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2.3.6 Asśımptotas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.7 Funções cont́ınuas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.8 Teoremas da continuidade . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3.9 Aplicação do Teorema de Bolzano: método da bissecção . . . . . . . . . . 58
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3.10 Exerćıcios e complementos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Cálculo integral e aplicações 99

4.1 Primitivas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1.1 Primitivação por partes . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



Texto de apoio de Matemática — ÍNDICE 3
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4.5 Exerćıcios e complementos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5 Equações Diferenciais Ordinárias 143
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Bibliografia 179

Index 180



Prefácio

A presente publicação resulta da evolução dos apontamentos facultados desde o ano lectivo de

2007/2008 aos alunos das licenciaturas em Agronomia, Biologia e Ciência e Tecnologia Animal

da Universidade de Évora.
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Caṕıtulo 1

O sistema de números reais

1.1 Breves noções da Teoria de Conjuntos

Vamos começar por recordar algumas noções do que, em Matemática, se designa por Teoria de

Conjuntos.

Uma colecção de ’objectos’ é frequentemente identificada como sendo um novo ’objecto’ chamado

conjunto. De um ponto de vista formal, trata-se de uma palavra que não está sujeita a definição

e, portanto, requer axiomas e regras de forma a evitarem-se inconsistências.

Informalmente, podemos definir conjunto como uma colecção de objectos que fica determinada

quando são conhecidos os seus membros.

Ainda informalmente, se um determinado ser vive num determinado mundo dizemos que per-

tence a esse mundo. Podemos falar no mundo da música, o mundo do desporto, o mundo da

poĺıtica, etc. De uma forma natural, vemos que dentro do mundo do desporto existe o mundo

dos futebolistas, ou dos ginastas, ou dos jogadores de bilhar... Ou ainda, pode dar-se o caso de

futebolistas que são músicos, ou poĺıticos que fazem tiro ao alvo...

Matematicamente, sendo A um conjunto, traduzimos a relação de pertença relativamente a esse

conjunto pelo śımbolo ∈ dizendo ’x pertence a A’, ou ’x é um elemento de A’ ou, ainda, ’x está

em A’; simbolicamente,

x ∈ A.

Dado um determinado objecto x é posśıvel, em prinćıpio, decidir se x pertence ou não a A. E,

este último caso (não pertence a A) representa-se por x 6∈ A.

7
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Os conjuntos podem ser definidos essencialmente de duas formas distintas:

• em extensão: quando enumeramos todos os seus elementos, como em

A := {1, 2, 3, 4, 5, 6}, B :=

{
1

n + 1
: n ∈ N

}

;

• em compreensão: quando apresentamos uma propriedade definida num dado conjunto;

por exemplo,

C := {x ∈ X : p(x) é verdadeira}, D := {q ∈ N : q é múltiplo de 3}.

Podemos estabelecer dois tipos de relações entre conjuntos, digamos A, B e C. Se A e B têm

os mesmos elementos, isto é, se os elementos de A são elementos de B e reciprocamente, se os

elementos de B são elementos de A, diremos que A = B. Esta relação de igualdade entre dois

conjuntos verifica as seguintes propriedades:

• Reflexiva: A = A;

• Simétrica: A = B se e só se B = A;

• Transitiva Se A = B e B = C então A = C.

Outra relação que podemos estabelecer entre conjuntos é a relação de inclusão : dizemos que A

está contido em B, ou que A é um subconjunto de B, e escrevemos A ⊂ B, se todo o elemento

de A é também um elemento de B

A relação de inclusão entre conjuntos é:

• Reflexiva: A ⊂ A;

• Anti-simétrica: Se A ⊂ B e B ⊂ A então A = B;

• Transitiva: Se A ⊂ B e B ⊂ C então A ⊂ C.
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Na verdade, A = B se e só se A ⊂ B e B ⊂ A. Esta é de facto a forma de provar que A = B.

De modo a evitar inconsistências é necessário distinguir entre elementos e subconjuntos e,

consequentemente, entre as formas verbais ’pertence a’ e ’está contido em’. Por exemplo, se x

pertence a A escrevemos de forma equivalente x ∈ A ou {x} ⊂ A, mas não x ⊂ A.

Um conjunto pode ter ’muitos’ elementos, ’poucos’ ou nenhum. O conjunto que não contém

nenhum elemento é designado por conjunto vazio e é representado por ∅ ou {}. Se um conjunto

A é constitúıdo por um número finito de elementos A = {a1, a2, . . . , an} dizemos que o conjunto

A é finito.

Observação 1.1. O conjunto vazio é subconjunto de qualquer conjunto.

De facto, seja A um conjunto arbitrário, precisamos de mostrar que todo o elemento de ∅ é elemento

de A. Ora, a única maneira de tal afirmação ser falsa é encontrarmos um elemento em ∅ que não

seja elemento de A, mas tal é certo que não sucede pois ∅ não tem elementos.

Para quantificar um conjunto recorremos à noção de cardinal. O cardinal de um conjunto A,

que se representa por card(A), indica-nos o número de elementos que constituem esse conjunto.

Os conjuntos podem ser identificados como objectos e, como tal, podem por sua vez ser membros

de outros conjuntos. Assim, podemos falar do conjunto

A = {{2}, {2, 3}, {5, 6}}

cujos elementos são os conjuntos {2}, {2, 3} e {5, 6} e o seu cardinal é card(A) = 3.

Observação 1.2. Dado um conjunto A, indicamos com P(A) o conjunto cujos elementos são

todos os subconjuntos de A. Ou seja, dizer que B ∈ P(A) equivale a dizer que B ⊂ A. P(A)

designa-se por conjunto das partes de A e nunca é vazio pois, contém pelo menos o conjunto

vazio e o próprio A. Por exemplo, se A = {1, 2, 3} então

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, A}.

Observação 1.3. No restante texto, faremos uso do quantificador universal ∀ (’para todo’ ou

’qualquer que seja’) e do quantificador existencial ∃ (’existe pelo menos um’). Assim como os

śımbolos lógicos da conjunção ∧ (’e’) e da disjunção ∨ (’ou’).
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1.1.1 Operações entre conjuntos

Sejam A, B e C três conjuntos. Definimos a reunião de A com B como sendo o conjunto

constitúıdo por elementos que pertencem a A ou a B e representamos por A ∪B,

A ∪B := {x : x ∈ A ∨ x ∈ B}.

A B

A ∪ B

Figura 1.1: Reunião de dois conjuntos.

A B

A ∪ B

Figura 1.2: Intersecção de dois conjuntos.

A intersecção entre A e B é o conjunto de todos os pontos que pertencem simultaneamente a

A e a B,

A ∩B := {x : x ∈ A ∧ x ∈ B}.

Dois conjuntos A e B são disjuntos se não têm elementos comuns, ou seja, A ∩ B = ∅.
As operações de reunião e intersecção de conjuntos gozam das seguintes propriedades distribu-

tivas

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

A diferença entre A e B, A\B, é o conjunto formado pelos elementos de A que não pertencem

a B,

A\B := {x : x ∈ A ∧ x 6∈ B}.
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A B

A\B

Figura 1.3: Diferença entre dois conjuntos.

Se A ⊂ X , o complementar X\A de A em X é o conjunto de pontos em X que não pertencem

a A. Formalmente,

x ∈ X\A se e só se x ∈ X ∧ x 6∈ A.

Uma vez fixado o conjunto X , o complementar de qualquer subconjunto A ⊂ X é representado

por

Ac := X\A.

Sendo A e B dois conjuntos não-vazios, definimos o produto cartesiano de A por B, denotado

por A × B, como o conjunto constitúıdo por todos os pares ordenados (a, b) tais que a ∈ A e

b ∈ B, isto é,

A× B = {(a, b) : a ∈ A, b ∈ B}.

Exemplo 1.1. Seja A = {1, 2, 3} e B = {a, b}. Então A×B = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}.

O produto cartesiano de A por si próprio, A × A, representa-se por A2; por exemplo, o plano

cartesiano é representado por,

R2 = R× R = {(x, y) : x, y ∈ R}.

Cada ponto do plano representa um par ordenado de números reais e, reciprocamente, cada

par ordenado de números reais representa um ponto do plano.

Exerćıcio 1.1. Represente graficamente o produto cartesiano [−2, 2]× R.

1.2 Os conjuntos dos números naturais, inteiros e racionais

O sistema de números mais simples é o conjunto dos números naturais {1, 2, 3, . . . } identificado
pela letra N. A adição e a multiplicação são operações em N, no sentido em que a soma e o
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produto de dois números naturais dá origem a um número natural. Contudo, a subtracção pode

não fazer sentido se apenas tivermos ao nosso dispôr números naturais. Por exemplo, 3 − 7

não tem significado em N. Assim, teremos de considerar o conjunto mais amplo dos números

inteiros (Z) . . . ,−3,−2,−1, 0, 1, 2, 3, . . .

Embora a adição, a multiplicação e a subtracção façam sentido no conjunto dos números inteiros

a divisão não pode ser definida para quaisquer dois números inteiros. Por exemplo, a expressão

3 ÷ 7 não representa um número inteiro. Então, passamos para o conjunto (mais amplo) Q,

formado por todos os números da forma p
q
onde p e q são números inteiros e q é diferente de 0.

Este é o conjunto dos números racionais,

Q :=

{
p

q
: p, q ∈ Z e q 6= 0

}

.

Assim, de forma a dar resposta a cada uma das limitações, os conjuntos de números foram

sendo progressivamente ampliados,

N ⊂ Z ⊂ Q.

Em geral, os números que encontramos no dia-a-dia — preços, temperaturas, juros, velocidades,

pesos, etc. — são números racionais. No entanto, também existem números que não são racio-

nais como veremos.

1.2.1 D́ızimas finitas e infinitas

Chamamos d́ızima finita a uma expressão da forma

a0.a1a2 . . . an

onde a0 ∈ Z, n ∈ N e a1, . . . , an ∈ {0, 1, 2, . . . , 9}. Por definição atribúımos a esta expressão o

seguinte significado:

a0.a1a2 . . . an = a0 +
a1
10

+
a2
100

+ · · ·+ an
10n

= a0 + a1 × 10−1 + a2 × 10−2 + · · ·+ an × 10−n.

Assim, uma d́ızima finita representa sempre um número racional.
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Por d́ızima infinita, entendemos uma expressão da forma a0.a1a2 . . . onde a0 ∈ Z e, para cada

i ∈ N, ai ∈ {0, 1, 2, . . . , 9}.
Podemos determinar o número racional definido, por exemplo, pela d́ızima infinita x = 2.777 · · · =
2.7 calculando 10x− x. De facto, subtraindo membro a membro,

10x = 27.777 . . .
(−) x = 2.777 . . .

9x = 25.000 . . .

Assim, a d́ızima infinita 2.777 . . . é a representação decimal do número racional 25
9
.

Vejamos outro exemplo. Para a d́ızima x = 1.20101010 · · · = 1.201 podemos, usando um

racioćınio idêntico, calcular

1000x = 1201.010101 . . .
(−) 10x = 12.010101 . . .

990x = 1189.000000 . . .

portanto, 990x = 1189 e, concluiŕıamos que x é o racional 1189
990

.

Exerćıcio 1.2. Escreva 0.232323 . . . como um quociente de dois números inteiros.

Uma d́ızima que tenha uma sequência de d́ıgitos que se repete denomina-se de d́ızima periódica

e, pelo que anteriormente se expôs, vê-se que constitui um número racional. Reciprocamente,

demonstra-se que qualquer número racional pode ser representado por uma d́ızima infinita

periódica (toda a d́ızima finita é infinita periódica). Isto permite a caracterização dos números

irracionais através de d́ızimas infinitas não-periódicas.

Assim, por exemplo,

x = 7.02002000200002 . . .

representa um número irracional.

Exerćıcio 1.3. Escreva um número irracional compreendido entre 5.3 e 5.34.

1.3 Os números reais

Se ao conjunto dos números racionais acrescentarmos o conjunto dos números irracionais obte-

remos o conjunto dos números reais, R.
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Exerćıcio 1.4. Ordene os seguintes números reais por ordem crescente

0.56, 0.56, 0.566, 0.565565556 . . . , 0.566, 0.56656665666 . . . , 0.565566555666 . . .

Os números irracionais surgem quando tentamos resolver certas equações quadráticas. Por

exemplo, x2 = 2. Não existe nenhum número racional cujo quadrado seja 2.

Com a inclusão dos números irracionais chegamos a um sistema numérico suficientemente amplo

para representar quantidades que variam de forma cont́ınua e que permite compreender uma

representação numérica da recta geométrica ou de um ponto na recta.

1.3.1 A representação de números reais em ponto flutuante

Nas aplicações cient́ıficas há necessidade de recorrer a números muito grandes e a números muito

pequenos; por exemplo, a constante de Avogadro e a massa de um electrão, respectivamente,

602214179000000000000000mol−1 e 0.00000000000000000000000000000091095 kg.

A representação destas constantes obriga a um grande número de d́ıgitos, a maioria dos quais são

zero. Para resolver estas dificuldades de representação de números muito grandes ou números

muito pequenos usa-se a chamada notação cient́ıfica, onde um número real x é expresso na forma

x = ±a1.a2a3a4 · · · × 10p

com a1, a2, a3, · · · ∈ {0, 1, 2, . . . , 9}, p um número inteiro e a1 6= 0. Os algarismos à direita do

ponto decimal constituem a mantissa do número.

Deste modo, a constante de Avogadro e a massa de um electrão serão escritas em notação

cient́ıfica na forma

6.02214179× 1023mol−1 e 9.1095× 10−31 kg.

Naturalmente, a notação cient́ıfica como a acabámos de apresentar não pode ser implementada

numa calculadora nem num computador por mais potente que seja pois, para cobrir todos os

números reais, a mantissa e o expoente exigiriam um número infinito de algarismos. Assim, a
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notação cient́ıfica é modificada no sentido de se utilizar um número finito de algarismos para

a mantissa e um número finito de algarismos para o expoente, obtendo-se a representação em

ponto flutuante.

Um número com a representação decimal em ponto flutuante ±0.a1a2 . . . ak × 10p diz-se ter k

algarismos significativos.

Como a memória de uma calculadora ou computador é finita, tem de limitar o número de

algarismos significativos com os quais trabalha. Tal procedimento pode levar a um tipo de erro

conhecido como erro de arredondamento.

É importante compreender que um simples cálculo envolvendo apenas as operações elementares

pode reduzir o número de algarismos significativos e, por conseguinte, conduzir à perda de

informação. Tal perda de algarismos significativos, ou simplesmente perda de significância,

pode ocorrer, por exemplo, quando se subtraem dois números muito próximos um do outro,

que se designa por cancelamento subtractivo.

Por exemplo, 0.124 e 0.123 têm três algarismos significativos enquanto que a sua diferença,

0.1×10−2, tem apenas um algarismo significativo. O exemplo seguinte ilustra como o resultado

de um conjunto de operações pode ser afectado pelos arredondamentos.

Exemplo 1.2. Qual o resultado de calcular

x = 0.412 × 0.300 − 0.617 × 0.200

numa calculadora que usa apenas três algarismos significativos? Qual o erro relativo cometido?

Resolução O produto 0.412× 0.300 com três algarismos significativos é 0.124 e 0.617× 0.200 é 0.123.

Portanto, numa calculadora com três d́ıgitos x é calculado como 0.124 − 0.123 = 0.1 × 10−2. Claro

que x é realmente igual a 0.1236 − 0.1234 = 0.2× 10−3, como se pode verificar com uma calculadora

usual.

Para quantificarmos o erro relativo cometido usamos a seguinte expressão

|x− x|
|x|

onde x representa o valor exacto e x representa o valor aproximado.

Neste caso, o erro relativo cometido é,

|0.2 × 10−3 − 0.1 × 10−2|
|0.2 × 10−3| = 4

ou, em termos percentuais, 400%.
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1.3.2 Intervalos

Se a, b ∈ R, a ≤ b, o conjunto de todos os x tais que a ≤ x ≤ b diz-se um intervalo fechado com

extremidades a, b e representa-se por [a, b], isto é,

[a, b] := {x ∈ R : a ≤ x ≤ b}.

Se a, b ∈ R, a < b, o conjunto

]a, b[:= {x ∈ R : a < x < b}

diz-se intervalo aberto de extremidades a, b. É também usual a notação (a, b) para representar

um intervalo aberto.

De forma idêntica podemos definir os intervalos semi-abertos ]a, b] e [a, b[.

Introduzindo os śımbolos +∞ e −∞ e a notação

]a, +∞[ = {x ∈ R : x > a}, [a, +∞[ = {x ∈ R : x ≥ a},
]−∞, a[ = {x ∈ R : x < a}, ]−∞, a] = {x ∈ R : x ≤ a},

podemos também falar de intervalos com extremidades a e +∞ ou −∞, ou ainda, de R como

o intervalo ]−∞, +∞[ de extremidades −∞ e +∞.

Um intervalo diz-se limitado se ambas as extremidades são finitas e ilimitado se pelo menos uma

das extremidades é −∞ ou +∞.

Contudo, para definirmos conjunto limitado precisamos de recorrer a duas noções: a de majo-

rante e a de minorante de um conjunto.

Seja X um conjunto não-vazio, X ⊂ R. Dizemos que M ∈ R é um majorante de X se

M ≥ x, para qualquer x ∈ X.

Neste caso, X diz-se majorado (ou limitado superiormente). O menor dos majorantes do conjunto

X é designado por supremo de X e representado por sup(X). Se o supremo de X pertence a

X então toma o nome de máximo de X .

Analogamente, m ∈ R é um minorante de X se

m ≤ x, para qualquer x ∈ X.
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Neste caso, diz-se que X é minorado (ou limitado inferiormente). O maior dos minorantes do

conjunto X é designado por ı́nfimo de X e representado por inf(X). Se o ı́nfimo de X pertence

a X então toma o nome de ḿınimo de X .

Exemplo 1.3. Determine em R, caso existam, o conjunto dos majorantes, o conjunto dos mino-

rantes, o supremo, o ı́nfimo, o máximo e o mı́nimo do conjunto S = [0, 1[.

Resolução O conjunto dos majorantes de S é U = [1, +∞[ pois, qualquer seja x ∈ S, x ≤ u sendo u

um elemento qualquer fixado de U . O supremo de S é sup(S) = 1 e S não tem máximo.

O conjunto dos minorantes de S é L =]−∞, 0] pois, qualquer seja x ∈ S, x ≥ ℓ sendo ℓ um elemento

qualquer fixado de L. O ı́nfimo de S é inf(S) = 0 e min = 0 é o mı́nimo de S.

O conjunto X diz-se limitado se for majorado e minorado, isto é, se existirem números reais m

e M tais que

m ≤ x ≤ M, para todo x ∈ X,

ou seja, X é um conjunto limitado se e só se X ⊂ [m,M ].

No caso do exemplo anterior, o conjunto S é limitado, pois, é majorado e minorado.

1.4 Algumas noções topológicas em R

Já vimos que podemos associar ao sistema de números reais um sentido geométrico que nos

permite visualizá-lo como uma recta, ou seja, podemos associar um número real a um ponto

da recta e, reciprocamente, associar um ponto da recta a um número. Tendo presente esta

imagem, podemos interpretar |x− y| como a distância entre dois pontos x e y. Em particular,

o módulo (ou valor absoluto) de um número indica a distância desse número à origem.

Observação 1.4. (a) Dado o número real positivo r, a expressão |x| < r indica o conjunto

dos pontos cuja distância à origem é inferior a r,

|x| < r ⇔ x < r ∧ x > −r

⇔ x ∈ ]−∞, r[∩ ]− r, +∞[

⇔ x ∈ ]− r, r[.
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(b) |x| > r indica o conjunto dos pontos cuja distância à origem é superior a r

|x| > r ⇔ x > r ∨ x < −r

⇔ x ∈ ]−∞, −r[∪ ]r, +∞[.

Exerćıcio 1.5. Escreva o conjunto W = {x ∈ R : |x− 6| ≤ 2} sob a forma de intervalo.

A noção de distância desempenha um papel fundamental na teoria dos limites. Por exemplo,

se (xn) é uma sucessão de números reais e x ∈ R, então a condição xn → x quando n → ∞
significa que podemos tornar o número |xn−x| tão pequeno quanto queiramos quando tomamos

n suficientemente grande.

Refira-se que R não é o único sistema matemático no qual faz sentido a noção de distância.

Existem muitos outros e, sempre que possamos definir uma função distância, podemos definir

limite e continuidade.

A ideia de distância entre dois números reais conduz-nos às noções importantes de vizinhança

e ponto interior.

Observemos que, se a é um ponto arbitrário da recta e ε um número real positivo fixado,

então os pontos cuja distância a a é inferior a ε são os todos aqueles, representados por x, que

verificam a desigualdade |x− a| < ε ou, equivalentemente,

a− ε < x < a+ ε.

Seja c ∈ R. Chamamos vizinhança de raio ε > 0 do ponto c ao intervalo ]c − ε, c + ε[, que

designaremos por Vε(c). A qualquer conjunto V que contenha uma vizinhança de raio ε do

ponto c chamamos simplesmente vizinhança de c.

Exemplo 1.4. Identifique a vizinhança de raio 0.5 do ponto 2.1.

Resolução.

V0.5(2.1) = {x ∈ R : |x− 2.1| < 0.5} = ]1.6, 2.6[.

Exerćıcio 1.6. Averigue se π pertence à vizinhança de raio 0.04 de 3.1.
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Seja X um subconjunto de R e c um número real. Diz-se que c é um ponto interior de X se

existe pelo menos uma vizinhança de c, Vε(c), contida em X , isto é, ∃ ε > 0 : Vε(c) ⊂ X .

Exerćıcio 1.7. O número 0 não é ponto interior do intervalo [0, 1]. Justifique.

Diz-se que c é um ponto exterior de X se for interior do complementar de X , R\X , o que

equivale a dizer que existe pelo menos uma vizinhança de c, Vε(c), que não contém pontos de

X , ou seja, ∃ ε > 0 : Vε(c) ∩X = ∅.
O ponto c diz-se ponto fronteiro de X se c não for interior nem exterior de X . Assim, c ∈ R é

ponto fronteiro de X se e só se qualquer vizinhança de c, Vε(c), contém pontos de X e de R\X ,

isto é, ∀ ε > 0, Vε(c) ∩X 6= ∅ 6= Vε(c) ∩ (R\X).

O ponto c diz-se ponto aderente de X se qualquer vizinhança de c, Vε(c), contém pontos de X ,

ou seja, ∀ε > 0, Vε(c) ∩X 6= ∅. Claramente, todo o ponto que pertença a X é aderente a X .

Os conjuntos constitúıdos por pontos com cada uma destas caracteŕısticas têm designações

correspondentes. Assim, o conjunto dos pontos interiores de X ⊂ R chama-se interior de X

e representa-se por int(X). O conjunto dos pontos exteriores de X chama-se exterior de X e

representa-se por ext(X). O conjunto dos pontos fronteiros de X denomina-se fronteira de X e

representa-se por fr(X). Por último, o conjunto dos pontos aderentes a X chama-se aderência

de X , ou fecho de X , e representa-se por X .

O ponto c ∈ R diz-se ponto de acumulação do conjunto X ⊂ R quando qualquer vizinhança de

c, Vε(c), contém pelo menos um ponto de X distinto de c, ou seja, ∀ε > 0, Vε(c)∩ (X\{c}) 6= ∅.
Ou seja, quando na vizinhança de c se retira c ainda restam pontos do conjunto. Naturalmente,

c é ponto de acumulação de X se e só se qualquer vizinhança de c contém uma infinidade de

pontos de X .

Exerćıcio 1.8. Será verdadeira ou falsa a seguinte afirmação: ”nenhum conjunto finito pode ter

pontos de acumulação”? Justifique.

Ao conjunto dos pontos de acumulação de um conjunto X dá-se o nome de derivado de X e

representa-se por X ′.
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Exemplo 1.5. Seja X =

{

1,
1

2
,
1

3
, . . . ,

1

n
, . . .

}

. Então X ′ = {0}.

Um ponto c ∈ X que não é ponto de acumulação de X diz-se um ponto isolado de X .

Exerćıcio 1.9. Determine em R o interior, a fronteira, o exterior, a aderência, o conjunto derivado

e os pontos isolados de cada um dos seguintes conjuntos

(a) X =]0, 1[ (b) X = [0, 1[

(c) X = {0, 0.5, 0.75, 1} (d) X = [0,+∞[.

Exemplo 1.6. Determine em R o interior, o exterior, a fronteira, a aderência e o derivado do

conjunto A = [0, 1]∪ ]2, 3[∪{6, 10}.

Resolução. Começamos por procurar os pontos interiores de A.

Seja c ∈ ]−∞, 0]. Então c não é ponto interior de A porque não é posśıvel encontrar pelo menos uma

vizinhança de c contida em A, isto é, ∄ ε > 0 : Vε(c) ⊂ A.

Seja c ∈ ]0, 1[. Então c é ponto interior de A pois, é posśıvel encontrar uma vizinhança de c, Vε(c),

que esteja contida em A. Basta tomar, por exemplo, ε = min{1
2 |c|, 1

2 |c− 1|}.

Seja c ∈ [1, 2]. Neste caso, c não será ponto interior de A visto não ser posśıvel encontrar pelo menos

uma vizinhança de c contida em A.

Seja c ∈ ]2, 3[. Então c é ponto interior de A pois, é posśıvel definir uma vizinhança de c, Vε(c),

contida em A. Basta tomar ε = min{1
2 |c− 2|, 1

2 |c− 3|}.

Seja c ∈ [3, +∞[. Então c não é ponto interior de A porque não é posśıvel encontrar uma vizinhança

de c contida em A.

Logo, int(A) = ]0, 1[∪ ]2, 3[.

Vamos agora determinar os pontos exteriores de A.

Seja c ∈ ]−∞, 0[. Então c é ponto exterior de A pois, é posśıvel definir uma vizinhança de c, Vε(c),

que não contenha pontos de A. Para tal, basta tomar, por exemplo, ε = 1
2 |c|.

Seja c = 0. Então c não é ponto exterior de A pois, qualquer vizinhança de c contém pontos de A.

Pelo mesmo motivo, também não são pontos exteriores de A: 1, 2, 3, 6, e 10.

Sabemos que pontos interiores, exteriores e fronteiros se excluem mutuamente. Logo, não necessitamos
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de analisar os intervalos ]0, 1[ e ]2, 3[.

Seja c ∈ ]1, 2[. Então c é ponto exterior de A pois, é posśıvel encontrar uma vizinhança de c, Vε(c),

que não contenha pontos de A, isto é, ∃ε > 0 : Vε(c) ∩ A = ∅. Basta tomar, por exemplo, ε =

min{1
2 |c− 1|, 1

2 |c− 2|}.

Seja c ∈ ]3, +∞[\{6, 10}. Então c é ponto exterior de A pois, é posśıvel encontrar uma vizinhança de

c, Vε(c), que não contenha pontos de A. Tomemos, por exemplo, ε = min{1
2 |c−3|, 1

2 |c−6|, 1
2 |c−10|}.

Logo, ext(A) =]−∞, 0[∪ ]1, 2[∪ ]3, +∞[\{6, 10}.

Os pontos fronteiros de A são 0, 1, 2, 3, 6 e 10. De facto, seja c ∈ {0, 1, 2, 3, 6, 10}. Então c é ponto

fronteiro de A pois, qualquer vizinhança de c contém pontos de A e de R\A.

Logo, fr(A) = {0, 1, 2, 3, 6, 10}.

Determinemos a aderência de A. Sabemos que A = int(A) ∪ fr(A). Logo, A = [0, 1] ∪ [2, 3] ∪ {6, 10}.

De facto, se c ∈ [0, 1] ∪ [2, 3] ∪ {6, 10} qualquer vizinhança de c contém pontos de A.

Por último, vamos determinar os pontos de acumulação de A. Procuramos todos os pontos c para

os quais, qualquer vizinhança de c, Vε(c), contém pelo menos um ponto de A distinto de c, isto é,

∀ε > 0, Vε(c) ∩ (A\{c}) 6= ∅. Obtemos assim, A′ = [0, 1] ∪ [2, 3].

1.4.1 Conjuntos abertos e fechados

Um conjunto X ⊂ R diz-se aberto quando todos os seus pontos são interiores, isto é, int(X) =

X . Por outras palavras, X é aberto se e só se todo o elemento de X possuir uma vizinhança

contida em X, isto é, se ∀c ∈ X, ∃ ε > 0 : Vε(c) ⊂ X . Podemos interpretar a vizinhança

Vε(c) ⊂ X como uma espécie de ’margem de segurança’ de um ponto c, dentro da qual ele se

pode movimentar sem correr o risco de sair do conjunto X . Naturalmente, essa margem de

segurança não é a mesma para todos os pontos de X .

Um conjunto X ⊂ R é fechado se e só se todo o ponto aderente de X pertence a X , ou seja,

X = X .

Os conjuntos fechados gozam da seguinte propriedade: um conjunto X ⊂ R é fechado se e só

se o seu complementar R\X é aberto.
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Os conjuntos R e ∅ são simultaneamente abertos e fechados.

Exemplo 1.7. Seja A =]0, 1[∪ ]2, 5[. Então A é um conjunto aberto.

Com efeito, para todo o c ∈ A tem-se c ∈ ]0, 1[ ou c ∈ ]2, 5[. Em qualquer dos casos, existe uma
vizinhança de c contida em A. Basta tomar, por exemplo,

ε = 1
2 min{|c|, |c− 1|, |c− 2|, |c− 5|}.

1.5 Exerćıcios e complementos

1. Seja A = {x : 3x = 6}. Indique o valor lógico da afirmação A = 2. Justifique.

2. SejaM = {r, s, t}. Averigue se cada uma das afirmações é verdadeira ou falsa e justifique.

(a) r ∈ M (b) r ⊂ M (c) {r} ∈ M (d) {r} ⊂ M .

3. Explique a diferença entre ∅, {0} e {∅}.

4. Considere os seguintes conjuntos:

A = {10, 20, 30, 40}, B = {20, 40, 80, 90}, C = {30, 40, 50, 80}.

(a) Determine:

(i) A ∪ B (ii) A ∪ C (iii) B ∪ C

(iv) B ∪B (v) (A ∪B) ∪ C (vi) A ∪ (B ∪ C).

(b) Determine:

(i) A ∩ B (ii) A ∩ C (iii) B ∩ C

(iv) B ∩B (v) (A ∩B) ∩ C (vi) A ∩ (B ∩ C).

(c) Aplicando a definição de diferença entre dois conjuntos, determine:

(i) A \B (ii) C \A (iii) B \C

(iv) B \A (v) B \B.
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5. Considere os seguintes conjuntos no universo dos números naturais inferiores a 10:

A = {1, 2, 3, 4}, B = {2, 4, 6, 8}, C = {3, 4, 5, 6}.

Determine:

(a) Ac (b) Bc (c) (A ∩ C)c

(d) (A ∪B)c (e) (Ac)c (f) (B \C)c.

6. Represente sob a forma de intervalo os seguintes conjuntos

(a) {x ∈ R : 1 ≤ x ≤ 3} (b) {x ∈ R : |x− 2| < 5}

(c) {t ∈ R : t > 1} (d) {u ∈ R : |u− 4| ≥ 6}

(e) {y ∈ R : |y + 4| ≤ 10} (f) {s ∈ R : |s− 2| > 8}.

7. Represente cada um dos seguintes conjuntos na recta real

(a) {x ∈ R : 2x− 5 < x+ 4} (b) {x ∈ R : x > −2 e x2 < 9}

(c)
{

t ∈ R : (t− 5)2 <
9

4

}

(d) {y ∈ R : 7y + 4 ≥ 2y + 1}

(e) {x ∈ R : |3x+ 9| ≤ 15} (f) {w ∈ R : |2w − 12| ≥ 1}.

8. Escreva cada um dos intervalos indicados na forma {x ∈ R : |x− c| < r} ou

{x ∈ R : |x− c| ≤ r}

(a) [−1, 3] (b) [3, 4
√
2] (c) (−π, π + 2) (d) (π −

√
2, π).

9. Determine em R, caso existam, o conjunto dos majorantes, o conjunto dos minorantes, o

supremo, o ı́nfimo, o máximo e o mı́nimo dos conjuntos

(a) ]−∞, 1[ (b) {n ∈ N : 2n > 15}.

10. Escreva sob a forma de conjunto V0.2(3). Represente-o geometricamente.

11. Determine em R o interior, a aderência e o derivado dos seguintes conjuntos.
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(a) A = ]− 1, 1]\{0} (b) B = {x ∈ R : x2 ≤ 4}

(c) C = {x ∈ R : 0 < |x− 3| ≤ 5} (d) D = {x ∈ R : x3 > x}

(e) E = {x ∈ R : |x− 1| ≥ |x|} (f) F =
{

x ∈ R :
x− 1

x+ 3
>

x

x+ 2

}

.

12. Determine os pontos de acumulação de cada um dos seguintes conjuntos.

(a) N (b) ]a, b] (c) R\Q.

13. Determine o conjunto A tal que:

(a) A e A′ sejam disjuntos (b) A ( A′, isto é, A ⊂ A′ mas A 6= A′

(c) A′ ( A (d) A = A′.

14. Determine em R o interior, a aderência e o derivado do conjunto (R\]− 1,+∞[) ∩Q.



Caṕıtulo 2

Sucessões, séries e funções reais de

variável real

2.1 Sucessões

Imaginemos que analisamos uma célula que, por mitose, se divide a cada 120 minutos.

Supondo que no ińıcio da observação existia apenas uma célula, como irá variar o número de

células ao longo do tempo?

