOES E GENERALIDADES

Representemos por N (ty) o tamanho da populagao de uma determinada espécie no instante ¢,
em que tq varia de forma continua no intervalo [0, 4+00[. Vamos investigar de que modo varia o
tamanho da populacao durante o intervalo de tempo [to, to+h], onde h > 0. A variagdo absoluta
durante esse intervalo de tempo é a diferenca entre o tamanho da populacao no instante tg+ h

e o tamanho da populagao no instante ty, representada por AN,
AN = N(to+ h) — N(tp).

O simbolo A indica que estamos a considerar uma diferenca. Para obtermos a variacdo relativa
no intervalo de tempo [to, to + h], dividimos AN pelo comprimento do intervalo de tempo,

representado por At, que é (g + h) — to = h. Encontramos

AN _ N(to+At) = N(to) _ Nty +h) — N(ty)

At At h

Esta razao é designada por taxa de crescimento médio.

Geometricamente, podemos verificar que AA—];[ é o declive da recta secante unindo os pontos
(to, N(to)) € (to + h, N(to + h)). A taxa de crescimento médio &5 depende do comprimento
do intervalo de tempo At.

Podemos também verificar (figura 3.10) que, a medida que escolhemos intervalos de tempo cada

vez mais pequenos, as rectas secantes “convergem” para a recta tangente no ponto (to, N(p)).

63
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N(t)

-

0 to to+h t

Figura 3.1: Taxa de crescimento instantaneo no instante t;.

O declive da recta tangente é chamado taxa de crescimento instantaneo e é um modo adequado

de descrever o crescimento de uma populagao que se reproduz de forma continua.

A taxa de crescimento instantaneo define-se como sendo o limite

lim — = lim N{to + 1) — N(to).
At—0 At h—0 h

Representaremos este limite por N'(fy) e chamaremos a esta quantidade a derivada de N no
instante tg.

Vejamos um outro exemplo. Quando consideramos o escoamento do sangue através dum vaso
sanguineo, como uma veia ou artéria, podemos modelar a forma do vaso sanguineo como um

tubo cilindrico de raio R e comprimento ¢ como apresentado na figura 3.2.

ML

Figura 3.2: Taxa de crescimento instantaneo no instante t;.

Devido ao atrito nas paredes do tubo, a velocidade v do sangue é maior ao longo do eixo central
do tubo e diminui a medida que a distancia r ao eixo aumenta, até que se anula na parede do

tubo. A relacao entre v e r é dada pela lei do escoamento laminar decoberta pelo fisico francés
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Jean-Louis-Marie Poiseuille em 1840. Esta lei afirma que

v = 4L7;€(R2 —7r?) (3.1)
onde 7 é a viscosidade do sangue e P ¢é a diferenca de pressao nas extremidades do tubo. Se P
e ¢ sao constantes, entdo v é uma fungao de r com dominio [0, R].

A taxa de variacdo média da velocidade, a medida que nos deslocamos de r = ry para r = ry,
afastando-nos do centro, é

Av_ w(ry) —o(n)

Ar ro — 11
e, se fizermos Ar — 0, obtemos a taxa de variacdo instantanea da velocidade em ordem a r, que

designaremos por gradiente da velocidade:

Av  dv
im — = —.
Ar—0 Ar dr

Aplicando a equacao (3.1), obtemos

@_i(o o) = Pr
dr — 4nl "= 2nl”

Para uma das artérias mais pequenas do corpo humano podemos considerar n = 0.027, R =

0.008 cm, ¢ =2 cm e P = 4000 din/cm?, o que da

4000

- 77 2~ 5 -4 2
0= o opr 5 (0-000064 — %) &~ 0.185 x 10° (0.64 x 107" — 1)

No ponto em que r = 0.002 cm, o sangue escoa-se a velocidade de
v(0.002) ~ 0.185 x 10° (0.64 x 107* — 0.4 x 107°) = 1.11cm/s

e o gradiente da velocidade nesse ponto é

dv 4000 x 0.002

a7 = —74(cm/s)/cm.

0,002 2 x0.027 x 2

Tendo estes dois exemplos como ponto de partida, vamos agora formalizar o conceito matematico
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de derivada. Sejam f : D C R — R uma fun¢ao e a € D um ponto de acumulacao de D.

Dizemos que f ¢é diferencidvel no ponto a se existir e for finito o limite

N GOE0)

r—a Tr — Qa
Tal limite (quando existe) diz-se a derivada de f no ponto a e representa-se por

: - f@) = fla) . flath) = fla)
f'(a) = lim —————= = lim . :

T—a Tr—a h—0

fz) = f(a)
r—a
Se f tem derivada em todos os pontos de D, dizemos que f ¢é diferencidvel em D. Neste caso,

A funcao definida em D\{a} designa-se por razdo incremental.

podemos definir uma fun¢ao f’ em D por

o) — i JE D I @)

h—0 h ’

para x € D. (3.2)

Esta funcao f’ é chamada a funcdo derivada de f, ou a derivada de f, e pode também representar-

d
se por —f ouDf.
dx

EXEMPLO 3.1. Seja f : R — R definida por f(x) = cx + d. Vamos determinar f' aplicando a
definigao (3.2),

. (c(z+h)+d)—(cx+d) . cx+ch+d—cx—d
lim = lim =c.
h—0 h h—0 h

Logo, f'(z) = ¢ para todo z € R.

EXEMPLO 3.2. Seja f : R — R definida por f(z) = x3.
Aplicando a definicdo (3.2), vem
(x+h)3—23 234+ 322h+ 3zh? + RS — 23

. _ T 2 2\
T T h A ek ) =

Logo, f'(z) = 3z? para todo = € R.

EXEMPLO 3.3. Seja f : [0, +00[— R definida por f(x) = \/x. Para todo o a €]0, +00[ e h # 0,

temos
iy Vath va+h—+a — lim h _ 1 1
1m 1m = .
h—0 h h=0 h(va+h++/a) +r=>0/a+h+a 2Va
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Portanto, se a > 0 existe f'(a) = ﬁ Por outro lado, no ponto a = 0, temos

lim F0+h) - f(0) = lim @ i 1

= 1 B
h—0 h h—0 h o Vh'

pelo que ndo existe o limite quando h — 0, ou seja, a fungdo f(x) = \/x ndao possui derivada no ponto

0.
ExERrcicio 3.1. Utilize a defini¢io para determinar a derivada de f(x) = %, para x # 0.

Quando existir e for finito o limite lateral

NCR )

z—at Tr—a

dizemos que f tem derivada lateral a direita no ponto a e o seu valor representa-se por f’'(a™).
Analogamente se define a derivada lateral a esquerda no ponto a que se representa por f'(a™).

Uma fungao diferenciavel num ponto interior de X tem derivadas laterais a direita e a esquerda
nesse ponto e estas sao iguais. No entanto, uma funcao pode ter derivada lateral a esquerda e

a direita no ponto a e nao ser diferenciavel em a.

EXERcIcIO 3.2. Seja f(x) = |z|. Mostre que ndo existe a derivada f'(0).

/ ; \/ﬁ

0 c T 0 c z 0 c x

Figura 3.3: Exemplos de nao-diferenciabilidade num ponto.

A diferenciabilidade é uma propriedade mais forte do que a continuidade. Se uma fungao f
é diferenciavel no ponto a entdao f é continua em a. Contudo, a reciproca nao é valida como

ilustram os exemplos da Figura 3.3.
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INTERPRETACAO GEOMETRICA DA DERIVADA. Sabemos que sendo conhecido o declive m de

uma recta e as coordenadas (g, yo) de um seu ponto podemos escrever a equagao dessa recta,
Y —yo=m(x — o).

Se existe a derivada de uma funcao f num ponto ¢, entao a recta tangente ao grafico de f no

ponto (¢, f(c)) tem declive

e a sua equagao ¢ dada por
y— flc)=f'(c) (z — o). (3.3)

EXERCiCIO 3.3. Determine a equacdo da recta tangente ao grifico da funcio f(x) = x>

no ponto
P=(309).
EXERCICIO 3.4. Awerigue se o grdfico da fungao f definida por

x2 se x < 2

fl) = )

5—% se x> 2

tem uma recta tangente no ponto (2,4).

REGRAS USUAIS DE DERIVAGAO. Vamos apresentar alguns resultados que se revelam muito
uteis para o calculo de derivadas.

Sejam f,g: X C R — R fungoes diferenciaveis em X; entao
[+ g é diferencidvel em X e (f + g)'(z) = f'(z) + ¢'(2);
f - g é diferencidvel em X e (f - g)'(z) = f(x) ¢'(z) + f'(z) g(x);
f™ é diferencidvel em X e tem-se (f")'(x) = nf"1(z)f'(z), neN;

se g(x) # 0, § é ainda diferencidvel em X e <i)/(;¢) — f'(x) g<x;2sz;(37) g’(:c).

g

EXERCICIO 3.5. Determine as derivadas das sequintes fungoes
t2+1
(a) flz) = 227+ 1) (B) g(r) =r(r=1)* (o) p(t) = —3
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DERIVADAS DAS FUNQC)ES TRIGONOMETRICAS.

definem-se da seguinte forma:

As derivadas das fungoes trigonométricas

—sen(x)

(t8(2)) = by = sec2(a)

/!
(COSGC(ZL‘))I - <senl(x)> - _scefr)lz((xa?) - senl(az) ggﬁgg - —COSGC({L‘) COtg([L‘)
/ 1 ! sen(z) 1 sen(z)
(SGC(ZL‘)) - (cos(g:)) = cos?(z) - cos(z) cos(x) = SGC({L‘) tg(l‘)
cos(T ! 7Sen2 xT 7COS2 xT

(COtg(l‘)), = (sengmg) = s(en)Q(m) . = _sen%(x) = —COSGC2(I‘).
() /() /() f'(z)

x 1 cosec(x) —cosec(x) cotg(z)
™ n "l sec(z) sec(z) tg(x)

1 cotg(x) —cosec?(x)
e = s
2 \/E ( ) 1
arcsen(z —_—

1 1 V1 — 2

x x? 1

o7 o7 arccos(z) i

1 1

1 -

n(z) . arctg(x) e

sen(x) cos(z)

cos(x) —sen(x)

tg(z) sec?()

Figura 3.4: Quadro de derivadas

EXERCICIO 3.6. Calcule as derivadas das sequintes funcies

(a) f(x) = cosec(z) cotg(x)

(a) f(x) = sec(x) - tg(x)

_ sec(x)
() fla) = S22

(¢) f(x) = zcotg(x) — cosec(x).
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DERIVADA DA FUNGAO COMPOSTA. Consideremos as fungoes f : D CR — Reg: F C
R — R, tais que g(F) C D. Se g é diferenciavel em ¢y € E e f é diferencidvel em zq = g(ty) €

D, entao fog: E C R — R é diferenciavel em ¢, e tem-se

(fog)(te) = f'(wo) g'(to) = f'(g(to)) ¢'(to)-

A derivada da funcao composta é usual atribuir a designacao de regra da cadeia.

EXERCICIO 3.7. Aplique a regra da cadeia para determinar as derivadas das sequintes funcies

(a) h(z) = <vx2 +14 1)2 (b) h(z) = y/z In(x) (c) h(8) = sen (362 + 1).

DERIVADA DA FUNGAO INVERSA. Seja f uma funcao diferencidvel e injectiva definida num
intervalo I C R. Seja xg € I tal que f’(zy) # 0; entao f~1 é diferencidvel em yo = f(z¢) e

a—t 1
dy (o) = F(z0),

(3.4)

dffl( )= 1
dy T ()

EXEMPLO 3.4. Aplique a regra da derivada da fun¢ao inversa para calcular a derivada de v/z. Calcule

Sendo yo = f(xg) entdao f~1(yo) = xo, donde

a derivada em x = 2.

Resolucao Escrevemos f~1(y) = VY- Esta é a fungao inversa de f(z) = z2.

Como f'(z) = 2z,

df—l( ) 1 1 1

[ y — — —

a T FEW) 2,, 2
d 1 d 1

1 — = —— i —_— = —.

0go, dy\/g 2\/y,ou seja, dmﬁ N

d 1
Quando x = 2, vem @\/5‘1:2 = WE
EXERCICIO 3.8. Considere a funcdo invertivel f(x) = (x° + x + 2)%/2. Calcule (f~1)(32). Observe

que f(1) = 32.

Vimos anteriormente que, se considerarmos a restricao da funcao seno a um intervalo onde seja

injectiva, podemos definir a sua fun¢ao inversa, que designamos por arcsen.

Entao, no intervalo [—7, 7], a fungdo seno ¢é injectiva e temos arcsen : [—1, 1] — [=7, F].
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Vamos agora determinar a derivada desta funcao.

Sendo y = sen(x), x € [-F, 5], vem

W) 1 1
— arcsen(y) = —
dy isen(x) cos(z)

dx

Como z € [~7, 7], cos(x) é sempre positivo, pelo que podemos escrever

d 1 1
o arcsen(y)

Yy :\/1—sen2(x):\/1—y2’

ou seja,
d 1

— arcsen(x) =

dz V1= 22

se —% < arcsen(z) < 7.

Aplicando a regra da derivada da funcao inversa podemos determinar as derivadas das restantes

funcgoes trigonométricas inversas, onde as expressoes tenham sentido.

d 1
o arccos(z) = e se 0 < arccos(z) < m
d 1 i i
e arctg(z) = T2 %73 < arctg(z) < §
1
J . T se — § < arccosec(z) < 0
e arccosec(z) = _W = ]
Y se 0 < arccosec(x) <
1
. g se 0 < arcsec(z) < §
e arcsec(x) = W = !
Y se 5 < arcsec(r) < T
1

. arccotg(z) = se 0 < arccotg(x) < .
x

14 a2
EXERCICIO 3.9. Calcule as derivadas de

(a) y = 2® arcsen(x) (b)y= % (c) y = arcsec(x) arccosec(z).

us
2

DERIVADAS DE ORDEM SUPERIOR. Seja f: X C R — R uma funcao diferencidvel em X.

Se f' é diferencidavel em a € X entao dizemos que f é duas vezes diferencidvel em a.
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d2
A segunda derivada de f em a representa-se por f”(a) ou D?f(a) ou ainda por F@) e vem
x
dada por
!/ /
" — ( £y — f(x)—f(a)
fia) = (f)(a) = lim —————
Mais geralmente, se existem f/, f”,...,f" D em X e f®™1 & derivivel em a, entdo dizemos

que f tem derivada de ordem n em a:

£ () — 1 1) =S @)

r—a Tr— a
OBSERVAGAO 3.1. A funcdo f diz-se de classe C" e escreve-se f € C"(X) se f én vezes diferencidvel

em X e a fun¢io f™ ¢ continua em X.

Exercicio 3.10. Calcule as derivadas de primeira, sequnda e terceira ordem da funcio f(x) =
AgB — T + 225/2.

Solugao:

f(z) = 1222 + 35275 + 523/2; f"(x) = 24w — 210277 + B /z; fO)(z) = 24 + 1470278 + %

Teorema de Taylor. Suponhamos que f € uma fungdo n + 1 vezes diferencidvel e f™+1) ¢
continua em [a, b], e seja xg € [a, b].
Entao, para qualquer x €la, b[, existe um nimero ¢ = c(x) (isto é, o valor de ¢ depende

do de x) entre xy e x, tal que [ se pode escrever como a soma de duas fungoes, P, e R,,

f(x) = Pu(x) + Rn(x)

onde
™ (2o
Po(z) = f(xo) + f'(zo)(x — xo) + %f”(:co)(a: —20)’ + -+ fT(')(:c — x0)"
| 7 )
R,(x) (n+1)!<x x)" .

P, é designado por polindmio de Taylor de grau n e R,, é designado por resto de Lagrange. Deste
teorema decorre o seguinte resultado: Se P, é o polinémio de Taylor dado pelo Teorema de

Taylor entdo P\ (o) = f®(x0) para k =0,1,. ..

EXEMPLO 3.5. Determine o polindmio de Taylor de grau 5 para a fung¢ao f(x) = e *sen(x)

em torno do ponto xy = 0.
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O polinémio de Taylor de quinto grau em trono de z( é dado por:

Pi(ao) = Fao) + (o) w — z0) + 51" (@0)(x — o)’ + 51 /O wo) (& — o)

b D)@ — a0+ 27 o) — o)

Ou seja, para xg = 0,

P(0) = J(0)+ 02+ 37" 0) 2% + o /P(0)
T O L IOF (35)

Calculando as derivadas respectivas, obtemos,

fl(x) = —e "sen(z) + e * cos(x) f(0) =

f'(x) = —2€e" cos(z) f7(0) = -2
fO(z) =2e" cos(x) +2e *sen(z) fP(0) =2
fW(z) = —4e " sen(z) f@0)=0
fO(z) =4eTsen(x) —4e  cos(x) fO(0)=—4

Logo, de (3.5), vem

Na figura 3.5 podemos verificar a representacao de polinémios de Taylor de vérios graus. E
visivel que a medida que o grau do polinémio vai aumentando melhor é a aproximacao a fungao

dada.

ExERcicio 3.11. Escreva o polinémio de Taylor de grau 9 para a funcdo f(x) = sen(x) em torno do

ponto xg = 0.



TEXTO DE APOIO DE MATEMATICA 3. CALCULO DIFERENCIAL E APLICACOES

041 041
v 0.2+ y ():R
o 1 2 s 4 s o 1 2 3 4 5
0.2 0.2
~0j4 4 ~0j4 4
6 - 6 -
(a) f(z) = e *sen(x) (b) Ps(z) = o — 2% + %3
041 041
y 0.2+ y 0.’&
o 1 2 S o 1 2 3 4 5
0.2 0.2
~0j4 4 044
6 6
() Ps(o) =w—a?+5 -5 (@) Po(a) = v —a® + 5
4 2t
30 T 90
0.4 0.4
y 0249 y 0249
o 1 2 3 4 5 o 1 2 3 4 5
0.9 0.9
~0j4 4 ~0j4 4
-0.6 - -0.6 -
(e) P7gx) :7z —z% 4 ””3—3 - f) Pg(ﬁ:C) :7z - 5029 + ””3—3 -
g_o"'g_o_ﬁ g_"'g__ﬁ"'mzf;so
0.4 0.4
o 1 2 3 4 5 o 1 2 3 4 5

0.71 0.71
04 04
-0.6 - -0.6 -
_ 2 z3 h P _ 2 z3
(g) Puo(z) =2 —2° + %5 — (h) Pr(x) =2 —2°+ % —
5 6 7 9 10 5 6 7 9
x x €T €T €T x xT xT €T
30 + 9 630 + 22680 113400 30 1+ 90 11630 + 22680

x T
113400 + 1247400

Figura 3.5: Aproximagao polinomial da fun¢ao f(x) = e~ sen(x) numa vizinhanga de 0.
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3.2 TEOREMAS FUNDAMENTAIS DO CALCULO DIFERENCIAL

Recorda-se que, dizemos que f, uma fun¢do de dominio D, tem um méximo local (ou relativo)
no ponto ¢ € D se existe um € > 0 tal que f(x) < f(c) para qualquer z € D tal que |z —¢| < e.
Se f(z) < f(c) para todo = € D, dizemos que f tem um maximo global (ou absoluto) em ¢ e
que o seu valor ¢ f(c).

Analogamente, diz-se que f tem um minimo local (ou relativo) no ponto ¢ € D se existe um
e > 0 tal que f(z) > f(c) para qualquer x € D tal que |z — ¢| < e.

Se f(x) > f(c) para todo x € D, entao dizemos que f tem um minimo global (ou absoluto) em
¢ e que o seu valor é f(c).

Utilizamos o termo extremo da funcao para designar a existéncia de minimo ou maximo.

)

0 c T

Figura 3.6: Teorema de Fermat.

Teorema de Fermat. Seja f uma funcao definida num intervalo aberto contendo o ponto c e

diferencidavel em c. Se f tem um extremo local em ¢ entdao f'(c) = 0.

Observemos que o teorema de Fermat nao nos permite concluir que se a derivada se anular num
ponto esse ponto sera um extremo da funcao mas apenas que esse ponto serd um candidato a

extremo.

Teorema de Rolle. Seja f : [a, b] — R uma fungdo continua no intervalo limitado e fechado
la, b] e diferencidvel em ]a,b[. Se f(a) = f(b), entdo existe pelo menos um ponto c € |a, b[ tal

que f'(c) = 0.
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fa) = f(b)

0] a c b T

Figura 3.7: Teorema de Rolle.

Geometricamente, a existéncia de ¢ € |a, b] tal que f’(c) = 0 significa que a tangente ao grafico
de f no ponto (¢, f(c)) é uma recta horizontal.

Assim, dada uma funcdo f :Ja,b[— R diferencidvel, entre dois zeros consecutivos de f’, nao
pode haver mais que um zero de f. Com efeito, se a e b forem dois zeros consecutivos de f’
e existirem « e f tais que a < a < f < be f(a) = f() = 0 pelo teorema de Rolle existiria

¢ €]a, B] tal que f'(¢) =0, o que contraria a hipdtese de a e b serem zeros consecutivos de f’.

EXEMPLO 3.6. Seja f : [—-1, 1] — R, f(z) = |z|. Temos que f é continua em [—1, 1], f(—1) = f(1),

mas nao existe ¢ €] — 1, 1 tal que f'(c) = 0. O motivo é que f ndo tem derivada no ponto 0.

EXERcicIO 3.12. Mostre que a funcio f(x) = 1 — 22 satisfaz as condigdes do Teorema de Rolle no

intervalo [—1, 1]. Determine um ponto ¢ onde f'(c) = 0.

ExERcicio 3.13. Averigue se pode aplicar o Teorema de Rolle & funcdo f(x) = sec(x) no intervalo

[0, 27].

Teorema de Lagrange. Se a < b, f continua em |a,b] e diferencidvel em |a, b| existe ¢ € ]a, b|

tal que
o = LO=10)

_ f)—f@
b—a

Geometricamente, a existéncia de ¢ € ]a, b[ tal que f'(c) significa a existéncia de pelo
menos um ponto (¢, f(c)) sobre o grafico de f onde a tangente é paralela a recta definida pelos

pontos (a, f(a)) e (b, f(b)), pois os declives destas rectas sdo iguais.
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EXERcicIO 3.14. Determine o wvalor intermédio ¢ do Teorema de Lagrange para a funcdo f(x) =

x — 22 no intervalo [—1, 2]

COROLARIO 3.1. Seja f : [a,b] — R uma fun¢do continua em [a,b] e com derivada em |a,b[.

Se f'(x) =0, para qualquer x € ]a,b| entao f é constante.

O]

f(a) |~

0| a c b T

Figura 3.8: Interpretacao geométrica do Teorema de Lagrange.

COROLARIO 3.2. Seja f : [a,b] — R uma fun¢do continua em [a,b] e com derivada em |a,b[.
Entao [ é crescente em I se e sé se f'(x) > 0 para qualquer x € la,b| e, f é decrescente em I
se e s0 se f'(x) <0 para qualquer x € ]a, b|.

Caso consideremos as desigualdades no sentido estrito diremos, de forma correspondente, que

f € estritamente crescente ou decrescente.

Teorema do valor médio de Cauchy. Se a < b, f e g continuas em [a,b] e diferencidveis

em |a,b[ com ¢'(x) #0 em ]a,b|, entdo existe ¢ €a,b| tal que

O teorema do valor médio de Cauchy generaliza o teorema de Lagrange e reduz-se a este quando
g(x) = z. Observe-se ainda que o enunciado do teorema estd bem definido, isto é, g(b) # g(a);
com efeito, se g(b) = g(a), pelo teorema de Rolle existiria um ponto & € |a, b[ com ¢'({) =0 o

que contraria a hipotese.
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EXERCICIO 3.15. Determine um valor ¢ que intervenha no Teorema de Cauchy aplicado as fungoes

f(x) =sen(x) e g(x) = cos(x), no intervalo [§, 5.
3.3 DERIVAGAO IMPLICITA

A equacdo x? + y? = 4 representa uma circunferéncia de raio 2 e centrada na origem. Sabemos
que em cada ponto da curva existe uma recta tangente. Contudo, nao podemos determinar
a equagao da recta tangente usando (3.3) visto que a circunferéncia nao é o grafico de uma
funcao.

Y

ARy
C

Figura 3.9: Circunferéncia definida por x? + y* = 4.

Uma forma de resolver este problema seria considerar duas fungbes f(x) = V4 — 22 e f(x) =
—v4 — 22 e entdo aplicar (3.3).

No entanto, podemos utilizar uma abordagem mais simples quando temos uma equacao em que
y nao é dado explicitamente em funcao de z. Este método designa-se por derivacdo implicita e
evita a necessidade de obter uma expressao para y em funcao de z.

Se f(z,y) = C é uma dada equagdo e se P = (xy,yp) verifica esta equagao, entdo podemos
determinar % } p se existir. Para tal, consideraremos y como sendo uma fungao de z diferenciavel
num intervalo aberto centrado em xy. Diremos que neste caso, derivamos f implicitamente em
ordem a x.

Para que possamos aplicar o método da derivacao implicita precisamos de garantir, por um



TEXTO DE APOIO DE MATEMATICA 3. CALCULO DIFERENCIAL E APLICACOES 79

lado, que y é funcao de x numa vizinhanca de xy e, por outro lado, que y é diferenciavel em xg.

EXEMPLO 3.7. Apligue o método de derivacdao implicita para determinar os declives das rectas tan-

gentes a curva x> 4+ y% = 4 nos pontos (1,v/3) e (V/2,—v/2).

Aplicando % a ambos os membros da equacao, e considerando y como uma funcao de z, obtemos

d, o o d dy dy dy x
=—4) & 2 N—2 =0 Yy—2L = 2 & <L = —— 0.

dx(x ) d:n( ) T Yia Yia * dx y sey 7

Agora basta-nos determinar o declive da recta tangente & curva no ponto (1,v/3). Assim,

1

dy z‘ 1
yl,v3) V3

dzla,vE
Analogamente, determinamos o declive da recta tangente & curva no ponto (\/_ , —\/5)

dy _ z‘ 9
del(vz—va)  ylva-va)

EXERcicIO 3.16. Em cada uma das alineas sequintes, utilize o método da derivacdo implicita para

d
caleular 2 no ponto P.

dr
(a) zy? +y2? =6, P = (1,2); (b) 23/° 4435 =12, P=(32,1); (c) a* —y* =15, P =(1,2).

3.4 DERIVACAO LOGARITMICA

Podemos recorrer a derivada da funcao logaritmica para calcularmos a derivada de uma deter-

minada fungao f, onde f’ existir e f(z) # 0, sabendo que

_ f)
f(x)

A derivada do logaritmo de f é chamada derivada logaritmica de f e o processo de derivar

d
2 n(lf(@)]) (3.6)

In(|f(x)|) é chamado de derivagdo logaritmica. De (3.6) concluimos que

() = 7)) (3.7

Como o segundo membro de (3.6) indica, a derivada logaritmica de f mede a taxa de variacao
relativa de f. Tal quantidade fornece muitas vezes uma informacao mais util que a propria

derivada f’ e é usada frequentemente em Biologia, Medicina e Economia.
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A utilidade da derivada logaritmica no célculo reside nas propriedades algébricas do logaritmo
permitindo simplificar produtos e quocientes complicados antes de efectuar a derivagao.
Além disso, a derivacao logaritmica pode ser um instrumento eficaz para lidar com expressoes

em que quer a base quer o expoente variam.

EXEMPLO 3.8. Determine a derivada da fungao f(x) = z* em ]0, +o0].

Calculando primeiramente % In(|f(x)]),

L (1)) = () +1,
basta em seguida utilizar (3.7) de forma a obtermos

f(@) = & (In(x) + 1).

EXERcicIO 3.17. Determine a derivada da funcdo f(x) = i3 =2

3.5 DIFERENCIAIS E APROXIMACAO DE FUNCOES

AT

0 a a+Ax T

Figura 3.10: Se Az é pequeno, dy é uma boa aproximacao de Ay.

Podemos interpretar a equacao

f'(a) = lim

dizendo que
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onde Az é pequeno e diferente de zero. A escolha de um valor razoavelmente pequeno para
Ax permite-nos, muitas vezes obter uma boa aproximacao. Com uma pequena manipulacao

algébrica, a aproximagao de f’(a) pode ser transformada numa aproximacao de f(a + Ax),
fla+ Ax) = f(a) + f'(a) Az. (3.8)

Podemos interpretar a equagao (3.8) do seguinte modo: se conhecermos os valores de f(a) e
f'(a), podemos estimar o valor de f(xy) num ponto préximo xy = a+Ax. Por vezes, abreviamos

fla+ Az) — f(a) para Af(a). Com esta notagdo a aproximagao (3.8) escreve-se
Af(a) = f'(a) Az. (3.9)

Este método de aproximacao ¢ designado por método dos incrementos.

EXEMPLO 3.9. Use a aproxzimagao (3.8) para obter uma estimativa para v/4.1.

Sendo f(z) = \/z, entdo f'(x) L Escolhamos a =4 ¢ Az = 4.1 —a = 0.1. De acordo com (3.8)

PN
fla+ Ax) = f(a) + f'(a) Ax = Va + 2—\1/5 Az.
Logo,
VIT~ VI 4+~ 0.1 = 2.025.
2V4

Efectuando o calculo numa calculadora obtemos 2.02484567, o que nos permite concluir que a aproxi-

macio encontrada tem um erro relativo de 0.8 x 1074

A precisao que podemos obter com o método dos incrementos depende grandemente do tamanho
do incremento Az; em geral, quanto mais pequeno o valor de Az mais eficaz se torna o método.
A equagao (3.9) diz-nos que uma pequena variagao de a por uma quantidade Az provoca uma
variagdo em f que pode ser estimada por f’(a) Az. A medida que Az se torna mais pequeno,
a estimativa torna-se cada vez mais precisa. Assim, quando Az se torna “infinitesimal”, a

estimativa (3.9) transforma-se numa igualdade.
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Representando o incremento infinitesimal em = por dx e a variagao infinitesimal em f por df,

a aproximagao (3.9) pode escrever-se
dy = f'(x)dx. (3.10)

Podemos pensar em (3.10) como uma outra forma de escrever a aproximagao (3.9). Na verdade,

a aproximagcao (3.9) é referida, por vezes, como aproxima¢do diferencial.

EXERcicIO 3.18. Aplique o método dos incrementos para estimar o valor da fungdo f no ponto x
usando o valor conhecido no ponto inicial a. Compare o resultado obtido com o valor obtido com uma
calculadora.

(a) f(z) =sen(x) — cos(z), a =

(c) f(z) =tg(x), a= T, 0.8.

i ) fla) =@+ DB a=02=1;

7'1":

N
el

3.6 DIFERENCIAGAO NUMERICA (OPCIONAL)

As regras de derivacao ja estudadas permitem-nos derivar fungoes extremamente complexas. A
aplicagao destas regras pode ser, contudo, bastante trabalhosa.

Além disso, mesmo quando usamos uma regra de derivacao para obtermos o calculo exacto de
uma derivada poderemos ter de aproximar constantes como, por exemplo, v/2 e 7 se aparecerem
na resposta.

E, pois, conveniente dispor de um método para aproximar o valor numérico de f’(c).

Tal procedimento é conhecido como diferenciagdo numérica.

Suponhamos que f é uma fungao definida num intervalo ]a, b] e diferenciavel em ¢ €]a, b].

Como

) — tim L0 = S @)

h—0 h

fla+h) = f(a)
h

)

podemos aproximar f’(a) pela razao incremental para um valor pequeno de h.

Quando h > 0 e a esta fixado, a razao

fla+h) - f(a)
h

D+f<CL, h’) =
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é designada por diferenca finita progressiva. A diferenca finita regressiva define-se por

fla) — fla—h)
- :

D_f(a,h) =

Definimos a diferenca finita centrada por

flath) —fla—%)

D.f(a,h) = .

Qualquer uma das trés diferencas finitas pode ser usada para aproximar f’(a). Contudo, para
um valor de h fixado, a diferenga finita centrada dd, normalmente, a melhor aproximagao para

a derivada.

3.7 APLICAGAO DAS DERIVADAS AO CALCULO DOS LIMITES NAS INDETER-
MINAGOES DO TIPO § E &

Suponha-se que pretendemos calcular o limite

lim £ (3.11)

za g(x)
Se existem os limites lim,_,, f(x) e lim,_,, g(z) e ndo sdo simultaneamente nulos, entao o limite
(3.11) é de resolucao imediata.
Vamos ver agora como é que poderemos determinar limites do tipo de (3.11) quando lim,_,, f(z) =
lim, ., g(x) = 0 ou, lim, ., f(z) = lim,_,, g(x) = co. Nestes casos, quando os limites do nume-
0

rador e do denominador sao calculados separadamente, o quociente toma a forma g ou 2. Tais

0

formas sao designadas por indeterminagdes pois os simbolos g

e 2 nao tem significado. O limite

pode efectivamente existir e ser finito ou pode nao existir. Nao podemos, por conseguinte,

analisar o limite tomando apenas os limites do numerador e do denominador e efectuando o

seu quociente.

A partir do teorema do valor médio de Cauchy pode demonstrar-se a seguinte regra que é muito
f(z) 0

usada no calculo do limite de um quociente o) quando assume a forma g ou 2.

Regra de Cauchy. Seja I um intervalo qualquer de R e a é ponto de acumulacdao de I;sejam
f,9 : I\{a} — R fungdes diferencidveis e admita-se que g'(x) # 0, x € I\{a}. Suponha-se

agora que
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lim, ,, f(z) =lim, ,,g(x) =0 ou lim,,,g(x) = +o0

~

(=)

e, lim,_., 70 existe.
Entao, lim,_,, % existe, e tem-se
/
lim _f(:p) = lim /(=)

T—a g(:p) T—a g’(:p) '

Note-se que a pode pertencer ou nao a [; neste ultimo caso, a serd um extremo do intervalo,

podendo ser 00 ou —o0.

ExEMPLO 3.10. Calcule os sequintes limites:
l 1
n(zr) (b) lim _r . (c) lim sen(3z) (d) lim

a—122 -1’ a—0 x — sen(x)’ a—0 sen(2x)’ a7 (x —m)?

1+ cos(x)

)

As indeterminacoes do tipo 0 X oo ou +00 — 0o reduzem-se a indeterminagoes do tipo % ou %,

utilizando as igualdades

@) = gla) = 1) o) (=25 = 777

0 s30 conver-

As indeterminacoes envolvendo expoente, nomeadamente as do tipos, 0%, 1°° e oo
tidas em indeterminacoes da forma 0 x oo aplicando a composicao das fungoes exponencial e

logaritmica. logaritmo.

EXERCICIO 3.19. Determine os sequintes limites
. z. . § r . 1)z
@ Jim o (0) Jim (142)5 () Jim o
Regra de ’Hopital. Sejam f,g: D C R — R, fungoes diferencidveis em a € D; suponha-se
que, nalguma vizinhanga de a, g(x) # 0, © € (V.(a)\{a}) N D.

Se f(a) = g(a) =0 e ¢'(a) £ 0, entio lim,_,, L2 eziste e tem-se
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A regra de 'Hopital é valida se ¢'(a) = 0 e f'(a) # 0, o limite de % neste caso € infinito. A

regra ¢ ainda valida se uma das derivadas f’(a) ou ¢’(a) (mas ndo ambas) é infinita, com as
convengoes habituais 3= = oo e % =0,keR.
Esta regra requer apenas a existéncia de derivadas no ponto de indeterminacao.

Importa realcar a importancia de averiguar se as hipéteses sao verificadas.

EXEMPLO 3.11. Calcule o limite: lim sen(z)
z—0 \3/5

Nao podemos aplicar aqui a Regra de I’'Hopital porque +/x nao é diferencidvel na origem. Aplicando
a Regra de Cauchy resulta

lim —Sefj(x) = lim Cosl(””) —0,
z—0 \/5 xz—0 ﬁ

devido a existéncia do segundo limite.

3.8 ESTUDO DE UMA FUNCAO E SUA REPRESENTACAO GRAFICA

PONTOS CRiTICOS. E importante observar que muitas das fungoes que encontramos na pratica
nao sao diferenciaveis em todos os pontos do seu dominio. Por exemplo, f(z) = |z| ndo é
diferenciavel em z = 0, mas tem de facto um minimo global nesse ponto. Assim, a pesquisa
por pontos extremos deverda tomar em linha de conta os pontos de nao-diferenciabilidade.
Seja ¢ um ponto de um intervalo aberto onde f é continua. Diremos que ¢ é um ponto critico
de f se uma das duas seguintes condicoes se verificar

(a) f nao é diferencidvel em ¢, ou

(b) f é diferenciavel em c e f'(c) = 0.

EXERCICIO 3.20. Determine os pontos criticos da fungdo f(x) = 2® — 32% — 24z + 32.

MONOTONIA. Dizemos que f é crescente num ponto ¢ se existe uma vizinhanca de ¢ onde f
é crescente. Analogamente, dizemos que f é decrescente num ponto ¢ se existe uma vizinhanca
de c onde f é decrescente.

Como a taxa de variacao de uma funcao num ponto ¢ é dada pela derivada da funcao nesse

ponto, a derivada é naturalmente uma boa ferramenta para determinarmos os intervalos onde
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uma fungao diferenciavel é crescente ou decrescente. Como sabemos, a derivada de uma funcao
da-nos informacao, quer sobre o declive da recta tangente ao grafico da funcao nesse ponto,
quer sobre a taxa de variacao da func¢ao nesse ponto.

Na verdade, num ponto onde a derivada é positiva, o declive da recta tangente ao grafico é
positivo e a fungao é crescente. Num ponto onde a derivada é negativa, o declive é negativo e
a funcao é decrescente.

Para encontrarmos os intervalos onde a fungao é crescente ou decrescente:

— determinamos todos os valores de ¢ para os quais f'(c) = 0 ou f é descontinua, e definimos
os intervalos |a, c[, |¢, b para a e b préximos de c;

— seleccionamos um ponto d em cada um dos intervalos definidos anteriormente e determinamos
o sinal de f’(d): (a) se f’(d) > 0, f é crescente nesse intervalo; (b) se f'(d) < 0, f é decrescente

nesse intervalo.

EXERcicIO 3.21. Determine os intervalos de monotonia da fungao f(z) = 23 — 322 — 24x + 32.

CONCAVIDADE. Seja f uma funcao diferenciavel cujo dominio contém um intervalo aberto 1.
Se f'(z) (o declive da recta tangente ao grafico em x) aumenta quando z se desloca da esquerda
para a direita em [, diremos que o grafico de f tem a concavidade virada para cima.
Se f'(z) diminui quando = se desloca da esquerda para a direita em I, diremos que o grafico
de f tem a concavidade virada para baixo.
Uma aplicacao importante da derivada de segunda ordem é permitir identificar o sentido da
concavidade de uma funcao.
Suponhamos que a funcao f é duas vezes diferenciavel num intervalo aberto I.

Se f"(z) > 0 para todo = € I, entao o grafico de f tem a concavidade para cima.

Se f"(z) < 0 para todo = € I, entao o grafico de f tem a concavidade para baixo.

EXERCicIO 3.22. Averigue o sentido da concavidade da funcdo f(z) = x3 — 322 — 24x + 32.

Seja f uma fungao continua definida num intervalo aberto I. Se o grafico de f muda o sentido

da concavidade num ponto a € I, diremos que a é um ponto de inflexdo.
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Para determinarmos os pontos de inflexao de uma fungao continua f num intervalo aberto I:

— localizamos todos os pontos de I nos quais f” = 0 ou f” nao esta definida;

— em cada um destes pontos, averiguamos se f” muda de sinal.

EXERcicIO 3.23. Analise a fungio f(x) = x—(x—1)> em termos de sentido da concavidade e pontos

de inflexdo.
Sinais de f" e f” | Propriedades do gréfico de f Forma geral do gréfico de f
f'>0e f">0 | f crescente, concavidade para cima
f'>0e f” <0 | f crescente, concavidade para baixo /
f'<0e f”>0 | f decrescente, concavidade para cima \
f'<0e f"<0 | f decrescente, concavidade para baixo IS

EXTREMOS. Para determinarmos os extremos de uma funcao continua f num intervalo fechado
[a, b], deveremos pesquisar os pontos criticos e as extremidades a e b.
Seja f uma funcao duas vezes diferencidvel num intervalo aberto contendo um ponto ¢, no qual
f'(¢c) = 0. Sendo o dominio de f um intervalo aberto, entdao os pontos criticos de f sdo os
unicos candidatos a extremos locais de f.

—Se f'(¢)=0e f"(c) > 0, entao f(c) é um minimo local.

—Se f'(¢)=0e f"(c) <0, entdo f(c) é um méximo local.

—Se f'(¢) =0e f"(c) =0, o teste é inconclusivo.
Como ilustragao do facto de a segunda derivada se anular no ponto critico nao nos permitir
retirar conclusoes sobre a natureza do extremo, observemos que tanto a primeira como a segunda
derivadas se anulam na origem para cada uma das funcoes f(z) = 2*, g(z) = —2* e h(z) = 23

(figura 3.11). No entanto, a primeira tem um minimo, a segunda tem um méximo e a terceira

nao tem minimo nem maximo em z = 0.

EXEMPLO 3.12. Determine os extremos relativos da funcio f(x) = z3 — 322 — 24z + 32.

Sendo f uma funcao diferencidvel, os pontos criticos de f obtém-se resolvendo a equacao f'(z) = 0,
ou seja, 3z — 6x — 24 = 0, donde retiramos x = —2 ou x = 4. Como f"(-2) = —6 <0, f(—2) =60 é

um méaximo local, e, visto que f”(4) =6 > 0, f(4) = —48 é um minimo local.
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1,0

Figura 3.11: Em qualquer dos casos, as derivadas de primeira e segunda ordem anulam-se na
origem.

REPRESENTACAO GRAFICA DE UMA FUNCAO. A capacidade de tracar e compreender graficos

é utilizada em todas as ciéncias fisicas, bioldgicas assim como nas ciéncias sociais.

EXEMPLO 3.13. Um estudo de Borchert' investigou a relacio entre o armazenamento de dgua no
tronco e a densidade da madeira numa quantidade de espécies de darvores na Costa Rica. O estudo
mostrou que o armazenamento de dgua estd inversamente relacionado com a densidade da madeira,
isto €, maior densidade da madeira corresponde a um menor conteido de dgua. Esboce um grdfico do

conteudo de dgua como uma funcdo da densidade da madeira que ilustre esta situacdo.

Mesmo possuindo uma calculadora gréafica ou software adequado a representagao grafica de
funcoes num computador, justifica-se plenamente o estudo que faremos nesta seccao, pois o
melhor caminho para aprender a interpretar um grafico é aprender a traca-lo. Por outro lado,
a representacao grafica de uma funcao pode nao permitir tirar correctamente conclusoes sobre
a funcao, como pode ser verificado pelas representacoes de uma mesma funcao apresentados na
figura 3.12.

Vimos nas seccoes anteriores que certos aspectos do gréafico de uma fungao f podem ser deter-
minados a partir das primeira e segunda derivadas. Vimos também que os graficos das funcoes
podem possuir assimptotas. Combinando estas varias informagoes podemos aplica-las para

tracar graficos de fungoes.

'Borchert R. (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest
trees, Fcology, 75, 1437-1449.
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400

200+

-200

Figura 3.12: Representacoes graficas da funcao f(x) = v — (x — 1)3.

Os passos seguintes podem ser seguidos para tracar graficos de uma extensa quantidade de

funcoes:

1.

. Identificar todos os méximos e minimos locais e 0s

Determinar o dominio e (se possivel) o con-
tradominio da funcao;

Determinar todas as assimptotas;

Calcular a derivada de primeira ordem e encontrar
os pontos criticos da fungao; 201

Determinar os intervalos onde a funcao é crescente
ou decrescente;

Calcular a derivada de segunda ordem e determi-
nar os intervalos onde a fun¢ao tem a concavidade
virada para cima ou virada para baixo;

pontos de inflexao;

Tragar estes pontos assim como os pontos de in-
terseccao com os eixos (se existirem). Tragar as
assimptotas;

. Unir os pontos, atendendo ao sentido da concavi-

dade, extremos locais e assimptotas.

EXEMPLO 3.14. Trace o grifico da fungao f(z) 3t

= @
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Vamos seguir os passos atras indicados.

1. O dominio de f é R\{2}. Para z préximo do ponto 2, f(x) toma valores positivos arbitrariamente

grandes, pois,
. 5% . 5x n
im — = lim —— = +oc.
2= (x —2)2 a5t (z—2)2

2. Observamos que,

. ST . 5z
llm —_— = hm —_——
r—+00 (1‘ — 2)2 z—+oo 12 — dx + 2

= lim f(2).

T—r—00

Por conseguinte, a recta y = 0 é uma assimptota horizontal do grafico. Além disso, a recta
x = 2 é uma assimptota vertical para f.

. Calculamos f’,

;o Bb(@—2)2 =5z x2(x—2) —5(x+2)
fix) = (z — 2)4 T (w—23

A derivada de primeira ordem estd definida em todos os pontos do dominio de f. Como f’ se
anula para r = —2 este é o uinico ponto critico.