Vamos chamar ao instante em que começámos a observação, instante t = 0. Para t = 0 existia

apenas uma célula. Após 120 minutos, a célula divide-se em duas logo, temos duas bactérias

para t = 120. Duas horas depois cada uma das células se divide, resultando em quatro células

para t = 240, e assim sucessivamente.

Obtemos deste modo uma sequência de valores da população de células correspondendo a

instantes igualmente intervalados,

1, 2, 4, 8, 16, 32, . . .

2.1.1 Definições e generalidades

Suponhamos que S e T são dois conjuntos não-vazios. Uma função f no conjunto S e com

valores no conjunto T é uma regra que associa a cada elemento de S um único elemento de T .

Escrevemos f : S −→ T e lemos ’f aplica S em T ’.

O conjunto S denomina-se doḿınio de f , Df , e T é o conjunto de chegada de f . O contradoḿınio

25
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(ou imagem) de f é o conjunto D′
f = {f(x) : x ∈ S} de todos os valores em T que a função

assume.

Uma sucessão é uma função de domı́nio N e tomando valores no conjunto dos números reais,

u : N −→ R
n 7→ u(n).

É usual a notação un ≡ u(n) para representar o termo de ordem n. Não confundir o termo un

com a sucessão (un).

Uma sucessão pode ser definida por uma expressão anaĺıtica através da qual podemos encontrar

cada elemento ou termo da sucessão. Tal expressão é designada por termo geral da sucessão.

Exerćıcio 2.1. Escreva os seis primeiros termos da sucessão (un) dada pelo termo geral

un =
[1 + (−1)n+1]n

2
.

Dizemos que a sucessão (un) está definida por recorrência, ou recursivamente, se conhecidos os

termos u1, . . . , un da sucessão, o termo un+1 é expresso em função daqueles.

Exerćıcio 2.2. É famosa a denominada sucessão de Fibonacci 1 definida por:

u1 = 1, u2 = 1, un = un−1 + un−2.

Escreva os dez primeiros termos desta sucessão.

Uma sucessão (un) diz-se majorada, ou limitada superiormente, se existir um número real L tal

que un ≤ L para todo o n ∈ N. Dizemos que L é um majorante da sucessão (un).

Analogamente, uma sucessão (un) é minorada, ou limitada inferiormente, se existir um número

real ℓ tal que ℓ ≤ un para todo o n ∈ N. Dizemos que ℓ é um minorante da sucessão e que (un)

é minorada por ℓ.

Se (un) é majorada e minorada, então diremos simplesmente que (un) é limitada. Neste caso,

existe um número M > 0 tal que |un| ≤ M e, diremos que (un) é limitada por M .

Exerćıcio 2.3. Mostre que a sucessão un =
2n

3n+ 16
é limitada.

1Consultar, por exemplo, http://www.educ.fc.ul.pt/icm/icm99/icm41/suc-fib.htm
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Uma sucessão (un) diz-se crescente quando u1 < u2 < u3 < · · · < un < un+1 < . . . , isto é,

quando un+1 − un > 0 para todo n ∈ N.

Analogamente, quando u1 > u2 > u3 > · · · > un > un+1 > . . . , ou seja, quando un+1 − un < 0

para todo n ∈ N, a sucessão (un) diz-se decrescente.

Se nas relações anteriores pudermos usar o sinal de igualdade diremos que se trata de uma

sucessão crescente, ou decrescente, em sentido lato.

Se uma sucessão é crescente ou decrescente, em sentido estrito ou lato, dizemos que é monótona,

em sentido estrito ou lato.

Exerćıcio 2.4. A sucessão do exerćıcio 2.1 é minorada, não é majorada e não é monótona. Justi-

fique.

Exerćıcio 2.5. Estude a sucessão un = 1
n quanto à monotonia.

2.1.2 Limites de sucessões

Quando se estuda a evolução de uma população ao longo do tempo, estamos muitas vezes

interessados no seu comportamento a longo prazo. Concretamente, se Nt é o tamanho da

população no instante t, com t = 0, 1, 2, . . . , pretendemos saber como é que Nt se comporta à

medida que t vai aumentando. Podemos traduzir matematicamente esta ideia dizendo ’quando

t tende para infinito’. E somos conduzidos à noção de limite.

Intuitivamente, dizer que o número real a é limite da sucessão (un) significa afirmar que, para

valores muito grandes de n, os termos un tornam-se, e mantém-se, tão próximos de a quanto

se deseje. Com um pouco mais de rigor: estipulando-se um ’erro’ por meio de um número real

positivo ε, existe um ı́ndice n0 tal que todos os termos un da sucessão que têm ı́ndice n maior

que n0 são valores aproximados de a com erro inferior a ε.

Chegamos assim à seguinte definição. Diz-se que o número real a é limite da sucessão (un) de

números reais, e escreve-se limn→∞ un = a, quando para qualquer número real positivo ε, dado

arbitrariamente, for posśıvel encontrar um número natural n0 tal que para todos os ı́ndices n
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superiores a n0, a distância do termo un a a é inferior a ε, isto é,

∀ε > 0, ∃n0 ∈ N : n > n0 =⇒ |un − a| < ε. (2.1)

Observemos que se limn→∞ un = a então qualquer vizinhança Vε(a) de centro a e raio ε > 0,

contém todos os termos un da sucessão, com excepção de no máximo um número finito de

ı́ndices n.

Quando limn→∞ un = a diz-se que a sucessão (an) converge para a e escreve-se an → a.

Uma sucessão que possui limite diz-se convergente. Caso contrário, diz-se divergente.

Exemplo 2.1. Discutamos a convergência da sucessão 1, 1
2 ,

1
3 ,

1
4 , . . . .

Seja un = 1
n para n = 1, 2, 3, . . . Os termos un tornam-se cada vez mais próximos de 0. Vamos provar

que lim
n→∞

un = 0.

Neste caso, a = 0 e tomemos ε é um dado número real positivo arbitrário. Precisamos de mostrar que

é posśıvel encontrar n0 de modo que, para qualquer termo de ordem n > n0 tem-se | 1n − 0| < ε, ou

seja, 1
n < ε. Que equivale a escrever n > 1

ε . Assim, se escolhermos para n0 o maior número natural

não superior a 1
ε fica provado o pretendido, isto é, limn→∞ un = 0.

Como ilustração, suponhamos que ε = 0.01. Então, pelo demonstrado atrás, basta tomarmos n0 = 100.

E, para qualquer termo de ordem superior a 100 a sua distância a 0 é inferior a 0.01. De facto, assim

é. Suponha-se o termo u101. Então, | 1
101 − 0| = 0.0099 < 0.01, como esperávamos.

Exerćıcio 2.6. Considere a sucessão un =
3 + 5n

2− 8n
. Mostre, aplicando a definição, que un → −5

8
.

Entre as sucessões divergentes, destacamos um tipo que se comporta com certa regularidade, a

saber, aquelas cujos valores se tornam e se mantêm arbitrariamente grandes positivamente ou

arbitrariamente grandes negativamente.

Seja (un) uma sucessão de números reais. Diremos que ’un tende para +∞’, e escreveremos

limn→∞ un = +∞, quando, para qualquer número real A dado arbitrariamente, pudermos

encontrar um número natural n0 tal que se n > n0 então un > A. Ou seja, para qualquer A > 0

dado, existe apenas um número finito de ı́ndices n tais que un ≤ A.

Evidentemente, se limn→∞ un = +∞ então (an) não é majorada mas é minorada.

Uma propriedade muito útil no estudo da convergência de uma sucessão é a que nos diz que:
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qualquer sucessão limitada e monótona é convergente.

Exerćıcio 2.7. Aplique a propriedade anterior para estudar a convergência da sucessão

un =
n2 − 3n+ 2

2n2 + 1
.

2.1.3 Propriedades aritméticas dos limites

Uma sucessão não pode possuir dois limites distintos, ou seja, se limn→∞ un = a e limn→∞ un = b

então a = b. Referimo-nos a esta propriedade dizendo que existe unicidade de limite.

As propriedades seguintes permitem-nos efectuar o cálculo de limites sem a necessidade de

recorrer sistematicamente à definição.

Se (un) e (vn) são duas sucessões convergentes, isto é, limn→∞ un = a, limn→∞ vn = b, e c ∈ R

é uma constante, então

(i) lim
n→∞

(un + vn) = a+ b;

(ii) lim
n→∞

(c · un) = c · a;

(iii) lim
n→∞

(un · vn) = a · b;

(iv) lim
n→∞

un

vn
=

a

b
, se b 6= 0.

Exerćıcio 2.8. Aplique as propriedades dos limites para determinar

lim
n→∞

n3 + 4n− 6

3n3 + 2n
.

Observe que não podemos aplicar directamente a propriedade (iv).

Outra propriedade bastante útil no cálculo do limite de uma sucessão é a seguinte:

Sejam (un) e (vn) duas sucessões tais que limn→∞ un = 0
e (vn) é limitada. Então limn→∞(un · vn) = 0.

Exerćıcio 2.9. Determine lim
n→∞

n sen(2n)

n2 + 1
.
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2.2 Séries de números reais

Consideremos (un) a sucessão definida por

1

2
,

1

4
,

1

8
,

1

16
,

1

32
, · · · , 1

2n
, · · · (2.2)

Constrúımos agora a sucessão (Sn) a partir da soma dos primeiros termos de (un),

S1 =
1

2

S2 =
1

2
+

1

4
=

3

4

S3 =
1

2
+

1

4
+

1

8
=

7

8

S4 =
1

2
+

1

4
+

1

8
+

1

16
=

15

16
...

Sn =
1

2
+

1

4
+

1

8
+

1

16
+ · · ·+ 1

2n
= 1− 1

2n
...

Trata-se de uma sucessão obtida a partir de (un) em que o termo de ordem n resulta da adição

dos n primeiros termos de (un).

Em geral, sendo (un) uma sucessão de números reais, podemos associar a esta uma outra

sucessão de termo geral

Sn = u1 + u2 + · · ·+ un,

a que chamaremos sucessão das somas parciais de (un).

Chamamos série à sucessão de pares ordenados (un, Sn), que representamos por

∞∑

n=1

un.

Se a sucessão (Sn) tiver limite em R, isto é, limn→∞ Sn = S, dizemos que a série
∑∞

n=1 un é

convergente, e escrevemos
∞∑

n=1

un = S.
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Sendo S designado por soma da série.

Se a sucessão (Sn) é divergente, diremos que a série é divergente.

Chama-se natureza de uma série à propriedade que ela tem de ser convergente ou divergente.

A natureza de uma série não se altera se modificarmos um número finito dos seus termos.

A noção de série é uma extensão da noção de adição a uma infinidade de parcelas.

No quadro seguinte estão indicados os valores das somas dos n primeiros termos da sucessão

(2.2), ou seja, a sucessão das somas parciais de (2.2),

n Soma dos n primeiros termos

1 0.50000000
2 0.75000000
3 0.87500000
4 0.93750000
5 0.96875000
6 0.98437500
7 0.99218750
10 0.99902344
15 0.99996948
20 0.99999905
25 0.99999997

Podemos verificar que adicionando um cada vez maior número de parcelas, o valor das somas

parciais torna-se cada vez mais próximo de 1.

Deste modo, parece razoável escrever que a soma desta série é igual a 1,

∞∑

n=1

1

2n
=

1

2
+

1

4
+

1

8
+

1

16
+ · · ·+ 1

2n
+ · · · = 1.

Demonstraremos adiante que, de facto, assim é.

Exerćıcio 2.10. Estude a convergência da série
∑∞

n=1 n.

Por vezes é conveniente considerar séries do tipo
∑∞

n=0 un ou, mais geralmente,
∑∞

n=p un onde

p é um inteiro. As definições já dadas, estendem-se facilmente a estes tipos de séries.

Podemos efectuar operações envolvendo séries.

Se
∑∞

n=1 un e
∑∞

n=1 vn são séries convergentes, então também o são as séries
∑∞

n=1 c · un (onde

c é uma constante),
∑∞

n=1(un + vn) e
∑∞

n=1(un − vn), e temos
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(i)

∞∑

n=1

c · un = c

∞∑

n=1

un;

(ii)

∞∑

n=1

(un ± vn) =

∞∑

n=1

un ±
∞∑

n=1

vn;

2.2.1 Série geométrica

Consideremos agora a sucessão un = arn onde a 6= 0 e r são números reais dados,

a, ar, ar2, . . . , arn, . . . (n ∈ N0)

Em particular, trata-se de uma progressão geométrica onde cada termo é obtido do precedente

multiplicando-o por um valor constante, designado razão, isto é, r =
un+1

un

.

Podemos considerar a sucessão das somas parciais de (un),

S0 = a

S1 = a + ar

S2 = a + ar + ar2

...

Sn = a+ ar + ar2 + · · ·+ arn

...

Somos assim conduzidos a um tipo importante de série que se designa por série geométrica

a+ ar + ar2 + · · ·+ arn + · · · =
∞∑

n=0

arn, a 6= 0. (2.3)

Exemplo 2.2. A série

∞∑

n=0

1

2n
é uma série geométrica com a = 1 e r = 1

2 .

Vamos estudar a natureza do tipo de séries (2.3).

Procuramos primeiramente uma expressão para Sn. Se r 6= 1, então temos

Sn = a+ ar + ar2 + · · ·+ arn

rSn = ar + ar2 + · · ·+ arn + arn+1.
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Subtraindo membro a membro estas duas equações, obtemos

Sn − rSn = a− arn+1

⇐⇒ Sn =
a(1− rn+1)

1− r
.

Estudamos agora os quatro casos: |r| < 1, r = −1, r = 1 e |r| > 1.

(i) Se −1 < r < 1 , sabemos que rn+1 → 0 quando n → ∞, de modo que

lim
n→∞

Sn =
a

1− r
− a

1− r
lim
n→∞

rn+1 =
a

1− r
.

Logo, quando |r| < 1 a série geométrica é convergente e a sua soma é igual a a
1−r

.

(ii) Se r = −1, (Sn) é uma sucessão cujos termos são iguais a a para n par e iguais a 0 para

n ı́mpar. Esta sucessão não tem limite e, portanto, a série é divergente.

(iii) Se r = 1, então Sn = a + a + · · · + a = (n + 1)a → ±∞, consoante o sinal de a. Como

limn→∞ Sn não existe, a série geométrica diverge neste caso.

(iv) Para |r| > 1, (rn+1) tende para infinito, (Sn) não converge e a série resulta divergente.

Exerćıcio 2.11. Determine a soma da série geométrica

5− 10

3
+

20

9
− 40

27
+ · · ·

2.2.2 Série de Mengoli

Outro tipo de séries são aquelas que se podem escrever na forma

∞∑

n=1

(un − un+k),

onde k é um número natural fixado, chamadas séries de Mengoli, redut́ıveis ou telescópicas.

Exemplo 2.3. Mostre que a série
∞∑

n=1

1

n (n+ 1)
,

— é uma série de Mengoli;

— é convergente e determine a sua soma.
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Calculamos a sucessão das somas parciais de forma a aplicar a definição de série convergente.

Sn =

n∑

i=1

1

i(i+ 1)
=

1

1× 2
+

1

2× 3
+

1

3× 4
+ · · · + 1

n(n+ 1)

Podemos simplificar esta expressão se utilizarmos a decomposição em fracções parciais

1

i(i+ 1)
=

1

i
− 1

i+ 1
.

Logo, encontramos

Sn =

n∑

i=1

1

i(i + 1)

=

n∑

i=1

(1

i
− 1

i+ 1

)

=

(

1− 1

2

)

+

(
1

2
− 1

3

)

+

(
1

3
− 1

4

)

+ · · · +
(
1

n
− 1

n+ 1

)

= 1− 1

n+ 1

donde,

lim
n→∞

Sn = lim
n→∞

(

1− 1

n+ 1

)

= 1− 0 = 1.

Por conseguinte, a série dada é convergente e

∞∑

n=1

1

n(n+ 1)
= 1.

2.2.3 Série de Dirichlet

Considerando a sucessão

1,
1

4
,

1

9
,

1

16
, . . . ,

1

n2
, . . .

podemos construir a série

1 +
1

4
+

1

9
+

1

16
+ · · ·+ 1

n2
+ · · · =

∞∑

n=1

1

n2
.

Esta série faz parte de um outro tipo de séries designado por séries de Dirichlet.
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Chama-se série de Dirichlet a uma série da forma

∞∑

n=1

1

nα
, (2.4)

em que α é um número real fixo.

A série (2.4) é divergente se α ≤ 1 e é convergente se α > 1.

A série
∞∑

n=1

1

n
(2.5)

é um caso particular de (2.4) quando α = 1 e é designada por série harmónica.

Exemplo 2.4. Vamos mostrar que a série (2.5) é divergente.

É conveniente considerarmos as somas parciais S2, S4, S8, S16, S32, . . . e mostrar que estes termos
crescem consecutivamente.

S2 = 1 +
1

2

S4 = 1 +
1

2
+

(
1

3
+

1

4

)

> 1 +
1

2
+

(
1

4
+

1

4

)

= 1 +
2

2

S8 = 1 +
1

2
+

(
1

3
+

1

4

)

+

(
1

5
+

1

6
+

1

7
+

1

8

)

> 1 +
1

2
+

(
1

4
+

1

4

)

+

(
1

8
+

1

8
+

1

8
+

1

8

)

= 1 +
1

2
+

1

2
+

1

2
= 1 +

3

2

S16 = 1 +
1

2
+

(
1

3
+

1

4

)

+

(
1

5
+ · · · + 1

8

)

+

(
1

9
+ · · · + 1

16

)

> 1 +
1

2
+

(
1

4
+

1

4

)

+

(
1

8
+ · · · + 1

8

)

+

(
1

16
+ · · ·+ 1

16

)

= 1 +
1

2
+

1

2
+

1

2
+

1

2
= 1 +

4

2

Analogamente encontraŕıamos

S32 > 1 +
5

2
, S64 > 1 +

6

2
,

e, em geral,

S2n > 1 +
n

2
.

Mostrámos assim que S2n → ∞ quando n → ∞ e, portanto, (Sn) é divergente. Logo, a série harmónica

é divergente.
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Exemplo 2.5. A série
∞∑

n=1

1

n2
é convergente pois trata-se de uma série de Dirichlet com α = 2 > 1.

Observação 2.1. Não é posśıvel, em geral, determinar uma expressão para as somas parciais

donde se possa deduzir facilmente a natureza da série. Assim, somos levados a estabelecer

propriedades e critérios que permitam determinar a natureza de uma série sem recorrer ao

cálculo das somas parciais. Esse estudo está, no entanto, fora do âmbito do nosso programa.

2.3 Funções reais de variável real

Nesta secção abordaremos algumas noções associadas ao conceito de função, a composição de

funções e a função inversa e, por último, limite e continuidade de uma função.

2.3.1 Generalidades

Já definimos função, na secção 2.1.1, como um certo tipo de correspondência entre dois con-

juntos. Agora, vamos considerar que esses conjuntos são o conjunto dos números reais. Uma

função cujo domı́nio é um conjunto de números reais diz-se uma função de variável real. Se o

seu conjunto de chegada é o conjunto dos números reais então dizemos que tem valores reais

ou que é uma função real.

Definimos o gráfico de uma função real de variável real f como o subconjunto de pontos do

plano,

graf(f) = {(x, y) ∈ R2 : y = f(x)}.
Exerćıcio 2.12. Represente o gráfico da função I tal que I(x) designa o maior inteiro não superior
a x.

Daqui em diante, utilizaremos o termo ’função’ para designar ’função real de variável real’

definida em R ou num seu subconjunto.

Se X é um subconjunto do domı́nio de f , chamamos à função x 7→ f(x), x ∈ X , a restrição de

f a X , e representamo-la por f |X .
Uma função P diz-se um polinómio ou função polinomial se

P (x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0, an 6= 0
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K1 0 1

1

2

(a) f(x) = x3 − x+ 1

K1 0 1

K2

2

(b) f(x) = x4 − 3x2 + x

K2 K1 0 1 2

K20

20

(c) f(x) = 3x5 − 25x3 +60x

K2 0 2

K2

2

(d) f(x) = 1

x

K2 0 2

K2

2

(e) f(x) = 1

1−x2

K2 0 2

2

(f) f(x) = 1

2x

Figura 2.1: Gráficos de algumas funções.

onde n é um número inteiro não-negativo, chamado grau do polinómio, e os números a0, a1, . . . , an

são constantes designadas por coeficientes do polinómio.

Se n = 1, obtemos a função afim f(x) = ax + b; quando n = 2 obtemos a função quadrática

f(x) = ax2 + bx+ c.

Outros exemplos de funções polinomiais estão representadas na figura 2.1(a), (b) e (c).
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Uma função racional define-se pelo quociente de duas funções polinomiais P e Q,

f(x) =
P (x)

Q(x)
, para Q(x) 6= 0.

As funções representadas na figura 2.1(d) e (e) são funções racionais.

Uma função exponencial é uma função da forma f(x) = ax, onde a base a é uma constante

positiva. Na figura 2.1(f) está representado o gráfico de f(x) = 1
2x
.

Chamamos função logaŕıtmica a uma função da forma f(x) = logb x onde a base b é uma con-

stante positiva. O domı́nio desta função é ]0,+∞[ e o contradomı́nio é R.

Na figura 2.2 estão representadas a função exponencial e a função logaŕıtmica na base e, deno-

tada por ln.

e−
x
2

e−x

e−2x

e
x
2

ex

e2x

ln(−x
2
)

ln(−x)

ln(−2x)

ln(x
2
)

ln(x)

ln(2x)

Figura 2.2: Funções exponencial e logaŕıtmica de base e.

Uma função f diz-se periódica se existe uma constante positiva θ tal que

f(x+ θ) = f(x),

para todo o x no domı́nio de f . Se θ é o menor número verificando esta propriedade dizemos

que o peŕıodo de f é θ.

As funções trigonométricas são exemplos de funções periódicas.

Além das funções trigonométricas já conhecidas — seno, cosseno e tangente (Figura 2.3(a)-

(c)) — existem outras três funções designadas por cossecante, secante e cotangente (Figura
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(b) cos(x)
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K10
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(c) tg(x)

K2 p Kp 0 p 2 p

K5
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(d) cosec(x)

K2 p Kp 0 p 2 p

K5

5

(e) sec(x)

K2 p Kp 0 p 2 p

K5

5

(f) cotg(x)

Figura 2.3: Funções trigonométricas

2.3(d)-(f)) definidas do seguinte modo,

cosec(x) =
1

sen(x)
, sec(x) =

1

cos(x)
, cotg(x) =

1

tg(x)
=

cos(x)

sen(x)
.

Estas funções estão definidas para todo o x real excepto nos pontos onde os denominadores se

podem anular.

Os valores das funções trigonométricas do ângulo x no ćırculo trigonométrico unitário (figura
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Figura 2.4: Representação das linhas trigonométricas do ângulo x no ćırculo unitário.

2.4) correspondem à medida de segmentos. Assim,

sen(x) = medida de OD
cos(x) = medida de OC
tg(x) = medida de AE

cosec(x) = medida de OH
sec(x) = medida de OG
cotg(x) = medida de BF

Esta representação torna prático o estudo do comportamento das funções trigonométricas em

cada quadrante através do comprimento dos respectivos segmentos, atendendo a que esses

segmentos se situam sobre as rectas abaixo descriminadas:

seno eixo dos yy
cosseno eixo dos xx
tangente recta vertical tangente ao ćırculo em A, intersecção com a recta OP
cosecante eixo dos yy, intersecção com a recta tangente ao ćırculo em P
secante eixo dos xx, intersecção com a recta tangente ao ćırculo em P
cotangente recta horizontal tangente ao ćırculo em B, intersecção com a recta OP .

Por exemplo, no caso da função cossecante vemos que entre 0 e π
2
tem valores entre +∞ e 1

sendo, por conseguinte, decrescente nesse intervalo. No intervalo [π
2
, π[ é crescente, variando

entre [1, +∞[. Varia entre −∞ e −1 em ]π, 3π
2
]. Por último, no intervalo [3π

2
, 2π[ terá valores

entre −1 e −∞.
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Seja f : D ⊂ R −→ R uma função real definida num domı́nio D. A função f diz-se par se

f(x) = f(−x), ∀x ∈ D,

e diz-se ı́mpar se

f(x) = −f(−x), ∀x ∈ D.

O gráfico de uma função par é simétrico em relação ao eixo das ordenadas e o gráfico de uma

função ı́mpar é simétrico relativamente à origem. A função cos(x) é par e a função sen(x) é

ı́mpar.

Exerćıcio 2.13. Averigue se a função f(x) = 3x5 − 25x3 + 60x é par ou ı́mpar.

Uma função f diz-se crescente numa parte X do seu domı́nio se, para x, y ∈ X , x < y implica

que f(x) ≤ f(y). Se se verificar que para x < y, então f(x) ≥ f(y), diremos que f é decrescente

em X .

A função f diz-se monótona em X se é crescente ou decrescente em X .

Os valores de x ∈ X tais que f(x) = 0 são designados por zeros da função. Graficamente,

correspondem aos pontos onde o gráfico da função intersecta o eixo do xx. Uma função pode

não ter zeros (por exemplo, f(x) = x2 + 1).

Exerćıcio 2.14. Faça um estudo das funções cossecante, secante e cotangente quanto a domı́nio,

contradomı́nio, monotonia e zeros.

Diz-se que f é majorada em X se o conjunto f(X) é majorado: isto é, existe um número real

L tal que f(x) ≤ L, para todo o x ∈ X . Se f é majorada, f(X) tem um supremo, que se diz

o supremo de f em X , e que se representa por sup
x∈X

f(x). O sup
x∈X

f(x) quando é valor de f num

ponto de X , diz-se o máximo de f em X .

Dizemos que a função f tem um máximo global ou absoluto em c ∈ Df se f(x) ≤ f(c) para todo

o x ∈ Df .

Se, dado um ponto c ∈ Df , existir um ε > 0 tal que, para qualquer x ∈ ]c − ε, c + ε[∩Df , se

tem f(x) ≤ f(c), diremos que c é um máximo local ou relativo de f .
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y

Máximo

Mı́nimo

X

f(X)

f

x0

Figura 2.5: Máximo e mı́nimo de uma função.

Diz-se que f é minorada em X se o conjunto f(X) é minorado, isto é, se existe um número

real ℓ tal que f(x) ≥ ℓ, para todo o x ∈ X . Se f é minorada, f(X) tem um ı́nfimo, que se

diz o ı́nfimo de f em X e que se representa por inf
x∈X

f(x). O inf
x∈X

f(x) quando é valor de f num

ponto de X , diz-se o ḿınimo de f em X . Diremos que a função f tem um mı́nimo em c ∈ X

se f(x) ≥ f(c) para todo o x ∈ X .

Dizemos que a função f tem um ḿınimo global ou absoluto em c ∈ Df se f(c) ≤ f(x) para todo

o x ∈ Df .

Se, dado um ponto c ∈ Df , existir um ε > 0 tal que, para qualquer x ∈ ]c − ε, c + ε[∩Df , se

tem f(x) ≤ f(c), diremos que c é um ḿınimo local ou relativo de f .

Uma função f diz-se limitada num intervalo se existir uma constante M tal que |f(x)| < M

para todos os pontos x nesse intervalo.

Dadas duas funções é posśıvel construir uma nova função efectuando operações entre elas.

Assim, sejam f e g duas funções com domı́nios Df e Dg, respectivamente, e c uma constante.

Então, as funções cf , f + g, f − g, fg e f
g
são definidas da seguinte forma:

(cf)(x) = c f(x), com domı́nio Dcf = Df ;
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(f ± g)(x) = f(x)± g(x), com domı́nio Df±g = Df ∩Dg;

(fg)(x) = f(x) g(x), com domı́nio Dfg = Df ∩Dg;

(
f
g

)

(x) = f(x)
g(x)

, com domı́nio D f
g
= {x ∈ Df ∩Dg : g(x) 6= 0}.

Exerćıcio 2.15. Dadas as funções f(x) =
√
x e g(x) =

√
4− x2, determine as funções f + g, f − g,

fg e f
g .

x

y

−1 1

1

x

y

−1 1

1

2

x

y

−1 1

1

Figura 2.6: Gráfico das funções seno hiperbólico, cosseno hiperbólico e tangente hiperbólica.

Algumas combinações de funções exponenciais aparecem com frequência em Matemática e vale

a pena atribuir a essas combinações nomes especiais e estudá-las como exemplos de novas

funções. Estas combinações são designadas seno hiperbólico (senh), cosseno hiperbólico (cosh),

tangente hiperbólica (tgh), cossecante hiperbólica (cosech), secante hiperbólica (sech) e cotangente

hiperbólica (cotgh), definidas da seguinte maneira,

senh(x) = ex−e−x

2
cosh(x) = ex+e−x

2
tgh(x) = senh(x)

cosh(x)
= ex−e−x

ex+e−x

cosech(x) = 1
senh(x)

sech(x) = 1
cosh(x)

cotgh(x) = 1
tgh(x)

.
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O termo ’hiperbólico’ é devido ao facto de que estas funções estão relacionadas geometricamente

com a hipérbole de modo análogo ao que as funções trigonométricas estão relacionadas com o

ćırculo.

Exerćıcio 2.16. Deduza as seguintes propriedades das funções hiperbólicas

(a) cosh2(x)− senh2(x) = 1; (b) senh(−x) = −senh(x);

(c) cosh(−x) = cosh(x); (d) cosh(x) + senh(x) = ex.

2.3.2 Composição de funções

Dadas duas funções reais f : D ⊂ R −→ R e g : E ⊂ R −→ R tais que g(E) ⊂ D, podemos

definir a função

f ◦ g : E ⊂ R −→ R, (f ◦ g)(x) = f(g(x)),

denominada função composta de f com g. Repare-se que a composição f ◦g exige que a imagem

g(E) esteja contida no domı́nio de f ,

D′
g ⊂ Df ,

pois, só assim podemos garantir que todos os elementos x em E têm imagem (f ◦ g)(x).

g f

f o g

x g(x) f(g(x))

Figura 2.7: Composição de funções: f ◦ g.

Exemplo 2.6. Se f(x) =
√
x e g(x) = x2 + 1 determine: (a) f ◦ g; (b) g ◦ f .

Resolução (a) Vamos determinar o contradomı́nio de g, D′
g = [1,+∞[, e o domı́nio de f, Df = [0,+∞[.

Como [1,+∞[⊂ [0,+∞[ podemos definir a composição f ◦ g.

Assim, (f ◦ g)(x) = f(g(x)) = f(x2 + 1) =
√
x2 + 1.

(b) Determinamos o contradomı́nio de f , D′
f = [0,+∞[, e o domı́nio de g, Dg = R. Como [0,+∞[⊂ R
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podemos definir a composição g ◦ f .

Logo, (g ◦ f)(x) = g(f(x)) = g(
√
x) = (

√
x)2 + 1 = x+ 1.

Exemplo 2.7. A composição f ◦ g com f(x) =
√
1− x e g(x) = x2 não tem sentido em R, pois,

D′
g = [0,+∞[ 6⊂ ] −∞, 1] = Df . Mas já poderemos definir a composição se considerarmos a restrição

de g ao intervalo [0, 1], g|[0, 1]. Justifique.

2.3.3 Injectividade e função inversa

Seja f : D ⊂ R −→ R uma função real tal que, para quaisquer x1, x2 ∈ D, se x1 6= x2 então

f(x1) 6= f(x2). A função f diz-se injectiva: para cada y ∈ f(D) existe um único x ∈ D tal que

f(x) = y. Ou seja, objectos distintos têm imagens distintas. Podemos definir a injectividade,

de uma forma equivalente à anterior, dizendo que se f(x1) = f(x2) então x1 = x2.

Se f é uma função injectiva podemos definir uma nova função, designada por função inversa de

f , e representada por f−1, da seguinte forma,

f−1 : E = f(D) ⊂ R −→ R, f−1(x) = y (⇐⇒ f(y) = x).

Se a função f admite inversa dizemos que f é invert́ıvel.

Geometricamente, se f é uma função invert́ıvel, os gráficos de f e f−1 são simétricos em relação

à recta y = x.

Exemplo 2.8. Determine a função inversa de f : [0,+∞[−→ R, f(x) = x3 + 1.

Em primeiro lugar, verificamos que a função é injectiva. Para tal, vamos assumir que f(x1) = f(x2)
para provarmos que x1 = x2:

f(x1) = f(x2) ⇔ x31 + 1 = x32 + 1 ⇔ x31 = x32.

Aplicando a raiz cúbica a ambos os membros obtemos x1 = x2, pois x ∈ [0, +∞[, o que nos permite
concluir que f tem inversa. Vamos agora determiná-la.
Primeiro, escrevemos a equação y = f(x)

y = x3 + 1.

Seguidamente, resolvemos a equação para x

x3 = y − 1 ⇔ x = 3
√

y − 1
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(a) f(x) = x3 + 1
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1

2

(b) f−1(x) = 3
√
x− 1

x x

y y

Figura 2.8: Gráfico da função e da sua inversa (Exemplo 2.8).

O contradomı́nio de f é [1,+∞[ que se torna o domı́nio de f−1, pelo que escremos

f−1 : [1,+∞[−→ R, f−1(x) = 3
√
x− 1.

2.3.4 Funções trigonométricas inversas

Como vimos no parágrafo anterior, apenas podemos definir a inversa de uma função se ela for

injectiva. Vamos ver agora como poderemos definir as funções trigonométricas inversas sabendo

que as funções trigonométricas, sendo funções periódicas, não são injectivas no seu domı́nio.