. A derivada de primeira ordem pode mudar de sinal apenas em z = —2 (ponto critico) e z = 2
(ponto onde f nao estd definida).
Como f/(-3) = —% < 0, concluimos que f < 0 em | — co, —2[; entao, f é decrescente neste
intervalo.

Como f'(0) = % > 0, concluimos que f' > 0 em | — 2, 2[; entdo, f é crescente neste intervalo.

Por ultimo, como f/(3) = —25 < 0, concluimos que f/ < 0 em ]2, +oo[; entao, f é decrescente
neste intervalo.

. A derivada de segunda ordem é

(z—2)*-(=5) — (=5(z + 2)) (3(z — 2)?)
(z —2)

() =

_ 10(xz +4)
-2

Observemos que o denominador é sempre positivo no dominio de f.Vemos que f” < 0 no
intervalo | — 0o, —4[ pois o numerador é negativo. Logo, f tem a concavidade virada para baixo
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nesse intervalo. Também, f” > 0 quando x > —4 (excepto em x = 2 onde f, f’ e f” nao estao
definidas). Portanto, f tem a concavidade virada para cima em cada um dos intervalos | — 4, 2]
e |2, +ool.

6. Como f”(—2) = & > 0, existe um minimo local no ponto critico z = —2.

Do passo anterior, sabemos que o sentido da concavidade muda em x = —4. Por conseguinte, f
tem um ponto de inflexdo em z = —4.

O sentido da concavidade ndo varia em = = 2.

7. A interseccao com o eixo dos yy é (0, f(0)) = (0, 0). Como xz = 0 é a tnica solugao de f(x) =0,
o ponto (0, 0) é também o ponto de intersec¢ao com o eixo dos zz.

8. Podemos concluir da informagao obtida sobre a func¢ao que f tem um minimo global em x = —2
e que nao tem maximo global.

50

flz) = 423 + 2%

EXERcicIO 3.24. Faga um estudo da funcdio f(x) = 423 + x*.

3.9 APLICACOES

Nesta seccao iremos estudar alguns exemplos de aplicacao do calculo diferencial.

APLICAGAO 1. A altura atingida por um foguete ¢ segundos apds o lancamento é dada pela
fungdo h(t) = —%t?’ +16t% + 33t + 10. Entre que instantes estd o foguete a subir? E quando inicia

a queda?
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Determinamos em que instante o foguete atinge a altura maxima calculando A'(t) = 0, ou seja,

o instante em que a velocidade se anula,
H(t)=0& —t*+32t+33=0&t=—1out=33.

Logo, o foguete estda em ascensao entre os instantes 0 e 33, iniciando entao a queda.

APLICAGAO 2. O nivel de diéxido de nitrogénio (gas nocivo para a respiracdo) presente na at-

mosfera num dia de Maio na baixa de Los Angeles é aproximado por
A(t) = 0033t —7)" +602  (0<t<T),

onde A(t) é medido em Indice Padrdo de Poluente e ¢ é medido em horas, com ¢ = 0 correspondendo
as 7 horas da manha. Em que altura do dia aumenta a poluicdo do ar e em que altura diminui?

Calculando A’(t) = 0 encontramos os pontos criticos de A,

A(t) =04 0092t — ) +0.1263(t = 7)* = 0 & 3(t — 7)%(0.21¢ — 0.63) = 0

S t=0out=3o0out=".

Estudando a monotonia, verificamos que A é crescente entre 0 e 3, e decrescente entre 3 e 7.
Concluimos pois, que o indice de poluicao vai aumentando entre as 7 e as 10 horas da manha

diminuindo depois entre as 10 e as 14 horas.

APLICAGAO 3. Quando s3o despejados residuos organicos numa lagoa, o processo de oxidacdo
que se desencadeia reduz a quantidade de oxigénio presente na dgua. Contudo, passado algum
tempo, a Natureza restaura o conteido de oxigénio para o seu nivel natural.

Supondo que a quantidade de oxigénio na lagoa t dias apds terem sido despejados residuos organicos
é dado por

), t € [0, +oo]

porcento do seu nivel normal,
(a) deduza uma expressdo que dé a taxa de variagdo do nivel de oxigénio na lagoa num instante ¢

arbitrario;
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(b) Qudo répida é a variacdo da quantidade de oxigénio na lagoa um dia apds os residuos terem
sido despejados? E apds trés dias?

(a) A taxa de variacao do nivel de oxigénio na lagoa num instante arbitrario ¢ é dado pela
derivada da funcao,

(2t —4)(t>+4) — (> — 4t +4)2t 100 A2 —16 400 (2 — 4)
(12 + 4)? - (12 + 4)2 - (t2 + 4)2

£(t) = 100

(b) A taxa a qual a quantidade de oxigénio presente na lagoa estd a variar um dia apés o

despejo de residuos é dado por

400 (1 —4)

f0) = g = 8

isto é, estd a decrescer a razao de 48% por dia. Dois dias depois a taxa é

o A00(4—4)
f(%—m— :

ou seja, nao aumenta nem diminui. Trés dias depois

400(3% — 4)

F®) =gy - 118

ou seja, a taxa de oxigénio aumenta a razao de 11.83% por dia, e o processo de restauragao

niciou-se.

APLICAGAO 4. O nimero de pulsacdes por minuto de um atleta de longas distancias ¢ segundos

apds a partida é dado por

3004/ 512 4 2t + 25
P(t) = (t>0).

- t+425

Determine P’. Qual a taxa de variagdo da pulsacdo do atleta 10 segundos apds a partida? E 60

segundos apds a partida? Qual a pulsagcdo apds 2 minutos de corrida?
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A derivada de P é

/
(/52 +2t+25) (t+25) = (12 + 2t 4 25
P'(t) = 300
(t) (t +25)2
(t+2)(¢t +25) — 2 (3¢ + 2t + 25)

(t+25)%\ /362 + 2t + 25

3450t

(t+25)2/5t2 + 2t + 25

Calculando P’(10) obtemos a taxa de variagdo da pulsacao do atleta 10 segundos apés a partida

= 150

P'(10) ~ 2.9 pulsacoes/min?

e passados 2 minutos a taxa de variacdo da pulsacio é P'(120) ~ 0.2 pulsacoes/min?.

A pulsacao apds 2 minutos de corrida é P(120) ~ 179 pulsagoes.

APLICAGAO 5. Quando alguém tosse, a traqueia contrai-se permitindo que o ar seja expelido a
uma velocidade maxima. Pode mostrar-se que, durante o tossir, a velocidade v do fluxo de ar é
dada pela fungao
v(r) = kr*(R —r)

onde 7 € o raio da traqueia (em centimetros) durante o tossir, R é o raio normal da traqueia (em
centimetros), e k é uma constante positiva que depende do comprimento da traqueia. Determine o
raio r para o qual o fluxo de ar é maximo.

Para determinarmos o méaximo absoluto de f em |0, R] determinamos em primeiro lugar os

pontos criticos de f em ]0, R[. Calculamos,
V' (r) = 2kr(R—1r) — kr? = =3kr® 4+ 2kRr = kr(—3r + 2R)

Fazendo v'(r) = 0, obtemos r = 0 ou r = %R; donde r = %R ¢ o0 unico ponto critico de wv.

Determinando o valor de v nas extremidades do intervalo e em r = %R, encontramos

2 4k

v(0)=0, v (53) = 2—733, v(r) =0,

donde concluimos que a velocidade do fluxo de ar é maxima quando o raio da traqueia contraida

é %R, isto é, quando a traqueia é contraida de aproximadamente 33%.
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3.10 EXERCICIOS E COMPLEMENTOS

1. Escreva a equacao da recta tangente ao grafico de cada uma das func¢oes no ponto dado.

() Fl) = 2% P=(1,2)  (b) fl) =2 P=(1,3)  (¢) flx) = VF, P=(4,2)

Sol: (a) y=4z—2; (b) y=—-32+6; (c) y=1a+1.

2. O declive da recta normal (ou perpendicular) ao gréfico da fungao f num ponto (xg, yo) é

__1
f'(zo) "

funcoes no ponto indicado.
(a) f(x) =4a® = 32?, x9=—1 (b) f(z) = V3a* —2v322, x9=—3
(c) f(z) = —e?x? —ex, x5 =0.

Sol.: (a) y = 2sen(z) tg?(z)sen(z); (b) y = 5z + 22 V/3; (c) y = L x.

dado por m = Determine a equacao de recta normal ao grafico de cada uma das

3. Determine as derivadas das funcoes indicadas.

(a) h(t) = 5t* — 3t + 2 (b) flz) = =@

-2 cos(x)

(c) f(x) = a?sen(§) +tg(F)  (d) f(s) = s’ + 3e.
Sol.: (a) t — 3; (b) 2sen(z) + tg?(x)sen(z); (c) V3z; (d) 3s%e3.

4. Calcule a derivada de

N

g(N) = rN@a—N)(1- )

em ordem a N sendo r, a e K constantes positivas. (Obs.: Trata-se de aplicar a generali-

zacao da derivada do produto para trés fungoes.)

Sol.: r <a—2N (1—{—%) + 3%2).

5. Assumindo que f é diferencidvel, determine uma expressao para a derivada de y.

@y=2e/) (B)y=-57@) -2 () y= S

Sol.: (a) % =2 f(x)+2x f'(x); (b) L = —52? (3 f(x) +x f'(x)) —2; () % = LHDLEI2e/@)

U

6. Assumindo que f e g sao fungoes diferenciaveis, determine

(o) LT g () j;g:?), g(x) £ 0,
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10.

11.

. Aplique a regra da cadeia para determinar .

. f@)+g'(x) . f'(@) g(2)=2 f(z) g'(x)
Sol.: (a) NI (b) 5 .

Determine as derivadas das seguintes funcoes

23 T — si/3 —
@) f@) = S ) J) = VG -5 () () = S

B 2 —1
1+vVa2+1

‘ (15231222 —2+10) 1..3/2 2 . 1 .
Sol.: (a) (51.27214»1)2 ’ (b) 537 / (9'I - 25)7 (C) _3(\3/54—1)282/3’
(d)

z(Va?+1+2) :(e) — 92 . (f) 2
Va1 (1+Va 1) Va1 (t—3)*" (2-422)%/%"

© 5= () (f) f(x) = VZ— A

(@) f(z) —

dx

@) y=(WV1-2242)°" Oy=00+B2-13)° ()y= (ng)

2z (V1—2242)

Sol.: (a) — N

(b) 16207 (272° +1); () — st

af

. Aplique as derivadas das funcoes trigonométricas para determinar <~ sendo:

dx

_sen(2t) +1 (©) flz) =

(a) f(z) = y/sen(222 — 1) (b) flz) = (e sec(x? — 1)

cosec(z? 4 1)
cosec(3 — z?)
1 —a?

(d) f(x) =sen(2x — 1) cos(3z+1) (e) f(z) = secT (f) f(x) =
x

Apresente os resultados envolvendo apenas as fungoes seno e coseno.

) 2x cos(? x2—1) . 2 cos(2t) 6 (sen(2t)+1)sen(61¢) .
Sol: (2) Veen(222-1) ’ B) Sw-1 T~ e
(C) 2x (sen(a}Q—l) sen(m2+1)+cos(ar2+1) COS(l‘Q—l)) .

(cos(z2—1))? !
(d) 2 cos(2x—1)cos(3x +1) —3sen (22 — 1)sen (3z + 1);
(e) _ sen((x-‘,—l)*l) . ( ) 2z (cos(x2—3)x2—cos(ar2—3)+sen(x2—3))‘
(m+1)2(cos((x+1)_1))2 ’ (flJr(Cos(1273))2)(:1:271)2

Aplique a regra de derivacio da funcio logarftmica para determinar < sendo:

(a) f(z) = 2* In(z?) (b) f(@) =In(1+2?)  (¢) f(x) =In 1 fi

(d) f(z) =" In(x) + n(3)  (e) f(z) = In(In(z)) (f) f(z) = In(l +e77)

2x 2 o
1 _HCQ; (c) 1— 22 (d) e® In(z) + < (e) xli(x); (f) _ew1+1'

Sol.: (a) 3z (2In(x) 4+ 1); (b)

Determine a derivada de cada uma das seguintes funcoes
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(a) f(x) = (Inz?)*  (b) f(x) =In

4 In(x? —x2 cos(3x
Sol.: (a) :,E ); (b) x(11+$2)? (c) 6sen(:(%3a:))'

12. Determine as derivadas de primeira e segunda ordem.
(a) f() = (@2 =3 (b) f(s) =VE 1 () fla) =a* — &.
Sol.: (a) 10z (z* — 3)4; 30 322 —1) (22 — 3)3;
3

3vs . 3(sP42) («°+1)  6(«°=2)
(b)4\/s3/2—1’ 16 (3/2-1)%2 /5 © =%~

13. Averigue se a fungdao f dada é invertivel no conjunto indicado e, em caso afirmativo,

. . . —_1\/
determine a derivada da sua inversa, (f~1)".

Sol.: (a) 2z — 1.

14. Seja f(x) = o+ ¢, x € R. Determine %(1). (Observe que f(0) = 1.)

15. Determine Z—Z aplicando derivagao implicita.

() y=a*+ay (day-y*=1 (c) Jay=2"+1.

. dy _ 2x+
Sol.: (a) 3¢ = 72,
16. Determine % no ponto (1, ¥3) da curva de equagio y* = 22 — 2* (Figura 3.13).

Figura 3.13: Lemniscata de Bernoulli

17. Aplique a derivagao logaritmica para determinar as derivadas das fungoes seguintes

() f@) =3 0) f@) = (1+ver (@ f@)=4" (@) fla)=

Sol: (a) 3%In(3); (b) (1++/e)"In(1+v/e); (c) 2272 zIn (2); (d) (2)"In(2) + ()" In (%).
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18. Utilize o método dos incrementos para encontrar uma estimativa da expressao.
1
a) sen(0.02 b) V/8.152 c
@) sen(002)  (0) VIR (0) s
Sol.: (a) 0.02; (b) 4.05; (c) 0.1152.
19. Determine os intervalos de monotonia da funcao f(z) =z + =.
20. Determine os extremos de f(z) = Jz* —2? + 1.
Sol.: f tem minimos locais em —1 e 1 e tem um méximo local na origem.
21. Aplique o teorema de Fermat para localizar todos os candidatos a extremos das fungoes:
(a) f(x) = 22 — 24x + 36 (b) f(x) =2 — In(x)
Sol.: (a) 6; (b) 1.
22. Determine um valor de ¢ cuja existéncia é garantida pelo teorema de Lagrange aplicado
a funcao f no intervalo I indicado.
x
:L‘ —
23. Mostre que a equacio z° — 322 + 4x — 1 = 0 tem exactamente uma raiz real.
24. Aplique as regras adequadas para determinar os seguintes limites
1 1) -1 1 In(1+ 2
(a) lim 0en@) gy, cosle 1) ) 1im <20 () g 2O
e (1 — 2x)2 eo—123 422 —x —1 211 — /T z——oo  sen()
Sol.: (a) —3%; (b) %5 (c) 2; (d) 1.
25. Faga o estudo da fungao —%; e esboce o seu gréfico.
26. O numero de bactérias N(t) numa determinada cultura ¢ minutos apés a introdugao

experimental de um bactericida obedece a seguinte regra

10000
N(t) = ——
®) 1+ ¢2

Determine a taxa de variacao do ntmero de bactérias na cultura 1 e 2 minutos apds a

+ 2000.

introducao do bactericida. Qual a populacao de bactérias na cultura 1 minuto apds a

aplicagao do bactericida? E 2 minutos depois?



Capitulo 4

Calculo integral e aplicacoes

4.1 PRIMITIVAS

Um fisico conhecendo a velocidade de uma particula pode querer saber a sua posicao. Um
engenheiro medindo a taxa de escoamento da agua de um tanque pode querer determinar a
quantidade escoada apds um certo intervalo de tempo. Um bidlogo que sabe a taxa a qual uma
populacao de bactérias aumenta pode querer deduzir o tamanho da populagao num instante
futuro. Em todos estes casos, o problema consiste em determinar uma funcao F' cuja derivada
¢ uma funcao conhecida f.

Seja f uma funcao definida num intervalo aberto I. Se F' é uma funcgao diferenciavel tal que
F'(z) = f(x), para todo = € I, entdo diz-se que F' é uma primitiva de f em I.

E possivel que f tenha mais do que uma primitiva. Na verdade, se F' tem derivada f e se C' é

uma constante arbitraria, entdo (F' + C)" também é igual a f,
(F+O)=F+C =F =,

pois a derivada de uma constante é 0. Assim, todas as primitivas de f diferem de F' por uma

constante.

EXEMPLO 4.1. Se for f(x) = cos(x), entao F(x) = sen(z) € uma primitiva de f (em qualquer
intervalo) porque (sen(z))" = cos(z). Uma outra primitiva da fun¢io f é a fungao G(x) = sen(z) + 3.

Naturalmente, qualquer fun¢ao H(x) = sen(x) + C, com C constante, é também primitiva de f.

Temos as duas seguintes propriedades da primitivagao. Se f e g sdao primitivaveis em I, f + g

é primitivavel em I e obtém-se uma primitiva de f + g somando uma primitiva de f com uma

99
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primitiva de g,
P(f +9)(x) = (Pf)(z) + (Pg)(x), Vrel (4.1)

Por outro lado, se f é primitivavel em I e k é uma constante, kf é primitivavel em [ e, tem-se
P(kf)(z) =k (Pf)(z), Vxel. (4.2)

Em geral, se f1,..., f, sao n fungoes primitivaveis em [ e kq,...,k, s@o n constantes, entao

qualquer combinacao linear ki fi + - - - + k,, f,, é primitivavel em [ e, tem-se

P(klfl +oeet k:nfn)(x) =k (Pfl)(x) +oot kn (an)(l‘)

Representamos a coleccao de todas as primitivas de f por

/ f(x) de.

Esta expressao é designada por integral indefinido de f e escrevemos

/f(:c)da::F(:c)+C

onde C' é uma constante arbitraria, designada por constante de integragao.

As propriedades (4.1) e (4.2) reescrevem-se como

/(f(x)+g(x))dx:/f(x) dx+/g(x) do (4.1.0)
/ (kf(2)) de = k / f(x) d. (4.2.2)

Designamos por primitivas imediatas aquelas que resultam directamente ou através de trans-
formacoes algébricas, da inversao de uma féormula de derivacao.

Na pagina seguinte indicamos uma tabela com algumas dessas primitivas.

EXEMPLO 4.2. Resolugao de alguns integrais indefinidos:

(a) /(21‘ +3)dz = /21‘ dx + /3dx, aplicando a propriedade (4.1)

=2 / rdr+ 3 / dz, aplicando a propriedade (4.2)

=22+32+C, CeR.
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e’ 1 .
(b)/gdx—g/e dx

1
=—-e"4+C, CeR

5
(©) / Tledx:arctg(x)—kC, CeRr.
(d)/%@:/(%ﬂ) dx

1
= / ——dx —i—/ dx, aplicando a propriedade (4.1)
cos?(x)

:/seCQ(x)dw—i-/dx

=tg(x)+z+C, CEeR.
EXEMPLO 4.3. Toda a funcdo polinomial f(x) = ag + arx + asx? + - - + a,x™ é primitivivel em R e
as suas primitivas sdo os polindmios da forma

y(w)zaox+%x2+%x +---+na—Lx"+1+C.

EXERCICIO 4.1. Determine uma primitiva de f(z) = 527 — 2* + 423 + 922 — 62 + 5.

N pott cos(z)
z*, ae€R\{-1} ] +C ~sen?(z) cosec(z) + C
1
1 In(|z]) + C sen(x)
- (|]) cos2 (1) sec(z) +C
e’ e +C 1
— t
- A ) O
In(a) 1 (0) 1 C
— arcsen(x) +
sen(x) —cos(z) +C V1-—a?
R arccos(x) + C
cos(x) sen(z) + C V1— 22
1
sec?(z) tg(z) +C 1+ 22 arctg(z) + C
EXEMPLO 4.4. Determine fmdx
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1 [ sen®(z) + cos?(x) .
/sen2(ac) cos?(x) de _/ sen?(x) cos?(x) d

-/ <co$<x> * sen1<x>> o

1 1
= / M dx + / M dz, aplicando a propriedade (4.1)

= tg(z) —cotg(z) + C, C eR.
EXEMPLO 4.5. Em cada ponto de uma curva y = f(z), sabemos que y" = x> — 1. Escreva a fun¢do
f, sabendo que o seu grifico passa pelo ponto (1,1) e € tangente a recta x + 12y = 13, nesse ponto.
Sendo f”(x) = 22 — 1, por primitivacio obtemos f’(z) = %3 —2+C,C€R. Logo, f'(1)=—-2+Cé
o valor do declive da recta tangente ao gréafico de f no ponto de abcissa 1.

Visto que pretendemos que a tangente no ponto (1,1) seja a recta x + 12y = 13, nesse ponto o declive

da recta terd de ser igual a f’(1), ou seja,

1 13
12y =13 & 12y=— 13 < = —— —
T+ 12y Y T+ Y 12:6 + 12
o declive é igual a —% donde
2 1
20 =_— C=—_
3 * 12 < 12
Assim, a funcdo derivada é
o)=L ot
T)=g —Tt o
que primitivando, da
4 2
T x 7
=— —— 4+ = R.
f(x) 53 + 123:4—0, Ce
A constante C, atendendo a que o ponto (1, 1) pertence ao gréfico, isto é, f(1) =1, é dada por,
1 1 7 5)
— s+ 4C=1 =2,
12 2 * 12 +¢ e ¢ 6

Portanto, a funcao pretendida é definida por

4 2
7 5 1
J@)=5 -5 +1e+s  on  f@) =15 @' —6 + T4 10).

4.1.1 PRIMITIVACAO POR PARTES

Na maior parte dos casos, as fungoes para as quais pretendemos determinar uma primitiva nao

admitem uma primitiva imediata. Assim, somos obrigados a recorrer a métodos adequados
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ao tipo de funcao. O primeiro método que vamos estudar designa-se primitivacao por partes
e baseia-se no resultado seguinte. Se u e v sdo fungoes diferenciaveis em I, o produto u'v é

primitivavel em I se e s6 se o produto uv’ o for, e tem-se

P(u'v) = uv — P(w'). (4.3)

De facto, se u e v sdo fungoes diferenciaveis, (uv) = w'v+wuv’. Primitivando ambos os membros,

obtemos uv = P(u'v) + P(uv’) donde retiramos (4.3). Vejamos alguns exemplos.

EXEMPLO 4.6. Determine P(x sen(z)).
Escolhendo v = sen(x) e v = x, teremos u = — cos(x) e v/ = 1; logo,

P(zsen(z)) = —z cos(z) — P(— cos(z)) = —x cos(x) + sen(x).

EXEMPLO 4.7. Determine P(In(x)).
Neste caso, utilizamos o seguinte artificio

P(In(z)) = P(1 x In(x))
e, fazendo v/ = 1 e v = In(z), tem-se

V=1 — u==x

v=In(z) — v =7

Portanto, P(In(x)) = zIn(x) — z, em I =] 0, +o0|.

No exemplo seguinte vamos obter uma formula de recorréncia que permite calcular a primitiva
de cos™(z), para n > 2. De forma anédloga podemos encontrar uma expressao para a primitiva

da poténcia de grau n de sen(x) (Exercicio 4.2).

EXEMPLO 4.8. Determine P(cos™(z)) paran € N en > 2.
Temos que

P(cos™(x)) = P(cos™ *(z) - cos(z))

v u’

= sen(z) - cos" ! (z) + P((n — 1) cos" ?(x) - sen2(az)).
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Fazendo, u' = cos(x) u = sen(x)

N
vem v=cos" 1(z) — v =(n—-1)cos" ?(z)(—sen(z))
(x)) + (n— 1) P(cos" ?(z) (1 — cos*(x)))
& P(cos™(z)) = sen(z) cos + (n — 1) P(cos™ %(z)) — (n — 1) P(cos™(z))
& P(cos™(z)) + (n — 1) P(cos™(z)) = sen(z) cos™ L(z) + (n — 1) P(cos™ ?(x))

& nP(cos™(x)) = sen(z) cos" () 4+ (n — 1) P(cos™ %(z))

e, resolvendo esta equagdo em ordem a P(cos™(x)), obtemos

P(cos"(x)) = %Sen(az) cos" H(z) + -

n—1

P(cos" 2(z)), em I =R.

Em particular, considerando n = 2, vem

P(cos*(x)) = %sen(:n) cos(z) + %P(l) = isen(Qx) + g

EXERCiCIO 4.2. Determine P(sen™(z)) paran € N en > 2.

EXEMPLO 4.9. Determine fxe% dzx.

! 2x 2x

Fazendo, u' =e — u:%e
L,

v=2 — v =
vem,

1 1
/we%dx :§€2$1‘—/§€2xd.%'

2
1 1
:ixezv 1621
1
== (2r—1)e*

4.1.2 PRIMITIVACAO POR SUBSTITUIGAO

Se a funcdo a primitivar puder ser escrita na forma f(g(z)) ¢’(z), podemos aplicar um outro
método designado por método de primitivacdo por substituicdo. Observemos que se, I’ = f,

entao

/ F(g(x)) ¢ (x) d = Flg(x)) + C (4.4)
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pois, pela regra da cadeia,

d

T Flg(x)) = F'(9(x)) g ().

Fazendo a mudanga de varidvel ou substituicdo u = g(z), entdo de (5.1) teremos

[ Plo@) @) ds = Flg@) + € = Fw) + ¢ = [ P du

ou, escrevendo F” = f, obtemos

[ 16 g@an= [ san
Obtemos deste modo o seguinte resultado:

Se u = g(x) é uma funcado diferenciavel cujo contradominio é um intervalo I e se f é continua

em [, entao

/f(g(ff))g’(x)dx:/f(u)du.

Observemos que, se u = g(x) entao du = ¢'(z) dr, de modo que podemos interpretar dz e du

como diferenciais.

EXEMPLO 4.10. Aplique o método de substituicdo para determinar [ 2z cos(z? + 1) dx.

A funcdo g(z) = 22 + 1 e a sua derivada ¢'(x) = 2z aparecem ambas no integral. Vamos entdo
considerar a mudanca de variavel u = g(z), ou seja, u = 2% + 1. Como du = ¢'(x) dz, vird du = 2x dx
e podemos escrever o integral na varidavel u. Por fim, recuperamos a variavel x,

/Qx cos(x? + 1) dx = /cos(u) du = sen(u) + C = sen(z® + 1) + C.

A ideia subjacente ao método de substituicao é substituir um integral relativamente complicado
por um outro mais simples. Tal é conseguido mudando a variavel inicial  por uma nova variavel.
A principal dificuldade neste método reside na escolha da substituicao adequada. Vamos ver
mais alguns exemplos.

EXEMPLO 4.11. Para calcularmos /\/ 2z + 1dx vamos considerar,

1
u=2x+1, du:2dx<:)dx:§du.

Assim,

1 1 1
/\/2x+1dx:/\/ﬂ§du:§/u;du: —|—C':§ (2x + 1)34C.
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x

EXEMPLO 4.12. Determine / ———dx.
V1 — 4x2

Consideramos a seguinte mudanca de variavel

1
w=1-— 422, duz—8xdm<:>xdx:—§du.

Entao,

T 1 1 1 1 1 1
Y dr=—Z | —dy=_= Sdy — —= = /1 — 4g2
/ T 42d:c 8/\/ﬂdu 8/u 2 du 8(2\/5)—{—0 1 1 -4z +C.

EXEMPLO 4.13. Determine [ tg(z)dx.
[ sen(x)
/tg(m) dx = / cos(z) dzx.

u = cos(z), du = —sen(z) dzr < sen(z)dr = —du,

Considerando a mudanga de varidvel

obtemos

/tg(x) dr = / sen(z) der = — / % du = —In(|u|) + C = —In(| cos(x)|) + C = In(|sec(x)|) + C.

cos(z)
Podemos sistematizar as seguintes etapas na resolucao pelo método de substituicao:

1. Encontrar uma expressao g(z) no integrando tal que a derivada ¢'(z) também aparega
no integrando;

2. Substituir g(x) por u e ¢'(z)dzx por du de forma que o integrando venha expresso
apenas em termos de u;

3. Determinar o novo integral de modo a obtermos o resultado expresso em termos de u;

4. Recuperar a expressao em termos da variavel z através de substituicao.

EXERCICIO 4.3. Determine o integral indefinido [ sen*(z) cos(x)dx (Sugestio: use a mudanca de

varidvel u = sen(x)).

4.1.3 PRIMITIVACAO DE FUNCOES RACIONAIS

Veremos agora como integrar fungoes racionais, isto é, fungoes que sao o quociente de polinémios,
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Se o grau do polinémio do numerador € igual ou superior ao grau do polinémio do denominador
efectuamos, em primeiro lugar, a divisao dos dois polinémios. Para uma funcao racional em
que o grau do numerador é inferior ao do denominador, a ideia base consiste em escrever a
funcao como a soma de dois ou mais termos que sabemos como integrar. Este procedimento é
designado por método das fracgOes parciais.

A forma que esses termos mais simples podem adquirir sera, por exemplo,

A A
ou, —
r—a (x —a)m

onde a e A sdo constantes reais e m é um numero inteiro maior que 1.

De facto, por primitivagao, obtemos respectivamente,

/ A dx:A/ L e — Am(z—a))+C (4.5)

Tr—a Tr—a

-m+1
A 1
= — ) 4.
m—l(x—a)m*1+c (46)

METODO DAS FRACQC)ES PARCIAIS COM FACTORES LINEARES DISTINTOS

No primeiro caso que vamos estudar, o numerador é um polinémio de grau inferior ao do

denominador e o polinémio no denominador esta factorizado em factores lineares distintos.

. 3
EXEMPLO 414. DeteTmlne/md:ﬂ

A ideia é aplicar o método das fracgoes parciais para reescrever o integrando como a soma de duas

fracgoes
3 A B

(x —1)(xz +2) x—1+m+2

onde A e B sdo constantes que teremos de determinar.
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Reduzindo ao mesmo denominador

3 Az +2)+B(x—1)

(x—1)(x+2) (x—1)(x+2)

para que a igualdade seja verdadeira é necessario que os numeradores sejam iguais, ou seja,
3=A(x+2)+B(x—1). (4.7)

Reorganizamos a equacao (4.7) de forma a mais facilmente identificarmos os coeficientes correspon-

dentes, em cada um dos polinémios,
0x+3=(A+ B)z+ (2A - B),

e, para dois polinémios serem iguais, os coeficientes dos termos semelhantes tém de ser iguais. Assim,

0=A+B
3=24A-B.
Resolvendo este sistema de equagoes, encontramos A =1e B = —1.

Logo,

e A e
:/xildx_/x%l—2dx

=In(lz —1|) = In(jJz + 2|) + C

:ln<x_1‘>+0.

T+ 2

O célculo da primitiva do exemplo 4.14 segue o procedimento que a seguir apresentamos.
Para primitivarmos uma funcao da forma

P(z)

(x—ay)(x—ag) - (xr—ax)

onde P é um polindémio e os a; sao nimeros reais distintos, seguimos os passos seguintes:

1. Garantir que o grau do polinémio P é menor que o grau do polinémio do denominador;

caso nao seja, efectuamos a divisao do numerador pelo denominador;
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2. Decompor a fungao na forma

Ay Ay Ay,
+ + .
T—a; T —as T — ag
e resolver de forma a determinarmos os numeradores A;, As, ..., As.

3. Aplicar a primeira das férmulas de primitivacao (4.5).

EXEMPLO 4.15. METODO DE HEAVISIDE
3224+ x—1
z(x—3)(z+2)
Quando no denominador temos factores lineares distintos, podemos aplicar o método de Heaviside
como alternativa ao método dos coeficientes indeterminados.
Pretendemos determinar as constantes A. B e C' de modo que
322+ -1 A B C

z(r—3)(x+2) :;+x—3+x—|—2

Determine /

(4.8)

Para determinarmos A, multiplicamos ambos os membros da equacao (4.8) por z,
3242 —1 B C
— =tz | ——+ :
(x —3)(z+2) r—3 x+2

Substituindo nesta equacgao x por 0, obtemos

-1 1

T 6 6

Para determinarmos B, multiplicamos ambos os membros da equacao (4.8) por x — 3,

2 -1 A
v+ :B+(x—3)<—+ C >

Para determinarmos C, multiplicamos ambos os membros da equagao (4.8) por = + 2,

3z +x—1 A B
e B 92 2
= 3) +(:U+)< + _3>
Substituindo nesta equacgao x por —2, obtemos
12—-2-1
p=t2=2-1_9
10 10

Logo,

29 1 9 1
/dx 15 —3d +E —+2dx

m(jz]) + —9 (|z — 3)) + 3 (o + 2|) +

322 +x—1
/x(x—3)(x+2)dm

1
6
L
6
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METODO DAS FRACQC)ES PARCIAIS COM FACTORES LINEARES REPETIDOS

Vamos observar o seguinte exemplo.

2418z -1
EXEMPLO 4.16. Determine / vt 18r 71 dx.
(z +4)*(z—3)
Temos de decompor o integrando sob a forma

Sa? + 18z —1 A Ay B

@+42@—3) 244 (@+aZ 23

Reduzindo ao mesmo denominador e igualando os numeradores, obtemos

522 + 18z — 1 = (A; + B) 2 4+ (A; + Ay +8B) x + (=124, — 345 + 16B)

donde, igualando os coeficientes dos termos semelhantes correspondentes,

Ai+B=5 A =3
A1+ Ay +8B =18 <~ Ay = —1
—12A; — 345 +16B = —1 B=2

Assim,

522 4+ 18z — 1 3 -1 2
= Y de= | ——d —— d = d
/(m—|—4)2(az—3) v /x—|—4 “/(x+4)2 “/x—:a v
1

Mais genericamente, consideremos a fungao racional

P(x)

(. — ay)™ (z — ag)™2 - - (z — ay,)™

onde P é um polinémio, os a; sao niimeros reais distintos e os m; sao nimeros inteiros positivos
(eventualmente maiores que 1). Para primitivarmos uma funcao deste tipo, seguimos os passos

seguintes:

1. Garantir que o grau do polinémio P é menor que o grau do polinémio do denominador;

caso nao seja, efectuamos a divisao do numerador pelo denominador;

2. Para cada um dos factores (z —a;)"™ no denominador da funcao racional, a decomposigao

em fracgoes parciais tera de conter termos da forma

Ay n Ay T A,
(r —aj) (v —a;)? (. —a;)m°

3. Aplicar as férmulas de primitivagao (4.5).
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METODO DAS FRACQC)ES PARCIAIS COM FACTORES QUADRATICOS IRREDUTIVEIS

Para primitivarmos funcoes racionais com factores quadraticos irredutiveis no denominador
procedemos do sequinte modo. Consideremos a func¢ao racional

P(x)
(22 + bz +cy)™ - (22 4+ bpr + cp)mE

onde P é um polinémio, b;, ¢; sao niimeros reais distintos e os n; sao niimeros inteiros positivos
(eventualmente maiores que 1). Para primitivarmos uma func¢ao deste tipo, seguimos os trés

passos seguintes:

1. Garantir que o grau do polinémio P é menor que o grau do polinémio do denominador;

caso nao seja, efectuamos a divisao do numerador pelo denominador;

2. Garantir que os factores quadraticos z? + b;x + ¢; nao podem ser factorizados em factores

lineares com coeficientes reais. Para tal verificar que b? —4c¢; <0.

3. Para cada um dos factores (22 4+ b;z + ¢;)™ no denominador da fungao racional, a decom-

posicao em fracgoes parciais terd de conter termos da forma

Bll’ + Cl BQ.T + CQ an.l’ + an
22+ b.x + ¢, (x2+b.x+c.)2+"'+<x2+b.x+c.)nj'
J J J J J J

Se o grau do polinémio P do numerador for 1 e o denominador um polinémio na forma Az? +
Bz + C, nao factorizavel, reescrevemos o numerador sob a forma de um multiplo de 2Ax + B
adicionado de uma constante K. Seguidamente,

e primitivamos a expressao
2Ax+ B

Ax? + Bx + C
através da substituigao u = Ax? + Br + C, du = (2Ax + B) dx, e

e primitivamos a expressao

K
Ax?2 + Bx +C

através de completamento do quadrado no denominador.
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273 — 8% + 20z — 5
EXEMPLO 4.17. Determz'ne/ x v7 2w dx.
x? —4x + 8
/2x3—8x2+20x—5d _/ o =5\ (4.9)
z2 — 4 + 8 T . 22 —4x + 8 . '
4xr —5
= [ 2zd 76[ 4.10
/ T ﬂc—i-/ 4:c+8 z (4.10)
(2 —4
=2 d d 4.11
/:c JH_/ 4m+8 v ( )
20 — 4 1
=2 d 2| ——d —_ 4.12
/CE v /x2—4x+8 x+3/$2—4$—|—8 (4.12)
9 9 3 T —2
=2+ 2In(|z —4x+8])+§arctg 5 +C. (4.13)

Obtemos (4.9) efectuando a divisdo de 223 — 822 + 20x — 5 por 2?2 — 4x + 8.
Em (4.10), aplicAmos a propriedade da aditividade do integral.

De modo a obtermos no numerador um termo envolvendo a derivada do denominador (2z — 4) es-
crevemos a equagao m (2x — 4) + k = 4x — 5, introduzindo as varidveis m e k. Aplicando o método

dos coeficientes indeterminados, obtemos
mQ2r—4)+k=4—-5 & 2mx—4dm+k=4x—-5

e, resolvendo o sistema
2m =4
—4Am+k=-5
obtemos m = 2 e k = 3 donde resulta (4.11).

Novamente pelas propriedades do integral obtemos (4.12).

Calculamos o segundo integral em (4.12) através da mudanca de varidvel u = 22 — 4z + 8,

20 — 4 1
L
/w2—4x+8 v /u Y
=In(jul) + C
= In(jz® — 4z +8|) + C. (4.14)
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Resolvemos o terceiro integral em (4.12)

/ 4x+8 / 4x+22)+4d (4.15)
- [

(x —

1
>
1/ 2
4 ) u? +1
1
3 / u? +1 du
1
= §arctg(u) +C
1 -2
=3 arctg <—x 5 ) +C. (4.17)

efectuando o completamento do quadrado no denominador (4.15) e, através da mudanca de varidvel
u = %252 em (4.16), obtemos (4.17). Calculando o primeiro integral de (4.12) e substituindo (4.14) e

(4.17) obtemos (4.13).

4.2 O INTEGRAL DEFINIDO

Comecemos por tentar resolver um problema de célculo de dreas: determinar a area da regiao
S delimitada pelo eixo dos xx, pelo grafico da funcao continua f e pelas rectas verticais z = a
e x =b (figura 4.1).

Para regioes delimitadas por segmentos de recta, o cdlculo da area reduz-se ao calculo de areas
de figuras geométricas mais simples como triangulos e rectangulos. Contudo, o célculo da area
de uma regiao delimitada por um arco de curva ja nao é tao simples. Apesar de termos uma
ideia intuitiva do que estamos a falar, precisamos de dar uma definicao formal e exacta de drea.
Recordemos que, a quando da definicao de derivada, falamos no declive da recta tangente
ao grafico de uma fungao num ponto e, comegamos por aproxima-lo pelos declives das rectas
secantes tomando depois o limite destas aproximacoes.

Para o problema do calculo da area da regiao S usaremos uma ideia analoga. Ou seja, vamos

aproximar a regiao S através de rectangulos de tal forma que a area da regiao seja aproximada
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pela soma das areas dos rectangulos; ao aumentarmos o nimero de rectangulos, obtemos cada
vez melhores aproximacgoes da area e, efectuando uma passagem ao limite, encontraremos o valor

pretendido para a area de S.

Figura 4.1: Regiao S.

Seja [a, b] um intervalo limitado e fechado em R. Chama-se parti¢do de [a, b] ao conjunto
P =A{zg, z1,...,zn} em que a = 9 < 21 < -+ < xy = b. Os elementos zg, 1,..., Tn,
dizem-se os vértices da particao.

Os intervalos I; = [x;_1, 2;], @ = 1..., N, chamam-se intervalos da particdo e a maior das
amplitudes destes intervalos diz-se o diametro da particao e representa-se por

diam(P) = max |x; — xiq].
i=1,...,

Dadas duas particoes de [a, b], P = {xo, x1,..., 2,} ¢ @ = {yo, Y1, -, Ym}, diz-se que Q é
mais fina do que P se todo o vértice de P é um vértice de Q.
Definimos particdo uniforme de ordem N do intervalo [a, b] quando os intervalos da partigao tém

todos o mesmo comprimento, ou seja, os vértices da particao x; sao equidistantes

Representemos por Az o comprimento comum I’_T“ dos intervalos da particao. Uma escolha de
pontos associada a partigdo uniforme de ordem N é um conjunto Sy = {s1, S2, ..., sy} de pontos

com s; em [; para cada j =1,...,N. A figura 4.2 ilustra uma possivel escolha de pontos.
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Vamos considerar os rectangulos que tém como base cada intervalo da particao e como altura
o valor da funcao em s;. Somando a area de cada um, obtemos um valor aproximado para a
area de S. Formalizando este raciocinio, definimos a soma das areas dos varios rectangulos por

soma de Riemann de f,

R(f,Sy) = Axf(z1)+ Ax f(z2) + -+ Az f(xy)

= Z f(sj) AZL’,

Com a notacao R(f, Sy) indicamos que a soma de Riemann depende da fungao f e da escolha
de pontos Sy.
Como ¢ facil de ver, podemos efectuar uma infinidade de escolhas de pontos. Duas em particular
sao relevantes:
— aquela em que o ponto é escolhido como aquele onde a funcao tem um minimo nesse intervalo;

— outra em que o ponto é escolhido como aquele onde a funcao tem um maximo no intervalo.

N

. . . . .

0 S1 S2 S3 S84 S 56 S7 T

Figura 4.2: Soma de Riemann R(f,S,) com S; = {s1, Sa, S3, S4, S5, S6, S7}-

Assim, seja m; € I; o ponto onde f atinge o seu valor minimo em I;, e seja M; o ponto em I}
onde f atinge o valor maximo em /;. Representemos as escolhas de pontos resultantes de cada
critério por Iy = {my, ma,...,my} e 8y = {My, My, ..., My}, respectivamente. As somas de

Riemann resultantes

N N

R(f,In) =D fm) Az, e R(f,8x) =Y f(M;)Ax,

j=1 j=1
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sao designadas soma inferior de Riemann (figura 4.3) e soma superior de Riemann (figura 4.4),

respectivamente. Elas representam a menor e a maior das somas de Riemann de ordem N.

Y Y Y

A

/

N
|

0l @ b z 0] a b =z
Figura 4.3: Somas inferiores de Riemann.
y y y

z 0

2|
e
o

Figura 4.4: Somas superiores de Riemann.

O seguinte resultado permitir-nos-a adiante definir com exactidao a area da regiao abaixo do
grafico de uma funcao positiva.
Suponhamos que f é continua no intervalo [a,b]. Se S,, = {s1, S2,...,sn} é uma escolha arbitraria
de pontos associada a particdo uniforme de ordem N, entdo R(f, Sy ) estd enquadrada por R(f,In)
e R(f,Sn),

R(f,In) < R(f,Sn) < R(f,8n).

Além disso, os nimeros R(f,Jn) e R(f,Sxn) tornam-se arbitrariamente préximos um do outro para

N suficientemente grande, isto é,

lim (R(f,8x) —R(f,In)) = 0.

N—oo
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Chegamos assim a seguinte defini¢ao.
Suponhamos que f é uma func3o definida no intervalo [a, b], Dizemos que as somas de Riemann
R(f, Sy) convergem para o nimero real ¢, ou que ¢ é o limite das somas de Riemann R(f,Sy),

quando N tende para infinito, se para qualquer € > 0, existe um inteiro positivo M tal que
IR(f,Sn) — ] <e

para N maior do que M. Nesse caso, dizemos que f é integravel em [a, b], e representamos o limite

/a b f(z) dx.

Este valor numérico é chamado integral de Riemann de f no intervalo [a,b]. A operagao que faz

¢ pelo simbolo

corresponder a funcao f o nimero ff f(z) dx é designada por integragdo.

As extremidades a e b do intervalo sao designadas limites de integracdo, sendo a o limite inferior
de integracdo e b o limite superior de integragcdo. A presenca dos limites de integragao permite
distinguir o integral de Riemann fab f(z) dz do integral indefinido [ f(z)dx estudado anterior-
mente. Para realcar esta diferenca o integral de Riemann é muitas vezes designado por integral
definido. Veremos adiante que existe de facto uma relacao importante entre estes dois tipos de
integrais, podendo os integrais indefinidos ser usados para calcular integrais definidos.

O resultado seguinte permite-nos garantir a existéncia do integral definido fab f(x)dx para a
maioria das funcoes que podem ser usadas em aplicagoes.

Se f é continua no intervalo [a,b], entdo f é integravel em [a,b], isto é, o integral de Riemann

f; f(x) dr existe.

4.2.1 PROPRIEDADES DO INTEGRAL DE RIEMANN

Indicamos a seguir as principais propriedades do integral de Riemann.