Deste modo, vamos necessitar de considerar a restrição de cada uma dessas funções a uma parte

do seu domı́nio onde seja injectiva.

Consideremos a restrição da função seno ao intervalo [−π
2
, π
2
]. A restrição da função seno a

este intervalo é injectiva. Logo, podemos definir a sua inversa sen−1 : [−1, 1] −→ [−π
2
, π
2
].

Designamos esta função por arco cujo seno é x, que se representa por arcsen(x) (figura 2.9(a)).

Exemplo 2.9. Determine arcsen(
√
2
2 ).

Procuramos um ângulo x ∈ [−π
2 ,

π
2 ] tal que sen(x) =

√
2
2 . A resposta é π

4 .

A restrição da função cosseno ao intervalo [0, π] é injectiva. Podemos então considerar a sua

inversa cos−1 : [−1, 1] −→ [0, π]. Designamos esta função por arco cujo cosseno é x que se

representa por arccos(x) (figura 2.9(b)).

Exemplo 2.10. Determine arccos(0).
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π
2

f(x) = arcsen(x)

x

y

−1 1

π
2

π

Figura 2.9: Gráfico das funções: (a) arco-seno; (b) arco-cosseno.

Procuramos um ângulo x ∈ [0, π] tal que cos(x) = 0. A resposta é π
2 .

Exerćıcio 2.17. Resolva as seguintes equações trigonométricas:

(a) 1 + 2 sen(3x) = 0; (b) y = cos(1− 3x).

A função tangente tem domı́nio R\{x ∈ R : x = π
2
+ kπ, k ∈ Z}. Considerando a restrição

da função tangente ao intervalo ]− π
2
, π
2
[, esta nova função é injectiva e podemos definir a sua

inversa tg−1 :]−∞,+∞[−→]− π
2
, π
2
[. Designamos esta função por arco cuja tangente é x, que

se representa por arctg(x) (figura 2.10(a)).

K5 0 5

K0,5 p

0,5 p

(a)

K5 K4 K3 K2 K1 0 1 2 3 4 5

K0,5 p

0,5 p

(b)

Figura 2.10: Gráficos das funções: (a) arco-tangente; (b) arco-cossecante.

Exemplo 2.11. Determine arctg(
√
3).
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Procuramos um ângulo x ∈ ]− π
2 ,

π
2 [ tal que tg(x) =

√
3. A resposta é π

3 .

A função cossecante tem domı́nio R\{kπ : k ∈ Z}. Considerando a restrição da função cosse-

cante ao intervalo [−π
2
, π
2
] \{0}, esta nova função é injectiva e podemos definir a sua inversa

cosec−1 :]−∞, −1] ∪ [1, +∞[−→ [−π
2
, π
2
] \{0}. Designamos esta função por arco cuja cossecante

é x, que representamos por arccosec(x) (figura 2.10(b)).

A função secante tem domı́nio R\{π
2
+ kπ : k ∈ Z}. Considerando a restrição da função

secante ao intervalo [0, π] \{π
2
}, esta nova função é injectiva e podemos definir a sua inversa

sec−1 :]−∞, −1] ∪ [1, +∞[−→ [0, π] \{π
2
}. Designamos esta função por arco cuja secante é x,

que representamos por arcsec(x) (figura 2.11(a)).

K5 K4 K3 K2 K1 0 1 2 3 4 5

0,5 p

(a)

K5 0 5

p

(b)

Figura 2.11: Gráficos das funções: (a) arco-secante; (b) arco-cotangente.

A função cotangente tem domı́nio R\{kπ : k ∈ Z}. Considerando a restrição da função

cotangente ao intervalo ]0, π[, esta nova função é injectiva e podemos definir a sua inversa

cotg−1 : R −→]0, π[. Designamos esta função por arco cuja cotangente é x, que representamos

por arccotg(x) (figura 2.11(b)).
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2.3.5 Limite de uma função

Vamos agora apresentar a definição formal de limite de uma função num ponto. Seja f : D ⊂
R −→ R uma função e a ∈ R um ponto de acumulação de D.

Dizemos que b ∈ R é o limite de f no ponto a, e escrevemos limx→a f(x) = b, se para qualquer

vizinhança de b, Vδ(b), é posśıvel encontrar uma vizinhança de a, Vε(a), tal que se x distinto

de a pertencer a essa vizinhança, então a sua imagem pertencerá a Vδ(b).

Ou seja, se para qualquer δ > 0, existe um ε > 0 tal que, se x distinto de a pertence à vizinhança

de raio ε de a, então f(x) pertence à vizinhança de raio δ de b,

∀δ > 0 ∃ε > 0 ∀x ∈ D, 0 < |x− a| < ε =⇒ |f(x)− b| < δ.

Menos formalmente, podemos dizer que podemos obter f(x) arbitrariamente próximo de b para

valores de x suficientemente próximos (mas não iguais) de a.

y

x0

b+ δ

b

b− δ

a− ε a a+ ε

f

Figura 2.12: Limite de uma função num ponto a.

Se limx→a f(x) = b ∈ R, então dizemos que o limite existe e que f(x) converge para b. Se o

limite não existir, dizemos que f(x) diverge quando x tende para a.

Quando x se aproxima de a apenas por valores inferiores a a, ao limite limx→a− f(x) chamamos

limite lateral à esquerda de f no ponto a.
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Quando x se aproxima de a apenas por valores superiores a a, ao limite limx→a+ f(x) chamamos

limite lateral à direita de f no ponto a.

Se a ∈ D, podemos concluir que existe limx→a f(x) se e só se lim
x→a−

f(x) = lim
x→a+

f(x) = f(a).

y y y

b b b

x x x0 0 0a a a

f f f

Figura 2.13: Em qualquer um dos casos lim
x→a

f(x) = b.

Podemos caracterizar algumas propriedades operatórias dos limites da seguinte forma. Ad-

mitindo que limx→a f(x) = b e limx→a g(x) = c, temos

(a) lim
x→a

(f + g)(x) = lim
x→a

f(x) + lim
x→a

g(x) = b+ c

(b) lim
x→a

(f · g)(x) = lim
x→a

f(x)× lim
x→a

g(x) = b · c

(c) lim
x→a

(f

g

)

(x) =
lim
x→a

f(x)

lim
x→a

g(x)
=

b

c
se c 6= 0

(d) lim
x→a

|f(x)| = | lim
x→a

f(x)| = |b|

(e) lim
x→a

|f(x)| = 0 ⇐⇒ lim
x→a

f(x) = 0.

Exerćıcio 2.18. Aplicando as propriedades dos limites, determine:

(a) lim
x→2

(x2 − 6x+ 4); (b) lim
x→−2

x3 + 2x2 − 1

5 + 3x
; (c) lim

x→−3+

2x

x2 + 3
.

Resolução da aĺınea (b)
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lim
x→−2

x3 + 2x2 − 1

5 + 3x
=

lim
x→−2

(x3 + 2x2 − 1)

lim
x→−2

(5 + 3x)

=
( lim
x→−2

x)3 + 2 ( lim
x→−2

x)2 − 1

5 + 3 lim
x→−2

x

=
(−2)3 + 2× (−2)2 − 1

5 + 3× (−2)

= 1

Observação 2.2. Recordemos os seguintes limites:

(a) lim
x→0

sen(x)

x
= 1 (b) lim

x→0

1− cos(x)

x
= 0.

Sejam X ⊂ R, f : X −→ R e a ponto de acumulação de X . Diz-se que f tende para +∞
quando x tende para a, e escreve-se limx→a = +∞, quando para qualquer número real positivo

arbitrário L, é posśıvel encontrar uma vizinhança de a tal que, qualquer que seja x (diferente

de a) nessa vizinhança de a, então a sua imagem é maior do que L.

Ou seja, se para qualquer L > 0 existe ε > 0 tal que se x ∈ ]a−ε, a+ε[∩X\{a} então f(x) > L,

∀L > 0 ∃ε > 0 ∀x ∈ X 0 < |x− a| < ε =⇒ f(x) > L.

Seja X uma parte não-majorada de R, f : X −→ R e b um número real. Diz-se que b é o limite

de f(x) quando x tende para +∞, e escreve-se limx→+∞ = b, quando para qualquer vizinhança

de b, é posśıvel encontrar um número real x0 tal que se x ∈ X é maior do que x0, a sua imagem

está nessa vizinhança de b (ver figura 2.1(f)).

Ou seja, limx→+∞ = b, quando para qualquer δ > 0, existe um número real x0 tal que se x ∈ X

e x > x0 se tem |f(x)− b| < δ,

∀δ > 0 ∃x0 ∈ R ∀x ∈ X, x > x0 =⇒ |f(x)− b| < δ.

Diz-se ainda que f(x) tende para +∞ quando x tende para +∞, limx→+∞ f(x) = +∞, quando

para qualquer número real positivo L, é posśıvel encontrar um número real x0 tal que para
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qualquer x > x0 a sua imagem é maior que L. Ou seja,

∀L > 0 ∃x0 ∈ R ∀x ∈ X, x > x0 =⇒ f(x) > L.

De forma análoga, definiŕıamos os limites anteriores considerando −∞ em vez de +∞.

Exerćıcio 2.19. Determine limx→+∞
2x2−3x+5
x4−2x+1

Resolução Pela aplicação directa das propriedades dos limites obtemos uma indeterminação do tipo
∞
∞ . Então dividimos o numerador e o denominador pela maior potência de x e aplicamos as pro-
priedades dos limites.

lim
x→+∞

2x2 − 3x+ 5

x4 − 2x+ 1
= lim

x→+∞

2

x2
− 3

x3
+

5

x4

1− 2

x3
+

1

x4

=

2

(

lim
x→+∞

1

x

)2

− 3

(

lim
x→+∞

1

x

)3

+ 5

(

lim
x→+∞

1

x

)4

1− 2

(

lim
x→+∞

1

x

)3

+

(

lim
x→+∞

1

x

)4

= 0

Exemplo 2.12. A curva loǵıstica descreve a densidade de uma população ao longo do tempo, em que
a taxa de crescimento depende do tamanho da população.
Neste modelo, a taxa de crescimento per capita decresce com o aumento do tamanho da população.
Se representarmos por N(t) o tamanho da população no instante t, então a curva loǵıstica é dada por

N(t) =
K

1 +
(

K
N(0) − 1

)

e−rt
, para t ≥ 0.

Os parâmetros K e r são números positivos que descrevem a dinâmica da população e N0 = N(0)
representa o tamanho da população no instante 0, o qual assumimos ser positivo. O gráfico de N está
representado na figura 2.14.

Se estivermos interessados no comportamento da população a longo prazo evoluindo de acordo com o
modelo loǵıstico, precisamos de estudar o que sucede a N(t) quando t → +∞. Verificamos que

lim
t→+∞

K

1 +
(

K
N(0) − 1

)

e−rt
= K

visto que limt→∞ e−rt = 0 para r > 0. Isto é, o tamanho da população aproxima-se de K. Este valor

é designado por capacidade de sustentação da população.
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0 5
0

50

100

N(t)

t

Figura 2.14: Gráfico da curva loǵıstica com K = 100, N0 = 10 e r = 1.

2.3.6 Asśımptotas

Podemos identificar uma asśımptota como uma recta relativamente à qual o gráfico de uma

função se aproxima quando x → a ou x → ±∞.

Seja f : X ⊂ R −→ R. Diz-se que a recta x = a, paralela ao eixo dos yy passando pela abcissa

a, é uma asśımptota vertical ao gráfico da função f se

lim
x→a−

f(x) = ±∞ ou lim
x→a+

f(x) = ±∞.

Diz-se que a recta y = b, paralela ao eixo dos xx passando pela ordenada b, é uma asśımptota

horizontal ao gráfico da função f se verifica algum dos casos

lim
x→+∞

f(x) = b ou lim
x→−∞

f(x) = b.

Seja f : ]a, +∞[−→ R. Diz-se que a recta y = mx + b, m 6= 0, é uma asśımptota obĺıqua ao

gráfico de f em +∞ se

lim
x→+∞

[f(x)− (mx+ b)] = 0. (2.6)

Analogamente, definimos asśımptota obĺıqua ao gráfico de f : ]−∞, a[−→ R em −∞.

Para provarmos (2.6), definamos w(x) := f(x)− (mx+ b). Se y = mx+ b é asśımptota em +∞
então, como

m =
f(x)

x
− w(x) + b

x
,
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tem-se, passando ao limite,

m = lim
x→+∞

f(x)

x
. (2.7)

De (2.6) resulta ainda que

b = lim
x→+∞

(f(x)−mx). (2.8)

Reciprocamente, existindo os limites (2.7) e (2.8), a recta mx + b é asśımptota em +∞, dado

que

lim
x→+∞

[f(x)− (mx+ b)] = lim
x→+∞

(f(x)−mx)− b = 0,

como se pode ver aplicando (2.8). Resultado semelhante se estabelece para a asśımptota em

−∞.

A figura 2.15 ilustra uma asśımptota obĺıqua em −∞ e em +∞.

−3 −2 −1 1 2 3

−4

−2

2

x

y

Figura 2.15: Asśımptota obĺıqua da função f(x) = x e−
1
x .

Exerćıcio 2.20. Identifique os gráficos apresentados nas figuras 2.16 e 2.17 com as funções indi-
cadas. Justifique cada caso.

(a) f1(x) =
1

x−1 (b) f2(x) =
x

x−1 (c) f3(x) =
1

(x−1)2

(d) f4(x) =
1

x2−1
(e) f5(x) =

x
(x−1)2

(f) f6(x) =
x

x2−1
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Figura 2.16:

K5 K4 K3 K2 K1 0 1 2 3 4 5
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4

K5 K4 K3 K2 K1 0 1 2 3 4 5

K4

K2

2

4

K5 K4 K3 K2 K1 0 1 2 3 4 5

K4

K2

2

4

y y y

x x x

Figura 2.17:

2.3.7 Funções cont́ınuas

Seja f : D ⊂ R −→ R e a ∈ D. Dizemos que f é uma função cont́ınua no ponto a quando, para

qualquer vizinhança de f(a), podemos encontrar uma vizinhança de a, tal que a imagem de

qualquer ponto nessa vizinhança pertence à vizinhança de f(a), ou seja,

∀δ > 0 ∃ε > 0 ∀x ∈ D |x− a| < ε =⇒ |f(x)− f(a)| < δ.

Se a for um ponto isolado de D, isto é, a ∈ D e a 6∈ D′, a função f é necessariamente cont́ınua

em a. Com efeito, tomando um ε > 0 tal que Vε(a) ∩D = {a} a condição |x− a| < ε implica

que terá de ser x = a e, obviamente, verifica-se |f(x)− f(a)| = 0 < δ.

No caso em que a ∈ D e a ∈ D′, dizer que f é cont́ınua em a equivale a dizer que limx→a f(x) =
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f(a).

Uma função f : D ⊂ R −→ R diz-se cont́ınua em D (ou apenas cont́ınua) se for cont́ınua em

todos os pontos de D.

Exemplo 2.13. Seja

f(x) =







x2 − 6x+ 5

x− 5
se x 6= 5

4 se x = 5

Averigue a continuidade da função f .

Resolução Temos de estudar f em cada ponto c do seu domı́nio R. Suponhamos, primeiramente, que
c 6= 5. Como o denominador de f nunca se anula quando x está próximo desse valor de c, aplicamos
as propriedades algébricas dos limites para calcular

lim
x→c

f(x) =
c2 − 6c+ 5

c− 5
= f(c).

Para c = 5, calculamos

lim
x→5

f(x) =
x2 − 6x+ 5

x− 5
= lim

x→5

(x− 5)(x− 1)

x− 5
= lim

x→5
(x− 1) = 4 = f(5).

Assim, f é cont́ınua em c = 5. Como f é cont́ınua em cada ponto do seu domı́nio, conclúımos que f

é uma função cont́ınua.

As funções cont́ınuas gozam das seguintes propriedades algébricas. Sejam f , g, funções cont́ınuas

em a ∈ D ⊂ R. Então f + g, f · g, |f | e −f são cont́ınuas em a. Se g(a) 6= 0, a função
f

g
é

também cont́ınua em a.

Exemplo 2.14. Vamos aplicar a seguinte propriedade:

Se f é cont́ınua em b e limx→a g(x) = b então
limx→a f(g(x)) = f(b), ou seja,

lim
x→a

f(g(x)) = f( lim
x→a

g(x)),

para calcular o limite

lim
x→1

arcsen

(
1−√

x

1− x

)

.
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Visto a função arco-seno ser cont́ınua, temos

lim
x→1

arcsen

(
1−√

x

1− x

)

= arcsen

(

lim
x→1

1−√
x

1− x

)

= arcsen

(

lim
x→1

1−√
x

(1−√
x)(1 +

√
x)

)

= arcsen

(

lim
x→1

1

1 +
√
x

)

= arcsen

(
1

2

)

=
π

6
.

Podemos estabelecer a continuidade de uma função composta da seguinte forma. Consideremos

as funções f : E ⊂ R −→ R e g : D ⊂ R −→ R tais que g(D) ⊂ E. Se g é cont́ınua em a ∈ D

e f é cont́ınua em g(a) ∈ E então f ◦ g é cont́ınua em a.

Exemplo 2.15. Determine onde são cont́ınuas as seguintes funções.

(a) h(x) = e−x2
(b) h(x) = sen(πx ) (c) h(x) =

1

1 + 2 3
√
x

Resolução (a) Se considerarmos g(x) = −x2 e f(x) = ex, então h(x) = (f ◦ g)(x) está bem definida.

Como g é uma função polinomial, é cont́ınua em R, e o seu contradomı́nio é ] −∞, 0]. A função f é

cont́ınua para todos os valores no contradomı́nio de g (na verdade, é cont́ınua em R). Conclúımos que

h é cont́ınua para todo x ∈ R.

(b) Definamos g(x) = π
x e f(x) = sen(x). Então a composição f ◦g está definida em R\{0} e h ≡ f ◦g.

A função g é cont́ınua para todo x 6= 0. O contradomı́nio de g é R\{0}. A função f é cont́ınua para

todo o x no contradomı́nio de g. Portanto, h é cont́ınua para qualquer x 6= 0.

(c) Sejam g(x) = 3
√
x e f(x) = 1

1+2x . Então h(x) = (f ◦g)(x) para x ∈ R\{−1
8}. A função g é cont́ınua

para todo x ∈ R visto que, g(x) = 3
√
x e o radical é ı́mpar. O contradomı́nio de g é R. A função f é

cont́ınua para todo o x real diferente de −1
2 . Como g(−1

8 ) = −1
2 , h é cont́ınua em R\{−1

8}.

2.3.8 Teoremas da continuidade

Os teoremas seguintes traduzem resultados importantes verificados pelas funções cont́ınuas.
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Teorema 2.1. Seja D ⊂ R. A função f : D −→ R é cont́ınua em a ∈ D se e só se

f(xn) → f(a) para qualquer sucessão (xn) ⊂ D tal que xn → a.

Teorema 2.2 (Teorema de Bolzano). Sejam a, b números reais tais que a < b e f : [a, b] −→ R

uma função cont́ınua. Então, para qualquer ξ no intervalo fechado de extremidades f(a) e f(b),

existe pelo menos um c ∈ [a, b] tal que f(c) = ξ.

O corolário seguinte é particularmente útil no estudo dos zeros de uma função.

Corolário 2.1. Sejam a, b números reais tais que a < b e f : [a, b] −→ R uma função

cont́ınua. Se f(a) · f(b) < 0 então existe pelo menos um zero de f em ]a, b[.

O teorema seguinte deve-se ao matemático alemão Karl Weierstrass (1815-1897) e garante-nos

a existência de máximo e mı́nimo de uma função cont́ınua definida num intervalo limitado e

fechado.

Teorema 2.3 (Teorema de Weierstrass). Toda a função cont́ınua f : D ⊂ R −→ R, num

conjunto limitado e fechado D tem máximo e mı́nimo nesse conjunto.

Teorema 2.4 (Continuidade da função inversa). Seja f uma função cont́ınua e injectiva

definida num intervalo I ⊂ R. Então f−1 é cont́ınua.

2.3.9 Aplicação do Teorema de Bolzano: método da bissecção

Para equações da forma f(x) = 0, onde f é uma função não-linear, não existe, em geral, uma

fórmula expĺıcita para determinar as ráızes da equação.

Nestas circunstâncias, temos de recorrer a métodos numéricos que nos permitam encontrar

valores aproximados desses zeros com a precisão pretendida. Para ilustrar este procedimento,

vamos apresentar um dos métodos existentes, designado método da bissecção. O método da

bissecção consiste em aproximar um zero da função f , encontrando um intervalo [a, b] tal que

f(a) · f(b) < 0 onde, pelo corolário do Teorema de Bolzano, temos a garantia que existe pelo

menos um zero de f nesse intervalo.
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A etapa seguinte consiste em subdividir [a, b] em dois subintervalos [a, c] e [c, b], com o mesmo

comprimento. Aplicando novamente o corolário do Teorema de Bolzano descobrimos em qual

dos dois subintervalos se encontra um zero de f . Repetindo sucessivamente o processo de

bissecção vamo-nos aproximando cada vez mais de um zero da função dada.

Exemplo 2.16. Determine algumas aproximações do zero da função f(x) = x5− 7x2 +3 no intervalo
[0, 1].

Intervalo Ponto médio

[0, 1] 0.5
[0.5, 1] 0.75

[0.5, 0.75] 0.625
[0.625, 0.75] 0.6875

[0.625, 0.6875] 0.65625

Intervalo Ponto médio

[0.65625, 0.6875] 0.671875
[0.6679688, 0.6699219] 0.6689453
[0.6691284, 0.6691895] 0.6691589
[0.6691284, 0.6691303] 0.6691294
[0.6691292, 0.6691293] 0.6691292

2.4 Exerćıcios e complementos

1. Escreva os termos das sucessões para n = 0, 1, 2, 3.

(a) an =
1√
n + 1

(b) an = (−1)nn (c) an =
(−1)n

(n + 1)2
(d) an = n3

√
n+ 1.

2. Escreva os quatro primeiros termos das sucessões definidas por recorrência.

(a) a0 = 1, an+1 = 3an − 2 (b) a1 = 1, an+1 = 1 +
√
an

(c) a0 = 2, an+1 =
an

an + 3
(d) a1 = 1, an+1 = 5an −

5

an

(e) a1 = 1, an+1 = an + (−1)n 1
n+1

.

3. Encontre o termo geral de cada uma das seguintes sucessões.

(a) 1,
1

3
,
1

9
,
1

27
,
1

81
, . . . (b) −1

2
,
1

3
, −1

4
,
1

5
, −1

6
, . . .

(c) sen(π), sen(2π), sen(3π), sen(4π), sen(5π), . . .

(d) cos(π
2
), −cos(π

4
), cos(π

6
), −cos(π

8
), cos( π

10
), . . .

4. Diga quais das seguintes sucessões são limitadas. Justifique.

(a) un = n+ 1 (b) vn = (−2)n (c) wn =
1

n2
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5. Mostre, aplicando a definição, que lim
n→∞

3n− 1

4n+ 5
=

3

4
.

6. Aplique as propriedades do limite de uma sucessão para determinar:

(a) lim
n→∞

( 1

n
+

1

n2

)

(b) lim
n→∞

2n− 3

n
(c) lim

n→∞

n+ 1

n2 − 1

(d) lim
n→∞

[(1

3

)n

+
(1

2

)n]

(e) lim
n→∞

(√
n+ 1−√

n
)

(f) lim
n→∞

(
n (n+ 2)

n+ 1
− n3

n2 + 1

)

7. Calcule o limite ℓ da sucessão un = 1
n2 . Determine a ordem a partir da qual todos os

termos da sucessão estão a uma distância de ℓ inferior a 0.01.

8. Determine as três primeiras somas parciais de cada uma das séries dadas

(a)

∞∑

n=1

2n

n!
(b)

∞∑

n=1

(4−n + 1) (c)

∞∑

n=1

(
1

n
− 1

n+ 1
) (d)

∞∑

n=1

(−1)n+1

n2
.

9. Determine a soma das seguintes séries

(a)

∞∑

n=1

8−n (b)

∞∑

n=1

(2

3

)2n

.

10. Utilize a teoria das séries geométricas para calcular os racionais correspondentes às d́ızimas

seguintes:

(a) 3.666 . . . (b) 1.181818 . . .

11. Averigue se cada uma das seguintes séries é de Mengoli e, em caso afirmativo, determine

a sua soma.

(a)

∞∑

n=1

(
1

3n+ 1
− 1

3n+ 4

)

(b)

∞∑

n=2

1

n2 − 1
(c)

∞∑

n=1

1

(2n− 3)(2n− 1)

12. Determine o domı́nio de cada uma das funções.

(a) f(x) =
1

1− x
(b) f(x) =

x− 2

x2 − 9

(c) f(x) =
1

x2 + 1
. (d) f(x) =

√
x

x2 + x− 6

(e) f(x) =
√
x2 − 4x+ 5 (f) f(x) =

1
√

(x2 − 4)(x− 1)

(g) f(x) =
√
x− 2x

x
(h) f(x) = ln

(x2 − 2x+ 1

x− 1

)

.
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13. Escreva a expressão para as funções compostas f ◦g e g◦f , sendo

(a) f(x) =
√
x+ 1, g(x) = x2 − 1 (b) f(x) = 2

√
x+ 3, g(x) = x2 + 1

(c) f(x) =
x

x2 + 1
, g(x) =

1

x
(d) f(x) =

√
x+ 1, g(x) =

1

x− 1
.

14. Verifique que cada uma das funções é injectiva nos conjuntos indicados e determine a sua

inversa.

(a) f(x) = x3 − 1, R (b) f(x) = x2 + 1, [0,+∞)

(c) f(x) =
√
x, [0,+∞) (d) f(x) =

1

x3
, (0,+∞).

15. Determine os seguintes limites

(a) lim
x→π

2

cos(x)

1 + sen(x)
. (b) lim

x→π
2

cos(x)

1− sen(x)
.

(c) lim
x→0

√
x2 + 9− 3

x2
. (d) lim

x→0

1−
√
1− x2

x2
.

(e) lim
x→1

x5 − 1

x2 − 1
. (f) lim

x→+∞

x

2x3 − 1
.

(g) lim
x→4

√
2x+ 1− 3√
x− 2−

√
2
. (h) lim

x→0

sen(x)

tg(x)
.

(i) lim
x→1

( 1

1− x
− 3

1− x3

)

. (j) lim
x→0

tg(x)

x
.

Sol.: (a) 0; (b) ∞; (c) 1
6 ; (d)

1
2 ; (e)

5
2 ; (f) 0; (g)

2
√
2

3 ; (h) 1; (i) −1; (j) 1.

16. Determine os seguintes limites

(a) lim
x→+∞

5x3 − 1

4x4 + 1
. (b) lim

x→+∞

3x4 − x3 + 1

x2(x2 + 2)
.

(c) lim
x→−∞

4 + 3x2

1− 7x
. (d) lim

x→+∞
e−x sen(x).

(e) lim
x→+∞

4

1 + e−x
. (f) lim

x→−∞

1

1 + e−x
.

Sol.: (a) 0; (b) 3; (c) +∞; (d) 0; (e) 4; (f) 0.

17. Estude as funções quanto à existência de asśımptotas.
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(a) f(x) =
x

x− 7
(b) f(x) =

7x3 − 1

2x3 + 12x2 + 18x

(c) f(x) =

√

|x|
x

f(x) =
3
√
x+ 4

x (x+ 1)
.

18. Seja f : R −→ R definida por

f(x) =







x2 − 4

x+ 2
se x 6= −2

A se x = −2

Determine A de forma que f seja cont́ınua em x = −2.

19. Prove que a função f(x) = x5 + 3x4 − x− 3 tem um zero no intervalo ]0, 2[.



Caṕıtulo 3

Cálculo diferencial e aplicações

3.1 Definições e generalidades

Representemos por N(t0) o tamanho da população de uma determinada espécie no instante t0,

em que t0 varia de forma cont́ınua no intervalo [0,+∞[. Vamos investigar de que modo varia o

tamanho da população durante o intervalo de tempo [t0, t0+h], onde h > 0. A variação absoluta

durante esse intervalo de tempo é a diferença entre o tamanho da população no instante t0 + h

e o tamanho da população no instante t0, representada por ∆N ,

∆N = N(t0 + h)−N(t0).

O śımbolo ∆ indica que estamos a considerar uma diferença. Para obtermos a variação relativa

no intervalo de tempo [t0, t0 + h], dividimos ∆N pelo comprimento do intervalo de tempo,

representado por ∆t, que é (t0 + h)− t0 = h. Encontramos

∆N

∆t
=

N(t0 +∆t)−N(t0)

∆t
=

N(t0 + h)−N(t0)

h
.

Esta razão é designada por taxa de crescimento médio.

Geometricamente, podemos verificar que ∆N
∆t

é o declive da recta secante unindo os pontos

(t0, N(t0)) e (t0 + h, N(t0 + h)). A taxa de crescimento médio ∆N
∆t

depende do comprimento

do intervalo de tempo ∆t.

Podemos também verificar (figura 3.10) que, à medida que escolhemos intervalos de tempo cada

vez mais pequenos, as rectas secantes “convergem” para a recta tangente no ponto (t0, N(t0)).

63
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N(t)

t0 t0 + h t0

Figura 3.1: Taxa de crescimento instantâneo no instante t0.

O declive da recta tangente é chamado taxa de crescimento instantâneo e é um modo adequado

de descrever o crescimento de uma população que se reproduz de forma cont́ınua.

A taxa de crescimento instantâneo define-se como sendo o limite

lim
∆t→0

∆N

∆t
= lim

h→0

N(t0 + h)−N(t0)

h
.

Representaremos este limite por N ′(t0) e chamaremos a esta quantidade a derivada de N no

instante t0.

Vejamos um outro exemplo. Quando consideramos o escoamento do sangue através dum vaso

sangúıneo, como uma veia ou artéria, podemos modelar a forma do vaso sangúıneo como um

tubo ciĺındrico de raio R e comprimento ℓ como apresentado na figura 3.2.

R r

ℓ

Figura 3.2: Taxa de crescimento instantâneo no instante t0.

Devido ao atrito nas paredes do tubo, a velocidade v do sangue é maior ao longo do eixo central

do tubo e diminui à medida que a distância r ao eixo aumenta, até que se anula na parede do

tubo. A relação entre v e r é dada pela lei do escoamento laminar decoberta pelo f́ısico francês
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Jean-Louis-Marie Poiseuille em 1840. Esta lei afirma que

v =
P

4ηℓ
(R2 − r2) (3.1)

onde η é a viscosidade do sangue e P é a diferença de pressão nas extremidades do tubo. Se P

e ℓ são constantes, então v é uma função de r com domı́nio [0, R].

A taxa de variação média da velocidade, à medida que nos deslocamos de r = r1 para r = r2,

afastando-nos do centro, é
∆v

∆r
=

v(r2)− v(r1)

r2 − r1

e, se fizermos ∆r → 0, obtemos a taxa de variação instantânea da velocidade em ordem a r, que

designaremos por gradiente da velocidade:

lim
∆r→0

∆v

∆r
=

dv

dr
.

Aplicando a equação (3.1), obtemos

dv

dr
=

P

4ηℓ
(0− 2r) = −Pr

2ηℓ
.

Para uma das artérias mais pequenas do corpo humano podemos considerar η = 0.027, R =

0.008 cm, ℓ = 2 cm e P = 4000 din/cm2, o que dá

v =
4000

4× 0.027× 2
(0.000064− r2) ≈ 0.185× 105 (0.64× 10−4 − r2)

No ponto em que r = 0.002 cm, o sangue escoa-se à velocidade de

v(0.002) ≈ 0.185× 105 (0.64× 10−4 − 0.4× 10−5) = 1.11 cm/s

e o gradiente da velocidade nesse ponto é

dv

dr

∣
∣
∣
∣
r=0.002

= − 4000× 0.002

2 × 0.027× 2
≈ −74(cm/s)/cm.

Tendo estes dois exemplos como ponto de partida, vamos agora formalizar o conceito matemático
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de derivada. Sejam f : D ⊂ R −→ R uma função e a ∈ D um ponto de acumulação de D.

Dizemos que f é diferenciável no ponto a se existir e for finito o limite

lim
x→a

f(x)− f(a)

x− a
.

Tal limite (quando existe) diz-se a derivada de f no ponto a e representa-se por

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

h→0

f(a+ h)− f(a)

h
.

A função
f(x)− f(a)

x− a
definida em D\{a} designa-se por razão incremental.

Se f tem derivada em todos os pontos de D, dizemos que f é diferenciável em D. Neste caso,

podemos definir uma função f ′ em D por

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
, para x ∈ D. (3.2)

Esta função f ′ é chamada a função derivada de f , ou a derivada de f , e pode também representar-

se por
df

dx
ou Df .

Exemplo 3.1. Seja f : R −→ R definida por f(x) = cx + d. Vamos determinar f ′ aplicando a
definição (3.2),

lim
h→0

(c(x+ h) + d)− (cx+ d)

h
= lim

h→0

cx+ ch+ d− cx− d

h
= c.

Logo, f ′(x) = c para todo x ∈ R.

Exemplo 3.2. Seja f : R −→ R definida por f(x) = x3.
Aplicando a definição (3.2), vem

lim
h→0

(x+ h)3 − x3

h
= lim

h→0

x3 + 3x2h+ 3xh2 + h3 − x3

h
= lim

h→0
(3x2 + 3xh+ h2) = 3x2.

Logo, f ′(x) = 3x2 para todo x ∈ R.