Se f é integrdvel em [a, b] e ¢ € R, entdo cf é integrdvel em [a, b], e tem-se

/abcf(x)dx:c/abf(x)dx.
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Se f e g sdo integraveis em [a, b], entdo f + g é integravel em [a, b], e tem-se

/ab(f+g)($)dx: /abf(x)der/abg(x)dx.

Se f e g sdo integraveis em [a, b] e f(z) < g(z) em [a, b], entdo

[1was [ o

Se f é integrével em [a, b] e ¢ €]a, b], entdo [ é integravel em [a, ] e em [c, b], tendo-se

/abf(x)dx:/acf(x)der/cbf(x)dx

Se f é integravel em [a, b] e |f(z)] < M em [a, b], entdo

/a b f(z) dx

Se f é integravel em [a, b], m < f(x) < M em |a, b] e g é continua em [m, M|, entdo go f é

<M (b—a).

integravel em [a, b].

Se f é integrdvel em [a, b], o mesmo acontece a |f| e tem-se
b

| #tayas
a

Convenciona-se que, para qualquer a € R,

/aaf(x)dxzo e, /abf(x)dx:—/baf(x)dx.

4.2.2 INTEGRACAO E PRIMITIVACAO

< [rwar

A interligacdo dos conceitos de primitivacao e de integracao permite um avanco significativo

no céalculo de integrais, que ¢ traduzida pelo:

Teorema Fundamental do Célculo Integral. Seja f integrdvel em [a, b]. Entdo a fun¢ao
F :la, b] — R definida por
Fla) = [ s
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¢ continua em [a, b]. Além disso, se f for continua em xq € [a, b], F' é diferencidvel em xqy e

tem-se
F'(w9) = f(x0).

Deste teorema decorrem trés aspectos muito importantes.

O primeiro é que toda a funcao f continua em [a, b] é primitivavel neste intervalo, e uma sua

0= [t

devido a F'(z) = f(x) para qualquer z € |a, b].

primitiva é dada por

O segundo ¢ um método pratico para o célculo de integrais de fungoes continuas. Com efeito,

b a b
F(b)—F(a):/ f(t)dt—/ f(t)dt:/ £(t) dt

Assim, se f for uma funcao continua, podemos calcular fab f(t)dt calculando primeiro uma
primitiva F' de f em [a, b] e, em seguida, determinando F'(b) — F'(a).

A esta técnica é usual chamar férmula de Barrow e, escreve-se da seguinte maneira,

[ =

EXEMPLO 4.18. Calcule os integrais sequintes:

(a) / 11x2dx. (b) /0 %seCQ(x)dx.

O terceiro aspecto importante, é a possibilidade de podermos derivar rapidamente fungoes do
tipo F(z) = f(t)dt onde f é continua, pondo F'(x) = f(x) em qualquer intervalo que
contenha o pon%o a.

T 341
0 2+1

Por exemplo, a derivada da fun¢ao F' : R — R definida por F(z) = dt obtém-se rapi-

damente e é F'(z) = ;i}, nao sendo necessario calcular o integral.
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EXEMPLO 4.19. Calcule as derivadas das fungoes definidas em R por:

(a) F(:r:):/:Q etdt (b F(x):/:Q In (ﬁ) dt.

(a) Podemos considerar F = goh com g(u) = [,'e P dt e h(z) = x2. Assim, aplicando o teorema da
derivacao da funcao composta conJuntamente com o teorema anterior, podemos calcular F' = (¢g'oh)-h’.
Tem-se, ¢'(u) = " e h/(z) = 2z e, portanto, F'(z) = e~ -2z = 2ze " .
(b) Neste exemplo, basta decompdr F'(z) na soma

2

0 1 @ 1
F(x) = In| ——= ) dt In{——=) dt
= n(mw) o ) m(2)
1 1

Podemos também estabelecer para o calculo de integrais, resultados tteis analogos aos ja en-

e, portanto,

contrados para o cédlculo de primitivas, nomeadamente, os métodos de primitivacao por partes

e por substituicao.

INTEGRAGAO POR PARTES. Se u,v : [a, b)) — R tém derivadas continuas em [a, b] entdo

4
EXEMPLO 4.20. Determine o integral / 2z In(z) dz.
1

4 o 4 1_2 r=4 42 12
/1 2z In(z) dz = (wQ In(z)) $:;1 —/1 rdr = (42 In(4) — 12 In(1)) — 5 T 16 In(4) — (5 — 5)
— 16 In(4) — 1—25

INTEGRAGAO POR SUBSTITUIGAO. O método de substitui¢ao, também designado de método
de mudanca de variavel, fornece-nos uma forma de simplificar ou transformar o integrando.

Se se verificar uma qualquer das hipdteses:

(H1) Se f:[a, ) — R continua e g : [¢, d] — [a, b] diferencidvel com ¢’ integravel em [c, dJ;
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(H2) Se f:[a, b] — R integravel e g : [¢, d| — [a, b] mondtona com derivada ¢’ integravel em

e, d];

entao, tem-se

d g9(d)
/ (fog)(z) g (v)dr = /( ) fu)du  comu=g(x)e, du= g (x)dr.

4
EXEMPLO 4.21. Determine o integral / x /25 — 22 dx.
3
Considerando a mudanga de varidvel
u=vV25—-22 o u?=2-2> & 22=25-12

vem,

2rdr = —2udu, ouseja, xdr = —udu.

Além disso, temos de alterar os limites de integracao de acordo com a mudanca de varidvel conside-

rada. Assim, quando z = 3 vem u = v/25 — 32 = 4 ¢, quando z = 4 vem u = /25 — 42 = 3. Logo,

4 3 3 3 |2=3 1
/ x\/25—x2dx:/u(—udu):—/ w?du = — = :——(33—43):3—7.
3 4 4

3 lz=4 3 3
Quando aplicamos o método de substituicao a um integral definido, é essencial termos em

atencao o efeito que a mudanga de varidveis provoca nos limites de integracao.

a
EXEMPLO 4.22. Determine / Vv a? — x?2dzx. Interprete geometricamente.
—a

Consideremos a mudanga de varidvel, z = asen(u) < u = arcsen(—), de = a cos(u) du, donde,
a

/_a Va2 —z?de = : Va2 — (asen(u))2 a cos(u) du = : Va2 (1 —sen2(u)) a cos(u) du

12

L
2

us

[SEN

5 1 1 =3
= / a cos(u) - a cos(u) du = a2/ cos?(u) du = a? (5 sen(u) cos(u) + 3 ) : ﬂ
-3 ] u==3
_ 27
= Qa 2’
pois, quando z = a vem u = arcsen(1l) = 7 e, quando x = —a vem u = arcsen(—1) = —7. O integral

calculado representa a area do semi-circulo de raio a centrado na origem situado acima do eixo dos

zz, pelo que mostramos que a area de um circulo de raio a é wa?.
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4.2.3 TEOREMAS DA MEDIA DO CALCULO INTEGRAL

Primeiro teorema da média. Sejam f, g funcgoes integrdveis no intervalo a, ) C R. Se g

nao muda de sinal em [a, b], entdo existe K tal que iI[lfb} flz) < K < sup f(x), e
@, z€la, b]

b b
[ 1@ g de = [ g
Em particular, tem-se
b
/ f(z)dx = K (b—a).

COROLARIO 4.1. Sejam f, g : [a, b — R fungoes definidas em [a, b] tais que f € continua e g

¢ integravel. Se g nao muda de sinal em [a, b], entao existe ¢ € [a, b] tal que

[ rwswar=s [ owar

Segundo teorema da média. Sejam [ e g funcoes definidas em [a, b] C R, g mondtona e f

integravel. Entao existe ¢ € [a, b] tal que

/ f(2) g(x) dz = g(a) / ") de + g(b) / F(x) de. (4.18)

COROLARIO 4.2. Nas condigdes do teorema, se g > 0 é mondtona decrescente, existe ¢ € [a, b)

tal que b
[ s@9)de = 9@ [ swar

Basta observar que, sendo g > 0 e decrescente, podemos alterar o valor de g em b escolhendo

g(b) = 0 sem modificar o valor do integral a esquerda de (4.18).

4.2.4 INTEGRAGAO NUMERICA (OPCIONAL)

Embora o Teorema Fundamental do Célculo Integral nos forneca uma ferramenta poderosa para
o calculo de integrais, muitos outros integrais definidos nao podem ser calculados exactamente.
A impossibilidade de calcular um integral exactamente sucede quando nao é possivel exprimir
a primitiva do integrando em termos de um niumero finito de fungoes conhecidas. Mesmo

integrandos que possam nao parecer particularmente complicados podem cair nesta categoria.
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Por exemplo, a distancia percorrida por um satélite numa trajectoria eliptica envolve um inte-

gral da forma
/2 1 — k?sen?(0) db.
0

onde k €]0, 1[ é uma constante. O valor deste integral é necessario para muitas aplicagdes, no
entanto, nao existe nenhuma primitiva elementar.

Na verdade, muitos problemas da vida real envolvem integrandos para os quais nao existem
primitivas elementares. Por este motivo, é importante sermos capazes de aproximar um integral

definido com a precisao pretendida.

REGRA DO PONTO MEDIO

Seja f uma fungao continua no intervalo [a, b] e seja N um nimero inteiro positivo. Para

. . b - .

aproximarmos o integral fa f(x) dx, usamos a parti¢do uniforme
a=rg<r1<Tr—2<---<xNy=0>0,

a qual divide o intervalo [a, b] em N subintervalos com o mesmo comprimento

_b—a

Ap =22
TTTN

O ponto médio do subintervalo [x;_1, zx] é dado por

fk:xk%w:a—i-(k—%)Ax.

Assim, sobre cada subintervalo [zj_1, zx] obtemos o rectangulo de drea Az x f(Ty) e a soma

sobre todos os subintervalos é

My = Az (f@) + f(@a) + -+ f(T)).

Designamos My como a aproximagao pela regra do ponto médio de ordem N. Em geral, a
aproximacao torna-se mais precisa a medida que N aumenta. Contudo, nao queremos escolher

N de tal forma que o calculo de My se torne impraticavel.
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Podemos porém reformular o problema de aproximagao do seguinte modo: Como determinar o
valor mais pequeno de N de modo que nos permita encontrar uma aproximacao aceitavel para
M7

O resultado seguinte apresenta-nos uma estimativa de erro que é a chave para a resolugao deste
problema de aproximagao pelo ponto médio.

Seja f uma fungdo continua no intervalo [a, b]. Se C' é uma constante tal que |f”(z)| < C para

a < x <b, entdo
b C(b—a)
_ < _ 7
)/ f)da = M| < =

REGRA DO TRAPEZIO

Suponhamos que f é positiva sobre o intervalo I, = [zx_1, 2x]. Podemos aproximar a drea sob
o grafico de f e sobre [ pela area de um trapézio. A area do trapézio é igual ao produto do

comprimento Az da base pela altura média do trapézio

A, = f(xk—l)z— f(ﬁk) Ar.

A aproximacao trapezoidal Ty de ordem N fica definida somando estas areas trapezoidais
Ty =A1+Ay+ -+ Ay

= 2 (7(@0) + F@) Az -+ 3 (F@) + f(2)) Ax 4 -+ 5 flan-) + flow)) Az,

Combinando todos os termos obtemos

Ty = % (f (o) +2f (1) +2f (w2) + - + 2f (wn-1) + flaw)).

Seja f uma fung¢do continua no intervalo [a, b]. Se |f"(z)| < C para todo = € [a, b], entdo
C(b—a)

N Por outras palavras,

aproximacao trapezoidal 7y de ordem N é precisa a menos de

b C(h— 3
[ -] < S

Comparando as estimativas de erro para as regras do ponto médio e do trapézio, como o
denominador maior sugere, a regra do ponto médio ¢ normalmente mais precisa do que a regra

do trapézio. Mesmo assim, nalguns casos a regra do trapézio pode ser de maior utilidade.
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REGRA DE SIMPSON

Para um pequeno subintervalo, o grafico de f serd uma curva com concavidade virada para
cima ou para baixo. Visto que, quer a regra do ponto médio, quer a regra do trapézio se
baseiam em aproximagoes por segmentos de recta, nenhuma delas é capaz de reproduzir a
concavidade. Contudo, se aproximarmos o grafico de f sobre um pequeno subintervalo por um
arco de parabola, podemos tomar em consideracao a concavidade de f. Esta ideia conduz-nos
a mais precisa das regras de aproximagao de que falaremos: a regra de Simpson.

Para deduzirmos a regra de Simpson, precisamos de conhecer a area sob um arco de parabola.
Se P(z) = Az? + Bx + C e se I = [a, b] é um intervalo com ponto médio ¢, entao

b —a
/ Pla)de =" — (P(a) + 4P(c) + P(b)). (4.19)

Para formularmos a regra de Simpson, escolhemos uma parti¢do de [a, b] com um ntmero
par (N = 2¢) de subintervalos de igual comprimento Az. Emparelhamos os subintervalos
juntando o primeiro com o segundo, o terceiro com o quarto e assim sucessivamente. Sobre
cada par de intervalos, aproximamos f por uma parabola que passa pelos pontos do grafico de
f correspondentes as extremidades dos intervalos (pois a parébola fica definida de forma tnica
por trés pontos nao colineares).

Consideremos o par de intervalos

[5521%2, 56’21%1] € [3721%17 372k] (/f =1,... 76)-

A parabola Py passa pelos trés pontos (zor_o f(Tor—2)), (Tor_1 f(zor—1)) € (wox f(xax)). Pelo
resultado (4.19), com a = oo, ¢ = Top_1 € b = x9_1, vemos que o integral da pardbola sobre

o intervalo [zog_o, ®ox] é dado por

Top — Top— 2Ax

% (Pk<l’2k,2) + 4P]€<.§L’2k,1) + Pk(ka)) = T (fk(ka—2> + 4fk<x2k71) + fk<x2k))
Por tltimo, adicionando os integrais para k = 1 a k = £, obtemos a aproximacao de Simpson
de f:f(x) dx,

Sy = % (f(zo) +4f (1) + 2f (w2) +4f (x3) + -+ 2f(wy—2) +4f (xn-1) + f(2n)).
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Seja f uma fung¢do continua no intervalo [a, b]. Seja N um nidmero inteiro positivo par. Se C' é tal

que |f#®(z)| < C para a < x < b, entdo

b C(h— 5
‘/a f(z)dx — Sy S%

4.2.5 INTEGRAIS IMPROPRIOS

A teoria dos integrais que aprendemos até ao momento permite-nos integrar uma funcao conti-
nua f num intervalo limitado e fechado [a, b]. Contudo, muitas vezes é necessario integrar uma
funcao que nao é limitada, estd definida num intervalo nao-limitado ou, ainda, verifica ambas

as situagoes (figura 4.5). Nestes casos, definimos os integrais impréprios.

10
30
20 1
0,5
104
I
T T
2 -25 0

0 1 2,5 -4 -2 0

Figura 4.5:

INTEGRAIS IMPROPRIOS DE PRIMEIRA ESPECIE. Suponhamos que pretendiamos calcular o
integral de uma fungao continua f sobre um intervalo ilimitado da forma [a, +o00[ ou da forma
| — o0, b].

Seja f uma fung3o continua no intervalo [a, +oo[. O valor do integral impréprio f:oo f(z)dx

define-se por

lim /b f(z)dx,

b——+o0
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desde que o limite exista e seja finito. Dizemos neste caso que o integral converge; caso contrario,
diremos que diverge.
Analogamente, se g é uma fung¢do continua no intervalo | — oo, b], entdo o valor do integral impréprio

b :
I~ g(x) dz define-se por
b
lim g(x)dz,
a—r—0o0 a
desde que o limite exista e seja finito. Dizemos neste caso que o integral converge; caso contrario,

diremos que diverge.

1.59

)

-0.5-

Figura 4.6: Gréfico de f(x) = .

+o00 1
ExXEMPLO 4.23. Calcule o integral / — d.
1 X

Calculamos o limite,
b b 1
lim — dr = lim 7 2dr = lim ( -
b—+oco J1 @ b—+o0 Jq b—+oo xT
+oo 1
Logo, podemos concluir que / 2 dr = 1.
1

-8
EXEMPLO 4.24. Averigue se o integral / —~= dx € convergente ou divergente.

—oo VT

8

Calculando o limite lim xfé dr = lim <

a——00 a a——00

concluimos que o integral é divergente.
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0.19

Figura 4.7: Gréfico de f(x) = z e”.

0
ExXEMPLO 4.25. Calcule o integral / xe¥dx.

—00

0

Averiguamos se existe o lim x e¥ dr comegando por calcular o integral. Utilizando a integragao
a——00
a
por partes,
0 =0 0 =0
xetdr=xe” — e’dr = —ae® —e* =—ae® —1+¢%.
a r=a a T=a

0
Estudamos agora o limite lim xe®dx,
a——00 a
0
lim ze®dr= lim (—ae’—1+e¢%)=— lim (ae”)—1+ lim e*= -1,
a——00 a a—r—00 a——00 a—r—00
pois, aplicando a regra de Cauchy,

. . a . .
lim ae®= lim — = lim = lim (—e%) =0.
a——00 a——o0 e~ ¢ a——oo0 —e~ 4 a——00
0
Logo, / rxe¥dr = —1.
—0o0

Por vezes é necessario determinar o integral sobre toda a recta. Para tal, separamos o integral
[ f(x) dx sob a forma de dois integrais impréprios [ f(z)dz e [ f(x)dz. O integral
original diz-se convergente quando ambos os integrais forem convergentes.

Neste caso, fj;o f(x) dz define-se como [ f(z)dx + fjoo f(z)dx. O resultado desta adigao
nao depende do ponto ¢ escolhido para separar o integral.

+oo 1
EXEMPLO 4.26. Calcule o integral improprio / dx.
—00

1422

Separamos o integral sobre dois subintervalos, | — oo, +oo[=] — 00, 0] U [0, +o0].
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-0.2-

Figura 4.8: Gréfico de f(x) = —2

1422

NN

0 0 _
1 1 =0
/OO 1522 dr = lim 22 dr = lim (arctg(w)) A lim (arctg(O) — arctg(a)) = —,

a——oo [, a——00 r=a a——0o0

’ dr= 1 Pl dr= 1 o =1 b) — 0)) ==
= i = i t = i t t =
/0 T g2 % = lim 12 w = lim (arctg(z)) =i (arctg(b) — arctg(0)) 5

Como cada um dos integrais na semi-recta real é convergente, concluimos que o integral impréprio

sobre toda a recta é convergente, e o seu valor é

/+°° 1 d 7T+7T
r=—+—-=m.
1+ 22 2Ty "

— 00

Em vez de 0 poder-se-ia ter escolhido outro ponto qualquer que o resultado nao sofreria alteragao.

INTEGRAIS IMPROPRIOS DE SEGUNDA ESPECIE. Seja f uma funcao continua num intervalo
[a, b[. Suponhamos que f nao é limitada quando z — b~ .

O integral ff f(z) dx diz-se integral impréprio de segunda espécie em b. Vamos ver como calcular
este integral.

Se ff f(z) dx é um integral impréprio com func¢3o integranda n3o-limitada em b, entdo o valor do
integral é determinado pelo limite

b—e

lim f(z)dz,

e—=01 J,

desde que este limite exista e seja finito. Dizemos neste caso que o integral é convergente; caso

contrario, diremos que é divergente.

8
1
ExXEMPLO 4.27. Calcule o integral / 7y dx.
0 —x
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Figura 4.9: Grdéfico de f(z) = %/;_m.

A fungdo integranda néo é limitada, tendo uma assimptota vertical em x = 8. Determinamos,

r=8—¢ 3 3
. 2 2
= _igli)%l-F (63 —83) = —5 (0—4) = 6.

8= 1 <_(8—x)§)

lim ———dx = lim 5

e—=0t Jo V8 —x e—0t 5

8
1
Logo, ———dx = 6.
8 /0 V8 —x

=0

Analogamente, se f é continua em Ja, b| e ilimitada quando © — a™, entdo o valor do integral

impréprio f;f(:v) dz, define-se por

lim /al f(z) dx,

e—07+
desde que este limite exista e seja finito. Dizemos neste caso que o integral é convergente; caso

contrario, diremos que ¢é divergente.

9
EXEMPLO 4.28. Determz'ne/ Ld:r:.
0 VT

Este é um integral impréprio com funcao integranda ilimitada em x = 0 (figura 4.10). Calculando o

limite
9 1 1 r=9
lim % dz = lim (2@) = lim (2V0 — 2VE) =6,
e=0T Jote e—07F r=e -0t
9
concluimos entao que / —dx = 6.
0o VT

Pode também suceder que a funcao integranda tenha uma singularidade num ponto interior do

intervalo de integracao.
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=
oo
w-
.
v
|
~4
o0
©

Figura 4.10: Grdfico de f(z) = ﬁ
Nestas circunstancias, dividimos o intervalo de integracao em dois subintervalos, um de cada
lado da singularidade. Em seguida, integramos sobre cada subintervalo separadamente. Se

ambos os integrais convergirem, entao o integral original é convergente. Caso contrario, dizemos

que é divergente.

2
8

ExXEMPLO 4.29. Calcule o integral imprdéprio / Toa T dx.
-3 T

A funcao integranda ¢ ilimitada quando x tende para —1. Portanto, calculamos em separado os dois

. . (. -1 2
integrais improprios: f_3 \5/5_“ dx e f_l \5/% dx.

Para o primeiro, vamos calcular o limite
—1—¢ %

. 1 o (8NP s 1 4
1 S(x+1)"5de = 1 (7> — lim (3 x8[(—=1—e+1)F — (=3 +1)3
Jwm [ 8rnTede =l (T5E)] = lim (G x8[(-1 et )8 - (234 1)7]))
4 4
~ 10 lim ((—e)% — (-2)3
lim ((=2)7 = (=2)7)
= —10v/16.

Donde, f:31 \5/% dx = —10 v/16. Para o segundo integral calculamos, de forma idéntica,
2

4 =2
lim 8(z+1)"3dr = lim (M) : — 10 lim (3% — &%)
e=0T J_14¢ e—0t 5 r=—1+e e—0t
= 10+/81.

Logo, f31 \5/% dx = 10 v/81. Concluimos que o integral dado converge e que o seu valor é dado por,

2
8
/ dz = —10V/16 + 10 v/81 = 10 (v/81 — V/16).

-3 51‘+1
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4.3 CALCULO DE AREAS

< b < . : )
Se f(x) > 0 para z € [a, b], entdo [ f(x)dx corresponde & drea da regido abaixo do grafico de
f, acima do eixo dos zz, e entre as rectas t = a e x = b.

< b . o ) N
Se f(z) < 0 para z € [a, b], entdo [ f(z)dx é igual ao simétrico da drea da regido acima do
grafico de f, abaixo do eixo dos xz, e entre as rectas r =a e x = b.

109

f(z) = sen(z) >

(a) W)

Figura 4.11:

EXEMPLO 4.30. Qual € a drea da regiao delimitada pelo grdfico de f(x) = sen(z), o eixo dos xx e

as rectas xr = 5 e x =

n 31 9
3 2 "

Observemos que f(z) > 0 para z € [Z, ] e f(z) < 0 para z € [r, 2] (figura 4.11(a)).

™

Assim, a drea da regidao acima de [§, 7] é
™ v=r 1. 3
sen(z) dx = — cos(x) =—(-1)—(-2)==.
T =% 2 2
Por outro lado, a area da regiao abaixo de [, 7] é
3 3
2 Z':7
—/ sen(x) dr = —(— cos(z) =0—-(-1)=1
T T=T
A 4rea total é a soma das duas dreas, ou seja, % +1= %

ExXEMPLO 4.31. Definamos

x+7 se —2<z<1

flz) =

9—a22, sex < —2oux>1.

Qual a drea da regidgo compreendida entre o grdfico de f e o eixo dos xx?
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A partir da definigao de f, vemos que f(x) > 0 para —3 < z < 3. Recorrendo a representacao grafica

(figura 4.11(b)), vemos claramente que o problema se divide em trés partes, correspondentes a:
(a) uma regiao acima do intervalo [—3, —2];
(b) uma regiao acima do intervalo [—2, 1];
(c) uma regiao acima do intervalo [1, 3];
Separamos assim os trés calculos:
(a) Quando x € [-3, —2[, temos f(x) =9 — 22, e

r=—2 8 27
:(—18+§)—(—27+?):—.

z=-3

-2 23
/_3 f(z)dz = (92 — ?)

(b) Quando z € [-2, 1], temos f(x) =z +7, ¢

: 1 =1 1 4 39
/_Qf(:ﬂ)daz: (55,;24—73:) = (54_7) _ (5_14) ==
(c) Quando x €]1, 3[, temos f(z) =9 — 2% e
’ 3, |#=3 27 1, 28
[ i@ = -5 = r-2) - o- =2,

8 39 28 63
Logo, a area total entre o grafico de f e o eixo dos xx é 3 + 5 + 3=

4.3.1 AREA ENTRE DUAS CURVAS

Os exemplos 4.30 e 4.31 sao casos especiais do problema mais geral de determinar a area da
regiao compreendida entre duas curvas.
Sejam f e g fun¢Bes continuas no intervalo [a, b] e suponhamos que f(z) > g¢(z) para todo

x € [a, b]. A drea sob o grafico de f e acima do gréfico de g no intervalo [a, b] é dada por

A= [ (7@ - g(a) da.

EXEMPLO 4.32. Determine a drea A da regido compreendida entre as curvas f(x) = —x> + 6 e

g(x) = 322 — 8 no intervalo [—11].
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flz) = —2"+6

Figura 4.12:

Verificamos que f(z) > g(z) para todo o = € [—1,1] (figura 4.12). Assim, a area pretendida é dada

por,

1 1 1
/ (f(x) —g(x))de = / (=% 46) — (32° — 8)dx = / (=422 +14) da

-1 -1 -1

=1
_ 76
=1
=— §x3 . + 14z)?=! | = 3
EXEMPLO 4.33. Determine a drea compreendida entre as pardbolas f(z) = —2x> +4 e g(v) =
z? — 9z + 10.
34
/ f(z) = sen(z)
flx) = —222 +4
0 T
1 2 3
31 g(z) =22 - 92410
(a) , (b)
Figura 4.13:

Neste exemplo nao é especificado o intervalo. Vamos determiné-lo averiguando os pontos de intersecgao
das duas curvas. As pardbolas intersectam-se quando —2z2 4+ 4 = 22 — 9z + 10, ou seja, resolvendo a

equagao, quando z = 1 ou = = 2 (figura 4.13(a)).
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No intervalo [1, 2], verificamos que f(x) > g(x), logo, a drea serd dada por

2 2 2
xT) — X xXr = —.Z'2 —.7]2— T T = —.%'2 xXr — X
/1(f() g(x))d /1(< 22 4 4) — (2 — 9 + 10)) d /1< 302 4 9z — 6)d

9 ,qe=2 1

2%, =3

= (—2% — 62 +
EXEMPLO 4.34. Determine a drea compreendida entre as curvas f(x) = sen(z) e g(x) = cos(z) no
' 5
intervalo [—%, ?].

Verificamos que f(z) > g(z) nalguns pontos e que f(z) < g(z) noutros (figura 4.13(b)). Neste caso,

precisamos de dividir o intervalo [, %ﬁ] em subintervalos nos quais apenas uma das desigualdades
seja verdadeira. Precisamos assim de encontrar os pontos de interseccao dos graficos de f e g.
Fazendo sen(z) = cos(z), vemos que no intervalo [—%, 5T, os pontos de intersec¢io sio z = T e
.3

Separamos entao o calculo da drea em trés subintervalos, adicionando depois os valores das areas sobre

cada um deles. Encontramos,

/_Z(cos(x) —sen(z))dz = V2 + \/§2_ 1
/ET (sen(x) — cos(z)) dx = 2v2
/j(cos(x) —sen(z))da = VI + 1 _2\/5.

Logo, a area total procurada sera,

A:(\/§+\/§2_1)+(2\/§)+(x/5+1_2\/§):4\/5.

4.4 COMPRIMENTO DE UM ARCO DE CURVA

Suponhamos que f é uma funcao com derivada continua num dominio que contém o intervalo
[a, b]. Pretendemos calcular o comprimento L do grafico de f sobre este intervalo.

Fixemos um inteiro positivo N e seja a = 19 < 11 < T2 < -+ < xny_1 < xy = b uma particao
uniforme do intervalo [a, b]. Vamos utilizar uma linha quebrada para aproximar o grafico de f
(figura 4.14(a)). Ou seja, usamos o segmento de recta de extremidades Pj_; = (x;_1, f(z;-1))

e P; = (x;, f(z;)) para aproximar a parte do grafico de f que se situa sobre o j-ésimo intervalo

(71, 2]
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fxs)

flzj—1)

Figura 4.14:

O comprimento ¢; deste segmento de recta ¢ uma aproximacao do comprimento do comprimento
do arco de grafico entre Pj_; e P; (figura 4.14(b)). Somando os comprimentos ¢;, obtemos um

valor aproximado para o comprimento da curva:
N
L~ E ij.
j=1

A precisao desta aproximacao é melhorada aumentando o nimero /N de subintervalos. A medida

que N tende para infinito e Az tende para 0, estas somas aproximantes tendem para o que
entendemos ser o comprimento da curva.
N

L = lim ¢;. (intuitivamente!) (4.20)

N—00 <
J=1

Observemos o que se passa no intervalo [z;_1, x;]. O comprimento ¢; é dado pela férmula usual

da distancia entre dois pontos no plano:

b= \/(371 —zj1)? + (f(z5) — f(z-1))%

Representemos a quantidade x; — x;_; por Az e apliquemos o teorema do valor médio & ex-
pressao f(z;) — f(xj_1) de forma a obtermos f(z;) — f(x;_1) = f'(¢;) Az para algum ¢, entre
Tj € Tj-1.

Podemos agora reescrever a féormula para ¢; do seguinte modo,

0= (A + (f(c) A2 = Aa 1+ [2(c)).
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Se usarmos esta expressdo para substituirmos ¢; na equacao (4.20), obtemos

b

Estas somas permitem-nos assim definir o integral de Riemann / \/1+ f*(x) dz. Concluimos
a

entao que este integral representa o comprimento da curva:

Se f tem derivada continua num intervalo contendo [a, b], entdo o comprimento de arco L do

gréfico de f no intervalo [a, b] é dado por

L= /ab \/ 14 f?(x) dx. (4.21)

Esta expressao, usada para determinar o comprimento de arco, conduz-nos frequentemente

a integrais que sao dificeis ou impossiveis de calcular analiticamente. Nestas circunstancias,
podemos aplicar as técnicas de integracao numérica apresentadas na secgao 4.2.4. Os exemplos

a seguir apresentados envolvem integrais cujo calculo é relativamente simples.

304

201

Figura 4.15: Graéfico de f(x) = 2x \/x.

EXEMPLO 4.35. Determine o comprimento de arco L do grdfico de f(x) = 2x+/x sobre o intervalo

[0, 7].

Temos,
fl@)=2(J/z+ %), e
fP(x) =4 (VT + L)Q = 9.

2V
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Aplicando (4.21), obtemos

/\/1+f’2 dw—/\/l—l——%dx——/ 9(1+9z)2 da

, s e=T 1022
=o (9| =
e“ +e "
EXEMPLO 4.36. Determine o comprimento de arco L do grdfico de f(x) = — sobre o intervalo
[1, In(8)].
Calculando primeiramente f’, obtemos
_ _ _ a2
, et _ o7 , (em_ex)Q 4—|—€2x—2+6 2x T e 7
Py =S e e =14 : .
Assim,
In(8 In(8) e 47 et _ o |¥ In(8)
2 1 1 1
B A e i TR
=1
+ 1—e?
16 2e

Por vezes, é mais conveniente resolver um problema de comprimento de arco tratando a curva
como sendo o grafico de = = g(y).
Se ¢’ é continua, entdo o comprimento de arco L do grafico de x = g(y) para ¢ < y < d é dado

por

L= / 1+ g% (y) dy. (4.22)

EXEMPLO 4.37. Determine o comprimento L da por¢io da curva 9z = 4y compreendida entre os
pontos (0, 0) e (3, 1).

Se escrevermos a curva como T = %ys € pusermos

y2, entio ¢ (y) = /7.

[GCR V)

9(y) =

Logo, aplicando (4.22), teremos

1
:/ V1+ydy
0

Aplicando o método de substituicdao teremos u = 1 4+ y e, du = dy, donde
/ Vudu = %u%
=2(2v2-1).

u=1
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4.5 EXERCICIOS E COMPLEMENTOS

1. Determine os seguintes integrais indefinidos

(a) /x4 dx (b) /%d:c (c) /@dw
() /(:c2—5)d:c (e)/2x+%daz (f)/(zef—x3) do
(&) /(x+\/5) de (h) /%ﬁdx (i)/\‘j—;dx

0 f(H-2) e [ [eiouhe

2. Escreva a expressao geral das primitivas das seguintes funcoes trigonométricas

(a) tg() (b) cotg(x) (c) tg*(x)
(d) cotg?(x) (e) sen?(x) (f) cos®(x)
(g) sen®(z) cos(x) (h) sen3(x) cos®(x)

Sugestao: use as relacoes trigonométricas

tg?(z) = sec?(x) — 1, cotg?(z) = cosec?(z) — 1,

sen?(x) = %(1 — cos(2x)), cos®(z) = %(1 + cos(2x)).

Sol.: (a) In m + C; (b) In(|sen(z)|) + C; (¢) tg(x) —z + C; (d) —cotg(z) — z + C;
(e) % - i sen(2x)+C; (f) % + i sen(2z)+C; (g) i sen*(z) +C (h) —i cos?(z) + é cosS(z)+C.

3. Determine, aplicando primitivacao por partes,
(a) /arctg(a:) dx (b)/arcsen(a:) dx (c) /SL’SGH(SL’) dx (d)/az cos(3x) dx

(e) /:L’arctg(:c) dr () /exsen(x) dx  (g) hi;? dx (h)/sen(ln(x))da:

Sol.: (a) warctg(z) — 3 In(1+22)+ C; (b) zarcsen(z) + V1 — 22+ C; (c) sen(z) — x cos(z) + C;
(d) £sen(3z) + & cos(3z) + C; (e) $22+1 arctg(z) — £ + C; (f) & (sen(x) — cos(z)) + C;

(8) 2V (In(x) — 2)) + C; (1) % (sen(In(z)) — cos(In(a))) + .
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4. Determine, aplicando primitivacao por substituicao,

(a) /(3:+ 1)*dx (b) /e“ dx (c) /(33: —2)*dx
d) / Vo + 1dx (e) / 3;_ - da (f) / sec?(8z) dx
(&) / (3 cos(dz) + 22)dzx () / m(m (i / COS%E) dx

§) /:c3 cos(z* +2) dx (k) /[SL’S — 21 (3% + 2)Y dw (1) /:c V1+3zd

T 322
(m) /Wd:p (n) /tg(2x) dx (0) mdx
(p) / z 1i(x) o (@ / 1 +24a;2 de () / cos'(z) senfz) da
1 Vi — 22 cos(x)
= dz p dx (u) / sen2(z) dz

Sol: (a) L (z+1)°+C; (b) £54C5 () & (3 — 2)*+C; (d) 22 4 ¢ (e) L In (3w — 7)+C
() Ltg(82)+C; (g) 22U 442 1 05 (h) Ltg(T2) +C; (i) 2sen (V@) +C; (i) L sen (a* 4 2) +C;
(k) —%xﬁ—%x10—54x8—48x4—16:62—|—0 2(%52 V(1 +3z)3+C; ( —%%—C;

() 1 In (1 + tg2 (20)) + € (0) 2 T2 4 0 () In (1n () + €5 (a) arct (22) + C

(r) —<o8 (a:) +C; (s) 2arctg (V& —1) + C; (t) ——— +C; (u) _V4—a? —arcsen(3) + C.

sen(x) T

5. Determine:

9z + 18 3r+4 1
<a>/(az—3)(az+6)dx <b)/:1:2+:c—6daj <C)/:c(:c—|—2)2daj

3z + 2 3z -z
(d)/(x—2)2(x+2) de (e) /2x2+6x+5dx (f)/(x2+1)2 da

1 3 ) 4 -2z
(&) /x4+x3 da (b) /x3+2x2+5x da <1)/(332+1)(3:—1)2 da.

Sol.: (a) In(z —3)>+In(z +6)*+C; (b) In(z +3) +In(z — 2)? + C;

(c)iln(:ﬂ—Z)—iln(ﬂ:+2)+ﬁ+C; (d) §In(z) — I In(z+2) - 25+ C;
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(e)%ln(23;2+6:c+5)—%arctg(2x+3)+c; (f)%ln(x2+1)+x2+1+c
(g )ln< >+ln( )= 2+ 1405 (h) 2ln(x) — 3 In (22 + 22+ 5) — £ arctg (22 + C;
(i) In (22 + 1) +arctg (z) — In (z — 1)> — -5 + C.

xT

6. Calcule os seguintes integrais

W[ G w [ arme o[

<®l41;;;%312 w>/;2;%?1 (ﬂtéllilwdx

(g)/1 14;:2\f (1) /62de Q) /091fi/5

o [ vEin

Sol.: (a) %; (b) —E ()% (d) é; © =1 (3); (1) 6—1+ln<1ie>, (e) Z (h) ?;
(i) 6 —In(16); (j) 4 — 2arctg(2).

7. Aplique integragao por partes para calcular os seguintes integrais

a)/ xV1+zxdr /fxarcsen %) dx
Sol: () ~=(VZ+1); (b) 1 (7 +vE—2).

8. Se / f(z)dxz =5, calcule / (3 f(z) — bz) du.
2 -9

8 6 6
9. Se / Bf(x)—x)der=06¢e / (2x 4+ 4 g(x)) de = —8, determine / (f(x) —5g(x))dx.
6 8 8
10. Calcule a area entre o grafico da funcao dada e o eixo dos xx no intervalo indicado:

2m] (b) g(x) =32* =3z — 6, I=][—4,4]

» 3

(a) f(z) = cos(z), I=]
(c) h(z) =22* -8, [=[-57| (d) f(z) =2 (1—2?)? [=[-3, 1]

N

11. Calcule a area das regioes compreendida entre as curvas dadas no intervalo indicado:

Xz

(@) f@) = .

x
g(:p):i, 0<x<1
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(b) f(z) =2sen(z), g(x)=sen(2z), 0<z <.
12. Averigue se os seguintes integrais sao convergentes ou divergentes. No caso de ser con-
vergente, determine-o.
-2 z 1 . 3
(a) / dx (b) / tg(z) dx (c) / ——dx (d) / (1+ x)y/x dx.
3 T+2 0 0o (1—2?%)1 0
13. Determine o ponto em que o integrando é singular, separe o integral em duas partes e
calcule o integral improprio. Se for convergente, calcule o seu valor.
2 4
1 d
(a) / = dx  (b) / S —
14. Averigue se os seguintes integrais sao convergentes ou divergentes. No caso de ser con-
vergente, determine-o.
T dx too 2 +oo x
a — b re " dr c / ———dx.
W[ &= of © [ i
15. Calcule o comprimento de arco do gréafico das fungoes nos intervalos indicados.
(a) f(x) =2+ Va3 no intervalo I = [1, 4]
1
(b) f(x) = 3 (22 + 2)3 no intervalo I = [0, 1].
16. Determine a area da regiao compreendida entre as duas semi-circunferéncias representadas

na figura.

A




Capitulo 5

Equacoes Diferenciais Ordinarias

5.1 INTRODUCAO

As equacoes diferenciais desempenham um papel extremamente relevante em todas as dreas da
Matematica Aplicada, de tal forma que, grande parte dos modelos mateméticos aplicados as
varias ciéncias envolvem equacoes diferenciais.
A formulacao de um modelo matematico de um problema ou situacao da vida real, quer através
de um raciocinio intuitivo quer a partir de uma lei fisica resultante da experimentagao, toma
muitas vezes a forma de uma equacao diferencial, ou seja, uma equacao envolvendo uma funcao
e algumas das suas derivadas. Nao é de estranhar tal formulacao pois, em situagoes do dia-a-
dia, presenciamos a ocorréncia de variacoes de certas caracteristicas que nos levam a procurar
prever a sua evolucao com base em dados do presente. Vamos comegar por analisar alguns
modelos matematicos envolvendo equacoes diferenciais.
O primeiro modelo traduz o crescimento de uma populacao baseado na unica suposicao de
que a populacao cresce a uma taxa proporcional ao seu tamanho. Trata-se de uma suposicao
aceitavel para, por exemplo, uma populacao de bactérias ou pequenos animais sob condicoes
ideais: ambiente sem limitacoes, nutrientes adequados, auséncia de predadores, imunidade a
doenga, etc.
Comecamos por identificar cada uma das variaveis deste modelo:

t — tempo

N — nimero de individuos na populagao (varidvel dependente)

143
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N

- » COIMO VIMOos na secgao

A taxa de crescimento instantaneo da populacao é dada pela derivada
3.1. Assim, a hipotese de que a taxa de crescimento da populacao é proporcional ao tamanho

da populacao traduz-se pela equacao

dN
—=(t) =TN(®) (5.1)

onde r é a constante de proporcionalidade. A equagao (5.1) traduz o nosso primeiro modelo de

crescimento de uma populacao, designado por modelo malthusiano. Trata-se de uma equacao

diferencial, pois, contém a funcao incognita N e a sua derivada de primeira ordem dd—];f.

(a) (b)

Figura 5.1: Comportamento das solu¢oes do modelo malthusiano para: (a) r >0, (b) r < 0.

Apo6s termos formulado o modelo vamos averiguar que consequéncias dele resultam. Eliminando

o caso de uma populagao nula, teremos N(t) > 0, para todo o t. Assim, se r > 0, a equagao

dN

(5.1) mostra que %-(t) > 0 para todo o t. Isto significa que o tamanho da populagao é sempre

crescente. Na verdade, quando N aumenta, a equacao (5.1) mostra que % se torna cada vez
maior. Por outras palavras, a taxa de crescimento cresce a medida que a populacao cresce.
Tentemos descobrir uma solugao para a equagao (5.1). Observando a equagao verificamos que se

pretende encontrar uma fungao cuja derivada é um multiplo (constante) de si prépria. Sabemos

que a fungao exponencial tem essa propriedade. Assim, se fizermos N(t) = Ce™, onde C é
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uma constante real arbitraria, entao

dN rt\ __ rt\ __
%(t):C('r’e y=r(Ce™")=rN(t).

Logo, qualquer fun¢ao exponencial N(t) = C €™, com C constante, é solugao da equacgao (5.1).

Ao permitirmos que a constante C' tome qualquer valor real, obteremos uma familia de solugoes
N(t) = Ce™. Mas, como as populagoes tém apenas valores positivos, apenas nos interessam
as solugoes com C' > 0. E também nos interessaremos pelos valores de t superiores a um dado
valor inicial ¢ = 0. Deste modo, podemos verificar que se tratam de solucoes que fazem sentido
fisicamente. Se colocarmos ¢t = 0, obtemos N(0) = Ce™*? = (', de modo que a constante
C' representa a populacao inicial, N(0). Na figura 5.1 estdo representadas trés curvas-solucao

correpondentes a trés diferentes valores para a populacao inicial.

Consideremos que a constante r corresponde a diferenca entre os valores constantes da taxa de

natalidade per capita e da taxa de mortalidade per capita.

Verificamos que, se a taxa de natalidade for superior a taxa de mortalidade, o modelo apresenta
um crescimento exponencial da populagao (figura 5.1(a)). Por outro lado, se a taxa de morta-
lidade for superior a taxa de natalidade per capita, vem r < 0 e, qualquer que seja o tamanho

inicial da populagao, com o tempo ela extinguir-se-4 (figura 5.1(b)).

Em conclusdo, equacao (5.1) é adequada para modelar o crescimento de uma populagao sob
condigoes ideais, mas um modelo mais realista tem de reflectir o facto de os recursos serem

limitados.

Muitas populacoes comecam com um crescimento exponencial. Porém, tal crescimento diminui
ao aproximar-se de um certo valor "limite”, que traduz a capacidade do meio favorecer esse
crescimento. Noutros casos, sendo a populacao inicial maior do que a que o meio pode sustentar,
o seu tamanho tendera a diminuir. Esse valor da populagao para o qual o meio assegura o seu

desenvolvimento é designado por capacidade de sustentacao e representado por K.

Assim, para um modelo tomar em consideracao estas duas caracteristicas, formularemos as
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duas hipoteses seguintes:

dN
ys ~rN, se N épequeno (inicialmente, a taxa de crescimento é proporcional a N).

dN
T <0, se N > K, (N decresce se for superior a capacidade de sustentagao do meio).

Uma expressao simples para incorporar ambas as hipdteses é dada pela equacao

dN N
~— —rN (1 — _> 5.2
dt K (52)
. , ~ N N dN
Verificamos que se N é pequeno comparado com K, entao 7 estd proximo de 0 e, <= ~ r V.
~ N - . 4 dN
Se N > K, entao 1 — & ¢é negativo, logo, também 7= < 0.

A equagao (5.2) é chamada equacdo diferencial logistica e foi proposta pelo biélogo matematico
holandés Verhulst, nos anos 40 do século XIX, como um modelo para o crescimento da populacao

mundial.