Exemplo 3.3. Seja f : [0, +∞[−→ R definida por f(x) =
√
x. Para todo o a ∈]0, +∞[ e h 6= 0,

temos

lim
h→0

√
a+ h−√

a

h
= lim

h→0

h

h(
√
a+ h+

√
a)

= lim
h→0

1√
a+ h+

√
a
=

1

2
√
a
.
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Portanto, se a > 0 existe f ′(a) = 1
2
√
a
. Por outro lado, no ponto a = 0, temos

lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

√
h

h
= lim

h→0

1√
h
,

pelo que não existe o limite quando h → 0, ou seja, a função f(x) =
√
x não possui derivada no ponto

0.

Exerćıcio 3.1. Utilize a definição para determinar a derivada de f(x) = 1
x , para x 6= 0.

Quando existir e for finito o limite lateral

lim
x→a+

f(x)− f(a)

x− a

dizemos que f tem derivada lateral à direita no ponto a e o seu valor representa-se por f ′(a+).

Analogamente se define a derivada lateral à esquerda no ponto a que se representa por f ′(a−).

Uma função diferenciável num ponto interior de X tem derivadas laterais à direita e à esquerda

nesse ponto e estas são iguais. No entanto, uma função pode ter derivada lateral à esquerda e

à direita no ponto a e não ser diferenciável em a.

Exerćıcio 3.2. Seja f(x) = |x|. Mostre que não existe a derivada f ′(0).

y y y

x x x0 0 0

f

f

f

c c c

Figura 3.3: Exemplos de não-diferenciabilidade num ponto.

A diferenciabilidade é uma propriedade mais forte do que a continuidade. Se uma função f

é diferenciável no ponto a então f é cont́ınua em a. Contudo, a rećıproca não é válida como

ilustram os exemplos da Figura 3.3.
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Interpretação geométrica da derivada. Sabemos que sendo conhecido o declive m de

uma recta e as coordenadas (x0, y0) de um seu ponto podemos escrever a equação dessa recta,

y − y0 = m (x− x0).

Se existe a derivada de uma função f num ponto c, então a recta tangente ao gráfico de f no

ponto (c, f(c)) tem declive

f ′(c) = lim
x→c

f(x)− f(c)

x− c

e a sua equação é dada por

y − f(c) = f ′(c) (x− c). (3.3)

Exerćıcio 3.3. Determine a equação da recta tangente ao gráfico da função f(x) = x2 no ponto

P = (3, 9).

Exerćıcio 3.4. Averigue se o gráfico da função f definida por

f(x) =







x2 se x < 2

5− x2

4
se x ≥ 2

tem uma recta tangente no ponto (2, 4).

Regras usuais de derivação. Vamos apresentar alguns resultados que se revelam muito

uteis para o cálculo de derivadas.

Sejam f, g : X ⊂ R −→ R funções diferenciáveis em X ; então

f + g é diferenciável em X e (f + g)′(x) = f ′(x) + g′(x);

f · g é diferenciável em X e (f · g)′(x) = f(x) g′(x) + f ′(x) g(x);

fn é diferenciável em X e tem-se (fn)′(x) = nfn−1(x)f ′(x), n ∈ N;

se g(x) 6= 0,
f

g
é ainda diferenciável em X e

(f

g

)′
(x) =

f ′(x) g(x)− f(x) g′(x)

g2(x)
.

Exerćıcio 3.5. Determine as derivadas das seguintes funções

(a) f(x) = (2x3 + 1)2 (b) g(r) = r(r − 1)2 (c) ϕ(t) =
t2 + 1

t3
.
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Derivadas das funções trigonométricas. As derivadas das funções trigonométricas

definem-se da seguinte forma:

(sen(x))′ = cos(x)

(cos(x))′ = −sen(x)

(tg(x))′ = 1
cos2(x)

= sec2(x)

(cosec(x))′ =
(

1
sen(x)

)′
= − cos(x)

sen2(x)
= − 1

sen(x)
cos(x)
sen(x)

= −cosec(x) cotg(x)

(sec(x))′ =
(

1
cos(x)

)′
= sen(x)

cos2(x)
= 1

cos(x)
sen(x)
cos(x)

= sec(x) tg(x)

(cotg(x))′ =
(

cos(x)
sen(x)

)′
= −sen2(x)−cos2(x)

sen2(x)
= − 1

sen2(x)
= −cosec2(x).

f(x) f ′(x)

x 1

xn nxn−1

√
x

1

2
√
x

1

x
− 1

x2

ex ex

ln(x)
1

x

sen(x) cos(x)

cos(x) −sen(x)

tg(x) sec2(x)

f(x) f ′(x)

cosec(x) −cosec(x) cotg(x)

sec(x) sec(x) tg(x)

cotg(x) −cosec2(x)

arcsen(x)
1√

1− x2

arccos(x) − 1√
1− x2

arctg(x)
1

1 + x2

Figura 3.4: Quadro de derivadas

Exerćıcio 3.6. Calcule as derivadas das seguintes funções

(a) f(x) = cosec(x) cotg(x) (b) f(x) =
sec(x)√
x+ 1

(a) f(x) = sec(x)− tg(x) (c) f(x) = x cotg(x)− cosec(x).
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Derivada da função composta. Consideremos as funções f : D ⊂ R −→ R e g : E ⊂
R −→ R, tais que g(E) ⊂ D. Se g é diferenciável em t0 ∈ E e f é diferenciável em x0 = g(t0) ∈
D, então f ◦ g : E ⊂ R −→ R é diferenciável em t0 e tem-se

(f ◦ g)′(t0) = f ′(x0) g
′(t0) = f ′(g(t0)) g

′(t0).

À derivada da função composta é usual atribuir a designação de regra da cadeia.

Exerćıcio 3.7. Aplique a regra da cadeia para determinar as derivadas das seguintes funções

(a) h(x) =
(√

x2 + 1 + 1
)2

(b) h(x) =
√

x ln(x) (c) h(θ) = sen (3 θ2 + 1).

Derivada da função inversa. Seja f uma função diferenciável e injectiva definida num

intervalo I ⊂ R. Seja x0 ∈ I tal que f ′(x0) 6= 0; então f−1 é diferenciável em y0 = f(x0) e

df−1

dy
(y0) =

1
df
dx
(x0)

. (3.4)

Sendo y0 = f(x0) então f−1(y0) = x0, donde
df−1

dy
(y0) =

1
df
dx
(f−1(y0))

.

Exemplo 3.4. Aplique a regra da derivada da função inversa para calcular a derivada de
√
x. Calcule

a derivada em x = 2.

Resolução Escrevemos f−1(y) =
√
y. Esta é a função inversa de f(x) = x2.

Como f ′(x) = 2x,

df−1

dy
(y) =

1

f ′(f−1(y))
=

1

2x|f−1(y)

=
1

2
√
y

logo,
d

dy

√
y =

1

2
√
y
, ou seja,

d

dx

√
x =

1

2
√
x
.

Quando x = 2, vem
d

dx

√
x|x=2

=
1

2
√
2
.

Exerćıcio 3.8. Considere a função invert́ıvel f(x) = (x5 + x+ 2)5/2. Calcule (f−1)′(32). Observe

que f(1) = 32.

Vimos anteriormente que, se considerarmos a restrição da função seno a um intervalo onde seja

injectiva, podemos definir a sua função inversa, que designámos por arcsen.

Então, no intervalo [−π
2
, π

2
], a função seno é injectiva e temos arcsen : [−1, 1] −→ [−π

2
, π

2
].
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Vamos agora determinar a derivada desta função.

Sendo y = sen(x), x ∈ [−π
2
, π

2
], vem

d

dy
arcsen(y) =

1

d

dx
sen(x)

=
1

cos(x)

Como x ∈ [−π
2
, π

2
], cos(x) é sempre positivo, pelo que podemos escrever

d

dy
arcsen(y) =

1
√

1− sen2(x)
=

1
√

1− y2
,

ou seja,
d

dx
arcsen(x) =

1√
1− x2

se −π
2
< arcsen(x) < π

2
.

Aplicando a regra da derivada da função inversa podemos determinar as derivadas das restantes

funções trigonométricas inversas, onde as expressões tenham sentido.

d

dx
arccos(x) = − 1√

1− x2
se 0 < arccos(x) < π

d

dx
arctg(x) =

1

1 + x2
se −π

2
< arctg(x) < π

2

d

dx
arccosec(x) = − 1

|x|
√
x2 − 1

=







1

x
√
x2 − 1

se − π
2
< arccosec(x) < 0

− 1

x
√
x2 − 1

se 0 < arccosec(x) < π
2

d

dx
arcsec(x) =

1

|x|
√
x2 − 1

=







1

x
√
x2 − 1

se 0 < arcsec(x) < π
2

− 1

x
√
x2 − 1

se π
2
< arcsec(x) < π

d

dx
arccotg(x) = − 1

1 + x2
se 0 < arccotg(x) < π.

Exerćıcio 3.9. Calcule as derivadas de

(a) y = x2 arcsen(x) (b) y = 1+arctg(x)
2−3arctg(x) (c) y = arcsec(x) arccosec(x).

Derivadas de ordem superior. Seja f : X ⊂ R −→ R uma função diferenciável em X .

Se f ′ é diferenciável em a ∈ X então dizemos que f é duas vezes diferenciável em a.
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A segunda derivada de f em a representa-se por f ′′(a) ou D2f(a) ou ainda por
d2f

dx2
(a) e vem

dada por

f ′′(a) = (f ′)′(a) = lim
x→a

f ′(x)− f ′(a)

x− a
.

Mais geralmente, se existem f ′, f ′′, . . . , f (n−1) em X e f (n−1) é derivável em a, então dizemos

que f tem derivada de ordem n em a:

f (n)(a) = lim
x→a

f (n−1)(x)− f (n−1)(a)

x− a
.

Observação 3.1. A função f diz-se de classe Cn e escreve-se f ∈ Cn(X) se f é n vezes diferenciável

em X e a função f (n) é cont́ınua em X.

Exerćıcio 3.10. Calcule as derivadas de primeira, segunda e terceira ordem da função f(x) =
4x3 − 7x−5 + 2x5/2.

Solução:

f ′(x) = 12x2 + 35x−6 + 5x3/2; f ′′(x) = 24x− 210x−7 + 15
2

√
x; f (3)(x) = 24 + 1470x−8 + 15

4
√
x
.

Teorema de Taylor. Suponhamos que f é uma função n + 1 vezes diferenciável e f (n+1) é

cont́ınua em [a, b], e seja x0 ∈ [a, b].

Então, para qualquer x ∈ ]a, b[, existe um número c ≡ c(x) (isto é, o valor de c depende

do de x) entre x0 e x, tal que f se pode escrever como a soma de duas funções, Pn e Rn,

f(x) = Pn(x) +Rn(x)

onde

Pn(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)

2 + · · ·+ f (n)(x0)

n!
(x− x0)

n

e,

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1.

Pn é designado por polinómio de Taylor de grau n e Rn é designado por resto de Lagrange. Deste

teorema decorre o seguinte resultado: Se Pn é o polinómio de Taylor dado pelo Teorema de

Taylor então P
(k)
n (x0) = f (k)(x0) para k = 0, 1, . . .

Exemplo 3.5. Determine o polinómio de Taylor de grau 5 para a função f(x) = e−x sen(x)

em torno do ponto x0 = 0.
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O polinómio de Taylor de quinto grau em trono de x0 é dado por:

P5(x0) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)

2 +
1

3!
f (3)(x0)(x− x0)

3

+
1

4!
f (4)(x0)(x− x0)

4 +
1

5!
f (5)(x0)(x− x0)

5

Ou seja, para x0 = 0,

P5(0) = f(0) + f ′(0) x+
1

2
f ′′(0) x2 +

1

6
f (3)(0) x3

+
1

24
f (4)(0) x4 +

1

120
f (5)(0) x5 (3.5)

Calculando as derivadas respectivas, obtemos,

f ′(x) = −e−x sen(x) + e−x cos(x) f ′(0) = 1

f ′′(x) = −2 e−x cos(x) f ′′(0) = −2

f (3)(x) = 2 e−x cos(x) + 2 e−x sen(x) f (3)(0) = 2

f (4)(x) = −4 e−x sen(x) f (4)(0) = 0

f (5)(x) = 4 e−x sen(x)− 4 e−x cos(x) f (5)(0) = −4

Logo, de (3.5), vem

P5(0) = x− x2 +
x3

3
− x5

30

Na figura 3.5 podemos verificar a representação de polinómios de Taylor de vários graus. É

viśıvel que à medida que o grau do polinómio vai aumentando melhor é a aproximação à função

dada.

Exerćıcio 3.11. Escreva o polinómio de Taylor de grau 9 para a função f(x) = sen(x) em torno do

ponto x0 = 0.
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(a) f(x) = e−x sen(x) (b) P3(x) = x− x2 + x
3

3

(c) P5(x) = x−x2+ x
3

3
− x

5

30
(d) P6(x) = x − x2 + x

3

3
−

x
5

30
+ x

6

90

(e) P7(x) = x − x2 + x
3

3
−

x
5

30
+ x

6

90
− x

7

630

(f) P9(x) = x − x2 + x
3

3
−

x
5

30
+ x

6

90
− x

7

630
+ x

9

22680

(g) P10(x) = x − x2 + x
3

3
−

x
5

30
+ x

6

90
− x

7

630
+ x

9

22680
− x

10

113400

(h) P11(x) = x − x2 + x
3

3
−

x
5

30
+ x

6

90
− x

7

630
+ x

9

22680
−

x
10

113400
+ x

11

1247400

Figura 3.5: Aproximação polinomial da função f(x) = e−x sen(x) numa vizinhança de 0.
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3.2 Teoremas fundamentais do cálculo diferencial

Recorda-se que, dizemos que f , uma função de domı́nio D, tem um máximo local (ou relativo)

no ponto c ∈ D se existe um ε > 0 tal que f(x) ≤ f(c) para qualquer x ∈ D tal que |x− c| < ε.

Se f(x) ≤ f(c) para todo x ∈ D, dizemos que f tem um máximo global (ou absoluto) em c e

que o seu valor é f(c).

Analogamente, diz-se que f tem um ḿınimo local (ou relativo) no ponto c ∈ D se existe um

ε > 0 tal que f(x) ≥ f(c) para qualquer x ∈ D tal que |x− c| < ε.

Se f(x) ≥ f(c) para todo x ∈ D, então dizemos que f tem um ḿınimo global (ou absoluto) em

c e que o seu valor é f(c).

Utilizamos o termo extremo da função para designar a existência de mı́nimo ou máximo.

y

x0

f

c

Figura 3.6: Teorema de Fermat.

Teorema de Fermat. Seja f uma função definida num intervalo aberto contendo o ponto c e

diferenciável em c. Se f tem um extremo local em c então f ′(c) = 0.

Observemos que o teorema de Fermat não nos permite concluir que se a derivada se anular num

ponto esse ponto será um extremo da função mas apenas que esse ponto será um candidato a

extremo.

Teorema de Rolle. Seja f : [a, b] −→ R uma função cont́ınua no intervalo limitado e fechado

[a, b] e diferenciável em ]a, b[. Se f(a) = f(b), então existe pelo menos um ponto c ∈ ]a, b[ tal

que f ′(c) = 0.
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y

x0

f

a b

f(a) = f(b)

c

Figura 3.7: Teorema de Rolle.

Geometricamente, a existência de c ∈ ]a, b[ tal que f ′(c) = 0 significa que a tangente ao gráfico

de f no ponto (c, f(c)) é uma recta horizontal.

Assim, dada uma função f :]a, b[−→ R diferenciável, entre dois zeros consecutivos de f ′, não

pode haver mais que um zero de f . Com efeito, se a e b forem dois zeros consecutivos de f ′

e existirem α e β tais que a < α < β < b e f(α) = f(β) = 0 pelo teorema de Rolle existiria

c ∈ ]α, β[ tal que f ′(c) = 0, o que contraria a hipótese de a e b serem zeros consecutivos de f ′.

Exemplo 3.6. Seja f : [−1, 1] −→ R, f(x) = |x|. Temos que f é cont́ınua em [−1, 1], f(−1) = f(1),

mas não existe c ∈ ]− 1, 1[ tal que f ′(c) = 0. O motivo é que f não tem derivada no ponto 0.

Exerćıcio 3.12. Mostre que a função f(x) = 1 − x2 satisfaz as condições do Teorema de Rolle no

intervalo [−1, 1]. Determine um ponto c onde f ′(c) = 0.

Exerćıcio 3.13. Averigue se pode aplicar o Teorema de Rolle à função f(x) = sec(x) no intervalo

[0, 2π].

Teorema de Lagrange. Se a < b, f cont́ınua em [a, b] e diferenciável em ]a, b[ existe c ∈ ]a, b[

tal que

f ′(c) =
f(b)− f(a)

b− a
.

Geometricamente, a existência de c ∈ ]a, b[ tal que f ′(c) = f(b)−f(a)
b−a

significa a existência de pelo

menos um ponto (c, f(c)) sobre o gráfico de f onde a tangente é paralela à recta definida pelos

pontos (a, f(a)) e (b, f(b)), pois os declives destas rectas são iguais.



Texto de apoio de Matemática — 3. CÁLCULO DIFERENCIAL E APLICAÇÕES 77

Exerćıcio 3.14. Determine o valor intermédio c do Teorema de Lagrange para a função f(x) =

x− x2 no intervalo [−1, 2]

Corolário 3.1. Seja f : [a, b] −→ R uma função cont́ınua em [a, b] e com derivada em ]a, b[.

Se f ′(x) = 0, para qualquer x ∈ ]a, b[ então f é constante.

y

x0

f

a b

f(a)

f(b)

c

Figura 3.8: Interpretação geométrica do Teorema de Lagrange.

Corolário 3.2. Seja f : [a, b] −→ R uma função cont́ınua em [a, b] e com derivada em ]a, b[.

Então f é crescente em I se e só se f ′(x) ≥ 0 para qualquer x ∈ ]a, b[ e, f é decrescente em I

se e só se f ′(x) ≤ 0 para qualquer x ∈ ]a, b[.

Caso consideremos as desigualdades no sentido estrito diremos, de forma correspondente, que

f é estritamente crescente ou decrescente.

Teorema do valor médio de Cauchy. Se a < b, f e g cont́ınuas em [a, b] e diferenciáveis

em ]a, b[ com g′(x) 6= 0 em ]a, b[, então existe c ∈ ]a, b[ tal que

f(b)− f(a)

g(b)− g(a)
=

f ′(c)

g′(c)
.

O teorema do valor médio de Cauchy generaliza o teorema de Lagrange e reduz-se a este quando

g(x) = x. Observe-se ainda que o enunciado do teorema está bem definido, isto é, g(b) 6= g(a);

com efeito, se g(b) = g(a), pelo teorema de Rolle existiria um ponto ξ ∈ ]a, b[ com g′(ξ) = 0 o

que contraria a hipótese.
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Exerćıcio 3.15. Determine um valor c que intervenha no Teorema de Cauchy aplicado às funções

f(x) = sen(x) e g(x) = cos(x), no intervalo [π4 ,
π
2 ].

3.3 Derivação impĺıcita

A equação x2 + y2 = 4 representa uma circunferência de raio 2 e centrada na origem. Sabemos

que em cada ponto da curva existe uma recta tangente. Contudo, não podemos determinar

a equação da recta tangente usando (3.3) visto que a circunferência não é o gráfico de uma

função.

y

x0 2

2

Figura 3.9: Circunferência definida por x2 + y2 = 4.

Uma forma de resolver este problema seria considerar duas funções f(x) =
√
4− x2 e f(x) =

−
√
4− x2 e então aplicar (3.3).

No entanto, podemos utilizar uma abordagem mais simples quando temos uma equação em que

y não é dado explicitamente em função de x. Este método designa-se por derivação impĺıcita e

evita a necessidade de obter uma expressão para y em função de x.

Se f(x, y) = C é uma dada equação e se P = (x0, y0) verifica esta equação, então podemos

determinar dy
dx

∣
∣
P
se existir. Para tal, consideraremos y como sendo uma função de x diferenciável

num intervalo aberto centrado em x0. Diremos que neste caso, derivamos f implicitamente em

ordem a x.

Para que possamos aplicar o método da derivação impĺıcita precisamos de garantir, por um
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lado, que y é função de x numa vizinhança de x0 e, por outro lado, que y é diferenciável em x0.

Exemplo 3.7. Aplique o método de derivação impĺıcita para determinar os declives das rectas tan-

gentes à curva x2 + y2 = 4 nos pontos (1,
√
3) e (

√
2,−

√
2).

Aplicando d
dx a ambos os membros da equação, e considerando y como uma função de x, obtemos

d

dx
(x2 + y2) =

d

dx
(4) ⇔ 2x+ 2y

dy

dx
= 0 ⇔ 2y

dy

dx
= −2x ⇔ dy

dx
= −x

y
se y 6= 0.

Agora basta-nos determinar o declive da recta tangente à curva no ponto (1,
√
3). Assim,

dy

dx

∣
∣
∣
(1,

√
3)

= −x

y

∣
∣
∣
(1,

√
3)

= − 1√
3
.

Analogamente, determinamos o declive da recta tangente à curva no ponto (
√
2,−

√
2)

dy

dx

∣
∣
∣
(
√
2,−

√
2)

= −x

y

∣
∣
∣
(
√
2,−

√
2)

= 1.

Exerćıcio 3.16. Em cada uma das aĺıneas seguintes, utilize o método da derivação impĺıcita para

calcular
dy

dx
no ponto P.

(a) xy2 + yx2 = 6, P = (1, 2); (b) x3/5 + 4y3/5 = 12, P = (32, 1); (c) x4 − y4 = −15, P = (1, 2).

3.4 Derivação logaŕıtmica

Podemos recorrer à derivada da função logaŕıtmica para calcularmos a derivada de uma deter-

minada função f , onde f ′ existir e f(x) 6= 0, sabendo que

d

dx
ln(|f(x)|) = f ′(x)

f(x)
. (3.6)

A derivada do logaritmo de f é chamada derivada logaŕıtmica de f e o processo de derivar

ln(|f(x)|) é chamado de derivação logaŕıtmica. De (3.6) conclúımos que

f ′(x) = f(x)
d

dx
ln(|f(x)|). (3.7)

Como o segundo membro de (3.6) indica, a derivada logaŕıtmica de f mede a taxa de variação

relativa de f . Tal quantidade fornece muitas vezes uma informação mais útil que a própria

derivada f ′ e é usada frequentemente em Biologia, Medicina e Economia.
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A utilidade da derivada logaŕıtmica no cálculo reside nas propriedades algébricas do logaritmo

permitindo simplificar produtos e quocientes complicados antes de efectuar a derivação.

Além disso, a derivação logaŕıtmica pode ser um instrumento eficaz para lidar com expressões

em que quer a base quer o expoente variam.

Exemplo 3.8. Determine a derivada da função f(x) = xx em ]0, +∞[.

Calculando primeiramente d
dx ln(|f(x)|),

d

dx
ln(|f(x)|) = ln(x) + 1,

basta em seguida utilizar (3.7) de forma a obtermos

f ′(x) = xx (ln(x) + 1).

Exerćıcio 3.17. Determine a derivada da função f(x) =
ex x3/2

√
1 + x

(x2 + 3)4 (3x− 2)3
.

3.5 Diferenciais e aproximação de funções

y

a a+∆x x0

∆x

∆y
dy

f(a)

f(a +∆x)

Figura 3.10: Se ∆x é pequeno, dy é uma boa aproximação de ∆y.

Podemos interpretar a equação

f ′(a) = lim
∆x→0

f(a+∆x)− f(a)

∆x

dizendo que

f ′(a) ≈ f(a+∆x)− f(a)

∆x
,
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onde ∆x é pequeno e diferente de zero. A escolha de um valor razoavelmente pequeno para

∆x permite-nos, muitas vezes obter uma boa aproximação. Com uma pequena manipulação

algébrica, a aproximação de f ′(a) pode ser transformada numa aproximação de f(a+∆x),

f(a+∆x) ≈ f(a) + f ′(a)∆x. (3.8)

Podemos interpretar a equação (3.8) do seguinte modo: se conhecermos os valores de f(a) e

f ′(a), podemos estimar o valor de f(x0) num ponto próximo x0 = a+∆x. Por vezes, abreviamos

f(a+∆x)− f(a) para ∆f(a). Com esta notação a aproximação (3.8) escreve-se

∆f(a) ≈ f ′(a)∆x. (3.9)

Este método de aproximação é designado por método dos incrementos.

Exemplo 3.9. Use a aproximação (3.8) para obter uma estimativa para
√
4.1.

Sendo f(x) =
√
x, então f ′(x) = 1

2
√
x
. Escolhamos a = 4 e ∆x = 4.1− a = 0.1. De acordo com (3.8)

f(a+∆x) ≈ f(a) + f ′(a)∆x =
√
a+

1

2
√
a
∆x.

Logo, √
4.1 ≈

√
4 +

1

2
√
4
× 0.1 = 2.025.

Efectuando o cálculo numa calculadora obtemos 2.02484567, o que nos permite concluir que a aproxi-

mação encontrada tem um erro relativo de 0.8× 10−4.

A precisão que podemos obter com o método dos incrementos depende grandemente do tamanho

do incremento ∆x; em geral, quanto mais pequeno o valor de ∆x mais eficaz se torna o método.

A equação (3.9) diz-nos que uma pequena variação de a por uma quantidade ∆x provoca uma

variação em f que pode ser estimada por f ′(a)∆x. À medida que ∆x se torna mais pequeno,

a estimativa torna-se cada vez mais precisa. Assim, quando ∆x se torna “infinitesimal”, a

estimativa (3.9) transforma-se numa igualdade.
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Representando o incremento infinitesimal em x por dx e a variação infinitesimal em f por df ,

a aproximação (3.9) pode escrever-se

dy = f ′(x) dx. (3.10)

Podemos pensar em (3.10) como uma outra forma de escrever a aproximação (3.9). Na verdade,

a aproximação (3.9) é referida, por vezes, como aproximação diferencial.

Exerćıcio 3.18. Aplique o método dos incrementos para estimar o valor da função f no ponto x

usando o valor conhecido no ponto inicial a. Compare o resultado obtido com o valor obtido com uma
calculadora.

(a) f(x) = sen(x)− cos(x), a = π
4 , x = π

3 ; (b) f(x) = (x2 + 1)1/3, a = 0, x = 1;

(c) f(x) = tg(x), a = π
4 , x = 0.8.

3.6 Diferenciação numérica (opcional)

As regras de derivação já estudadas permitem-nos derivar funções extremamente complexas. A

aplicação destas regras pode ser, contudo, bastante trabalhosa.

Além disso, mesmo quando usamos uma regra de derivação para obtermos o cálculo exacto de

uma derivada poderemos ter de aproximar constantes como, por exemplo,
√
2 e π se aparecerem

na resposta.

É, pois, conveniente dispor de um método para aproximar o valor numérico de f ′(c).

Tal procedimento é conhecido como diferenciação numérica.

Suponhamos que f é uma função definida num intervalo ]a, b[ e diferenciável em c ∈ ]a, b[.

Como

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

podemos aproximar f ′(a) pela razão incremental
f(a+ h)− f(a)

h
para um valor pequeno de h.

Quando h > 0 e a está fixado, a razão

D+f(a, h) =
f(a+ h)− f(a)

h
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é designada por diferença finita progressiva. A diferença finita regressiva define-se por

D−f(a, h) =
f(a)− f(a− h)

h
.

Definimos a diferença finita centrada por

Dcf(a, h) =
f(a+ h

2
)− f(a− h

2
)

h
.

Qualquer uma das três diferenças finitas pode ser usada para aproximar f ′(a). Contudo, para

um valor de h fixado, a diferença finita centrada dá, normalmente, a melhor aproximação para

a derivada.

3.7 Aplicação das derivadas ao cálculo dos limites nas indeter-

minações do tipo 0
0 e ∞

∞

Suponha-se que pretendemos calcular o limite

lim
x→a

f(x)

g(x)
. (3.11)

Se existem os limites limx→a f(x) e limx→a g(x) e não são simultaneamente nulos, então o limite

(3.11) é de resolução imediata.

Vamos ver agora como é que poderemos determinar limites do tipo de (3.11) quando limx→a f(x) =

limx→a g(x) = 0 ou, limx→a f(x) = limx→a g(x) = ∞. Nestes casos, quando os limites do nume-

rador e do denominador são calculados separadamente, o quociente toma a forma 0
0
ou ∞

∞ . Tais

formas são designadas por indeterminações pois os śımbolos 0
0
e ∞

∞ não têm significado. O limite

pode efectivamente existir e ser finito ou pode não existir. Não podemos, por conseguinte,

analisar o limite tomando apenas os limites do numerador e do denominador e efectuando o

seu quociente.

A partir do teorema do valor médio de Cauchy pode demonstrar-se a seguinte regra que é muito

usada no cálculo do limite de um quociente f(x)
g(x)

quando assume a forma 0
0
ou ∞

∞ .

Regra de Cauchy. Seja I um intervalo qualquer de R e a é ponto de acumulação de I;sejam

f, g : I\{a} −→ R funções diferenciáveis e admita-se que g′(x) 6= 0, x ∈ I\{a}. Suponha-se

agora que
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limx→a f(x) = limx→a g(x) = 0 ou limx→a g(x) = ±∞

e, limx→a
f ′(x)
g′(x)

existe.

Então, limx→a
f(x)
g(x)

existe, e tem-se

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Note-se que a pode pertencer ou não a I; neste último caso, a será um extremo do intervalo,

podendo ser +∞ ou −∞.

Exemplo 3.10. Calcule os seguintes limites:

(a) lim
x→1

ln(x)

x2 − 1
; (b) lim

x→0

x

x− sen(x)
; (c) lim

x→0

sen(3x)

sen(2x)
; (d) lim

x→π

1 + cos(x)

(x− π)2
;

As indeterminações do tipo 0×∞ ou +∞−∞ reduzem-se a indeterminações do tipo 0
0
ou ∞

∞ ,

utilizando as igualdades

f(x) g(x) =
f(x)

1
g(x)

=
g(x)

1
f(x)

f(x)− g(x) = f(x) g(x)
( 1

g(x)
− 1

f(x)

)

.

As indeterminações envolvendo expoente, nomeadamente as do tipos, 00, 1∞ e ∞0 são conver-

tidas em indeterminações da forma 0 ×∞ aplicando a composição das funções exponencial e

logaŕıtmica. logaritmo.

Exerćıcio 3.19. Determine os seguintes limites

(a) lim
x→0+

xx; (b) lim
x→∞

(

1 +
3

x

)x
; (c) lim

x→∞
x1/x.

Regra de l’Hôpital. Sejam f, g : D ⊂ R −→ R, funções diferenciáveis em a ∈ D; suponha-se

que, nalguma vizinhança de a, g(x) 6= 0, x ∈ (Vε(a)\{a}) ∩D.

Se f(a) = g(a) = 0 e g′(a) 6= 0, então limx→a
f(x)
g(x)

existe e tem-se

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.
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A regra de l’Hôpital é válida se g′(a) = 0 e f ′(a) 6= 0, o limite de f(x)
g(x)

neste caso é infinito. A

regra é ainda válida se uma das derivadas f ′(a) ou g′(a) (mas não ambas) é infinita, com as

convenções habituais ∞
k
= ∞ e k

∞ = 0, k ∈ R.

Esta regra requer apenas a existência de derivadas no ponto de indeterminação.

Importa realçar a importância de averiguar se as hipóteses são verificadas.

Exemplo 3.11. Calcule o limite: lim
x→0

sen(x)
3
√
x

Não podemos aplicar aqui a Regra de l’Hôpital porque 3
√
x não é diferenciável na origem. Aplicando

a Regra de Cauchy resulta

lim
x→0

sen(x)
3
√
x

= lim
x→0

cos(x)
1

3
3√
x2

= 0,

devido à existência do segundo limite.

3.8 Estudo de uma função e sua representação gráfica

Pontos cŕıticos. É importante observar que muitas das funções que encontramos na prática

não são diferenciáveis em todos os pontos do seu domı́nio. Por exemplo, f(x) = |x| não é

diferenciável em x = 0, mas tem de facto um mı́nimo global nesse ponto. Assim, a pesquisa

por pontos extremos deverá tomar em linha de conta os pontos de não-diferenciabilidade.

Seja c um ponto de um intervalo aberto onde f é cont́ınua. Diremos que c é um ponto cŕıtico

de f se uma das duas seguintes condições se verificar

(a) f não é diferenciável em c, ou

(b) f é diferenciável em c e f ′(c) = 0.

Exerćıcio 3.20. Determine os pontos cŕıticos da função f(x) = x3 − 3x2 − 24x+ 32.

Monotonia. Dizemos que f é crescente num ponto c se existe uma vizinhança de c onde f

é crescente. Analogamente, dizemos que f é decrescente num ponto c se existe uma vizinhança

de c onde f é decrescente.

Como a taxa de variação de uma função num ponto c é dada pela derivada da função nesse

ponto, a derivada é naturalmente uma boa ferramenta para determinarmos os intervalos onde
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uma função diferenciável é crescente ou decrescente. Como sabemos, a derivada de uma função

dá-nos informação, quer sobre o declive da recta tangente ao gráfico da função nesse ponto,

quer sobre a taxa de variação da função nesse ponto.

Na verdade, num ponto onde a derivada é positiva, o declive da recta tangente ao gráfico é

positivo e a função é crescente. Num ponto onde a derivada é negativa, o declive é negativo e

a função é decrescente.

Para encontrarmos os intervalos onde a função é crescente ou decrescente:

– determinamos todos os valores de c para os quais f ′(c) = 0 ou f é descont́ınua, e definimos

os intervalos ]a, c[, ]c, b[ para a e b próximos de c;

– seleccionamos um ponto d em cada um dos intervalos definidos anteriormente e determinamos

o sinal de f ′(d): (a) se f ′(d) > 0, f é crescente nesse intervalo; (b) se f ′(d) < 0, f é decrescente

nesse intervalo.

Exerćıcio 3.21. Determine os intervalos de monotonia da função f(x) = x3 − 3x2 − 24x+ 32.

Concavidade. Seja f uma função diferenciável cujo domı́nio contém um intervalo aberto I.

Se f ′(x) (o declive da recta tangente ao gráfico em x) aumenta quando x se desloca da esquerda

para a direita em I, diremos que o gráfico de f tem a concavidade virada para cima.

Se f ′(x) diminui quando x se desloca da esquerda para a direita em I, diremos que o gráfico

de f tem a concavidade virada para baixo.

Uma aplicação importante da derivada de segunda ordem é permitir identificar o sentido da

concavidade de uma função.

Suponhamos que a função f é duas vezes diferenciável num intervalo aberto I.

Se f ′′(x) > 0 para todo x ∈ I, então o gráfico de f tem a concavidade para cima.

Se f ′′(x) < 0 para todo x ∈ I, então o gráfico de f tem a concavidade para baixo.

Exerćıcio 3.22. Averigue o sentido da concavidade da função f(x) = x3 − 3x2 − 24x+ 32.

Seja f uma função cont́ınua definida num intervalo aberto I. Se o gráfico de f muda o sentido

da concavidade num ponto a ∈ I, diremos que a é um ponto de inflexão.
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Para determinarmos os pontos de inflexão de uma função cont́ınua f num intervalo aberto I:

– localizamos todos os pontos de I nos quais f ′′ = 0 ou f ′′ não está definida;

– em cada um destes pontos, averiguamos se f ′′ muda de sinal.

Exerćıcio 3.23. Analise a função f(x) = x−(x−1)3 em termos de sentido da concavidade e pontos

de inflexão.

Sinais de f ′ e f ′′ Propriedades do gráfico de f Forma geral do gráfico de f

f ′ > 0 e f ′′ > 0 f crescente, concavidade para cima

f ′ > 0 e f ′′ < 0 f crescente, concavidade para baixo

f ′ < 0 e f ′′ > 0 f decrescente, concavidade para cima

f ′ < 0 e f ′′ < 0 f decrescente, concavidade para baixo

Extremos. Para determinarmos os extremos de uma função cont́ınua f num intervalo fechado

[a, b], deveremos pesquisar os pontos cŕıticos e as extremidades a e b.

Seja f uma função duas vezes diferenciável num intervalo aberto contendo um ponto c, no qual

f ′(c) = 0. Sendo o domı́nio de f um intervalo aberto, então os pontos cŕıticos de f são os

únicos candidatos a extremos locais de f .

– Se f ′(c) = 0 e f ′′(c) > 0, então f(c) é um mı́nimo local.

– Se f ′(c) = 0 e f ′′(c) < 0, então f(c) é um máximo local.

– Se f ′(c) = 0 e f ′′(c) = 0, o teste é inconclusivo.

Como ilustração do facto de a segunda derivada se anular no ponto cŕıtico não nos permitir

retirar conclusões sobre a natureza do extremo, observemos que tanto a primeira como a segunda

derivadas se anulam na origem para cada uma das funções f(x) = x4, g(x) = −x4 e h(x) = x3

(figura 3.11). No entanto, a primeira tem um mı́nimo, a segunda tem um máximo e a terceira

não tem mı́nimo nem máximo em x = 0.

Exemplo 3.12. Determine os extremos relativos da função f(x) = x3 − 3x2 − 24x+ 32.

Sendo f uma função diferenciável, os pontos cŕıticos de f obtém-se resolvendo a equação f ′(x) = 0,

ou seja, 3x2 − 6x− 24 = 0, donde retiramos x = −2 ou x = 4. Como f ′′(−2) = −6 < 0, f(−2) = 60 é

um máximo local, e, visto que f ′′(4) = 6 > 0, f(4) = −48 é um mı́nimo local.
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Figura 3.11: Em qualquer dos casos, as derivadas de primeira e segunda ordem anulam-se na

origem.

Representação gráfica de uma função. A capacidade de traçar e compreender gráficos

é utilizada em todas as ciências f́ısicas, biológicas assim como nas ciências sociais.

Exemplo 3.13. Um estudo de Borchert1 investigou a relação entre o armazenamento de água no

tronco e a densidade da madeira numa quantidade de espécies de árvores na Costa Rica. O estudo

mostrou que o armazenamento de água está inversamente relacionado com a densidade da madeira,

isto é, maior densidade da madeira corresponde a um menor conteúdo de água. Esboce um gráfico do

conteúdo de água como uma função da densidade da madeira que ilustre esta situação.

Mesmo possuindo uma calculadora gráfica ou software adequado à representação gráfica de

funções num computador, justifica-se plenamente o estudo que faremos nesta secção, pois o

melhor caminho para aprender a interpretar um gráfico é aprender a traçá-lo. Por outro lado,

a representação gráfica de uma função pode não permitir tirar correctamente conclusões sobre

a função, como pode ser verificado pelas representações de uma mesma função apresentados na

figura 3.12.

Vimos nas secções anteriores que certos aspectos do gráfico de uma função f podem ser deter-

minados a partir das primeira e segunda derivadas. Vimos também que os gráficos das funções

podem possuir asśımptotas. Combinando estas várias informações podemos aplicá-las para

traçar gráficos de funções.

1Borchert R. (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest
trees, Ecology, 75, 1437-1449.
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Figura 3.12: Representações gráficas da função f(x) = x− (x− 1)3.

Os passos seguintes podem ser seguidos para traçar gráficos de uma extensa quantidade de

funções:

1. Determinar o domı́nio e (se posśıvel) o con-
tradomı́nio da função;

2. Determinar todas as asśımptotas;

3. Calcular a derivada de primeira ordem e encontrar
os pontos cŕıticos da função;

4. Determinar os intervalos onde a função é crescente
ou decrescente;

5. Calcular a derivada de segunda ordem e determi-
nar os intervalos onde a função tem a concavidade
virada para cima ou virada para baixo;

6. Identificar todos os máximos e mı́nimos locais e os
pontos de inflexão;

7. Traçar estes pontos assim como os pontos de in-
tersecção com os eixos (se existirem). Traçar as
asśımptotas;

8. Unir os pontos, atendendo ao sentido da concavi-
dade, extremos locais e asśımptotas.

K10 0 10

10

20

y

x

f(x) =
5x

(x − 2)2

Exemplo 3.14. Trace o gráfico da função f(x) = 5x
(x−2)2

.
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Vamos seguir os passos atrás indicados.

1. O domı́nio de f é R\{2}. Para x próximo do ponto 2, f(x) toma valores positivos arbitrariamente
grandes, pois,

lim
x→2−

5x

(x− 2)2
= lim

x→2+

5x

(x− 2)2
= +∞.

2. Observamos que,

lim
x→+∞

5x

(x− 2)2
= lim

x→+∞
5x

x2 − 4x+ 2

= lim
x→+∞

5

x

1− 4

x
+

2

x2

=
5 lim

x→+∞
1

x

1− 4 lim
x→+∞

1

x
+ 2 lim

x→+∞
1

x2

= 0

= lim
x→−∞

f(x).

Por conseguinte, a recta y = 0 é uma asśımptota horizontal do gráfico. Além disso, a recta
x = 2 é uma asśımptota vertical para f .

3. Calculamos f ′,

f ′(x) =
5 (x− 2)2 − 5x × 2(x− 2)

(x− 2)4
=

−5(x+ 2)

(x− 2)3
.

A derivada de primeira ordem está definida em todos os pontos do domı́nio de f . Como f ′ se
anula para x = −2 este é o único ponto cŕıtico.

4. A derivada de primeira ordem pode mudar de sinal apenas em x = −2 (ponto cŕıtico) e x = 2
(ponto onde f não está definida).

Como f ′(−3) = − 1
25 < 0, conclúımos que f ′ < 0 em ] − ∞, −2[; então, f é decrescente neste

intervalo.

Como f ′(0) = 5
4 > 0, conclúımos que f ′ > 0 em ]− 2, 2[; então, f é crescente neste intervalo.

Por último, como f ′(3) = −25 < 0, conclúımos que f ′ < 0 em ]2, +∞[; então, f é decrescente
neste intervalo.

5. A derivada de segunda ordem é

f ′′(x) =
(x− 2)3 · (−5)− (−5(x+ 2)) (3(x − 2)2)

(x− 2)6

=
10 (x + 4)

(x− 2)4
.

Observemos que o denominador é sempre positivo no domı́nio de f .Vemos que f ′′ < 0 no
intervalo ]−∞, −4[ pois o numerador é negativo. Logo, f tem a concavidade virada para baixo
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nesse intervalo. Também, f ′′ > 0 quando x > −4 (excepto em x = 2 onde f , f ′ e f ′′ não estão
definidas). Portanto, f tem a concavidade virada para cima em cada um dos intervalos ]− 4, 2[
e ]2, +∞[.

6. Como f ′′(−2) = 5
64 > 0, existe um mı́nimo local no ponto cŕıtico x = −2.

Do passo anterior, sabemos que o sentido da concavidade muda em x = −4. Por conseguinte, f
tem um ponto de inflexão em x = −4.

O sentido da concavidade não varia em x = 2.

7. A intersecção com o eixo dos yy é (0, f(0)) = (0, 0). Como x = 0 é a única solução de f(x) = 0,
o ponto (0, 0) é também o ponto de intersecção com o eixo dos xx.

8. Podemos concluir da informação obtida sobre a função que f tem um mı́nimo global em x = −2
e que não tem máximo global.

K6 K4 K2 0 2

50

y

x

f(x) = 4x3 + x4

Exerćıcio 3.24. Faça um estudo da função f(x) = 4x3 + x4.

3.9 Aplicações

Nesta secção iremos estudar alguns exemplos de aplicação do cálculo diferencial.

Aplicação 1. A altura atingida por um foguete t segundos após o lançamento é dada pela

função h(t) = −1
3
t3 +16t2 +33t+10. Entre que instantes está o foguete a subir? E quando inicia

a queda?
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Determinamos em que instante o foguete atinge a altura máxima calculando h′(t) = 0, ou seja,

o instante em que a velocidade se anula,

h′(t) = 0 ⇔ −t2 + 32t+ 33 = 0 ⇔ t = −1 ou t = 33.

Logo, o foguete está em ascensão entre os instantes 0 e 33, iniciando então a queda.

Aplicação 2. O ńıvel de dióxido de nitrogénio (gás nocivo para a respiração) presente na at-

mosfera num dia de Maio na baixa de Los Angeles é aproximado por

A(t) = 0.03t3(t− 7)4 + 60.2 (0 ≤ t ≤ 7),

onde A(t) é medido em Indice Padrão de Poluente e t é medido em horas, com t = 0 correspondendo

às 7 horas da manhã. Em que altura do dia aumenta a poluição do ar e em que altura diminui?

Calculando A′(t) = 0 encontramos os pontos cŕıticos de A,

A′(t) = 0 ⇔ 0.09t2(t− 7)4 + 0.12t3(t− 7)3 = 0 ⇔ t2(t− 7)3(0.21t− 0.63) = 0

⇔ t = 0 ou t = 3 ou t = 7.

Estudando a monotonia, verificamos que A é crescente entre 0 e 3, e decrescente entre 3 e 7.

Conclúımos pois, que o ı́ndice de poluição vai aumentando entre as 7 e as 10 horas da manhã

diminuindo depois entre as 10 e as 14 horas.

Aplicação 3. Quando são despejados reśıduos orgânicos numa lagoa, o processo de oxidação

que se desencadeia reduz a quantidade de oxigénio presente na água. Contudo, passado algum

tempo, a Natureza restaura o conteúdo de oxigénio para o seu ńıvel natural.

Supondo que a quantidade de oxigénio na lagoa t dias após terem sido despejados reśıduos orgânicos

é dado por

f(t) = 100

(
t2 − 4t+ 4

t2 + 4

)

, t ∈ [0,+∞[

porcento do seu ńıvel normal,

(a) deduza uma expressão que dê a taxa de variação do ńıvel de oxigénio na lagoa num instante t

arbitrário;
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(b) Quão rápida é a variação da quantidade de oxigénio na lagoa um dia após os reśıduos terem

sido despejados? E após três dias?

(a) A taxa de variação do ńıvel de oxigénio na lagoa num instante arbitrário t é dado pela

derivada da função,

f ′(t) = 100
(2t− 4)(t2 + 4)− (t2 − 4t+ 4)2t

(t2 + 4)2
= 100

4t2 − 16

(t2 + 4)2
=

400 (t2 − 4)

(t2 + 4)2
.

(b) A taxa à qual a quantidade de oxigénio presente na lagoa está a variar um dia após o

despejo de reśıduos é dado por

f ′(1) =
400 (1− 4)

(1 + 4)2
= −48,

isto é, está a decrescer à razão de 48% por dia. Dois dias depois a taxa é

f ′(2) =
400 (4− 4)

(42 + 4)2
= 0,

ou seja, não aumenta nem diminui. Três dias depois

f ′(3) =
400 (32 − 4)

(32 + 4)2
= 11.83,

ou seja, a taxa de oxigénio aumenta à razão de 11.83% por dia, e o processo de restauração

iniciou-se.

Aplicação 4. O número de pulsações por minuto de um atleta de longas distâncias t segundos

após a partida é dado por

P (t) =
300

√
1
2
t2 + 2t+ 25

t + 25
(t ≥ 0).

Determine P ′. Qual a taxa de variação da pulsação do atleta 10 segundos após a partida? E 60

segundos após a partida? Qual a pulsação após 2 minutos de corrida?



94 Texto de apoio de Matemática — 3. CÁLCULO DIFERENCIAL E APLICAÇÕES

A derivada de P é

P ′(t) = 300

(√
1
2
t2 + 2t+ 25

)′
(t + 25)−

√
1
2
t2 + 2t + 25

(t+ 25)2

= 150
(t+ 2)(t+ 25)− 2 (1

2
t2 + 2t+ 25)

(t+ 25)2
√

1
2
t2 + 2t+ 25

=
3450t

(t+ 25)2
√

1
2
t2 + 2t+ 25

.

Calculando P ′(10) obtemos a taxa de variação da pulsação do atleta 10 segundos após a partida

P ′(10) ≈ 2.9 pulsações/min2

e passados 2 minutos a taxa de variação da pulsação é P ′(120) ≈ 0.2 pulsações/min2.

A pulsação após 2 minutos de corrida é P (120) ≈ 179 pulsações.

Aplicação 5. Quando alguém tosse, a traqueia contrai-se permitindo que o ar seja expelido a

uma velocidade máxima. Pode mostrar-se que, durante o tossir, a velocidade v do fluxo de ar é

dada pela função

v(r) = kr2(R− r)

onde r é o raio da traqueia (em cent́ımetros) durante o tossir, R é o raio normal da traqueia (em

cent́ımetros), e k é uma constante positiva que depende do comprimento da traqueia. Determine o

raio r para o qual o fluxo de ar é máximo.

Para determinarmos o máximo absoluto de f em ]0, R] determinamos em primeiro lugar os

pontos cŕıticos de f em ]0, R[. Calculamos,

v′(r) = 2kr(R− r)− kr2 = −3kr2 + 2kRr = kr(−3r + 2R)

Fazendo v′(r) = 0, obtemos r = 0 ou r = 2
3
R; donde r = 2

3
R é o único ponto cŕıtico de v.

Determinando o valor de v nas extremidades do intervalo e em r = 2
3
R, encontramos

v(0) = 0, v

(
2

3
R

)

=
4k

27
R3, v(r) = 0,

donde conclúımos que a velocidade do fluxo de ar é máxima quando o raio da traqueia contráıda

é 2
3
R, isto é, quando a traqueia é contráıda de aproximadamente 33%.
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3.10 Exerćıcios e complementos

1. Escreva a equação da recta tangente ao gráfico de cada uma das funções no ponto dado.

(a) f(x) = 2x2, P= (1, 2) (b) f(x) =
3

x
, P= (1, 3) (c) f(x) =

√
x, P= (4, 2).

Sol.: (a) y = 4x− 2; (b) y = −3x+ 6; (c) y = 1
4 x+ 1.

2. O declive da recta normal (ou perpendicular) ao gráfico da função f num ponto (x0, y0) é

dado por m = − 1
f ′(x0)

. Determine a equação de recta normal ao gráfico de cada uma das

funções no ponto indicado.

(a) f(x) = 4x3 − 3x2, x0 = −1 (b) f(x) =
√
3x4 − 2

√
3 x2, x0 = −

√
3

(c) f(x) = −e2x2 − ex, x0 = 0.

Sol.: (a) y = 2 sen(x) tg2(x) sen(x); (b) y = 1
24 x+ 73

24

√
3; (c) y = 1

e x.

3. Determine as derivadas das funções indicadas.

(a) h(t) = 1
2
t2 − 3t+ 2 (b) f(x) = sen2(x)

cos(x)

(c) f(x) = x2 sen(π
3
) + tg(π

4
) (d) f(s) = s3e3 + 3e.

Sol.: (a) t− 3; (b) 2 sen(x) + tg2(x) sen(x); (c)
√
3x; (d) 3 s2 e3.

4. Calcule a derivada de

g(N) = rN(a−N)
(

1− N

K

)

em ordem a N sendo r, a e K constantes positivas. (Obs.: Trata-se de aplicar a generali-

zação da derivada do produto para três funções.)

Sol.: r
(

a− 2N
(
1 + a

K

)
+ 3N2

K

)

.

5. Assumindo que f é diferenciável, determine uma expressão para a derivada de y.

(a) y = 2xf(x) (b) y = −5x3f(x)− 2x (c) y =
f(x)

x2 + 1
.

Sol.: (a) dy
dx = 2 f(x)+2x f ′(x); (b) dy

dx = −5x2 (3 f(x)+x f ′(x))−2; (c) dy
dx = (x2+1) f ′(x)−2x f(x)

(x2+1)2
.

6. Assumindo que f e g são funções diferenciáveis, determine

(a)
d

dx

√

f(x) + g(x) (b)
d

dx

f(x)

g2(x)
, g(x) 6= 0.
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Sol.: (a) f ′(x)+g′(x)

2
√

f(x)+g(x)
; (b) f ′(x) g(x)−2 f(x) g′(x)

g3(x)
.

7. Determine as derivadas das seguintes funções

(a) f(x) =
3x3 + 2x− 1

5x2 − 2x+ 1
(b) f(x) =

√
x (x4 − 5x2) (c) g(s) =

s1/3 − 1

s2/3 − 1
.

(d) f(x) =

√
x2 − 1

1 +
√
x2 + 1

(e) f(t) =
( t

t− 3

)3

(f) f(x) = 4
√
2− 4x2.

Sol.: (a)
x(15x3−12x2−x+10)

(5x2−2x+1)2
; (b) 1

2 x
3/2

(
9x2 − 25

)
; (c) − 1

3 ( 3
√
s+1)

2
s2/3

;

(d)
x(

√
x2+1+2)

√
x2−1(1+

√
x2+1)

2√
x2+1

; (e) − 9t2

(t−3)4
; (f) − 2x

(2−4x2)3/4
.

8. Aplique a regra da cadeia para determinar dy
dx
.

(a) y =
(√

1− x2 + 2
)2

(b) y =
(
1 + (3x2 − 1)3

)2
(c) y =

(
x+ 1√
3x2 − 3

)3

Sol.: (a) −2x (
√
1−x2+2)√
1−x2

; (b) 162x2
(
27x3 + 1

)
; (c) − x+1√

3x2−3 (x−1)2
.

9. Aplique as derivadas das funções trigonométricas para determinar df
dx

sendo:

(a) f(x) =
√

sen(2x2 − 1) (b) f(x) =
sen(2t) + 1

cos(6t)− 1
(c) f(x) =

sec(x2 − 1)

cosec(x2 + 1)

(d) f(x) = sen(2x− 1) cos(3x+ 1) (e) f(x) = sec
1

1 + x
(f) f(x) =

cosec(3− x2)

1− x2
.

Apresente os resultados envolvendo apenas as funções seno e coseno.

Sol.: (a)
2x cos(2x2−1)√

sen(2x2−1)
; (b) 2 cos(2 t)

cos(6 t)−1 +
6 (sen(2 t)+1) sen(6 t)

(cos(6 t)−1)2
;

(c)
2x (sen(x2−1) sen(x2+1)+cos(x2+1) cos(x2−1))

(cos(x2−1))2
;

(d) 2 cos (2x− 1) cos (3x+ 1)− 3 sen (2x− 1) sen (3x+ 1);

(e) − sen((x+1)−1)
(x+1)2(cos((x+1)−1))

2 ; (f)
2x (cos(x2−3)x2−cos(x2−3)+sen(x2−3))

(−1+(cos(x2−3))2)(x2−1)2
.

10. Aplique a regra de derivação da função logaŕıtmica para determinar df
dx

sendo:

(a) f(x) = x2 ln(x3) (b) f(x) = ln(1 + x2) (c) f(x) = ln
1 + x

1− x

(d) f(x) = ex ln(x) + ln(3) (e) f(x) = ln(ln(x)) (f) f(x) = ln(1 + e−x)

Sol.: (a) 3x (2 ln(x) + 1); (b)
2x

1 + x2
; (c)

2

1− x2
; (d) ex ln(x) + ex

x ; (e) 1
x ln(x) ; (f) − 1

ex+1 .

11. Determine a derivada de cada uma das seguintes funções
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(a) f(x) = (ln x2)2 (b) f(x) = ln
2x

1 + x2
(c) f(x) = ln(sen2(3x))

Sol.: (a)
4 ln(x2)

x ; (b) 1−x2

x(1+x2)
; (c) 6 cos(3x)

sen(3 x) .

12. Determine as derivadas de primeira e segunda ordem.

(a) f(x) = (x2 − 3)5 (b) f(s) =
√
s3/2 − 1 (c) f(x) = x3 − 1

x3 .

Sol.: (a) 10x
(
x2 − 3

)4
; 30

(
3x2 − 1

) (
x2 − 3

)3
;

(b) 3
√
s

4
√

s3/2−1
; − 3 (s3/2+2)

16 (s3/2−1)
3/2√

s
; (c)

3 (x6+1)
x4 ;

6 (x6−2)
x5 .

13. Averigue se a função f dada é invert́ıvel no conjunto indicado e, em caso afirmativo,

determine a derivada da sua inversa, (f−1)
′
.

(a) f(x) =
√
x− 1, x ≥ 1 (b) f(x) = x2 − 2, x ≥ 0.

Sol.: (a) 2
√
x− 1.

14. Seja f(x) = x+ ex, x ∈ R. Determine df−1

dx
(1). (Observe que f(0) = 1.)

15. Determine dy
dx

aplicando derivação impĺıcita.

(a) y = x2 + xy (b) xy − y3 = 1 (c)
√
xy = x2 + 1.

Sol.: (a) dy
dx = 2x+y

1−x .

16. Determine dy
dx

no ponto (1
2
,

√
3
4
) da curva de equação y2 = x2 − x4 (Figura 3.13).

Figura 3.13: Lemniscata de Bernoulli

17. Aplique a derivação logaŕıtmica para determinar as derivadas das funções seguintes

(a) f(x) = 3x (b) f(x) = (1 +
√
e)x (c) f(x) = 4x

2
(d) f(x) =

3x + 4x

5x
.

Sol.: (a) 3x ln (3); (b) (1 +
√
e)

x
ln (1 +

√
e); (c) 22+2 x2

x ln (2); (d)
(
3
5

)x
ln(35) +

(
4
5

)x
ln

(
4
5

)
.
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18. Utilize o método dos incrementos para encontrar uma estimativa da expressão.

(a) sen(0.02) (b)
3
√
8.152 (c)

1
3
√
4.212

Sol.: (a) 0.02; (b) 4.05; (c) 0.1152.

19. Determine os intervalos de monotonia da função f(x) = x+ 1
x
.

20. Determine os extremos de f(x) = 1
2
x4 − x2 + 1.

Sol.: f tem mı́nimos locais em −1 e 1 e tem um máximo local na origem.

21. Aplique o teorema de Fermat para localizar todos os candidatos a extremos das funções:

(a) f(x) = 2x2 − 24x+ 36 (b) f(x) = x− ln(x)

Sol.: (a) 6; (b) 1.

22. Determine um valor de c cuja existência é garantida pelo teorema de Lagrange aplicado

à função f no intervalo I indicado.

(a) f(x) =
x

x− 1
, I = [2, 4] (b) f(x) = x3 + 3x− 1, I = [1, 5].

23. Mostre que a equação x3 − 3x2 + 4x− 1 = 0 tem exactamente uma raiz real.

24. Aplique as regras adequadas para determinar os seguintes limites

(a) lim
x→π

2

ln(sen(x))

(π − 2x)2
(b) lim

x→−1

cos(x+ 1)− 1

x3 + x2 − x− 1
(c) lim

x→1

ln(x)

x−√
x

(d) lim
x→−∞

ln(1 + 1
x
)

sen( 1
x
)

.

Sol.: (a) −1
8 ; (b)

1
4 ; (c) 2; (d) 1.

25. Faça o estudo da função x
x−1

e esboce o seu gráfico.

26. O número de bactérias N(t) numa determinada cultura t minutos após a introdução

experimental de um bactericida obedece à seguinte regra

N(t) =
10000

1 + t2
+ 2000.

Determine a taxa de variação do número de bactérias na cultura 1 e 2 minutos após a

introdução do bactericida. Qual a população de bactérias na cultura 1 minuto após a

aplicação do bactericida? E 2 minutos depois?



Caṕıtulo 4

Cálculo integral e aplicações

4.1 Primitivas

Um f́ısico conhecendo a velocidade de uma part́ıcula pode querer saber a sua posição. Um

engenheiro medindo a taxa de escoamento da água de um tanque pode querer determinar a

quantidade escoada após um certo intervalo de tempo. Um biólogo que sabe a taxa à qual uma

população de bactérias aumenta pode querer deduzir o tamanho da população num instante

futuro. Em todos estes casos, o problema consiste em determinar uma função F cuja derivada

é uma função conhecida f .

Seja f uma função definida num intervalo aberto I. Se F é uma função diferenciável tal que

F ′(x) = f(x), para todo x ∈ I, então diz-se que F é uma primitiva de f em I.

É posśıvel que f tenha mais do que uma primitiva. Na verdade, se F tem derivada f e se C é

uma constante arbitrária, então (F + C)′ também é igual a f ,

(F + C)′ = F ′ + C ′ = F ′ = f,

pois a derivada de uma constante é 0. Assim, todas as primitivas de f diferem de F por uma

constante.

Exemplo 4.1. Se for f(x) = cos(x), então F (x) = sen(x) é uma primitiva de f (em qualquer

intervalo) porque (sen(x))′ = cos(x). Uma outra primitiva da função f é a função G(x) = sen(x) + 3.

Naturalmente, qualquer função H(x) = sen(x) + C, com C constante, é também primitiva de f .

Temos as duas seguintes propriedades da primitivação. Se f e g são primitiváveis em I, f + g

é primitivável em I e obtém-se uma primitiva de f + g somando uma primitiva de f com uma

99
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primitiva de g,

P(f + g)(x) = (Pf)(x) + (Pg)(x), ∀x ∈ I. (4.1)

Por outro lado, se f é primitivável em I e k é uma constante, kf é primitivável em I e, tem-se

P(kf)(x) = k (Pf)(x), ∀x ∈ I. (4.2)

Em geral, se f1, . . . , fn são n funções primitiváveis em I e k1, . . . , kn são n constantes, então

qualquer combinação linear k1f1 + · · ·+ knfn é primitivável em I e, tem-se

P(k1f1 + · · ·+ knfn)(x) = k1 (Pf1)(x) + · · ·+ kn (Pfn)(x).

Representamos a colecção de todas as primitivas de f por
∫

f(x) dx.

Esta expressão é designada por integral indefinido de f e escrevemos
∫

f(x) dx = F (x) + C

onde C é uma constante arbitrária, designada por constante de integração.

As propriedades (4.1) e (4.2) reescrevem-se como
∫

(
f(x) + g(x)

)
dx =

∫

f(x) dx+

∫

g(x) dx (4.1.a)

∫
(
k f(x)

)
dx = k

∫

f(x) dx. (4.2.a)

Designamos por primitivas imediatas aquelas que resultam directamente ou através de trans-

formações algébricas, da inversão de uma fórmula de derivação.

Na página seguinte indicamos uma tabela com algumas dessas primitivas.

Exemplo 4.2. Resolução de alguns integrais indefinidos:

(a)

∫

(2x+ 3) dx =

∫

2x dx+

∫

3 dx, aplicando a propriedade (4.1)

= 2

∫

x dx+ 3

∫

dx, aplicando a propriedade (4.2)

= x2 + 3x+ C, C ∈ R.
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(b)

∫
ex

5
dx =

1

5

∫

ex dx

=
1

5
ex + C, C ∈ R.

(c)

∫
1

1 + x2
dx = arctg(x) +C, C ∈ R.

(d)

∫
sec(x) + cos(x)

cos(x)
dx =

∫ (
sec(x)

cos(x)
+ 1

)

dx

=

∫
1

cos2(x)
dx+

∫

dx, aplicando a propriedade (4.1)

=

∫

sec2(x) dx+

∫

dx

= tg(x) + x+ C, C ∈ R.

Exemplo 4.3. Toda a função polinomial f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n é primitivável em R e
as suas primitivas são os polinómios da forma

y(x) = a0x+
a1

2
x2 +

a2

3
x3 + · · ·+ an

n+ 1
xn+1 +C.

Exerćıcio 4.1. Determine uma primitiva de f(x) = 5x7 − x4 + 4x3 + 9x2 − 6x+ 5.

f(x)
∫
f(x) dx

xα, α ∈ R\{−1} xα+1

α + 1
+ C

1

x
ln(|x|) + C

ex ex + C

ax
ax

ln(a)
+ C

sen(x) − cos(x) + C

cos(x) sen(x) + C

sec2(x) tg(x) + C

f(x)
∫
f(x) dx

− cos(x)

sen2(x)
cosec(x) + C

sen(x)

cos2(x)
sec(x) + C

− 1

sen2(x)
cotg(x) + C

1√
1− x2

arcsen(x) + C

− 1√
1− x2

arccos(x) + C

1

1 + x2
arctg(x) + C

Exemplo 4.4. Determine
∫

1
sen2(x) cos2(x)

dx.
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∫
1

sen2(x) cos2(x)
dx =

∫
sen2(x) + cos2(x)

sen2(x) cos2(x)
dx

=

∫ (
1

cos2(x)
+

1

sen2(x)

)

dx

=

∫
1

cos2(x)
dx+

∫
1

sen2(x)
dx, aplicando a propriedade (4.1)

= tg(x)− cotg(x) +C, C ∈ R.

Exemplo 4.5. Em cada ponto de uma curva y = f(x), sabemos que y′′ = x2 − 1. Escreva a função

f , sabendo que o seu gráfico passa pelo ponto (1, 1) e é tangente à recta x+ 12y = 13, nesse ponto.

Sendo f ′′(x) = x2 − 1, por primitivação obtemos f ′(x) = x3

3 − x+C, C ∈ R. Logo, f ′(1) = −2
3 +C é

o valor do declive da recta tangente ao gráfico de f no ponto de abcissa 1.

Visto que pretendemos que a tangente no ponto (1, 1) seja a recta x+12y = 13, nesse ponto o declive

da recta terá de ser igual a f ′(1), ou seja,

x+ 12y = 13 ⇔ 12y = −x+ 13 ⇔ y = − 1

12
x+

13

12

o declive é igual a − 1
12 donde

−2

3
+ C = − 1

12
⇔ C =

7

12
.

Assim, a função derivada é

f ′(x) =
x3

3
− x+

7

12
.

que primitivando, dá

f(x) =
x4

12
− x2

2
+

7

12
x+ C, C ∈ R.

A constante C, atendendo a que o ponto (1, 1) pertence ao gráfico, isto é, f(1) = 1, é dada por,

1

12
− 1

2
+

7

12
+ C = 1 ⇔ C =

5

6
.

Portanto, a função pretendida é definida por

f(x) =
x4

12
− x2

2
+

7

12
x+

5

6
ou, f(x) =

1

12
(x4 − 6x2 + 7x+ 10).

4.1.1 Primitivação por partes

Na maior parte dos casos, as funções para as quais pretendemos determinar uma primitiva não

admitem uma primitiva imediata. Assim, somos obrigados a recorrer a métodos adequados
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ao tipo de função. O primeiro método que vamos estudar designa-se primitivação por partes

e baseia-se no resultado seguinte. Se u e v são funções diferenciáveis em I, o produto u′v é

primitivável em I se e só se o produto uv′ o for, e tem-se

P(u′v) = uv − P(uv′). (4.3)

De facto, se u e v são funções diferenciáveis, (uv)′ = u′v+uv′. Primitivando ambos os membros,

obtemos uv = P(u′v) + P(uv′) donde retiramos (4.3). Vejamos alguns exemplos.

Exemplo 4.6. Determine P(x sen(x)).

Escolhendo u′ = sen(x) e v = x, teremos u = − cos(x) e v′ = 1; logo,

P(x sen(x)) = −x cos(x)− P(− cos(x)) = −x cos(x) + sen(x).