Figura 5.2: Equacao logistica.

Veremos adiante métodos que nos permitam determinar solugoes explicitas para a equagao (5.2)
mas, por agora, estudaremos as caracteristicas qualitativas das solugoes a partir desta equacao
(figura 5.2). O sentido das setas traduz o declive das curvas solugao.

Observamos em primeiro lugar, que as fungdes constantes N(t) = 0 e N(t) = K sao solugoes

pois, em ambos os casos, um dos factores do segundo membro de (5.1) é nulo. O que faz sentido:
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se alguma vez a populacao for nula ou igual a K, permanecera assim para sempre. Estas duas
solucoes constantes dizem-se solucoes de equilibrio.

Se a populacao inicial Ny se situa entre 0 e K, entdao o segundo membro de (5.1) é positivo,

logo, % > 0 e a populacao cresce. Mas se a populacao excede a capacidade de sustentacao
(N > K), entdao 1 — % é negativo, donde ‘Z—]j < 0 e a populagao diminui.

Reparemos que, em qualquer dos casos, se a populacao se aproxima da capacidade de sus-

tentagao (N — K), entao Cfi—];f — 0, o que significa que a populagao estabiliza.

EXEMPLO 5.1. Considere o modelo populacional dado pela equacdo diferencial ‘Z—]j(t) =2(N-100) N.

A partir da figura 5.3(a), interprete o comportamento das solugées para diferentes condigoes iniciais.

EXEMPLO 5.2. Considere o modelo populacional ilustrado na figura 5.3(b). Interprete o comporta-

mento das solucdes para diferentes condigoes iniciais.

(a) L(t) =2 (N — 100) N (b) & (t) = (5—4N)(1 - 0.5N) N

Figura 5.3:

Uma equacdo diferencial ordindria é uma equacao que estabelece uma relacao entre a variavel
independente x, a funcdo desconhecida y(x) e as suas derivadas ¢/, v”,..., y™. Podemos

escrever simbolicamente

F(x,y,y',y",...,y(")):() ou, F(x,y,j—i,%,...,%)z&
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Vamos estudar equacoes diferenciais de primeira ordem, da forma,

d
Fo,y, %) =0 o, L= f(ay), (5.3)
v dx
onde f(z,y) é uma expressao envolvendo, em geral, as varidveis = e y. Por exemplo,
dy 5 9 dy 1 dy 2 (10— y)
— =2zy —=x = =— e —= = —
dx Y ’ de ’ dr Y Y

sdo equagoes diferenciais da forma (5.3).

Dizemos que uma funcao diferenciavel ¢ é uma solugdo da equacao diferenciavel (5.3) se Z—i () =
f(z, ¢(x)) para todo x nalgum intervalo aberto. O grafico de uma solugao diz-se a curva-solu¢do
de uma equacao diferencial.

O exemplo seguinte mostra-nos que pode existir uma infinidade de func¢oes que verificam uma

dada equacao diferencial.

EXEMPLO 5.3. Verifiqgue que a funcio o(x) = x+ Ce " — 1 € uma solu¢ao da equagao diferencial

d
d_y =z —y, onde C representa uma constante arbitrdria.
7
Calculando o primeiro membro da equagao diferencial
dp d
—=—(x+Ce*-1)=1-Ce™?,
dx dx( * )

e o segundo membro,

r—p=x—(x+Ce®—-1)=1-Ce",
verificamos que as expressoes obtidas sao iguais, pelo que podemos concluir que a funcao ¢(x) =
x + Ce ™ — 1 verifica a equagao diferencial dada. Observemos que esta verificacdo nao nos mostra

xT

como é que a solucao p(z) =z + Ce * — 1 é determinada.

Como este exemplo ilustra, a solucao de uma equacao diferencial de primeira ordem envolve
normalmente uma constante C. Para cada valor de C' obtemos uma curva-solucao e as diferentes
curvas-solugao nao se intersectam. FKEssa constante C' fica determinada se for estipulada uma
condicao inicial.

O par de equacoes

dx (5.4)
y(zo) = o
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traduz um problema de valor inicial. Dizemos que uma funcao diferenciavel ¢ é uma solucao do
problema de valor inicial (5.4) se 22 (z) = f(z, ¢(x)) e (o) = o, para todo z num intervalo
aberto contendo zy. A equagao y(zg) = yo é designada por condicdo inicial.

Demonstra-se que sob certas condigbes impostas a f, o problema de valor inicial (5.4) admite

uma unica solugao.

EXEMPLO 5.4. Utilize os cdlculos do Exemplo 5.3 para resolver o problema de valor inicial % =x—v,

y(0) = 2.

T

VerificAmos no exemplo 5.3 que y(x) = z + Ce™* — 1 é uma solucdo geral da equagao diferencial

dada, para uma constante arbitrdria C. Substituindo x = 0 vem y(0) = C — 1. Para verificar a
condigao inicial y(0) = 2, resolvemos a equagdo C' — 1 = 2 que tem como solugao C' = 3. Logo,

y(r) =x 4+ 3e % —1 é a solucao do problema de valor inicial dado.
5.2 EQUACOES DIFERENCIAIS DA FORMA j—g = g(x)

A mais simples de todas as equagoes diferenciais é da forma

Y- o(a) (5.5)

que resolvemos escrevendo

y(x) = /g(az) de +C (5.6)

ou seja, (6.4) significa apenas que y é uma primitiva de g.

Assim, se g é continua num intervalo aberto contendo g, para o problema de valor inicial

% = g(x)
y(wo) = Yo

a solugao unica determina-se por integracao,

T = t) dt
/xodt /xog()

y(z) —y(zo) = /xg(t) dt.
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donde,

xT

y(£) = o + / o(t) dt. (5.7)

0

EXEMPLO 5.5. Resolva o problema de valor inicial g—g(x) =2x+1, y(1) =5.

Aplicando (5.7), temos

y(z) =5+ [f@t+1)dt =5+ 2+ 1), =5+ (> +2—2) =2? +x + 3.
5.3 EQUACOES DIFERENCIAIS SEPARAVEIS

Nao existe uma técnica tnica para resolver a equagao (5.3). Varios métodos tém sido desen-
volvidos para lidar com casos especiais de acordo com a forma da expressao f(x, y).

Nesta seccao vamos estudar o caso em que f(z, y) = g(z) h(y). As expressoes

2+«x

[ y)=deos@),  flay) =Ty, @y =175

sao todas deste tipo. Quando f(x, y) é factorizada na forma g(z) h(y), a equagao diferencial

W~ g(a)hiy) (5.8)

diz-se separavel porque y e x podem ser separadas por ambos os membros. Podemos reescrever
a equagao (5.8), supondo que h(y) # 0, como

1 dy
w% = g(z)

e primitivamos em ordem a x:

/@% di = /g(a:) dz. (5.9)

1
Seja H uma primitiva de 7€ seja G uma primitiva de g. Aplicando a regra da cadeia, temos

da ()_ﬂ@ 1 dy
dz VY ~dy dr  h(y) dz’

Portanto, a equacao (5.9) pode ser escrita como

H(y)=G(z)+C, CEeR
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Nao é necessario colocar uma constante de integracao em cada membro, podem ser combinadas
numa so.
Este processo de resolucao de uma equacao diferencial é chamado método de separacdo das
variaveis.

EXEMPLO 5.6. Resolva o problema de valor inicial

dy x
= =— 0) =3.
T2 y(0)
. : . ) . . dy
A equacdo diferencial dada é separavel, visto que pode ser escrita na forma Tr = g(x) h(y) com
T
1
ola) = e hlo) = 1

Seguindo o método de resolucao atras apresentado, separando as variaveis e calculando as primitivas,

d 1 1
/(1—|—y2)%dm:/xdaz & §y3+y:§x2—i—a

Para que esta equagao satisfaga a condicao inicial dada y(0) = 3, entdao C terd de verificar
1.5 1,
33 +3:§0 +C & C =12

1 1
Por conseguinte, 3 Y4y = 3 22 4+ 12 é a solucdo do problema de valor inicial dado.

Este exemplo mostra uma caracteristica do método de separacao das varidveis: em geral, o
método nao fornece a solucao y da equacao diferencidvel %(w) = g(x) h(y) na forma explicita.
Isto é, em geral, este método nao nos dé o resultado na forma y(x) = (expressao em x) mas
sim na forma implicita

(expressao em y) = (expressao em ).

Normalmente é bastante complicado explicitar a solucao para verificar a correccao do resultado.

1 1
Contudo, nao é muito dificil derivar implicitamente a equagao 3 Y 4y = 3 2% + 12 para verifi-

carmos que a funcao y definida implicitamente é, de facto, solu¢ao do problema de valor inicial

dado.

EXEMPLO 5.7. Sejam y(t) e v(t) = fl—? a altura e a velocidade, respectivamente, de um projéctil

disparado na vertical da superficie da Terra com wvelocidade inicial vg. Pela Lei da Gravitagcao de
Newton

dv gR?

dt —  (R+y)?
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onde R ¢ o raio da Terra e g € a acelera¢do devida a gravidade na superficie da Terra. Supondo que

vy < V29R, qual € a altura mdxima atingida pelo projéctil?

No instante em que o projéctil atinge a altura maxima a sua velocidade é 0. Portanto, o objectivo
consiste em determinar v como uma fungao de y e resolver para o valor de y para o qual v = 0.

. . - . . e dv . dv .
Como primeiro passo, utilizamos a regra da cadeia para exprimir %7 em termos de dy

o _dvdy_dv
dt  dy dt dy

Igualando esta expressao para % com a expressao dada pela Lei da Gravitagao de Newton, obtemos

dv gR?

Cdy T TRy

Visto que esta equacao diferencial é separavel, aplicando o método de separacao das varidveis, obtemos

Jegio=] @)

donde resulta,

1 5 gR?
— C
2V W =Ry T
Quando y = 0, vem v(0) = vg. Logo,
1 gR?
5@8:?—1—0 & C=-vyg—gR
Entao 1 R2 1
’ 2 g 2
— —v5 — gR). 5.10
gV W =g, T (5w 9B (5.10)
Substituindo v(y) = 0 na equacao (5.10) e resolvendo em ordem a y determinamos que a altura
.. YR
méxima é ——-——.

5.4 EQUACOES DIFERENCIAIS AUTONOMAS

As equacoes diferenciais da forma

;Z_i = h(y) (5.11)

onde o segundo membro nao depende explicitamente de x, sao designadas por equacdes diferen-

ciais auténomas.
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Como vimos anteriormente, no modelo Malthusiano, em que a a taxa de crescimento é, em cada
instante, proporcional ao tamanho da populacao nesse instante, obtemos a equacao diferencial

N
‘il—t —rN(t), t>0 (5.12)

para modelar o comportamento da populacao.
Supondo r = 2, a solugao da equacao diferencial (5.12) com a condigao inicial N(0) = 20 é,

como vimos na seccao 5.1, dada por
N(t)=20e*, t>0.

Podemos escrever a solucao particular da equacao (5.12) com a condigao inicial N(ty) = Ny na

forma,
N(t) = Nye't=to) (5.13)
pois, se
N(tg)=Ce™ & C=N(ty)e ™
entao,

donde obtemos (5.13).
Suponhamos que aplicivamos o mesmo modelo (r = 2) mas a observagao da populacao era feita
no instante ¢ty = 10 e que o tamanho da populagdo era o mesmo, isto é, N(10) = 20. Entao,
por (5.13), obtemos

N(t) = 20210,

O gréfico desta solucao pode ser obtido a partir do grafico da solugao anterior, onde N(0) = 20,

através de uma translacgao de 10 unidades para a direita (Figura 5.4).

Isto significa que uma populagao comegando com Ny = 20 segue a mesma trajectéria, inde-
pendentemente do instante em que comecamos a experiéncia. Biologicamente, esta conclusao
faz todo o sentido: se as condigoes de crescimento nao dependem explicitamente do tempo, a

experiéncia devera dar o mesmo resultado independentemente de quando é iniciada.
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N(t)

N(t) = 20 ¢2(t-10)

N(t) =20e?
100

0 /

0 10 t

Figura 5.4: O gréfico da solugao N(t) = 20 e? sofre uma translagdo e o ponto inicial é (10, 20).

Se as condicoes de crescimento da populacao variam com o tempo, nao poderemos usar uma
equacao diferencial auténoma para descrever o crescimento da populacao; nesse caso, teriamos
de incluir explicitamente a dependéncia do tempo na equacao.

Formalmente, podemos resolver qualquer equagao do tipo (5.11) através do método de separagao

das varidveis indicado na secgao 5.3. Vamos ver como resolver a equacao logistica (5.2).

EXEMPLO 5.8. Determine a solu¢ao da equagao diferencial logistica (5.2) com a condi¢do inicial
N(ty) = Nyp.

Para aligeirar a notacao vamos definir a =r e b = . Assim,

W2 -

Seguindo o método de separacao das varidveis, escrevemos

= N (a — bN).

HN)—/N;d—l/N<1+ b >d licando o método das fraccd iais)

( = N ar—br2 T = a N r a—br T (ap 1Cando O metodo das Iraccoes parclals
1

= E((IH(N) —ln(No)) + ( —In (|a— bN|) +ln(|a— bN0|)))

:lln(ﬁ a — bNo )

a No | a —bN
t
G(t):/ ds =t — to,
to

Por seu lado, G define-se por
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donde,
1 1 < N |a— bNO ) PR
ZIn (= —t—
a Ny | a—bN 0
a—bNy , ...
Como € sempre positivo para tg < t < 400, vem
N a— bNy
t—tg) =1 (— )
alt —to) =In{ o N

e, aplicando a exponencial a ambos os membros, vem

N a—bN,
a(t—to) — =V 0 Ny (a —bN) %) = N (a — b,
€ No a—bN o(a )e (a 0)-
Resolvendo para N, encontramos a solugao da equagao logistica com condicao inicial Ny,
N
N () o

- b Ny + ((Z — bNo) e—a(t=to) ’
E, recuperando r e K, fica
No

N(t) = .
gy

5.5 EQUACOES DIFERENCIAIS LINEARES DE PRIMEIRA ORDEM

Equagdes diferenciais ordinarias lineares de primeira ordem s3o equacdes diferenciais da forma

o tr@)y = a(2) (5.14)

onde p, ¢ : I =]a, bfC R — R s&o fung¢des continuas. Se p = 0, encontramo-nos nas condigdes
da seccao 5.2. Vamos ver como o caso geral em estudo se pode reduzir a um problema de
primitivacao.

Definamos P uma primitiva de p, isto é, P(z) = [ p(x) dx. Multiplicando ambos os membros

de (5.14) por @) obtemos uma equacdo equivalente pois a funcdo exponencial nio se anula,

dy

ef'® (% +p(z)y) = g(a).

Observemos que o primeiro membro é precisamente a derivada do produto e”’® g, logo, podemos

escrever,

/
<€P<x>y> = P@ g(z).
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Primitivando ambos os membros,
eP@y =+ / (ep(m) q(z)) dz,
e, resolvendo para y, vemos que as solugdes da equagao (5.14) sdo as fungoes da forma
y(z) = Ce P@ 4 =P / (ep(“”) q(x)) dz,

onde C' é uma constante arbitraria.

Mostramos assim o método de variacao das constantes para equacoes lineares de primeira ordem:

As solucbes da equacdo diferencial % + p(x)y = q(x), x € I, sdo as fungdes, definidas em I,

y(z) = Ce P 4 P / (eP(:”) q(x)) dz, C eR.

O termo P(x) é designado usualmente por factor integrante.

Se estipularmos o valor da solugcdao no ponto zy, a constante C' e, portanto, toda a funcao
ficam determinadOs de forma tnica. Formulamos assim o problema de valor inicial para equagdes
diferenciais lineares de primeira ordem:

Dados xy € I e yg € R, o problema de valor inicial em [

Y by =ale), (o) =

tem uma solucdo tnica, definida em I, por

s =+ [ oy

o

com P(z) = [ p(t) dt.

EXEMPLO 5.9. Resolva a equagao diferencial linear

dy 1

dr z+1

y=(z+ 1) (x> —1).
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Sendo P(z) = [ (— -L5)de=—In(z+1) =In(

o ), vem

1
z+1

y(z) = CPEtl) 4 e+ /eln(w}rl)(x +1)* da

:C(m—l—l)—l—(m—l—l)/x_i_l(x—l—l)de

$2

:C(x+1)+(x+1)(7+x).

EXEMPLO 5.10. Suponhamos que um tanque com 500 litros de capacidade contém inicialmente 100
litros de dgua pura. No instante t = 0, comeca a entrar liquido no tanque a velocidade de 2 litros
por sequndo, sendo este liquido constituido por uma mistura homogénea de 50% de dgua e 50% de
poluentes. Simultaneamente, a mistura que se forma no tanque (e que se supée sempre homogénea)
sai do tanque a velocidade constante de 1 litro por seqgundo. Pretende-se calcular a percentagem de

poluentes no liquido do tanque no instante em que este fica cheio.

Designemos por p(t) a quantidade de poluentes existentes no tanque no instante ¢, onde t > 0 é
suficientemente pequeno para que o tanque nao tenha ainda transbordado.

Representemos por i—f(t) a taxa de variagao da quantidade de poluentes no instante t, dada pela
diferenca entre a quantidade de poluentes que entram por unidade de tempo e a quantidade de polu-
entes que saiem por unidade de tempo.

A quantidade de poluente que entra no tanque por unidade de tempo é 1 litro.
p(t)
V(t)

A concentragdo de poluentes no tanque é dada por , onde V(t) é o volume total de liquido

existente no tanque no instante t.

A quantidade de poluentes que sai, por unidade de tempo, é dada pelo produto da concentracao de

p(t)
V(t)

poluentes pela quantidade de liquido que sai por unidade de tempo, ou seja, x 1.

Entao,

dp,\_ . pt)
A0 _1_W' (5.15)

Em cada instante t, o volume de liquido contido no tanque é dado pela soma da quantidade inicial de
liquido com a quantidade que é retida até esse momento. Como em cada unidade de tempo entram 2

litros e sai 1 litro, teremos

V(t) =100 + ¢ (5.16)

e, a equagao (5.15) escreve-se

dp _, _p(t)
dt 100+t
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Resolvendo, pela método de variacao das constantes, obtemos

1

P = o077 <C + /(100 +1) dt)

_ 1 (C+100t+t2)
100+ ¢ 27

Visto que p(0) =0, vem C' = 0 e, portanto,

t (200 + t)
p(t) = -5
200 + 2¢
que representa a quantidade de poluentes existente no tanque no instante t. Pretendemos saber a
percentagem de poluentes quando o tanque esta cheio, isto é, quando V' (t) = 500.

De (5.16), concluimos que o tanque estard cheio quando ¢t = 500 — 100 = 400. Assim, a concentragao
4 24

p(400) _ 240 _ 0.48.
500 500

O tanque contém, portanto, 48% de poluentes no instante em que fica cheio.

de poluentes quando o tanque esta cheio é dada por

EXEMPLO 5.11. Suponhamos que um lago tem um volume de liquido V' constante, sendo iguais os
volumes de liquido que entra, v, e sai, por unidade de tempo.

Consideremos que a concentracao de poluentes que entra no lago é dada por uma fungao continua ..
Suponhamos ainda a diferenciabilidade da funcao p(t), representando a quantidade de poluentes no
instante ¢, e que os poluentes se encontram uniformemente distribuidos no lago. Entao 7. (t) @
indica a concentracao de poluentes que entra no lago no instante ¢

Sendo i—f(t) a taxa de variagao da quantidade de poluentes no instante ¢, obtida pela diferenca entre
a quantidade de poluente que entra por unidade de tempo, ve, € a quantidade de poluente que sai por

unidade de tempo, v,
dp
a(t) = Ve — Us.
ou seja,

Pt) =e(tyo - 1o

Concluimos assim que p satisfaz uma equagao diferencial linear,

dp

—(0) + 5 p(t) = e (t),

cuja solugdo, com condi¢ao inicial p(0) = po, é

v

t
p(t) =poe M +wv e)‘t/ e e(s)ds  (com \ = V)
0

A partir desta expressdao é possivel proceder a uma anédlise qualitativa (e também quantitativa) da

quantidade de polui¢ao. Por exemplo, se P.(t) = 0 (ndo entram poluentes) entao a poluigao existente
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tende para zero exponencialmente. Se 7. (t) = 7. (constante) entao p(¢) é uma média ponderada entre

a poluicao inicial e uma “poluicao limite” V,:

p(t) = po e M4 VAe(1— e_)‘t).

5.6 EXERCICOS E COMPLEMENTOS

1. Verifique que a funcao ¢ satisfaz a equagao diferencial (C' representa uma constante).

22

(a) v =2y, @(x)=Cex

z 1
(b) ¥ ==z — 3y, 90($):§—§+C€73x

() ¥ =x+ay, p)=Ce7 —1

(d) v =y+2% o@)=Ce —z*—2x—2.
2. Averigue se y(z) =2e " +x e ® é solucao de v’ + 2y’ +y = 0.

3. Mostre que y = ﬁ é solucao de 3 + 2zy* = 0 em I =] — 1, 1[ mas nao o é em qualquer

outro intervalo mais amplo contendo 1.

4. Resolva os seguintes problemas de valor inicial

(a) y'(x) =2¢ y(1)=3

(c) '(x) = sec?(x) y(%) = 3.

5. Aplique o método de separacao das varidveis para resolver as equagoes diferenciais se-

quintes.
r+1 er
(a) y' = " (b) y’zf (c) ¥ = xy?
22 +1 Y
d) vy =-2(3 4 I = Dy =4/=
(d) y (3y +4) (e)y 3 (f) v »
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10.

11.

Determine as solugoes gerais das seguintes equagoes.

d
(a) y — 3y =6 (b) y' + 2y = ? (c) 2 +ay =1
(d)y —2zy == (e) v +y = sen(x) (f) v — y = cos(2z).

Determine a solugao dos seguintes problemas de valor inicial.

(a) y' = 25 y)==-2 (M) y=2-y, y0)=3 (y =3zy—2z, y(0)=1

ry

(d) y' = o y(0)=1 (e)y =aye”, y(l)=1 (f) v =327, y(0)=1.

Resolva o problema de valor inicial

Determine a solu¢do do problema de valor inicial ¥’ +y = 0, y(3) = 2, sabendo que a

solugao geral da equagao é (x) = C'e™™ com C' constante arbitréria.

Sabendo que y(r) = ae** + 3 e~ é solugao da equacao diferencial y” — 4y = 0, determine

as constantes reais a e § se y(0) =3 e y'(0) = —2.

Descreva o comportamento do modelo populacional ilustrado na figura.