Exemplo 4.7. Determine P(ln(x)).

Neste caso, utilizamos o seguinte artif́ıcio

P(ln(x)) = P(1× ln(x))

e, fazendo u′ = 1 e v = ln(x), tem-se

u′ = 1 −→ u = x

v = ln(x) −→ v′ = 1
x

}

⇒ P(uv′) = P(1) = x.

Portanto, P(ln(x)) = x ln(x)− x, em I = ] 0, +∞[.

No exemplo seguinte vamos obter uma fórmula de recorrência que permite calcular a primitiva

de cosn(x), para n ≥ 2. De forma análoga podemos encontrar uma expressão para a primitiva

da potência de grau n de sen(x) (Exerćıcio 4.2).

Exemplo 4.8. Determine P(cosn(x)) para n ∈ N e n ≥ 2.

Temos que

P(cosn(x)) = P(cosn−1(x)
︸ ︷︷ ︸

v

· cos(x)
︸ ︷︷ ︸

u′

)

= sen(x) · cosn−1(x) + P
(
(n− 1) cosn−2(x) · sen2(x)

)
.
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Fazendo, u′ = cos(x) −→ u = sen(x)

v = cosn−1(x) −→ v′ = (n− 1) cosn−2(x) (−sen(x))
vem,

P(cosn(x)) = sen(x) cosn−1(x) + (n − 1)P
(
cosn−2(x) (1 − cos2(x))

)

⇔ P(cosn(x)) = sen(x) cosn−1(x) + (n − 1)P(cosn−2(x))− (n− 1)P(cosn(x))

⇔ P(cosn(x)) + (n− 1)P(cosn(x)) = sen(x) cosn−1(x) + (n − 1)P(cosn−2(x))

⇔ nP(cosn(x)) = sen(x) cosn−1(x) + (n− 1)P(cosn−2(x))

e, resolvendo esta equação em ordem a P(cosn(x)), obtemos

P(cosn(x)) =
1

n
sen(x) cosn−1(x) +

n− 1

n
P(cosn−2(x)), em I = R.

Em particular, considerando n = 2, vem

P(cos2(x)) =
1

2
sen(x) cos(x) +

1

2
P(1) =

1

4
sen(2x) +

x

2
.

Exerćıcio 4.2. Determine P(senn(x)) para n ∈ N e n ≥ 2.

Exemplo 4.9. Determine
∫
x e2x dx.

Fazendo, u′ = e2x −→ u = 1
2 e

2x

v = x −→ v′ = 1,
vem,

∫

x e2x dx =
1

2
e2x x−

∫
1

2
e2x dx

=
1

2
x e2x − 1

2

∫

e2xdx

=
1

2
x e2x − 1

4
e2x

=
1

4
(2x− 1) e2x.

4.1.2 Primitivação por substituição

Se a função a primitivar puder ser escrita na forma f(g(x)) g′(x), podemos aplicar um outro

método designado por método de primitivação por substituição. Observemos que se, F ′ = f ,

então
∫

F ′(g(x)) g′(x) dx = F (g(x)) + C (4.4)
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pois, pela regra da cadeia,
d

dx
F (g(x)) = F ′(g(x)) g′(x).

Fazendo a mudança de variável ou substituição u = g(x), então de (5.1) teremos
∫

F ′(g(x)) g′(x) dx = F (g(x)) + C = F (u) + C =

∫

F ′(u) du

ou, escrevendo F ′ = f , obtemos
∫

f(g(x)) g′(x) dx =

∫

f(u) du.

Obtemos deste modo o seguinte resultado:

Se u = g(x) é uma função diferenciável cujo contradomı́nio é um intervalo I e se f é cont́ınua

em I, então
∫

f(g(x)) g′(x) dx =

∫

f(u) du.

Observemos que, se u = g(x) então du = g′(x) dx, de modo que podemos interpretar dx e du

como diferenciais.

Exemplo 4.10. Aplique o método de substituição para determinar
∫
2x cos(x2 + 1) dx.

A função g(x) = x2 + 1 e a sua derivada g′(x) = 2x aparecem ambas no integral. Vamos então
considerar a mudança de variável u = g(x), ou seja, u = x2 + 1. Como du = g′(x) dx, virá du = 2x dx
e podemos escrever o integral na variável u. Por fim, recuperamos a variável x,

∫

2x cos(x2 + 1) dx =

∫

cos(u) du = sen(u) + C = sen(x2 + 1) + C.

A ideia subjacente ao método de substituição é substituir um integral relativamente complicado

por um outro mais simples. Tal é conseguido mudando a variável inicial x por uma nova variável.

A principal dificuldade neste método reside na escolha da substituição adequada. Vamos ver

mais alguns exemplos.

Exemplo 4.11. Para calcularmos

∫ √
2x+ 1 dx vamos considerar,

u = 2x+ 1, du = 2 dx ⇔ dx =
1

2
du.

Assim,
∫ √

2x+ 1 dx =

∫ √
u
1

2
du =

1

2

∫

u
1
2 du =

1

2

u
3
2

3
2

+C =
1

3
u

3
2+C =

1

3
(2x+1)

3
2+C =

1

3

√

(2x+ 1)3+C.
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Exemplo 4.12. Determine

∫
x√

1− 4x2
dx.

Consideramos a seguinte mudança de variável

u = 1− 4x2, du = −8x dx ⇔ x dx = −1

8
du.

Então,
∫

x√
1− 4x2

dx = −1

8

∫
1√
u
du = −1

8

∫

u−
1
2 du = −1

8
(2
√
u) + C = −1

4

√

1− 4x2 + C.

Exemplo 4.13. Determine
∫
tg(x) dx.

∫

tg(x) dx =

∫
sen(x)

cos(x)
dx.

Considerando a mudança de variável

u = cos(x), du = −sen(x) dx ⇔ sen(x) dx = −du,

obtemos
∫

tg(x) dx =

∫
sen(x)

cos(x)
dx = −

∫
1

u
du = − ln(|u|) +C = − ln(| cos(x)|) + C = ln(|sec(x)|) + C.

Podemos sistematizar as seguintes etapas na resolução pelo método de substituição:

1. Encontrar uma expressão g(x) no integrando tal que a derivada g′(x) também apareça
no integrando;

2. Substituir g(x) por u e g′(x) dx por du de forma que o integrando venha expresso
apenas em termos de u;

3. Determinar o novo integral de modo a obtermos o resultado expresso em termos de u;

4. Recuperar a expressão em termos da variável x através de substituição.

Exerćıcio 4.3. Determine o integral indefinido
∫
sen4(x) cos(x) dx (Sugestão: use a mudança de

variável u = sen(x)).

4.1.3 Primitivação de funções racionais

Veremos agora como integrar funções racionais, isto é, funções que são o quociente de polinómios,

f(x) =
P (x)

Q(x)
.
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Se o grau do polinómio do numerador é igual ou superior ao grau do polinómio do denominador

efectuamos, em primeiro lugar, a divisão dos dois polinómios. Para uma função racional em

que o grau do numerador é inferior ao do denominador, a ideia base consiste em escrever a

função como a soma de dois ou mais termos que sabemos como integrar. Este procedimento é

designado por método das fracções parciais.

A forma que esses termos mais simples podem adquirir será, por exemplo,

A

x− a
ou,

A

(x− a)m

onde a e A são constantes reais e m é um número inteiro maior que 1.

De facto, por primitivação, obtemos respectivamente,

∫
A

x− a
dx = A

∫
1

x− a
dx = A ln(|x− a|) + C (4.5)

∫
A

(x− a)m
dx = A

∫
1

(x− a)m
dx

= A

∫

(x− a)−m dx

= A
(x− a)−m+1

−m+ 1
+ C

= − A

m− 1

1

(x− a)m−1
+ C. (4.6)

Método das fracções parciais com factores lineares distintos

No primeiro caso que vamos estudar, o numerador é um polinómio de grau inferior ao do

denominador e o polinómio no denominador está factorizado em factores lineares distintos.

Exemplo 4.14. Determine

∫
3

(x− 1)(x + 2)
dx.

A ideia é aplicar o método das fracções parciais para reescrever o integrando como a soma de duas

fracções
3

(x− 1)(x+ 2)
=

A

x− 1
+

B

x+ 2

onde A e B são constantes que teremos de determinar.
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Reduzindo ao mesmo denominador

3

(x− 1)(x+ 2)
=

A(x+ 2) +B(x− 1)

(x− 1)(x+ 2)

para que a igualdade seja verdadeira é necessário que os numeradores sejam iguais, ou seja,

3 = A(x+ 2) +B(x− 1). (4.7)

Reorganizamos a equação (4.7) de forma a mais facilmente identificarmos os coeficientes correspon-

dentes, em cada um dos polinómios,

0x+ 3 = (A+B)x+ (2A−B),

e, para dois polinómios serem iguais, os coeficientes dos termos semelhantes têm de ser iguais. Assim,

{
0 = A+B

3 = 2A−B.

Resolvendo este sistema de equações, encontramos A = 1 e B = −1.

Logo,

∫
3

(x− 1)(x+ 2)
dx =

∫ (
1

x− 1
+

−1

x+ 2

)

dx

=

∫
1

x− 1
dx−

∫
1

x+ 2
dx

= ln(|x− 1|)− ln(|x+ 2|) + C

= ln

(∣
∣
∣
∣

x− 1

x+ 2

∣
∣
∣
∣

)

+ C.

O cálculo da primitiva do exemplo 4.14 segue o procedimento que a seguir apresentamos.

Para primitivarmos uma função da forma

P (x)

(x− a1)(x− a2) · · · (x− ak)

onde P é um polinómio e os ai são números reais distintos, seguimos os passos seguintes:

1. Garantir que o grau do polinómio P é menor que o grau do polinómio do denominador;

caso não seja, efectuamos a divisão do numerador pelo denominador;
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2. Decompôr a função na forma

A1

x− a1
+

A2

x− a2
+ · · ·+ Ak

x− ak

e resolver de forma a determinarmos os numeradores A1, A2, . . . , Ak.

3. Aplicar a primeira das fórmulas de primitivação (4.5).

Exemplo 4.15. Método de Heaviside

Determine

∫
3x2 + x− 1

x (x− 3) (x + 2)
dx.

Quando no denominador temos factores lineares distintos, podemos aplicar o método de Heaviside
como alternativa ao método dos coeficientes indeterminados.
Pretendemos determinar as constantes A. B e C de modo que

3x2 + x− 1

x (x− 3) (x+ 2)
=

A

x
+

B

x− 3
+

C

x+ 2
(4.8)

Para determinarmos A, multiplicamos ambos os membros da equação (4.8) por x,

3x2 + x− 1

(x− 3) (x + 2)
= +x

(
B

x− 3
+

C

x+ 2

)

.

Substituindo nesta equação x por 0, obtemos

A =
−1

−6
=

1

6
.

Para determinarmos B, multiplicamos ambos os membros da equação (4.8) por x− 3,

3x2 + x− 1

x (x+ 2)
= B + (x− 3)

(
A

x
+

C

x+ 2

)

.

Substituindo nesta equação x por 3, obtemos

B =
27 + 3− 1

15
=

29

15
.

Para determinarmos C, multiplicamos ambos os membros da equação (4.8) por x+ 2,

3x2 + x− 1

x (x− 3)
= C + (x+ 2)

(
A

x
+

B

x− 3

)

.

Substituindo nesta equação x por −2, obtemos

B =
12− 2− 1

10
=

9

10
.

Logo,
∫

3x2 + x− 1

x (x− 3) (x+ 2)
dx =

1

6

∫
1

x
dx+

29

15

∫
1

x− 3
dx+

9

10

∫
1

x+ 2
dx

=
1

6
ln(|x|) + 29

15
ln(|x− 3|) + 9

10
ln(|x+ 2|) + C.
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Método das fracções parciais com factores lineares repetidos

Vamos observar o seguinte exemplo.

Exemplo 4.16. Determine

∫
5x2 + 18x− 1

(x+ 4)2(x− 3)
dx.

Temos de decompôr o integrando sob a forma

5x2 + 18x− 1

(x+ 4)2(x− 3)
=

A1

x+ 4
+

A2

(x+ 4)2
+

B

x− 3
.

Reduzindo ao mesmo denominador e igualando os numeradores, obtemos

5x2 + 18x− 1 = (A1 +B)x2 + (A1 +A2 + 8B)x+ (−12A1 − 3A2 + 16B)

donde, igualando os coeficientes dos termos semelhantes correspondentes,






A1 +B = 5

A1 +A2 + 8B = 18

−12A1 − 3A2 + 16B = −1

⇐⇒







A1 = 3

A2 = −1

B = 2

Assim,
∫

5x2 + 18x− 1

(x+ 4)2(x− 3)
dx =

∫
3

x+ 4
dx+

∫ −1

(x+ 4)2
dx+

∫
2

x− 3
dx

= 3 ln(|x+ 4|) − 1

x+ 4
+ 2 ln(|x− 3|) + C.

Mais genericamente, consideremos a função racional

P (x)

(x− a1)m1(x− a2)m2 · · · (x− ak)mk

onde P é um polinómio, os ai são números reais distintos e os mi são números inteiros positivos

(eventualmente maiores que 1). Para primitivarmos uma função deste tipo, seguimos os passos

seguintes:

1. Garantir que o grau do polinómio P é menor que o grau do polinómio do denominador;

caso não seja, efectuamos a divisão do numerador pelo denominador;

2. Para cada um dos factores (x−aj)
mj no denominador da função racional, a decomposição

em fracções parciais terá de conter termos da forma

A1

(x− aj)
+

A2

(x− aj)2
+ · · ·+ Amj

(x− aj)mj
.

3. Aplicar as fórmulas de primitivação (4.5).
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Método das fracções parciais com factores quadráticos irredut́ıveis

Para primitivarmos funções racionais com factores quadráticos irredut́ıveis no denominador

procedemos do sequinte modo. Consideremos a função racional

P (x)

(x2 + b1x+ c1)n1 · · · (x2 + bLx+ cL)nL

onde P é um polinómio, bi, ci são números reais distintos e os ni são números inteiros positivos

(eventualmente maiores que 1). Para primitivarmos uma função deste tipo, seguimos os três

passos seguintes:

1. Garantir que o grau do polinómio P é menor que o grau do polinómio do denominador;

caso não seja, efectuamos a divisão do numerador pelo denominador;

2. Garantir que os factores quadráticos x2+ bjx+ cj não podem ser factorizados em factores

lineares com coeficientes reais. Para tal verificar que b2j − 4cj < 0.

3. Para cada um dos factores (x2+ bjx+ cj)
nj no denominador da função racional, a decom-

posição em fracções parciais terá de conter termos da forma

B1x+ C1

x2 + bjx+ cj
+

B2x+ C2

(x2 + bjx+ cj)2
+ · · ·+ Bnj

x+ Cnj

(x2 + bjx+ cj)nj
.

Se o grau do polinómio P do numerador for 1 e o denominador um polinómio na forma Ax2 +

Bx+ C, não factorizável, reescrevemos o numerador sob a forma de um múltiplo de 2Ax+ B

adicionado de uma constante K. Seguidamente,

• primitivamos a expressão
2Ax+B

Ax2 +Bx+ C

através da substituição u = Ax2 +Bx+ C, du = (2Ax+B) dx, e

• primitivamos a expressão
K

Ax2 +Bx+ C

através de completamento do quadrado no denominador.
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Exemplo 4.17. Determine

∫
2x3 − 8x2 + 20x− 5

x2 − 4x+ 8
dx.

∫
2x3 − 8x2 + 20x− 5

x2 − 4x+ 8
dx =

∫ (

2x+
4x− 5

x2 − 4x+ 8

)

dx (4.9)

=

∫

2x dx+

∫
4x− 5

x2 − 4x+ 8
dx (4.10)

= 2

∫

x dx+

∫
2 (2x − 4) + 3

x2 − 4x+ 8
dx (4.11)

= 2

∫

x dx+ 2

∫
2x− 4

x2 − 4x+ 8
dx+ 3

∫
1

x2 − 4x+ 8
(4.12)

= x2 + 2 ln(|x2 − 4x+ 8|) + 3

2
arctg

(
x− 2

2

)

+C. (4.13)

Obtemos (4.9) efectuando a divisão de 2x3 − 8x2 + 20x− 5 por x2 − 4x+ 8.

Em (4.10), aplicámos a propriedade da aditividade do integral.

De modo a obtermos no numerador um termo envolvendo a derivada do denominador (2x − 4) es-

crevemos a equação m (2x − 4) + k = 4x − 5, introduzindo as variáveis m e k. Aplicando o método

dos coeficientes indeterminados, obtemos

m (2x− 4) + k = 4x− 5 ⇔ 2mx− 4m+ k = 4x− 5

e, resolvendo o sistema

{
2m = 4

−4m+ k = −5

obtemos m = 2 e k = 3 donde resulta (4.11).

Novamente pelas propriedades do integral obtemos (4.12).

Calculamos o segundo integral em (4.12) através da mudança de variável u = x2 − 4x+ 8,

∫
2x− 4

x2 − 4x+ 8
dx =

∫
1

u
du

= ln(|u|) + C

= ln(|x2 − 4x+ 8|) + C. (4.14)
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Resolvemos o terceiro integral em (4.12)

∫
1

x2 − 4x+ 8
dx =

∫
1

(x2 − 4x+ 22) + 4
dx (4.15)

=

∫
1

(x− 2)2 + 4
dx

=
1

4

∫
1

(
x−2
2

)2
+ 1

dx (4.16)

=
1

4

∫
2

u2 + 1
du

=
1

2

∫
1

u2 + 1
du

=
1

2
arctg(u) + C

=
1

2
arctg

(
x− 2

2

)

+ C. (4.17)

efectuando o completamento do quadrado no denominador (4.15) e, através da mudança de variável

u = x−2
2 em (4.16), obtemos (4.17). Calculando o primeiro integral de (4.12) e substituindo (4.14) e

(4.17) obtemos (4.13).

4.2 O integral definido

Comecemos por tentar resolver um problema de cálculo de áreas: determinar a área da região

S delimitada pelo eixo dos xx, pelo gráfico da função cont́ınua f e pelas rectas verticais x = a

e x = b (figura 4.1).

Para regiões delimitadas por segmentos de recta, o cálculo da área reduz-se ao cálculo de áreas

de figuras geométricas mais simples como triângulos e rectângulos. Contudo, o cálculo da área

de uma região delimitada por um arco de curva já não é tão simples. Apesar de termos uma

ideia intuitiva do que estamos a falar, precisamos de dar uma definição formal e exacta de área.

Recordemos que, a quando da definição de derivada, falámos no declive da recta tangente

ao gráfico de uma função num ponto e, começámos por aproximá-lo pelos declives das rectas

secantes tomando depois o limite destas aproximações.

Para o problema do cálculo da área da região S usaremos uma ideia análoga. Ou seja, vamos

aproximar a região S através de rectângulos de tal forma que a área da região seja aproximada
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pela soma das áreas dos rectângulos; ao aumentarmos o número de rectângulos, obtemos cada

vez melhores aproximações da área e, efectuando uma passagem ao limite, encontraremos o valor

pretendido para a área de S.
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S

a b

Figura 4.1: Região S.

Seja [a, b] um intervalo limitado e fechado em R. Chama-se partição de [a, b] ao conjunto

P = {x0, x1, . . . , xN} em que a = x0 < x1 < · · · < xN = b. Os elementos x0, x1, . . . , xN ,

dizem-se os vértices da partição.

Os intervalos Ii = [xi−1, xi], i = 1 . . . , N , chamam-se intervalos da partição e a maior das

amplitudes destes intervalos diz-se o diâmetro da partição e representa-se por

diam(P ) = max
i=1,..., N

|xi − xi−1|.

Dadas duas partições de [a, b], P = {x0, x1, . . . , xn} e Q = {y0, y1, . . . , ym}, diz-se que Q é

mais fina do que P se todo o vértice de P é um vértice de Q.

Definimos partição uniforme de ordem N do intervalo [a, b] quando os intervalos da partição têm

todos o mesmo comprimento, ou seja, os vértices da partição xj são equidistantes

xj = a+ j
b− a

N
, 0 ≤ j ≤ N.

Representemos por ∆x o comprimento comum b−a
N

dos intervalos da partição. Uma escolha de

pontos associada à partição uniforme de ordem N é um conjunto SN = {s1, s2, . . . , sN} de pontos

com sj em Ij para cada j = 1, . . . , N . A figura 4.2 ilustra uma posśıvel escolha de pontos.
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Vamos considerar os rectângulos que têm como base cada intervalo da partição e como altura

o valor da função em sj . Somando a área de cada um, obtemos um valor aproximado para a

área de S. Formalizando este racioćınio, definimos a soma das áreas dos vários rectângulos por

soma de Riemann de f ,

R(f, SN ) = ∆x f(x1) + ∆x f(x2) + · · ·+∆x f(xN )

=
N∑

j=1

f(sj)∆x,

Com a notação R(f, SN) indicamos que a soma de Riemann depende da função f e da escolha

de pontos SN .

Como é fácil de ver, podemos efectuar uma infinidade de escolhas de pontos. Duas em particular

são relevantes:

– aquela em que o ponto é escolhido como aquele onde a função tem um mı́nimo nesse intervalo;

– outra em que o ponto é escolhido como aquele onde a função tem um máximo no intervalo.

y

x0 s1 s2 s3 s4 s5 s6 s7

Figura 4.2: Soma de Riemann R(f, Sn) com S7 = {s1, s2, s3, s4, s5, s6, s7}.

Assim, seja mj ∈ Ij o ponto onde f atinge o seu valor mı́nimo em Ij, e seja Mj o ponto em Ij

onde f atinge o valor máximo em Ij. Representemos as escolhas de pontos resultantes de cada

critério por IN = {m1, m2, . . . , mN} e SN = {M1,M2, . . . ,MN}, respectivamente. As somas de

Riemann resultantes

R(f, IN) =
N∑

j=1

f(mj)∆x, e R(f, SN ) =
N∑

j=1

f(Mj)∆x,
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são designadas soma inferior de Riemann (figura 4.3) e soma superior de Riemann (figura 4.4),

respectivamente. Elas representam a menor e a maior das somas de Riemann de ordem N .
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Figura 4.3: Somas inferiores de Riemann.
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Figura 4.4: Somas superiores de Riemann.

O seguinte resultado permitir-nos-á adiante definir com exactidão a área da região abaixo do

gráfico de uma função positiva.

Suponhamos que f é cont́ınua no intervalo [a, b]. Se Sn = {s1, s2, . . . , sN} é uma escolha arbitrária

de pontos associada à partição uniforme de ordem N , então R(f, SN) está enquadrada porR(f, IN )

e R(f, SN ),

R(f, IN ) ≤ R(f, SN) ≤ R(f, SN ).

Além disso, os números R(f, IN ) e R(f, SN) tornam-se arbitrariamente próximos um do outro para

N suficientemente grande, isto é,

lim
N→∞

(R(f, SN)−R(f, IN )) = 0.
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Chegamos assim à seguinte definição.

Suponhamos que f é uma função definida no intervalo [a, b], Dizemos que as somas de Riemann

R(f, SN ) convergem para o número real ℓ, ou que ℓ é o limite das somas de Riemann R(f, SN ),

quando N tende para infinito, se para qualquer ε > 0, existe um inteiro positivo M tal que

|R(f, SN )− ℓ| < ε

para N maior do que M . Nesse caso, dizemos que f é integrável em [a, b], e representamos o limite

ℓ pelo śımbolo
∫ b

a

f(x) dx.

Este valor numérico é chamado integral de Riemann de f no intervalo [a, b]. A operação que faz

corresponder à função f o número
∫ b

a
f(x) dx é designada por integração.

As extremidades a e b do intervalo são designadas limites de integração, sendo a o limite inferior

de integração e b o limite superior de integração. A presença dos limites de integração permite

distinguir o integral de Riemann
∫ b

a
f(x) dx do integral indefinido

∫
f(x) dx estudado anterior-

mente. Para realçar esta diferença o integral de Riemann é muitas vezes designado por integral

definido. Veremos adiante que existe de facto uma relação importante entre estes dois tipos de

integrais, podendo os integrais indefinidos ser usados para calcular integrais definidos.

O resultado seguinte permite-nos garantir a existência do integral definido
∫ b

a
f(x) dx para a

maioria das funções que podem ser usadas em aplicações.

Se f é cont́ınua no intervalo [a, b], então f é integrável em [a, b], isto é, o integral de Riemann
∫ b

a
f(x) dx existe.

4.2.1 Propriedades do integral de Riemann

Indicamos a seguir as principais propriedades do integral de Riemann.

Se f é integrável em [a, b] e c ∈ R, então cf é integrável em [a, b], e tem-se
∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx.
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Se f e g são integráveis em [a, b], então f + g é integrável em [a, b], e tem-se

∫ b

a

(f + g)(x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Se f e g são integráveis em [a, b] e f(x) ≤ g(x) em [a, b], então

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

Se f é integrável em [a, b] e c ∈ ]a, b[, então f é integrável em [a, c] e em [c, b], tendo-se

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

Se f é integrável em [a, b] e |f(x)| ≤ M em [a, b], então

∣
∣
∣
∣

∫ b

a

f(x) dx

∣
∣
∣
∣
≤ M (b− a).

Se f é integrável em [a, b], m ≤ f(x) ≤ M em [a, b] e g é cont́ınua em [m, M ], então g ◦ f é

integrável em [a, b].

Se f é integrável em [a, b], o mesmo acontece a |f | e tem-se

∣
∣
∣
∣

∫ b

a

f(x) dx

∣
∣
∣
∣
≤

∫ b

a

|f(x)| dx.

Convenciona-se que, para qualquer a ∈ R,

∫ a

a

f(x) dx = 0 e,

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.

4.2.2 Integração e primitivação

A interligação dos conceitos de primitivação e de integração permite um avanço significativo

no cálculo de integrais, que é traduzida pelo:

Teorema Fundamental do Cálculo Integral. Seja f integrável em [a, b]. Então a função

F : [a, b] −→ R definida por

F (x) =

∫ x

a

f(t) dt
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é cont́ınua em [a, b]. Além disso, se f for cont́ınua em x0 ∈ [a, b], F é diferenciável em x0 e

tem-se

F ′(x0) = f(x0).

Deste teorema decorrem três aspectos muito importantes.

O primeiro é que toda a função f cont́ınua em [a, b] é primitivável neste intervalo, e uma sua

primitiva é dada por

F (x) =

∫ x

a

f(t) dt,

devido a F ′(x) = f(x) para qualquer x ∈ [a, b].

O segundo é um método prático para o cálculo de integrais de funções cont́ınuas. Com efeito,

F (b)− F (a) =

∫ b

a

f(t) dt−
∫ a

a

f(t) dt =

∫ b

a

f(t) dt.

Assim, se f for uma função cont́ınua, podemos calcular
∫ b

a
f(t) dt calculando primeiro uma

primitiva F de f em [a, b] e, em seguida, determinando F (b)− F (a).

A esta técnica é usual chamar fórmula de Barrow e, escreve-se da seguinte maneira,

∫ b

a

f(x) dx = F (x)
∣
∣
∣

x=b

x=a
= F (b)− F (a).

Exemplo 4.18. Calcule os integrais seguintes:

(a)

∫ 1

−1
x2 dx. (b)

∫ π
4

0
sec2(x) dx.

(a)

∫ 1

−1
x2 dx =

x3

3

∣
∣
∣
∣

x=1

x=−1

=
13

3
− (−1)3

3
=

2

3
.

(b)

∫ π
4

0
sec2(x) dx = tg(x)

∣
∣
∣

x=π
4

x=0
= tg(

π

4
)− tg(0) = 1.

O terceiro aspecto importante, é a possibilidade de podermos derivar rapidamente funções do

tipo F (x) =

∫ x

a

f(t) dt onde f é cont́ınua, pondo F ′(x) = f(x) em qualquer intervalo que

contenha o ponto a.

Por exemplo, a derivada da função F : R −→ R definida por F (x) =
∫ x

0
t3+1
t2+1

dt obtém-se rapi-

damente e é F ′(x) = t3+1
t2+1

, não sendo necessário calcular o integral.
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Exemplo 4.19. Calcule as derivadas das funções definidas em R por:

(a) F (x) =

∫ x2

2
e−t2 dt (b) F (x) =

∫ x2

x
ln

(
1

1 + t2

)

dt.

(a) Podemos considerar F ≡ g ◦ h com g(u) =
∫ u
2 e−t2 dt e h(x) = x2. Assim, aplicando o teorema da

derivação da função composta conjuntamente com o teorema anterior, podemos calcular F ′ = (g′◦h)·h′ .
Tem-se, g′(u) = e−u2

e h′(x) = 2x e, portanto, F ′(x) = e−x4 · 2x = 2x e−x4
.

(b) Neste exemplo, basta decompôr F (x) na soma

F (x) =

∫ 0

x
ln

(
1

1 + t2

)

dt+

∫ x2

0
ln

(
1

1 + t2

)

dt

e, portanto,

F ′(x) = − ln

(
1

1 + x2

)

+ ln

(
1

1 + x4

)

2x.

Podemos também estabelecer para o cálculo de integrais, resultados úteis análogos aos já en-

contrados para o cálculo de primitivas, nomeadamente, os métodos de primitivação por partes

e por substituição.

Integração por partes. Se u, v : [a, b] −→ R têm derivadas cont́ınuas em [a, b] então

∫ b

a

u′(x) v(x) dx = u(x) v(x)
∣
∣
∣

x=b

x=a
−
∫ b

a

u(x) v′(x) dx.

Exemplo 4.20. Determine o integral

∫ 4

1
2x ln(x) dx.

∫ 4

1
2x ln(x) dx =

(
x2 ln(x)

)∣
∣
x=4

x=1
−

∫ 4

1
x dx =

(
42 ln(4)− 12 ln(1)

)
− x2

2

∣
∣
∣
∣

x=4

x=1

= 16 ln(4)−
(42

2
− 12

2

)

= 16 ln(4)− 15

2
.

Integração por substituição. O método de substituição, também designado de método

de mudança de variável, fornece-nos uma forma de simplificar ou transformar o integrando.

Se se verificar uma qualquer das hipóteses:

(H1) Se f : [a, b] −→ R cont́ınua e g : [c, d] −→ [a, b] diferenciável com g′ integrável em [c, d];
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(H2) Se f : [a, b] −→ R integrável e g : [c, d] −→ [a, b] monótona com derivada g′ integrável em

[c, d];

então, tem-se
∫ d

c

(f ◦ g)(x) g′(x) dx =

∫ g(d)

g(c)

f(u) du com u = g(x) e, du = g′(x) dx.

Exemplo 4.21. Determine o integral

∫ 4

3
x
√

25− x2 dx.

Considerando a mudança de variável

u =
√

25− x2 ⇔ u2 = 25− x2 ⇔ x2 = 25− u2

vem,

2x dx = −2u du, ou seja, x dx = −u du.

Além disso, temos de alterar os limites de integração de acordo com a mudança de variável conside-

rada. Assim, quando x = 3 vem u =
√
25− 32 = 4 e, quando x = 4 vem u =

√
25− 42 = 3. Logo,

∫ 4

3
x
√

25− x2 dx =

∫ 3

4
u (−u du) = −

∫ 3

4
u2 du = −u3

3

∣
∣
∣

x=3

x=4
= −1

3
(33 − 43) =

37

3
.

Quando aplicamos o método de substituição a um integral definido, é essencial termos em

atenção o efeito que a mudança de variáveis provoca nos limites de integração.

Exemplo 4.22. Determine

∫ a

−a

√

a2 − x2 dx. Interprete geometricamente.

Consideremos a mudança de variável, x = a sen(u) ⇔ u = arcsen(
x

a
), dx = a cos(u) du, donde,

∫ a

−a

√

a2 − x2 dx =

∫ π
2

−π
2

√

a2 − (a sen(u))2 a cos(u) du =

∫ π
2

−π
2

√

a2 (1− sen2(u)) a cos(u) du

=

∫ π
2

−π
2

a cos(u) · a cos(u) du = a2
∫ π

2

−π
2

cos2(u) du = a2
(1

2
sen(u) cos(u) +

1

2
u
)
∣
∣
∣

u=π
2

u=−π
2

= a2
π

2
,

pois, quando x = a vem u = arcsen(1) = π
2 e, quando x = −a vem u = arcsen(−1) = −π

2 . O integral

calculado representa a área do semi-ćırculo de raio a centrado na origem situado acima do eixo dos

xx, pelo que mostrámos que a área de um ćırculo de raio a é πa2 .
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4.2.3 Teoremas da média do cálculo integral

Primeiro teorema da média. Sejam f , g funções integráveis no intervalo [a, b] ⊂ R. Se g

não muda de sinal em [a, b], então existe K tal que inf
x∈[a, b]

f(x) ≤ K ≤ sup
x∈[a, b]

f(x), e

∫ b

a

f(x) · g(x) dx = K

∫ b

a

g(x) dx.

Em particular, tem-se
∫ b

a

f(x) dx = K (b− a).

Corolário 4.1. Sejam f, g : [a, b] −→ R funções definidas em [a, b] tais que f é cont́ınua e g

é integrável. Se g não muda de sinal em [a, b], então existe c ∈ [a, b] tal que

∫ b

a

f(x) g(x) dx = f(c)

∫ b

a

g(x) dx.

Segundo teorema da média. Sejam f e g funções definidas em [a, b] ⊂ R, g monótona e f

integrável. Então existe c ∈ [a, b] tal que

∫ b

a

f(x) g(x) dx = g(a)

∫ c

a

f(x) dx+ g(b)

∫ b

c

f(x) dx. (4.18)

Corolário 4.2. Nas condições do teorema, se g ≥ 0 é monótona decrescente, existe c ∈ [a, b]

tal que
∫ b

a

f(x) g(x) dx = g(a)

∫ c

a

f(x) dx.

Basta observar que, sendo g ≥ 0 e decrescente, podemos alterar o valor de g em b escolhendo

g(b) = 0 sem modificar o valor do integral à esquerda de (4.18).

4.2.4 Integração numérica (opcional)

Embora o Teorema Fundamental do Cálculo Integral nos forneça uma ferramenta poderosa para

o cálculo de integrais, muitos outros integrais definidos não podem ser calculados exactamente.

A impossibilidade de calcular um integral exactamente sucede quando não é posśıvel exprimir

a primitiva do integrando em termos de um número finito de funções conhecidas. Mesmo

integrandos que possam não parecer particularmente complicados podem cair nesta categoria.
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Por exemplo, a distância percorrida por um satélite numa trajectória eĺıptica envolve um inte-

gral da forma
∫ π

2

0

√

1− k2 sen2(θ) dθ.

onde k ∈]0, 1[ é uma constante. O valor deste integral é necessário para muitas aplicações, no

entanto, não existe nenhuma primitiva elementar.

Na verdade, muitos problemas da vida real envolvem integrandos para os quais não existem

primitivas elementares. Por este motivo, é importante sermos capazes de aproximar um integral

definido com a precisão pretendida.

Regra do ponto médio

Seja f uma função cont́ınua no intervalo [a, b] e seja N um número inteiro positivo. Para

aproximarmos o integral
∫ b

a
f(x) dx, usamos a partição uniforme

a = x0 < x1 < x− 2 < · · · < xN = b,

a qual divide o intervalo [a, b] em N subintervalos com o mesmo comprimento

∆x =
b− a

N
.

O ponto médio do subintervalo [xk−1, xk] é dado por

xk =
xk−1 + xk

2
= a+

(
k − 1

2

)
∆x.

Assim, sobre cada subintervalo [xk−1, xk] obtemos o rectângulo de área ∆x × f(xk) e a soma

sobre todos os subintervalos é

MN = ∆x ·
(
f(x1) + f(x2) + · · ·+ f(xk)

)
.

Designamos MN como a aproximação pela regra do ponto médio de ordem N . Em geral, a

aproximação torna-se mais precisa à medida que N aumenta. Contudo, não queremos escolher

N de tal forma que o cálculo de MN se torne impraticável.
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Podemos porém reformular o problema de aproximação do seguinte modo: Como determinar o

valor mais pequeno de N de modo que nos permita encontrar uma aproximação aceitável para

MN?

O resultado seguinte apresenta-nos uma estimativa de erro que é a chave para a resolução deste

problema de aproximação pelo ponto médio.

Seja f uma função cont́ınua no intervalo [a, b]. Se C é uma constante tal que |f ′′(x)| ≤ C para

a ≤ x ≤ b, então
∣
∣
∣

∫ b

a

f(x) dx−MN

∣
∣
∣ ≤ C (b− a)3

24N2
.

Regra do trapézio

Suponhamos que f é positiva sobre o intervalo Ik = [xk−1, xk]. Podemos aproximar a área sob

o gráfico de f e sobre Ik pela área de um trapézio. A área do trapézio é igual ao produto do

comprimento ∆x da base pela altura média do trapézio

Ak =
f(xk−1)− f(xk)

2
∆x.

A aproximação trapezoidal TN de ordem N fica definida somando estas áreas trapezoidais

TN = A1 + A2 + · · ·+ AN

=
1

2
(f(x0) + f(x1))∆x+

1

2
(f(x1) + f(x2))∆x+ · · ·+ 1

2
f(xN−1) + f(xN))∆x.

Combinando todos os termos obtemos

TN =
∆x

2

(
f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xN−1) + f(xN )

)
.

Seja f uma função cont́ınua no intervalo [a, b]. Se |f ′′(x)| ≤ C para todo x ∈ [a, b], então

aproximação trapezoidal TN de ordem N é precisa a menos de
C (b− a)3

12N2
. Por outras palavras,

∣
∣
∣

∫ b

a

f(x) dx− TN

∣
∣
∣ ≤ C (b− a)3

12N2
.

Comparando as estimativas de erro para as regras do ponto médio e do trapézio, como o

denominador maior sugere, a regra do ponto médio é normalmente mais precisa do que a regra

do trapézio. Mesmo assim, nalguns casos a regra do trapézio pode ser de maior utilidade.
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Regra de Simpson

Para um pequeno subintervalo, o gráfico de f será uma curva com concavidade virada para

cima ou para baixo. Visto que, quer a regra do ponto médio, quer a regra do trapézio se

baseiam em aproximações por segmentos de recta, nenhuma delas é capaz de reproduzir a

concavidade. Contudo, se aproximarmos o gráfico de f sobre um pequeno subintervalo por um

arco de parábola, podemos tomar em consideração a concavidade de f . Esta ideia conduz-nos

à mais precisa das regras de aproximação de que falaremos: a regra de Simpson.

Para deduzirmos a regra de Simpson, precisamos de conhecer a área sob um arco de parábola.

Se P (x) = Ax2 +Bx+ C e se I = [a, b] é um intervalo com ponto médio c, então
∫ b

a

P (x) dx =
b− a

6
(P (a) + 4P (c) + P (b)). (4.19)

Para formularmos a regra de Simpson, escolhemos uma partição de [a, b] com um número

par (N = 2ℓ) de subintervalos de igual comprimento ∆x. Emparelhamos os subintervalos

juntando o primeiro com o segundo, o terceiro com o quarto e assim sucessivamente. Sobre

cada par de intervalos, aproximamos f por uma parábola que passa pelos pontos do gráfico de

f correspondentes às extremidades dos intervalos (pois a parábola fica definida de forma única

por três pontos não colineares).

Consideremos o par de intervalos

[x2k−2, x2k−1] e [x2k−1, x2k] (k = 1, . . . , ℓ).

A parábola Pk passa pelos três pontos (x2k−2 f(x2k−2)), (x2k−1 f(x2k−1)) e (x2k f(x2k)). Pelo

resultado (4.19), com a = x2k−2, c = x2k−1 e b = x2k−1, vemos que o integral da parábola sobre

o intervalo [x2k−2, x2k] é dado por

x2k − x2k−2

6

(
Pk(x2k−2) + 4Pk(x2k−1) + Pk(x2k)

)
=

2∆x

6

(
fk(x2k−2) + 4fk(x2k−1) + fk(x2k)

)
.

Por último, adicionando os integrais para k = 1 a k = ℓ, obtemos a aproximação de Simpson

de
∫ b

a
f(x) dx,

SN =
∆x

3

(
f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xN−2) + 4f(xN−1) + f(xN)

)
.
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Seja f uma função cont́ınua no intervalo [a, b]. Seja N um número inteiro positivo par. Se C é tal

que |f (4)(x)| ≤ C para a ≤ x ≤ b, então

∣
∣
∣

∫ b

a

f(x) dx− SN

∣
∣
∣ ≤ C (b− a)5

180N4
.

4.2.5 Integrais impróprios

A teoria dos integrais que aprendemos até ao momento permite-nos integrar uma função cont́ı-

nua f num intervalo limitado e fechado [a, b]. Contudo, muitas vezes é necessário integrar uma

função que não é limitada, está definida num intervalo não-limitado ou, ainda, verifica ambas

as situações (figura 4.5). Nestes casos, definimos os integrais impróprios.

0 1 2

10

20

30

K2,5 0 2,5

0,5

1,0

K4 K2 0

1

Figura 4.5:

Integrais impróprios de primeira espécie. Suponhamos que pretend́ıamos calcular o

integral de uma função cont́ınua f sobre um intervalo ilimitado da forma [a, +∞[ ou da forma

]−∞, b].

Seja f uma função cont́ınua no intervalo [a, +∞[. O valor do integral impróprio
∫ +∞
a

f(x) dx

define-se por

lim
b→+∞

∫ b

a

f(x) dx,
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desde que o limite exista e seja finito. Dizemos neste caso que o integral converge; caso contrário,

diremos que diverge.

Analogamente, se g é uma função cont́ınua no intervalo ]−∞, b], então o valor do integral impróprio
∫ b

−∞ g(x) dx define-se por

lim
a→−∞

∫ b

a

g(x) dx,

desde que o limite exista e seja finito. Dizemos neste caso que o integral converge; caso contrário,

diremos que diverge.

Figura 4.6: Gráfico de f(x) = 1
x2 .

Exemplo 4.23. Calcule o integral

∫ +∞

1

1

x2
dx.

Calculamos o limite,

lim
b→+∞

∫ b

1

1

x2
dx = lim

b→+∞

∫ b

1
x−2 dx = lim

b→+∞

(

−1

x

∣
∣
∣
∣

x=b

x=1

)

= lim
b→+∞

(

− 1

b
−

(
− 1

1

))

= 1.

Logo, podemos concluir que

∫ +∞

1

1

x2
dx = 1.

Exemplo 4.24. Averigue se o integral

∫ −8

−∞

1
3
√
x
dx é convergente ou divergente.

Calculando o limite lim
a→−∞

∫ 8

a
x−

1
3 dx = lim

a→−∞

( x
2
3

2
3

∣
∣
∣
∣
∣

x=−8

x=a

)

=
3

2
lim

a→−∞

(

(−8)
2
3 − a

2
3

)

=
3

2
lim

a→−∞

(

4− 3
√
a2
)

=
3

2

(

4− lim
a→−∞

3
√
a2
)

= −∞,

conclúımos que o integral é divergente.
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Figura 4.7: Gráfico de f(x) = x ex.

Exemplo 4.25. Calcule o integral

∫ 0

−∞
x ex dx.

Averiguamos se existe o lim
a→−∞

∫ 0

a
x ex dx começando por calcular o integral. Utilizando a integração

por partes,
∫ 0

a
x ex dx = x ex

∣
∣
∣

x=0

x=a
−
∫ 0

a
ex dx = −a ea − ex

∣
∣
∣

x=0

x=a
= −a ea − 1 + ea.

Estudamos agora o limite lim
a→−∞

∫ 0

a
x ex dx,

lim
a→−∞

∫ 0

a
x ex dx = lim

a→−∞
(−a ea − 1 + ea) = − lim

a→−∞
(a ea)− 1 + lim

a→−∞
ea = −1,

pois, aplicando a regra de Cauchy,

lim
a→−∞

a ea = lim
a→−∞

a

e−a
= lim

a→−∞
1

−e−a
= lim

a→−∞
(−ea) = 0.

Logo,

∫ 0

−∞
x ex dx = −1.

Por vezes é necessário determinar o integral sobre toda a recta. Para tal, separamos o integral
∫ +∞
−∞ f(x) dx sob a forma de dois integrais impróprios

∫ c

−∞ f(x) dx e
∫ +∞
c

f(x) dx. O integral

original diz-se convergente quando ambos os integrais forem convergentes.

Neste caso,
∫ +∞
−∞ f(x) dx define-se como

∫ c

−∞ f(x) dx+
∫ +∞
c

f(x) dx. O resultado desta adição

não depende do ponto c escolhido para separar o integral.

Exemplo 4.26. Calcule o integral impróprio

∫ +∞

−∞

1

1 + x2
dx.

Separamos o integral sobre dois subintervalos, ]−∞,+∞[ = ]−∞, 0] ∪ [0,+∞[.
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Figura 4.8: Gráfico de f(x) = 1
1+x2 .

∫ 0

−∞

1

1 + x2
dx = lim

a→−∞

∫ 0

a

1

1 + x2
dx = lim

a→−∞

(
arctg(x)

)
∣
∣
∣

x=0

x=a
= lim

a→−∞

(
arctg(0) − arctg(a)

)
=

π

2
,

∫ +∞

0

1

1 + x2
dx = lim

b→+∞

∫ b

0

1

1 + x2
dx = lim

b→+∞

(
arctg(x)

)
∣
∣
∣

x=b

x=0
= lim

b→+∞

(
arctg(b)− arctg(0)

)
=

π

2
.

Como cada um dos integrais na semi-recta real é convergente, conclúımos que o integral impróprio

sobre toda a recta é convergente, e o seu valor é
∫ +∞

−∞

1

1 + x2
dx =

π

2
+

π

2
= π.

Em vez de 0 poder-se-ia ter escolhido outro ponto qualquer que o resultado não sofreria alteração.

Integrais impróprios de segunda espécie. Seja f uma função cont́ınua num intervalo

[a, b[. Suponhamos que f não é limitada quando x → b−.

O integral
∫ b

a
f(x) dx diz-se integral impróprio de segunda espécie em b. Vamos ver como calcular

este integral.

Se
∫ b

a
f(x) dx é um integral impróprio com função integranda não-limitada em b, então o valor do

integral é determinado pelo limite

lim
ε→0+

∫ b−ε

a

f(x) dx,

desde que este limite exista e seja finito. Dizemos neste caso que o integral é convergente; caso

contrário, diremos que é divergente.

Exemplo 4.27. Calcule o integral

∫ 8

0

1
3
√
8− x

dx.
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Figura 4.9: Gráfico de f(x) = 1
3√8−x

.

A função integranda não é limitada, tendo uma asśımptota vertical em x = 8. Determinamos,

lim
ε→0+

∫ 8−ε

0

1
3
√
8− x

dx = lim
ε→0+

(

− (8− x)
2
3

2
3

)
∣
∣
∣
∣
∣

x=8−ε

x=0

= −3

2
lim
ε→0+

(
ε

2
3 − 8

2
3
)
= −3

2
(0− 4) = 6.

Logo,

∫ 8

0

1
3
√
8− x

dx = 6.

Analogamente, se f é cont́ınua em ]a, b] e ilimitada quando x → a+, então o valor do integral

impróprio
∫ b

a
f(x) dx, define-se por

lim
ε→0+

∫ b

a+ε

f(x) dx,

desde que este limite exista e seja finito. Dizemos neste caso que o integral é convergente; caso

contrário, diremos que é divergente.

Exemplo 4.28. Determine

∫ 9

0

1√
x
dx.

Este é um integral impróprio com função integranda ilimitada em x = 0 (figura 4.10). Calculando o

limite

lim
ε→0+

∫ 9

0+ε
x−

1
2 dx = lim

ε→0+

(

2x
1
2

)∣
∣
∣

x=9

x=ε
= lim

ε→0+

(
2
√
9− 2

√
ε
)
= 6,

conclúımos então que

∫ 9

0

1√
x
dx = 6.

Pode também suceder que a função integranda tenha uma singularidade num ponto interior do

intervalo de integração.
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Figura 4.10: Gráfico de f(x) = 1√
x
.

Nestas circunstâncias, dividimos o intervalo de integração em dois subintervalos, um de cada

lado da singularidade. Em seguida, integramos sobre cada subintervalo separadamente. Se

ambos os integrais convergirem, então o integral original é convergente. Caso contrário, dizemos

que é divergente.

Exemplo 4.29. Calcule o integral impróprio

∫ 2

−3

8
5
√
x+ 1

dx.

A função integranda é ilimitada quando x tende para −1. Portanto, calculamos em separado os dois

integrais impróprios:
∫ −1
−3

8
5√x+1

dx e
∫ 2
−1

8
5√x+1

dx.

Para o primeiro, vamos calcular o limite

lim
ε→0+

∫ −1−ε

−3
8(x+1)−

1
5 dx = lim

ε→0+

(
8(x+1)

4
5

4
5

)∣
∣
∣

x=−1−ε

x=−3
= lim

ε→0+

(
5
4 × 8

[
(−1− ε+ 1)

4
5 − (−3 + 1)

4
5

])

= 10 lim
ε→0+

(
(−ε)

4
5 − (−2)

4
5
)

= −10 5
√
16.

Donde,
∫ −1
−3

8
5√x+1

dx = −10 5
√
16. Para o segundo integral calculamos, de forma idêntica,

lim
ε→0+

∫ 2

−1+ε
8(x+ 1)−

1
5 dx = lim

ε→0+

(
8(x+1)

4
5

4
5

)∣
∣
∣

x=2

x=−1+ε
= 10 lim

ε→0+

(
3

4
5 − ε

4
5

)

= 10 5
√
81.

Logo,
∫ 2
−1

8
5√x+1

dx = 10 5
√
81. Conclúımos que o integral dado converge e que o seu valor é dado por,

∫ 2

−3

8
5
√
x+ 1

dx = −10
5
√
16 + 10

5
√
81 = 10 (

5
√
81− 5

√
16).
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4.3 Cálculo de áreas

Se f(x) ≥ 0 para x ∈ [a, b], então
∫ b

a
f(x) dx corresponde à área da região abaixo do gráfico de

f , acima do eixo dos xx, e entre as rectas x = a e x = b.

Se f(x) ≤ 0 para x ∈ [a, b], então
∫ b

a
f(x) dx é igual ao simétrico da área da região acima do

gráfico de f , abaixo do eixo dos xx, e entre as rectas x = a e x = b.

p

K1

0

1

K3 K2 K1 0 1 2 3

5

10

f(x) = sen(x)

(a) (b)
Figura 4.11:

Exemplo 4.30. Qual é a área da região delimitada pelo gráfico de f(x) = sen(x), o eixo dos xx e

as rectas x = π
3 e x = 3π

2 ?

Observemos que f(x) ≥ 0 para x ∈ [π3 , π] e f(x) ≤ 0 para x ∈ [π, 3π
2 ] (figura 4.11(a)).

Assim, a área da região acima de [π3 , π] é
∫ π

π
3

sen(x) dx = − cos(x)
∣
∣
∣

x=π

x=π
3

= −(−1)− (−1

2
) =

3

2
.

Por outro lado, a área da região abaixo de [π3 , π] é

−
∫ 3π

2

π
sen(x) dx = −(− cos(x)

∣
∣
∣

x= 3π
2

x=π
= 0− (−1) = 1.

A área total é a soma das duas áreas, ou seja, 3
2 + 1 = 5

2 .

Exemplo 4.31. Definamos

f(x) =







x+ 7, se − 2 ≤ x ≤ 1

9− x2, se x < −2 ou x > 1.

Qual a área da região compreendida entre o gráfico de f e o eixo dos xx?
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A partir da definição de f , vemos que f(x) ≥ 0 para −3 ≤ x ≤ 3. Recorrendo à representação gráfica

(figura 4.11(b)), vemos claramente que o problema se divide em três partes, correspondentes a:

(a) uma região acima do intervalo [−3, −2];

(b) uma região acima do intervalo [−2, 1];

(c) uma região acima do intervalo [1, 3];

Separamos assim os três cálculos:

(a) Quando x ∈ [−3, −2[, temos f(x) = 9− x2, e

∫ −2

−3
f(x) dx =

(
9x− x3

3

)
∣
∣
∣

x=−2

x=−3
=

(
− 18 +

8

3

)
−

(
− 27 +

27

3

)
=

8

3
.

(b) Quando x ∈ [−2, 1], temos f(x) = x+ 7, e

∫ 1

−2
f(x) dx =

(1

2
x2 + 7x

)
∣
∣
∣

x=1

x=−2
=

(1

2
+ 7

)
−

(4

2
− 14

)
=

39

2
.

(c) Quando x ∈ ]1, 3[, temos f(x) = 9− x2, e

∫ 3

1
f(x) dx =

(
9x− x3

3

)
∣
∣
∣

x=3

x=1
=

(
27− 27

3

)
−

(
9− 1

3

)
=

28

3
.

Logo, a área total entre o gráfico de f e o eixo dos xx é
8

3
+

39

2
+

28

3
=

63

2
.

4.3.1 Área entre duas curvas

Os exemplos 4.30 e 4.31 são casos especiais do problema mais geral de determinar a área da

região compreendida entre duas curvas.

Sejam f e g funções cont́ınuas no intervalo [a, b] e suponhamos que f(x) ≥ g(x) para todo

x ∈ [a, b]. A área sob o gráfico de f e acima do gráfico de g no intervalo [a, b] é dada por

A =

∫ b

a

(
f(x)− g(x)

)
dx.

Exemplo 4.32. Determine a área A da região compreendida entre as curvas f(x) = −x2 + 6 e

g(x) = 3x2 − 8 no intervalo [−1 1].
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K1 0 1

K8

K6

K4

K2

2

4

6

x

y

f(x) = −x2 + 6

g(x) = 3x2 − 8

Figura 4.12:

Verificamos que f(x) ≥ g(x) para todo o x ∈ [−1, 1] (figura 4.12). Assim, a área pretendida é dada

por,

∫ 1

−1
(f(x)− g(x)) dx =

∫ 1

−1
(−x2 + 6)− (3x2 − 8) dx =

∫ 1

−1
(−4x2 + 14) dx

= − 4

3
x3

∣
∣
∣
∣

x=1

x=−1

+ 14x|x=1
x=−1 =

76

3
.

Exemplo 4.33. Determine a área compreendida entre as parábolas f(x) = −2x2 + 4 e g(x) =

x2 − 9x+ 10.

1 2 3

K3

0

3

0 p

K1

1

f(x) = −2x2 + 4

g(x) = x2 − 9x+ 10

f(x) = sen(x)

g(x) = cos(x)

(a) (b)
Figura 4.13:

Neste exemplo não é especificado o intervalo. Vamos determiná-lo averiguando os pontos de intersecção

das duas curvas. As parábolas intersectam-se quando −2x2 + 4 = x2 − 9x+ 10, ou seja, resolvendo a

equação, quando x = 1 ou x = 2 (figura 4.13(a)).
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No intervalo [1, 2], verificamos que f(x) ≥ g(x), logo, a área será dada por

∫ 2

1
(f(x)− g(x)) dx =

∫ 2

1

(
(−2x2 + 4)− (x2 − 9x+ 10)

)
dx =

∫ 2

1
(−3x2 + 9x− 6) dx

= (−x3 − 6x+
9

2
x2)

∣
∣
∣

x=2

x=1
=

1

2
.

Exemplo 4.34. Determine a área compreendida entre as curvas f(x) = sen(x) e g(x) = cos(x) no

intervalo
[
−π

3 ,
5π
3

]
.

Verificamos que f(x) ≥ g(x) nalguns pontos e que f(x) ≤ g(x) noutros (figura 4.13(b)). Neste caso,

precisamos de dividir o intervalo [−π
3 ,

5π
3 ] em subintervalos nos quais apenas uma das desigualdades

seja verdadeira. Precisamos assim de encontrar os pontos de intersecção dos gráficos de f e g.

Fazendo sen(x) = cos(x), vemos que no intervalo [−π
3 ,

5π
3 ], os pontos de intersecção são x = π

4 e

x = 5π
4 .

Separamos então o cálculo da área em três subintervalos, adicionando depois os valores das áreas sobre

cada um deles. Encontramos,

∫ π
4

−π
3

(cos(x)− sen(x)) dx =
√
2 +

√
3− 1

2
∫ 5π

4

π
4

(sen(x)− cos(x)) dx = 2
√
2

∫ 5π
3

5π
4

(cos(x)− sen(x)) dx =
√
2 +

1−
√
3

2
.

Logo, a área total procurada será,

A = (
√
2 +

√
3− 1

2
) + (2

√
2) + (

√
2 +

1−
√
3

2
) = 4

√
2.

4.4 Comprimento de um arco de curva

Suponhamos que f é uma função com derivada cont́ınua num domı́nio que contém o intervalo

[a, b]. Pretendemos calcular o comprimento L do gráfico de f sobre este intervalo.

Fixemos um inteiro positivo N e seja a = x0 < x1 < x2 < · · · < xN−1 < xN = b uma partição

uniforme do intervalo [a, b]. Vamos utilizar uma linha quebrada para aproximar o gráfico de f

(figura 4.14(a)). Ou seja, usamos o segmento de recta de extremidades Pj−1 = (xj−1, f(xj−1))

e Pj = (xj , f(xj)) para aproximar a parte do gráfico de f que se situa sobre o j-ésimo intervalo

[xj−1, xj ].
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a b

f

x

y

xj−1 xj

f(xj)

f(xj−1)

x

y

Pj

Pj−1

(a) (b)
Figura 4.14:

O comprimento ℓj deste segmento de recta é uma aproximação do comprimento do comprimento

do arco de gráfico entre Pj−1 e Pj (figura 4.14(b)). Somando os comprimentos ℓj, obtemos um

valor aproximado para o comprimento da curva:

L ≈
N∑

j=1

ℓj .

A precisão desta aproximação é melhorada aumentando o númeroN de subintervalos. À medida

que N tende para infinito e ∆x tende para 0, estas somas aproximantes tendem para o que

entendemos ser o comprimento da curva.

L = lim
N→∞

N∑

j=1

ℓj . (intuitivamente!) (4.20)

Observemos o que se passa no intervalo [xj−1, xj ]. O comprimento ℓj é dado pela fórmula usual

da distância entre dois pontos no plano:

ℓj =
√

(xj − xj−1)2 + (f(xj)− f(xj−1))2.

Representemos a quantidade xj − xj−1 por ∆x e apliquemos o teorema do valor médio à ex-

pressão f(xj)− f(xj−1) de forma a obtermos f(xj)− f(xj−1) = f ′(cj)∆x para algum cj entre

xj e xj−1.

Podemos agora reescrever a fórmula para ℓj do seguinte modo,

ℓj =
√

(∆x)2 + (f ′(cj)∆x)2 = ∆x
√

1 + f ′2(cj).
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Se usarmos esta expressão para substituirmos ℓj na equação (4.20), obtemos

L = lim
N→∞

N∑

j=1

√

1 + f ′2(cj)∆x.

Estas somas permitem-nos assim definir o integral de Riemann

∫ b

a

√

1 + f ′2(x) dx. Conclúımos

então que este integral representa o comprimento da curva:

Se f tem derivada cont́ınua num intervalo contendo [a, b], então o comprimento de arco L do

gráfico de f no intervalo [a, b] é dado por

L =

∫ b

a

√

1 + f ′2(x) dx. (4.21)

Esta expressão, usada para determinar o comprimento de arco, conduz-nos frequentemente

a integrais que são dif́ıceis ou imposśıveis de calcular analiticamente. Nestas circunstâncias,

podemos aplicar as técnicas de integração numérica apresentadas na secção 4.2.4. Os exemplos

a seguir apresentados envolvem integrais cujo cálculo é relativamente simples.

Figura 4.15: Gráfico de f(x) = 2x
√
x.

Exemplo 4.35. Determine o comprimento de arco L do gráfico de f(x) = 2x
√
x sobre o intervalo

[0, 7].

Temos,

f ′(x) = 2
(√

x+
x

2
√
x

)
, e

f ′2(x) = 4
(√

x+
x

2
√
x

)2
= 9x.
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Aplicando (4.21), obtemos

L =

∫ 7

0

√

1 + f ′2(x) dx =

∫ 7

0

√
1 + 9x dx =

1

9

∫ 7

0
9 (1 + 9x)

1
2 dx

= 2
27 (1 + 9x)

3
2

∣
∣
∣

x=7

x=0
=

1022

27
.

Exemplo 4.36. Determine o comprimento de arco L do gráfico de f(x) =
ex + e−x

2
sobre o intervalo

[1, ln(8)].

Calculando primeiramente f ′, obtemos

f ′(x) =
ex − e−x

2
e, 1 + f ′(x) = 1 +

(ex − e−x)2

4
=

4 + e2x − 2 + e−2x

4
=

(
ex + e−x

2

)2

.

Assim,

L =

∫ ln(8)

1

√

1 + f ′2(x) dx =

∫ ln(8)

1

ex + e−x

2
dx =

ex − e−x

2

∣
∣
∣
∣

x=ln(8)

x=1

= 1
2

((

8− 1
8

)

−
(

e− 1
e

))

=
63

16
+

1− e2

2 e
.

Por vezes, é mais conveniente resolver um problema de comprimento de arco tratando a curva

como sendo o gráfico de x = g(y).

Se g′ é cont́ınua, então o comprimento de arco L do gráfico de x = g(y) para c ≤ y ≤ d é dado

por

L =

∫ d

c

√

1 + g′2(y)dy. (4.22)

Exemplo 4.37. Determine o comprimento L da porção da curva 9x2 = 4y3 compreendida entre os

pontos (0, 0) e (23 , 1).

Se escrevermos a curva como x = 2
3 y

3 e pusermos

g(y) =
2

3
y

3
2 , então g′(y) =

√
y.

Logo, aplicando (4.22), teremos

L =

∫ 1

0

√

1 + y dy

Aplicando o método de substituição teremos u = 1 + y e, du = dy, donde

L =

∫ 2

1

√
u du = 2

3 u
3
2

∣
∣
∣

u=2

u=1

= 2
3 (2

√
2− 1).
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4.5 Exerćıcios e complementos

1. Determine os seguintes integrais indefinidos

(a)

∫

x4 dx (b)

∫
2

x
dx (c)

∫
1

cos2(x)
dx

(d)

∫

(x2 − 5) dx (e)

∫

2x+
3

x
dx (f)

∫
(
2 ex − x3

)
dx

(g)

∫
(
x+

√
x
)
dx (h)

∫
1
4
√
x
dx (i)

∫
x2

√
x
dx

(j)

∫ (
3√
x
− x

√
x

4

)

dx (k)

∫
x2 + x−3

x4
dx (l)

∫

(x− 7
3 − 4x− 2

3 ) dx.

2. Escreva a expressão geral das primitivas das seguintes funções trigonométricas

(a) tg(x) (b) cotg(x) (c) tg2(x)

(d) cotg2(x) (e) sen2(x) (f) cos2(x)

(g) sen3(x) cos(x) (h) sen3(x) cos3(x)

Sugestão: use as relações trigonométricas

tg2(x) = sec2(x)− 1, cotg2(x) = cosec2(x)− 1,

sen2(x) =
1

2
(1− cos(2x)), cos2(x) =

1

2
(1 + cos(2x)).

Sol.: (a) ln
1

| cos(x)| + C; (b) ln(|sen(x)|) + C; (c) tg(x)− x+ C; (d) −cotg(x)− x+ C;

(e)
x

2
− 1

4
sen(2x)+C; (f)

x

2
+

1

4
sen(2x)+C; (g)

1

4
sen4(x)+C (h) −1

4
cos4(x)+

1

6
cos6(x)+C.

3. Determine, aplicando primitivação por partes,

(a)

∫

arctg(x) dx (b)

∫

arcsen(x) dx (c)

∫

x sen(x) dx (d)

∫

x cos(3x) dx

(e)

∫

x arctg(x) dx (f)

∫

ex sen(x) dx (g)

∫
ln(x)√

x
dx (h)

∫

sen(ln(x)) dx

Sol.: (a) x arctg(x)− 1
2 ln(1+x2)+C; (b) x arcsen(x)+

√
1− x2+C; (c) sen(x)−x cos(x)+C;

(d) x
3 sen(3x) +

1
9 cos(3x) + C; (e) x2+1

2 arctg(x)− x
2 + C; (f) ex

2

(
sen(x)− cos(x)

)
+ C;

(g) 2
√
x
(
ln(x)− 2)

)
+ C; (h) x

2

(
sen(ln(x))− cos(ln(x))

)
+ C.
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4. Determine, aplicando primitivação por substituição,

(a)

∫

(x+ 1)2 dx (b)

∫

eex dx (c)

∫

(3x− 2)3 dx

(d)

∫ √
x+ 1 dx (e)

∫
1

3x− 7
dx (f)

∫

sec2(8x) dx

(g)

∫

(3 cos(4x) + 2x) dx (h)

∫
1

cos2(7x)
dx (i)

∫
cos(

√
x)√

x
dx

(j)

∫

x3 cos(x4 + 2) dx (k)

∫

[x5 − 2x (3x2 + 2)4] dx (l)

∫

x
√
1 + 3x dx

(m)

∫
x

√

(1 + x2)3
dx (n)

∫

tg(2x) dx (o)

∫
3x2

√
x3 − 1

dx

(p)

∫
1

x ln(x)
dx (q)

∫
2

1 + 4x2
dx (r)

∫

cos3(x) sen(x) dx

(s)

∫
1√

ex − 1
dx (t)

∫ √
4− x2

x2
dx (u)

∫
cos(x)

sen2(x)
dx.

Sol.: (a) 1
3 (x+ 1)3+C; (b) eex

e +C; (c) 1
12 (3x− 2)4+C; (d) 2 (x+1)3/2

3 +C; (e) 1
3 ln (3x− 7)+C;

(f) 1
8 tg(8x)+C; (g) 3 sen(4x)

4 +x2+C; (h) 1
7 tg(7x)+C; (i) 2 sen (

√
x)+C; (j) 1

4 sen
(
x4 + 2

)
+C;

(k) −431
6 x6− 81

5 x10−54x8−48x4−16x2+C; (l) 2 (9x−2)
135

√

(1 + 3x)3+C; (m) − x2+1√
(x2+1)3

+C;

(n) 1
4 ln

(
1 + tg2 (2x)

)
+ C; (o) 2

(x−1)(x2+x+1)√
x3−1

+ C; (p) ln (ln (x)) + C; (q) arctg (2x) + C;

(r) − cos4(x)
4 + C; (s) 2 arctg

(√
ex − 1

)
+ C; (t) − 1

sen(x) + C; (u) −
√
4−x2

x − arcsen(x2 ) + C.

5. Determine:

(a)

∫
9x+ 18

(x− 3)(x+ 6)
dx (b)

∫
3x+ 4

x2 + x− 6
dx (c)

∫
1

x (x+ 2)2
dx

(d)

∫
3x+ 2

(x− 2)2(x+ 2)
dx (e)

∫
3x

2x2 + 6x+ 5
dx (f)

∫
x3 − x

(x2 + 1)2
dx

(g)

∫
1

x4 + x3
dx (h)

∫
3

x3 + 2x2 + 5x
dx (i)

∫
4− 2x

(x2 + 1)(x− 1)2
dx.