P(t)

/
x
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12. Suponha que num determinado ecossistema existe um tipo de predador e um tipo de
presa. Representemos por 100 x o niimero de predadores e por 1000 y o niimero de presas.
O matematico austriaco A. J. Lotka (1880-1949) e o matematico italiano Vito Volterra
(1860-1940) propuseram a seguinte rela¢ao entre o tamanho das duas populagoes, desig-
nada por equac¢ao de Lotka-Volterra:

dy _ y(a—bz)
dr  x(cy —d)

Resolva esta equagao aplicando o método de separagao das variaveis. Qual é a relagao

predador-presa se a populacao inicial de presas é 1500, a populacao inicial de predadores

¢200,ea=6,b=2,c=4ed="T77
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Capitulo 6

Matrizes e determinantes

6.1 DEFINICOES E GENERALIDADES

UM EXEMPLO. Duas espécies diferentes de insectos sao criadas juntas num laboratério, sendo-
lhes fornecido diariamente dois tipos de alimento diferente. Cada individuo da espécie 1 consome
5 unidades do alimento A e 3 unidades do alimento B, enquanto que cada individuo da espécie
2 consome 2 unidades do alimento A e 4 unidades do alimento B, em média, por dia. Por dia,
o técnico do laboratério fornece 900 unidades de alimento A e 960 unidades de alimento B.

Quanto elementos de cada espécie estao a ser criados?

Para resolvermos este problema, estabelecemos um sistema de equagoes.

Representando por,

x — numero de individuos da espécie 1
y — numero de individuos da espécie 2

entao o seguinte sistema de equagoes tem de ser satisfeito
alimento A: b5z + 2y = 900

alimento B: 3z + 4y = 960.

Temos assim um sistema de duas equacoes lineares com duas incognitas,

o5z + 2y = 900

3z + 4y = 960.

163
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Este sistema pode ser resolvido eliminando uma das variaveis, por exemplo z, multiplicando a

3

¢ e adicionando a segunda

primeira equagao por —

ox + 2y = 900
14
—y = 420.
5 y

Donde retiramos y = 150. Substituindo na primeira equacao, obtemos x = 120.

Veremos neste capitulo um outro processo de resolucao de equacgoes lineares.

O sistema de equagoes (6.1) pode ser representado da seguinte forma

R

e dizemos que (6.2) é a representagdo matricial do sistema (6.1), onde

¥

é uma matriz de 2 linhas por 2 colunas (matriz dos coeficientes) e,

x 900
e, .
Y 960
sdo matrizes de 2 linhas por 1 coluna (matriz-coluna ou vector).

Dados dois nimeros naturais m e n, chama-se matriz real de dimensao m x n uma funcao A
definida no conjunto {(i, j) € N*>: 1 <i<m, 1 <j <n} e com valores em R; designam-se as
componentes, elementos ou entradas da matriz A por a;; = A(i, 7).

Convencionalmente, uma matriz é representada por uma letra maitscula e as suas componentes
por uma letra mindscula com a linha e a coluna indicadas em indice inferior. Assim a;; é

interpretado como sendo a componente da matriz A na linha i e coluna j.

021 7 -3
EXERCICIO 6.1. Considere a matriz A= | 9 0 -0.75
0.8 -1 1

(a) Identifique ay2, ass e as;.



TEXTO DE APOIO DE MATEMATICA 6. MATRIZES E DETERMINANTES 165

3 3 3
(b) Calcule: (i) Zaﬁ. (ii) Zagi. (iii) Zaii'
i=1 i=1 1=1

Diz-se que a matriz A é quadrada se tem o mesmo ntmero de linhas e de colunas. Se o niimero
de linhas m é diferente do niimero de colunas n, a matriz diz-se rectangular de dimensao m x n.
Chama-se diagonal principal da matriz A as componentes a;;, com o mesmo ntimero de linha e

de coluna, ordenadas por ordem crescente dos indices.

Designa-se por traco da matriz A, ., a soma dos elementos da diagonal principal,

n

tI'(A) = Z Q.

i=1
Matriz triangular é a matriz quadrada em que sao nulos os elementos acima ou abaixo da diagonal
principal. Distinguimos entre: matriz triangular inferior quando sao nulos os elementos acima da
diagonal principal (isto é, a;; = 0 para i < j), e matriz triangular superior quando os elementos
abaixo da diagonal principal sdo todos nulos (isto é, a;; = 0 para ¢ > j). Uma matriz triangular

pode, eventualmente, ter zeros na diagonal. Uma matriz A,., é diagonal se a;; = 0 quando

i .

1 0 0 1 3 —-1 1 00
A=12 4 0 B=10 4 1 C=10 40
0 -2 2 00 2 0 0 2

Quadro 6.1: A matriz triangular inferior, B matriz triangular superior, C' matriz diagonal.

Uma matriz quadrada de dimensao n diz-se simétrica se a;; = a;; para 1 <1, j < n.

7 =3 0 5
-3 9 -1 =2
0 -1 11 8

5 —2 8 21

Quadro 6.2: Matriz simétrica.
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-3 41 a
EXERCICIO 6.2. Determine os valores de a, b e ¢ de forma que a matriz A = | b 2 c| seja
34 —15 1

simétrica.

COMBINAGAO LINEAR DE MATRIZES As operagoes béasicas para matrizes sao a multiplicagdo
por um escalar e a adicdo de matrizes. Definem-se pela aplicacao dessas operacoes componente

a componente da matriz e, sé se podem adicionar matrizes com a mesma dimensao.

EXEMPLO 6.1. Sendo

-2 1 5 7 -3 0
A=|32 6 -4 e B=|2 -5 3
8 0 —1 1 6 8
entdo 2A € dado por:
2x(=2) 2x1 2x5 —4 2 10
2A=| 2x3 2x6 2x(-4)| =3 12 -8
2x8 2x0 2x(-1) 16 0 -2
e A+ B € dado por:
-2 1 5 7 -3 0 —2+47 1+(=3) 5+0 5 -2 5
A+B=|2 6 —4|+|2 -5 3| =|2+2 6+(-5) —-4+3|=|Z 1 -1
8 0 —1 1 6 8 84+1 0+6 —1+8 9 6 7

MULTIPLICAGAO DE UMA MATRIZ POR UM VECTOR. Dada uma matriz m x n, A = [a;] e
um vector n x 1, u, de componentes u; (j = 1,...,n), o produto Au é o vector coluna cuja

componente i é:

(A'LL)Z':ZCLZ']'U]' (Z:L,m)
j=1

Assim para multiplicar uma matriz por um vector é necessario que o nimero de colunas da
matriz seja igual ao nimero de componentes do vector obtendo-se um vector cujo nimero de

componentes é igual ao nimero de linhas da matriz.
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EXEMPLO 6.2.

7

[—2 1 0
Au = —1

5 6 -1
) 2

[ —2xT7+1x(=1)+0x2 |15
_5><7+6><(—1)+(—1)><2] a [27].

MULTIPLICACAO DE MATRIZES. Se pretendermos multiplicar uma matriz A por uma matriz
B de duas colunas, definimos o produto AB como sendo uma matriz de duas colunas, em que
cada coluna se obtém multiplicando A pelo vector dado pela correspondente coluna de B.

Por outras palavras, se B é uma matriz cujas colunas sao os vectores by, ..., b,, o produto AB
¢ a matriz cujas colunas sao os vectores Ab, ..., Ab,.

Uma matriz A s6 pode ser multiplicada por uma matriz B se o nimero de colunas de A for
igual ao ntmero de linhas de B e, entao, a matriz produto AB tem tantas linhas como A e

tantas colunas como B.

EXEMPLO 6.3.

-2 1 —2xT+1x2 —2x(=3)+1x(-5) —-2x0+1x3
7 -3 0
AB=|3 6 [2 . 3]: SXxT+6x2 2x(-3)+6x(-5) 3x0+6x3
| 8 0 8xT7T+0x2 8x(-3)+0x(=5) 8x0+0x3
-12 1 3
— 45 69
=|7 —2 18
56 —24 0

PROPRIEDADES DAS MATRIZES. Desde que as dimensoes das matrizes sejam tais que as

operacoes indicadas facam sentido, tem-se:

1. A multiplicagao de duas matrizes é associativa: (AB)C = A (BC).

2. A multiplicacao de matrizes nao é comutativa: em geral AB # BA.

3. A multiplicagao de matrizes é distributiva relativamente a adigao: A (B+C) = AB+ AC.
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4. Existéncia de elemento neutro para a multiplicacdo de matrizes. Designa-se por matriz
identidade n X n a matriz I cujos elementos sao 1 ao longo da diagonal principal e 0 fora

dela; por exemplo, para n = 4,

0
0
1
0

= o O O

0
1
0
0

o o O =

A multiplicacdo de uma matriz arbitraria pela matriz identidade da como resultado a

matriz original: Al = Ae IB = B.

5. Existencia de elemento neutro para a adicao de matrizes. Existe uma tnica matriz,
a matriz nula 0, que adicionada a qualquer matriz A, da como resultado essa matriz:

A+0=0+ A= A. A matriz nula m x n é a matriz cujos elementos sao todos nulos.

TRANSPOSICAO DE MATRIZES. A transposicao de uma matriz é a operacao que a uma dada
matriz A faz corresponder uma outra matriz, mudando ordenadamente as linhas em colunas (e,
portanto, as colunas em linhas), que se chama matriz transposta de A e se representa por AT.

Podemos também dizer que a transposta de uma matriz A,,x, € uma matriz B,,,, definida por

bji=a; para j=1,...,n e t=1,...,m.

EXEMPLO 6.4. Se

1 4

1 2 3
. entio AT =12 5

4 5 6
3 6

Podem demonstrar-se as seguintes propriedades:
1. (AT)T = A, a transposta da transposta de uma matriz é a prépria matriz.
2. (A+ B)T = AT + BT a transposta da soma é igual & soma das transpostas das parcelas.

3. (AB)T = BT AT a transposta do produto é igual ao produto das transpostas dos factores

por ordem inversa.
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Observe-se que tr(A) = tr(AT).

Seja A uma matriz quadrada de ordem n. A matriz A é simétrica se é igual a sua transposta.

MATRIZ INVERSA. Um ntmero real a diz-se ter inverso multiplicativo se existir um nimero real
b tal que ab = 1. Qualquer niimero nao-nulo a tem inverso multiplicativo b = é Generalizamos
o conceito de inverso multiplicativo a matrizes com a seguinte definicao.

Uma matriz A, «, diz-se ndo-singular ou invertivel se existir uma matriz B tal que AB = BA = I.
A matriz B diz-se o inverso multiplicativo de A.

Se B e C sao ambos inversos multiplicativos de A, entao
B=BI=B(AC)=(BA)C=1C=1.

Assim, uma matriz tem, no maximo, um inverso multiplicativo. Referir-nos-emos a este inverso

multiplicativo de uma matriz nao-singular como a matriz inversa de A e representa-la-emos por
A—l

EXEMPLO 6.5. As matrizes

sao inversa uma da outra, pois

12 102
3 1 3 1 :
31 ic —% ic —&) 131 0 1

EXEMPLO 6.6. A matriz

nao tem inversa. De facto, se B € uma matriz arbitrdria 2 X 2, entdo
A= = )
bor ba2| [0 O bor 0
Logo, BA ndo pode ser igual a I.

Uma matriz n x n diz-se singular se nao tem inverso multiplicativo. Adiante veremos como

calcular a inversa de uma matrix nao-singular.
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6.2 DETERMINANTES
6.2.1 DETERMINANTE DE UMA MATRIZ

A uma matriz quadrada A podemos associar um numero, det(A), cujo valor nos indicara se a

matriz é nao-singular. Antes de darmos a defini¢ao geral, consideremos os seguintes exemplos.
CAsO I: MATRIZ 1 x 1

Se A = [aq1] é uma matriz 1 X 1, entao A terd inverso multiplicativo se e s6 se aj; # 0. Assim,

definimos o determinante de A por

det(A) = dadiy,
e, A serd nao-singular se e so se a;; # 0.
CAso II: MATRIZ 2 X 2
Seja
A= a1 Q12 .
21 Q22

O determinante desta matriz pode ser definido em termos de duas matrizes 1 x 1:
My = [ag] e My = [an].

A matriz M;; é encontrada a partir de A eliminando a primeira linha e a primeira coluna e
M5 é formada a partir de A eliminando a primeira linha e a segunda coluna.

O determinante de A pode ser escrito na forma

det(A) = a11 Q92 — Q12 Q21 = A11 det(MH) — 12 det(Mm). (63)

2 4

2 4
EXEMPLO 6.7. O determinante da matriz A = ] é det(A) = =2x1-4x3=-10.
3 1 3

Caso III: MATRIZ 3 x 3

Para uma matriz 3 x 3,
a1 G12 ai3
A= laa az asx
31 az2 As3
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o determinante de A pode ser representado na forma
det(A) = a1 det(Mn) — a2 det(M12) + a3 det(M13)

onde,

Q22 A23 Q21 A23 Q21 A22
Mll == ) M12 == ) M13 - .
a3z Q33 a31  as3 a3r a3z

Vejamos agora como generalizar para o caso n > 3. Para tal necessitamos da seguinte defini¢ao.
Seja A uma matriz n X n e representemos por M,;; a matriz de ordem (n —1) x (n — 1) obtida a
partir de A eliminando a linha e a coluna contendo a;;. O determinante de M;; ¢ denominado
por menor complementar de a;;.

Definimos A;; o cofactor (ou adjunto) de a;; por
Aij = (—1)i+j det(MZ])

De acordo com esta defini¢gdo, para uma matriz 2 x 2, podemos reescrever a equagao (6.3) na
forma

det(A) = a1 A11 + aqs A12 (TL = 2). (64)

A equagao (6.4) é chamada expansdo em cofactores ao longo da primeira linha de A. Observemos

que também podemos escrever
det(A) = a91 A21 + ao9 AQQ (TL = 2), (65)

e, neste caso, exprimimos o det(A) em termos das entradas da segunda linha de A e dos seus
cofactores. Na verdade, nao é imprescindivel que efectuemos a expansao ao longo de uma linha
de A; o determinante pode também ser representado pela expansao em cofactores ao longo de
uma das colunas.

Para uma matriz 3 x 3, temos

det(A) = a1y A + aip Arp + arz Ass.

2 5 4
EXERcICIO 6.3. Calcule o determinante da matriz A= |3 1 2].
5 4 6
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2 5 4
12 32 31
det(4) = (3 1 2 =2x|  [=5x +4x 4:2(6—8)—5(18—1O)+4(12—5):—16.
6 5 6 5
5 4 6

O determinante de uma matriz A de ordem n x n, representado por det(A), é o escalar associado

a matriz A definido da seguinte forma

o a1, sen =1
det(4) = { ann A+ ap A+ -+ aip A, sen>1

onde,

Ay = (=1 det(Myy),  j=1,....n

sao os cofactores associados aos elementos da primeira linha de A.

Enunciamos algumas propriedades dos determinantes:

e Se A é uma matriz n x n com n > 2, entdo o det(A) pode ser exprimido como uma

expansao em cofactores usando qualquer linha ou coluna de A;

e Se A é uma matriz n x n, entao det(A”) = det(A).

Se A é uma matriz triangular, o determinante de A é igual ao produto dos elementos

diagonais de A.

Seja A uma matriz n X n.

— Se A tem uma linha ou uma coluna consistindo apenas de zeros, entdo det(A) = 0.

— Se A tem duas linhas ou duas colunas iguais, entdao det(A) = 0.

e Uma matriz A de ordem n x n é singular se e s6 se

det(A) = 0.
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REGRA DE SARRUS

O matematico francés Pierre Frédéric Sarrus (1798-1861) desenvolveu uma regra para o célculo

de determinantes de matrizes de ordem 3,
det(A) = (fln (22 A33 + Q12 (23 A31 + Q13 A32 a21) - (an (23 A32 + Q12 33 A21 + Q13 (22 asl),

ilustrada na figura (6.1).

a1 a a3 an Q12 Q13
a2 23 a21 Q23
a31 32 33 @31 a32 a33

Figura 6.1: Esquematizacao da regra de Sarrus.

6.2.2 CALCULO DA INVERSA DE UMA MATRIZ NAO-SINGULAR

Vamos estudar agora um método para calcular a inversa de uma matriz nao-singular aplicando

determinantes.

ADJUNTA DE UMA MATRIZ. Seja A uma matriz n X n. Se A, representar o cofactor de aj,
para k =1,..., n, entao
det(A) sei=1j

0 se i # j.

Dada a matriz A podemos definir uma nova matriz, designada adjunta de A, por

airt Aji + aig Aja + -+ ain Ajy = { (6.6)

- T _ -

_All A12 Aln All A21 Anl
A21 A22 A2n A12 A22 An2
adj(A)
Anl Anl Ann_ _Aln A2n Ann_
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Assim, para construirmos a adjunta, temos de substituir cada termo pelo seu cofactor e transpor
a matriz resultante.
Por (6.6),

Aadj(A) = det(A) I.

Se A é uma matriz nao-singular, det(A) é um escalar diferente de zero e, podemos escrever,

1
Al——adj(A) | =1.
(e i)
Entao,
1
1= dj(A).
den(a) 2V
EXEMPLO 6.8. Para uma matriz 2 X 2, escrevemos
a —a
adi(A) = 22 12] ‘
—az1  ail

Se A for nao-singular, entao

1 1 azz  —ai2
AT = .
a1 aze — a12 a2l [—agl an]
2 1 2
EXERcICIO 6.4. Seja A= |3 2 2|. Determine adj(A) e A~L.
12 3
2 2 |32 3 20 1"
2 3 13 12
. 12 2 2 2 1
adj(4) = _‘2 3‘ '1 3' _'1 2'
1 2 2 2 2 1
2 2 3 2 3 2
(2 1 -2
= -7 4 2
4 -3 1
2 1 2
X 2 1 -2 5 5 T3
A7l = A ==-1-7 4 92|=|-7 4 2
der(a) ") 5o
3 1
4 -3 1 5 "5 5
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6.2.3 REGRA DE CRAMER

Aplicando a férmula para a inversa

L1

podemos deduzir uma regra para determinar a solucao do sistema Ax = b em termos dos

determinantes.

REGRA DE CRAMER. Seja A uma matriz ndo-singular n x n e seja b = (by, by, ..., b,). Seja
A; a matriz obtida substituindo a i-ésima coluna de A por b. Se x é a solugao tnica de Ax = b,

entao

~ det(A)’

T parat=1,2, ..., n.

A regra de Cramer fornece-nos um método de determinar a solugao de um sistema de n equagoes
lineares com n incégnitas em termos dos determinantes. No entanto, este método nao é viavel
para sistemas de ordem muito elevada.

Com este método podemos resolver agora o sistema (6.2) do inicio do capitulo.

Assim,
)900 2‘ )5 900)
960 4| 3600 — 1920 3060 4800 — 2700
_ _ — 190 _ _ — 150.
Y7900 2 20— 6 “ Y7900 2 20— 6
960 4 960 4

EXEMPLO 6.9. Utilize a regra de Cramer para resolver o sequinte sistema

1+ 220+ 23 =25
201 +2x9+1x3 =06
1 + 222 + 323 = 9.

O sistema dado escreve-se matricialmente na seguinte forma,

1 2 1| |z )
2 2 1| |z = |6
1 2 3| [z3 9
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Calculamos entao,

121 5 2 1

det(A)=1[2 2 1|=—-4, det(4) =6 2 1| =—4,
12 3 9 2 3
151 125

det(Ag) =[2 6 1| =—4,  det(ds)=[2 2 6] =8,
193 129

onde Ai, Ay e A3 sdo as matrizes obtidas a partir de A substituindo a primeira, segunda e terceira

)
colunas, respectivamente, por |: 6 ] .
9
Logo, pela regra de Cramer, obtemos
—4 —4 -8
=—=1 =—=1 = — =9,
4 ) Z2 4 ) xs3 4

T

6.3 EXERCICIOS E COMPLEMENTOS

1. Escreva as matrizes 3 X 2, A e B, que tém como componentes a;; =i+ j e b;; = (—1)"*,

respectivamente.
. -1 2 0 1 1 -2
2.SejamA—{O _3}, B—[Q 4}, C’—L _1}.
(a) Determine A — B + 2C.

(b) Determine —2A + 3B.

(c) Determine D de forma que A+ B =2A— B+ D.

1 3 -1 5 -1 4 —2 0 4
3. Sejam A= |2 4 1|, B=1|2 0 1|, C=|1 -31
0 -2 2 1 -3 -3 0 0 2

(a) Determine 2A + 3B — C.

(b) Determine 3C — B + 1 A.

(c) Determine D tal que A+ B+ C + D = 0.
)

(d) Determine D tal que A+ 4B =2(A+ B)+ D.
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4. Deé exemplo de uma matriz 4 X 4 que seja:

(a) Triangular superior. (b) Simétrica. (c) Diagonal.
-1 0 3 L
5. Determine as transpostas de: (a) A = [ 5 1 _4]; (b) B= |-3
4

: 1 3 1 20 -1
6. SejamA—{O _2:|GB—|: ]

(a) Calcule AB.
(b) Calcule BT A.

—1

7. Sejam A = 0 eB:{
2

6 0 0

ot W

2 4 1}. Mostre que (AB)T = BT AT.

8. Uma matriz P diz-se idempotente se P? = P. Mostre que a matriz A = {25 _20} é

30 —24
idempotente.

9. Dada a matriz

3 2 4
A=11 -2 3
2 3 2

(a) Determine os valores de det(My;), det(May) e det(Mas).
(b) Determine os valores de Ayy, Ags e Aos.

(c) Use as respostas da alinea anterior para determinar det(A).

10. Utilize determinantes para averiguar se as seguintes matrizes sao nao-singulares.
3 5 3 6 3 —6
T R A Y

11. Calcule os seguintes determinantes:
31 2 4 3 0
’ (c)[2 4 5 (d3 1 2
2 45 5 -1 —4

A IOl
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12. Determine todos os valores de A para os quais o seguinte determinante é nulo.

2—-X 4
3 3-=A

13. Encontre todos os valores possiveis de ¢ para os quais a seguinte matriz é singular.

1 11
1 9 ¢
1 ¢ 3

14. Para cada uma das matrizes seguintes, calcule (i) det(A), (ii) adj(A), e (iii) AL

3 1 2
(@A:{_?’z _53} (b)A:{_58 ﬂ () A= 1|2 4 5
2 4 5

15. Utilize a regra de Cramer para resolver os seguintes sistemas:
2.1’1"‘1’2—31’3 =0

(b) 4{L‘1 + 51‘2 + T3 = 8

211 + 39 =2
a
3.1’1 —|—2.T2 =5

—2l‘1 — T2 +4ZL‘3 =2
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