Sol.: (a) ln (x− 3)5 + ln (x+ 6)4 + C; (b) ln (x+ 3) + ln (x− 2)2 + C;

(c) 1
4 ln (x− 2)− 1

4 ln (x+ 2) + 1
2 (x+2) + C; (d) 1

4 ln (x)− 1
4 ln (x+ 2)− 2

x−2 + C;
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(e) 3
4 ln

(
2x2 + 6x+ 5

)
− 9

2 arctg (2x+ 3) + C; (f) 1
2 ln

(
x2 + 1

)
+ 1

x2+1
+ C;

(g) ln
(

1
x+1

)

+ ln (x)− 1
2x2 + 1

x + C; (h) 3
5 ln (x)− 3

10 ln
(
x2 + 2x+ 5

)
− 3

10 arctg
(
x+1
2

)
+ C;

(i) ln
(
x2 + 1

)
+ arctg (x)− ln (x− 1)2 − 1

x−1 + C.

6. Calcule os seguintes integrais

(a)

∫ −3

−1

( 1

x2
− 1

x3

)
dx (b)

∫ 1

8

(
1 + 3

√
x
)
dx (c)

∫ 3

−1

dx√
7 + 3x

(d)

∫ 1

0

dx

x2 + 4x+ 4
(e)

∫ −2

−3

dx

x2 − 1
(f)

∫ 1

0

e2x

1 + ex
dx

(g)

∫ 4

1

1 +
√
x

x2
dx (h)

∫ 2

6

√
x− 2 dx (i)

∫ 9

0

dx

1 +
√
x

(j)

∫ ln(5)

0

√
ex − 1 dx

Sol.: (a) −10

9
; (b) −73

4
; (c)

4

3
; (d)

1

6
; (e)

1

2
ln

(3

2

)
; (f) e− 1 + ln

(
2

1 + e

)

; (g)
7

4
; (h) −16

3
;

(i) 6− ln(16); (j) 4− 2 arctg(2).

7. Aplique integração por partes para calcular os seguintes integrais

(a)

∫ 1

0

x
√
1 + x dx (b)

∫ 1√
2

0

x arcsen(x2) dx

Sol.: (a)
4

15
(
√
2 + 1); (b)

1

4
(
π

6
+

√
3− 2).

8. Se

∫ −9

2

f(x) dx = 5, calcule

∫ 2

−9

(3 f(x)− 5x) dx.

9. Se

∫ 8

6

(3 f(x)− x) dx = 6 e

∫ 6

8

(2x+ 4 g(x)) dx = −8, determine

∫ 6

8

(f(x)− 5 g(x)) dx.

10. Calcule a área entre o gráfico da função dada e o eixo dos xx no intervalo indicado:

(a) f(x) = cos(x), I = [π
4
, 2π

3
] (b) g(x) = 3x2 − 3x− 6, I = [−4, 4]

(c) h(x) = 2x2 − 8, I = [−5, 7] (d) f(x) = x (1− x2)2, I = [−1
2
, 1].

11. Calcule a área das regiões compreendida entre as curvas dadas no intervalo indicado:

(a) f(x) =
x

1 + x2
, g(x) =

x

2
, 0 ≤ x ≤ 1
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(b) f(x) = 2 sen(x), g(x) = sen(2x), 0 ≤ x ≤ π.

12. Averigue se os seguintes integrais são convergentes ou divergentes. No caso de ser con-

vergente, determine-o.

(a)

∫ −2

−3

1

x+ 2
dx (b)

∫ π
2

0

tg(x) dx (c)

∫ 1

0

x

(1− x2)
1
4

dx (d)

∫ 3

0

(1 + x)
√
x dx.

13. Determine o ponto em que o integrando é singular, separe o integral em duas partes e

calcule o integral impróprio. Se for convergente, calcule o seu valor.

(a)

∫ 2

0

1

x− 1
dx (b)

∫ 4

−2

dx
3
√

(x+ 1)2
.

14. Averigue se os seguintes integrais são convergentes ou divergentes. No caso de ser con-

vergente, determine-o.

(a)

∫ +∞

3

dx
3
√
x2

(b)

∫ +∞

1

x e−3x2

dx (c)

∫ +∞

−∞

x

(1 + x2)2
dx.

15. Calcule o comprimento de arco do gráfico das funções nos intervalos indicados.

(a) f(x) = 2 +
√
x3 no intervalo I = [1, 4]

(b) f(x) =
1

3

√

(x2 + 2)3 no intervalo I = [0, 1].

16. Determine a área da região compreendida entre as duas semi-circunferências representadas

na figura.

x

y

42



Caṕıtulo 5

Equações Diferenciais Ordinárias

5.1 Introdução

As equações diferenciais desempenham um papel extremamente relevante em todas as áreas da

Matemática Aplicada, de tal forma que, grande parte dos modelos matemáticos aplicados às

várias ciências envolvem equações diferenciais.

A formulação de um modelo matemático de um problema ou situação da vida real, quer através

de um racioćınio intuitivo quer a partir de uma lei f́ısica resultante da experimentação, toma

muitas vezes a forma de uma equação diferencial, ou seja, uma equação envolvendo uma função

e algumas das suas derivadas. Não é de estranhar tal formulação pois, em situações do dia-a-

dia, presenciamos a ocorrência de variações de certas caracteŕısticas que nos levam a procurar

prever a sua evolução com base em dados do presente. Vamos começar por analisar alguns

modelos matemáticos envolvendo equações diferenciais.

O primeiro modelo traduz o crescimento de uma população baseado na única suposição de

que a população cresce a uma taxa proporcional ao seu tamanho. Trata-se de uma suposição

aceitável para, por exemplo, uma população de bactérias ou pequenos animais sob condições

ideais: ambiente sem limitações, nutrientes adequados, ausência de predadores, imunidade à

doença, etc.

Começamos por identificar cada uma das variáveis deste modelo:

t — tempo

N — número de indiv́ıduos na população (variável dependente)

143
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A taxa de crescimento instantâneo da população é dada pela derivada dN
dt
, como vimos na secção

3.1. Assim, a hipótese de que a taxa de crescimento da população é proporcional ao tamanho

da população traduz-se pela equação

dN

dt
(t) = rN(t) (5.1)

onde r é a constante de proporcionalidade. A equação (5.1) traduz o nosso primeiro modelo de

crescimento de uma população, designado por modelo malthusiano. Trata-se de uma equação

diferencial, pois, contém a função incógnita N e a sua derivada de primeira ordem dN
dt
.

(a) (b)

Figura 5.1: Comportamento das soluções do modelo malthusiano para: (a) r > 0, (b) r < 0.

Após termos formulado o modelo vamos averiguar que consequências dele resultam. Eliminando

o caso de uma população nula, teremos N(t) > 0, para todo o t. Assim, se r > 0, a equação

(5.1) mostra que dN
dt
(t) > 0 para todo o t. Isto significa que o tamanho da população é sempre

crescente. Na verdade, quando N aumenta, a equação (5.1) mostra que dN
dt

se torna cada vez

maior. Por outras palavras, a taxa de crescimento cresce à medida que a população cresce.

Tentemos descobrir uma solução para a equação (5.1). Observando a equação verificamos que se

pretende encontrar uma função cuja derivada é um múltiplo (constante) de si própria. Sabemos

que a função exponencial tem essa propriedade. Assim, se fizermos N(t) = C ert, onde C é
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uma constante real arbitrária, então

dN

dt
(t) = C (r ert) = r (C ert) = r N(t).

Logo, qualquer função exponencial N(t) = C ert, com C constante, é solução da equação (5.1).

Ao permitirmos que a constante C tome qualquer valor real, obteremos uma famı́lia de soluções

N(t) = C ert. Mas, como as populações têm apenas valores positivos, apenas nos interessam

as soluções com C > 0. E também nos interessaremos pelos valores de t superiores a um dado

valor inicial t = 0. Deste modo, podemos verificar que se tratam de soluções que fazem sentido

fisicamente. Se colocarmos t = 0, obtemos N(0) = C er×0 = C, de modo que a constante

C representa a população inicial, N(0). Na figura 5.1 estão representadas três curvas-solução

correpondentes a três diferentes valores para a população inicial.

Consideremos que a constante r corresponde à diferença entre os valores constantes da taxa de

natalidade per capita e da taxa de mortalidade per capita.

Verificamos que, se a taxa de natalidade for superior à taxa de mortalidade, o modelo apresenta

um crescimento exponencial da população (figura 5.1(a)). Por outro lado, se a taxa de morta-

lidade for superior à taxa de natalidade per capita, vem r < 0 e, qualquer que seja o tamanho

inicial da população, com o tempo ela extinguir-se-á (figura 5.1(b)).

Em conclusão, equação (5.1) é adequada para modelar o crescimento de uma população sob

condições ideais, mas um modelo mais realista tem de reflectir o facto de os recursos serem

limitados.

Muitas populações começam com um crescimento exponencial. Porém, tal crescimento diminui

ao aproximar-se de um certo valor ”limite”, que traduz a capacidade do meio favorecer esse

crescimento. Noutros casos, sendo a população inicial maior do que a que o meio pode sustentar,

o seu tamanho tenderá a diminuir. Esse valor da população para o qual o meio assegura o seu

desenvolvimento é designado por capacidade de sustentação e representado por K.

Assim, para um modelo tomar em consideração estas duas caracteŕısticas, formularemos as
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duas hipóteses seguintes:

dN

dt
≈ rN, se N é pequeno (inicialmente, a taxa de crescimento é proporcional a N).

dN

dt
< 0, se N > K, (N decresce se for superior à capacidade de sustentação do meio).

Uma expressão simples para incorporar ambas as hipóteses é dada pela equação

dN

dt
= rN

(

1− N

K

)

. (5.2)

Verificamos que se N é pequeno comparado com K, então N
K

está próximo de 0 e, dN
dt

≈ rN .

Se N > K, então 1− N
K

é negativo, logo, também dN
dt

< 0.

A equação (5.2) é chamada equação diferencial loǵıstica e foi proposta pelo biólogo matemático

holandês Verhulst, nos anos 40 do século XIX, como um modelo para o crescimento da população

mundial.

t

P (t)

K

0

Figura 5.2: Equação loǵıstica.

Veremos adiante métodos que nos permitam determinar soluções expĺıcitas para a equação (5.2)

mas, por agora, estudaremos as caracteŕısticas qualitativas das soluções a partir desta equação

(figura 5.2). O sentido das setas traduz o declive das curvas solução.

Observamos em primeiro lugar, que as funções constantes N(t) = 0 e N(t) = K são soluções

pois, em ambos os casos, um dos factores do segundo membro de (5.1) é nulo. O que faz sentido:
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se alguma vez a população for nula ou igual a K, permanecerá assim para sempre. Estas duas

soluções constantes dizem-se soluções de equiĺıbrio.

Se a população inicial N0 se situa entre 0 e K, então o segundo membro de (5.1) é positivo,

logo, dN
dt

> 0 e a população cresce. Mas se a população excede a capacidade de sustentação

(N > K), então 1− N
K

é negativo, donde dN
dt

< 0 e a população diminui.

Reparemos que, em qualquer dos casos, se a população se aproxima da capacidade de sus-

tentação (N → K), então dN
dt

→ 0, o que significa que a população estabiliza.

Exemplo 5.1. Considere o modelo populacional dado pela equação diferencial dN
dt (t) = 2 (N−100)N .

A partir da figura 5.3(a), interprete o comportamento das soluções para diferentes condições iniciais.

Exemplo 5.2. Considere o modelo populacional ilustrado na figura 5.3(b). Interprete o comporta-

mento das soluções para diferentes condições iniciais.

(a) dN

dt
(t) = 2 (N − 100)N (b) dN

dt
(t) = (5− 4N)(1− 0.5N)N

Figura 5.3:

Uma equação diferencial ordinária é uma equação que estabelece uma relação entre a variável

independente x, a função desconhecida y(x) e as suas derivadas y′, y′′, . . . , y(n). Podemos

escrever simbolicamente

F
(
x, y, y′, y′′, . . . , y(n)

)
= 0 ou, F

(
x, y, dy

dx
, d2y

dx2 , . . . ,
dny
dxn

)
= 0.
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Vamos estudar equações diferenciais de primeira ordem, da forma,

F
(
x, y, dy

dx

)
= 0 ou,

dy

dx
= f(x, y), (5.3)

onde f(x, y) é uma expressão envolvendo, em geral, as variáveis x e y. Por exemplo,
dy

dx
= 2xy − x2,

dy

dx
=

1

x
e,

dy

dx
= 2y (10− y)

são equações diferenciais da forma (5.3).

Dizemos que uma função diferenciável ϕ é uma solução da equação diferenciável (5.3) se dϕ
dx
(x) =

f(x, ϕ(x)) para todo x nalgum intervalo aberto. O gráfico de uma solução diz-se a curva-solução

de uma equação diferencial.

O exemplo seguinte mostra-nos que pode existir uma infinidade de funções que verificam uma

dada equação diferencial.

Exemplo 5.3. Verifique que a função ϕ(x) = x + C e−x − 1 é uma solução da equação diferencial

dy

dx
= x− y, onde C representa uma constante arbitrária.

Calculando o primeiro membro da equação diferencial

dϕ

dx
=

d

dx
(x+C e−x − 1) = 1− C e−x,

e o segundo membro,

x− ϕ = x− (x+ C e−x − 1) = 1− C e−x,

verificamos que as expressões obtidas são iguais, pelo que podemos concluir que a função ϕ(x) =

x + C e−x − 1 verifica a equação diferencial dada. Observemos que esta verificação não nos mostra

como é que a solução ϕ(x) = x+ C e−x − 1 é determinada.

Como este exemplo ilustra, a solução de uma equação diferencial de primeira ordem envolve

normalmente uma constante C. Para cada valor de C obtemos uma curva-solução e as diferentes

curvas-solução não se intersectam. Essa constante C fica determinada se for estipulada uma

condição inicial.

O par de equações 





dy

dx
= f(x, y)

y(x0) = y0

(5.4)
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traduz um problema de valor inicial. Dizemos que uma função diferenciável ϕ é uma solução do

problema de valor inicial (5.4) se dϕ
dx
(x) = f(x, ϕ(x)) e ϕ(x0) = ϕ0, para todo x num intervalo

aberto contendo x0. A equação y(x0) = y0 é designada por condição inicial.

Demonstra-se que sob certas condições impostas a f , o problema de valor inicial (5.4) admite

uma única solução.

Exemplo 5.4. Utilize os cálculos do Exemplo 5.3 para resolver o problema de valor inicial dy
dx = x−y,

y(0) = 2.

Verificámos no exemplo 5.3 que y(x) = x + C e−x − 1 é uma solução geral da equação diferencial

dada, para uma constante arbitrária C. Substituindo x = 0 vem y(0) = C − 1. Para verificar a

condição inicial y(0) = 2, resolvemos a equação C − 1 = 2 que tem como solução C = 3. Logo,

y(x) = x+ 3 e−x − 1 é a solução do problema de valor inicial dado.

5.2 Equações diferenciais da forma dy
dx

= g(x)

A mais simples de todas as equações diferenciais é da forma

dy

dx
= g(x) (5.5)

que resolvemos escrevendo

y(x) =

∫

g(x) dx+ C (5.6)

ou seja, (6.4) significa apenas que y é uma primitiva de g.

Assim, se g é cont́ınua num intervalo aberto contendo x0, para o problema de valor inicial






dy

dx
= g(x)

y(x0) = y0

a solução única determina-se por integração,

∫ x

x0

dy

dt
dt =

∫ x

x0

g(t) dt

y(x)− y(x0) =

∫ x

x0

g(t) dt.
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donde,

y(x) = y0 +

∫ x

x0

g(t) dt. (5.7)

Exemplo 5.5. Resolva o problema de valor inicial dy
dx(x) = 2x+ 1, y(1) = 5.

Aplicando (5.7), temos

y(x) = 5 +
∫ x
1 (2t+ 1) dt = 5 + (t2 + t)

∣
∣t=x

t=1
= 5 + (x2 + x− 2) = x2 + x+ 3.

5.3 Equações diferenciais separáveis

Não existe uma técnica única para resolver a equação (5.3). Vários métodos têm sido desen-

volvidos para lidar com casos especiais de acordo com a forma da expressão f(x, y).

Nesta secção vamos estudar o caso em que f(x, y) = g(x) h(y). As expressões

f(x, y) = 4 cos(x), f(x, y) = 7 y3, f(x, y) =
2 + x

1 + y2

são todas deste tipo. Quando f(x, y) é factorizada na forma g(x) h(y), a equação diferencial

dy

dx
= g(x) h(y) (5.8)

diz-se separável porque y e x podem ser separadas por ambos os membros. Podemos reescrever

a equação (5.8), supondo que h(y) 6= 0, como

1

h(y)

dy

dx
= g(x)

e primitivamos em ordem a x:

∫
1

h(y)

dy

dx
dx =

∫

g(x) dx. (5.9)

Seja H uma primitiva de
1

h
e seja G uma primitiva de g. Aplicando a regra da cadeia, temos

d

dx
H(y) =

dH

dy

dy

dx
=

1

h(y)

dy

dx
.

Portanto, a equação (5.9) pode ser escrita como

H(y) = G(x) + C, C ∈ R.
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Não é necessário colocar uma constante de integração em cada membro, podem ser combinadas

numa só.

Este processo de resolução de uma equação diferencial é chamado método de separação das

variáveis.

Exemplo 5.6. Resolva o problema de valor inicial

dy

dx
=

x

1 + y2
, y(0) = 3.

A equação diferencial dada é separável, visto que pode ser escrita na forma
dy

dx
= g(x)h(y) com

g(x) = x e, h(y) =
1

1 + y2
.

Seguindo o método de resolução atrás apresentado, separando as variáveis e calculando as primitivas,

∫

(1 + y2)
dy

dx
dx =

∫

x dx ⇔ 1

3
y3 + y =

1

2
x2 + C.

Para que esta equação satisfaça a condição inicial dada y(0) = 3, então C terá de verificar

1

3
33 + 3 =

1

2
02 + C ⇔ C = 12.

Por conseguinte,
1

3
y3 + y =

1

2
x2 + 12 é a solução do problema de valor inicial dado.

Este exemplo mostra uma caracteŕıstica do método de separação das variáveis: em geral, o

método não fornece a solução y da equação diferenciável dy
dx
(x) = g(x) h(y) na forma expĺıcita.

Isto é, em geral, este método não nos dá o resultado na forma y(x) = (expressão em x) mas

sim na forma impĺıcita

(expressão em y) = (expressão em x).

Normalmente é bastante complicado explicitar a solução para verificar a correcção do resultado.

Contudo, não é muito dif́ıcil derivar implicitamente a equação
1

3
y3 + y =

1

2
x2 + 12 para verifi-

carmos que a função y definida implicitamente é, de facto, solução do problema de valor inicial

dado.

Exemplo 5.7. Sejam y(t) e v(t) = dy
dt a altura e a velocidade, respectivamente, de um projéctil

disparado na vertical da superf́ıcie da Terra com velocidade inicial v0. Pela Lei da Gravitação de
Newton

dv

dt
= − gR2

(R+ y)2
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onde R é o raio da Terra e g é a aceleração devida à gravidade na superf́ıcie da Terra. Supondo que

v0 <
√
2gR, qual é a altura máxima atingida pelo projéctil?

No instante em que o projéctil atinge a altura máxima a sua velocidade é 0. Portanto, o objectivo

consiste em determinar v como uma função de y e resolver para o valor de y para o qual v = 0.

Como primeiro passo, utilizamos a regra da cadeia para exprimir dv
dt em termos de dv

dy :

dv

dt
=

dv

dy

dy

dt
=

dv

dy
v.

Igualando esta expressão para dv
dt com a expressão dada pela Lei da Gravitação de Newton, obtemos

v
dv

dy
= − gR2

(R+ y)2
.

Visto que esta equação diferencial é separável, aplicando o método de separação das variáveis, obtemos

∫
(
v
dv

dy

)
dy =

∫ (

− gR2

(R+ y)2

)

dy

donde resulta,

1

2
v2(y) =

gR2

R+ y
+ C

Quando y = 0, vem v(0) = v0. Logo,

1

2
v20 =

gR2

R
+ C ⇔ C =

1

2
v20 − gR

Então, 1

2
v2(y) =

gR2

R+ y
+

(1

2
v20 − gR

)
. (5.10)

Substituindo v(y) = 0 na equação (5.10) e resolvendo em ordem a y determinamos que a altura

máxima é
v20R

2gR − v20
.

5.4 Equações diferenciais autónomas

As equações diferenciais da forma

dy

dx
= h(y) (5.11)

onde o segundo membro não depende explicitamente de x, são designadas por equações diferen-

ciais autónomas.
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Como vimos anteriormente, no modelo Malthusiano, em que a a taxa de crescimento é, em cada

instante, proporcional ao tamanho da população nesse instante, obtemos a equação diferencial

dN

dt
= rN(t), t ≥ 0 (5.12)

para modelar o comportamento da população.

Supondo r = 2, a solução da equação diferencial (5.12) com a condição inicial N(0) = 20 é,

como vimos na secção 5.1, dada por

N(t) = 20 e2t, t ≥ 0.

Podemos escrever a solução particular da equação (5.12) com a condição inicial N(t0) = N0 na

forma,

N(t) = N0 e
r(t−t0) (5.13)

pois, se

N(t0) = C ert0 ⇔ C = N(t0) e
−rt0

então,

N(t) = N(t0) e
−rt0 × ert

donde obtemos (5.13).

Suponhamos que aplicávamos o mesmo modelo (r = 2) mas a observação da população era feita

no instante t0 = 10 e que o tamanho da população era o mesmo, isto é, N(10) = 20. Então,

por (5.13), obtemos

N(t) = 20 e2(t−10).

O gráfico desta solução pode ser obtido a partir do gráfico da solução anterior, onde N(0) = 20,

através de uma translacção de 10 unidades para a direita (Figura 5.4).

Isto significa que uma população começando com N0 = 20 segue a mesma trajectória, inde-

pendentemente do instante em que começamos a experiência. Biologicamente, esta conclusão

faz todo o sentido: se as condições de crescimento não dependem explicitamente do tempo, a

experiência deverá dar o mesmo resultado independentemente de quando é iniciada.
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0 10
0

100

t

N(t)

N(t) = 20 e2(t−10)

N(t) = 20 e2t

Figura 5.4: O gráfico da solução N(t) = 20 e2t sofre uma translação e o ponto inicial é (10, 20).

Se as condições de crescimento da população variam com o tempo, não poderemos usar uma

equação diferencial autónoma para descrever o crescimento da população; nesse caso, teŕıamos

de incluir explicitamente a dependência do tempo na equação.

Formalmente, podemos resolver qualquer equação do tipo (5.11) através do método de separação

das variáveis indicado na secção 5.3. Vamos ver como resolver a equação loǵıstica (5.2).

Exemplo 5.8. Determine a solução da equação diferencial loǵıstica (5.2) com a condição inicial

N(t0) = N0.

Para aligeirar a notação vamos definir a = r e b = r
K . Assim,

dN

dt
= rN

(

1− N

K

)

⇔ dN

dt
= N (a− bN).

Seguindo o método de separação das variáveis, escrevemos

H(N) =

∫ N

N0

1

ar − br2
dr =

1

a

∫ N

N0

(1

r
+

b

a− br

)

dr (aplicando o método das fracções parciais)

=
1

a

((
ln(N)− ln(N0)

)
+

(
− ln

(
|a− bN |

)
+ ln

(
|a− bN0|

)))

=
1

a
ln

( N

N0

∣
∣
∣
∣

a− bN0

a− bN

∣
∣
∣
∣

)

.

Por seu lado, G define-se por

G(t) =

∫ t

t0

ds = t− t0,
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donde,
1

a
ln

( N

N0

∣
∣
∣
∣

a− bN0

a− bN

∣
∣
∣
∣

)

= t− t0.

Como
a− bN0

a− bN
é sempre positivo para t0 < t < +∞, vem

a (t− t0) = ln
( N

N0

a− bN0

a− bN

)

e, aplicando a exponencial a ambos os membros, vem

ea (t−t0) =
N

N0

a− bN0

a− bN
⇔ N0 (a− bN) ea (t−t0) = N (a− bN0).

Resolvendo para N , encontramos a solução da equação loǵıstica com condição inicial N0,

N(t) =
aN0

bN0 + (a− bN0) e−a (t−t0)
.

E, recuperando r e K, fica

N(t) =
N0

N0
K + (1− N0

K ) e−r (t−t0)
.

5.5 Equações diferenciais lineares de primeira ordem

Equações diferenciais ordinárias lineares de primeira ordem são equações diferenciais da forma

dy

dx
+ p(x) y = q(x) (5.14)

onde p, q : I = ]a, b[⊂ R −→ R são funções cont́ınuas. Se p = 0, encontramo-nos nas condições

da secção 5.2. Vamos ver como o caso geral em estudo se pode reduzir a um problema de

primitivação.

Definamos P uma primitiva de p, isto é, P (x) =
∫
p(x) dx. Multiplicando ambos os membros

de (5.14) por eP (x), obtemos uma equação equivalente pois a função exponencial não se anula,

eP (x)
(dy

dx
+ p(x) y

)
= eP (x) q(x).

Observemos que o primeiro membro é precisamente a derivada do produto eP (x) y, logo, podemos

escrever,
(

eP (x) y
)′

= eP (x) q(x).
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Primitivando ambos os membros,

eP (x) y = C +

∫
(
eP (x) q(x)

)
dx,

e, resolvendo para y, vemos que as soluções da equação (5.14) são as funções da forma

y(x) = Ce−P (x) + e−P (x)

∫
(
eP (x) q(x)

)
dx,

onde C é uma constante arbitrária.

Mostrámos assim o método de variação das constantes para equações lineares de primeira ordem:

As soluções da equação diferencial dy
dx

+ p(x) y = q(x), x ∈ I, são as funções, definidas em I,

y(x) = Ce−P (x) + e−P (x)

∫
(
eP (x) q(x)

)
dx, C ∈ R.

O termo P (x) é designado usualmente por factor integrante.

Se estipularmos o valor da solução no ponto x0, a constante C e, portanto, toda a função

ficam determinad0s de forma única. Formulamos assim o problema de valor inicial para equações

diferenciais lineares de primeira ordem:

Dados x0 ∈ I e y0 ∈ R, o problema de valor inicial em I

dy

dx
+ p(x) y = q(x), y(x0) = y0,

tem uma solução única, definida em I, por

y(x) = y0 e
−P (x) + e−P (x)

∫ x

x0

(
eP (t) q(t)

)
dt.

com P (x) =
∫ x

x0
p(t) dt.

Exemplo 5.9. Resolva a equação diferencial linear

dy

dx
− 1

x+ 1
y = (x+ 1)2, (x > −1).
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Sendo P (x) =
∫ (

− 1
x+1

)
dx = − ln(x+ 1) = ln

(
1

x+1

)
, vem

y(x) = C eln(x+1) + eln(x+1)

∫

eln(
1

x+1
)(x+ 1)2 dx

= C (x+ 1) + (x+ 1)

∫
1

x+ 1
(x+ 1)2 dx

= C (x+ 1) + (x+ 1)(
x2

2
+ x).

Exemplo 5.10. Suponhamos que um tanque com 500 litros de capacidade contém inicialmente 100

litros de água pura. No instante t = 0, começa a entrar ĺıquido no tanque à velocidade de 2 litros

por segundo, sendo este ĺıquido constitúıdo por uma mistura homogénea de 50% de água e 50% de

poluentes. Simultaneamente, a mistura que se forma no tanque (e que se supõe sempre homogénea)

sai do tanque à velocidade constante de 1 litro por segundo. Pretende-se calcular a percentagem de

poluentes no ĺıquido do tanque no instante em que este fica cheio.

Designemos por p(t) a quantidade de poluentes existentes no tanque no instante t, onde t ≥ 0 é

suficientemente pequeno para que o tanque não tenha ainda transbordado.

Representemos por dp
dt (t) a taxa de variação da quantidade de poluentes no instante t, dada pela

diferença entre a quantidade de poluentes que entram por unidade de tempo e a quantidade de polu-

entes que saiem por unidade de tempo.

A quantidade de poluente que entra no tanque por unidade de tempo é 1 litro.

A concentração de poluentes no tanque é dada por
p(t)

V (t)
, onde V (t) é o volume total de ĺıquido

existente no tanque no instante t.

A quantidade de poluentes que sai, por unidade de tempo, é dada pelo produto da concentração de

poluentes pela quantidade de ĺıquido que sai por unidade de tempo, ou seja,
p(t)

V (t)
× 1.

Então,

dp

dt
(t) = 1− p(t)

V (t)
. (5.15)

Em cada instante t, o volume de ĺıquido contido no tanque é dado pela soma da quantidade inicial de

ĺıquido com a quantidade que é retida até esse momento. Como em cada unidade de tempo entram 2

litros e sai 1 litro, teremos

V (t) = 100 + t (5.16)

e, a equação (5.15) escreve-se

dp

dt
= 1− p(t)

100 + t
.
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Resolvendo, pela método de variação das constantes, obtemos

p(t) =
1

100 + t

(

C +

∫

(100 + t) dt
)

=
1

100 + t
(C + 100t+

t2

2
).

Visto que p(0) = 0, vem C = 0 e, portanto,

p(t) =
t (200 + t)

200 + 2t
,

que representa a quantidade de poluentes existente no tanque no instante t. Pretendemos saber a

percentagem de poluentes quando o tanque está cheio, isto é, quando V (t) = 500.

De (5.16), conclúımos que o tanque estará cheio quando t = 500 − 100 = 400. Assim, a concentração

de poluentes quando o tanque está cheio é dada por
p(400)

500
=

240

500
= 0.48.

O tanque contém, portanto, 48% de poluentes no instante em que fica cheio.

Exemplo 5.11. Suponhamos que um lago tem um volume de ĺıquido V constante, sendo iguais os

volumes de ĺıquido que entra, v, e sai, por unidade de tempo.

Consideremos que a concentração de poluentes que entra no lago é dada por uma função cont́ınua γe.

Suponhamos ainda a diferenciabilidade da função p(t), representando a quantidade de poluentes no

instante t, e que os poluentes se encontram uniformemente distribúıdos no lago. Então γe(t)
p(t)

V
indica a concentração de poluentes que entra no lago no instante t

Sendo dp
dt (t) a taxa de variação da quantidade de poluentes no instante t, obtida pela diferença entre

a quantidade de poluente que entra por unidade de tempo, ve, e a quantidade de poluente que sai por

unidade de tempo, vs,
dp

dt
(t) = ve − vs.

ou seja,
dp

dt
(t) = γe(t) v − p(t)

V
v

Conclúımos assim que p satisfaz uma equação diferencial linear,

dp

dt
(t) +

v

V
p(t) = v γe(t),

cuja solução, com condição inicial p(0) = p0, é

p(t) = p0 e
−λt + v eλt

∫ t

0
esλγe(s) ds (com λ =

v

V
).

A partir desta expressão é posśıvel proceder a uma análise qualitativa (e também quantitativa) da

quantidade de poluição. Por exemplo, se Pe(t) = 0 (não entram poluentes) então a poluição existente
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tende para zero exponencialmente. Se γe(t) = γe (constante) então p(t) é uma média ponderada entre

a poluição inicial e uma “poluição limite” V γe:

p(t) = p0 e
−λt + V γe(1− e−λt).

5.6 Exerćıcos e complementos

1. Verifique que a função ϕ satisfaz a equação diferencial (C representa uma constante).

(a) y′ = xy, ϕ(x) = C e
x2

2

(b) y′ = x− 3y, ϕ(x) =
x

3
− 1

9
+ C e−3x

(c) y′ = x+ xy, ϕ(x) = C e
x2

2 − 1

(d) y′ = y + x2, ϕ(x) = C ex − x2 − 2x− 2.

2. Averigue se y(x) = 2 e−x + x e−x é solução de y′′ + 2y′ + y = 0.

3. Mostre que y = 1
x2−1

é solução de y′ + 2xy2 = 0 em I =]− 1, 1[ mas não o é em qualquer

outro intervalo mais amplo contendo I.

4. Resolva os seguintes problemas de valor inicial

(a) y′(x) = 2x y(1) = 3

(b) y′(x) = cos(x) y(0) = 2

(c) y′(x) = sec2(x) y
(
π
4

)
= 3.

5. Aplique o método de separação das variáveis para resolver as equações diferenciais se-

quintes.

(a) y′ =
x+ 1

y2
(b) y′ =

ex

y2
(c) y′ = xy2

(d) y′ = −2 (3y + 4) (e) y′ =
x2 + 1

3y2
(f) y′ =

√
y

x
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6. Determine as soluções gerais das seguintes equações.

(a) y′ − 3y = 6 (b) y′ + 2y = x2 (c)
dy

dx
+ xy = 1

(d) y′ − 2xy = x (e) y′ + y = sen(x) (f) y′ − y = cos(2x).

7. Determine a solução dos seguintes problemas de valor inicial.

(a) y′ =
2x

y
, y(1) = −2 (b) y′ = 2− y, y(0) = 3 (c) y′ = 3xy−2x, y(0) = 1

(d) y′ =
xy

x2 + 1
, y(0) = 1 (e) y′ = xy ex, y(1) = 1 (f) y′ = 3x2 e−y, y(0) = 1.

8. Resolva o problema de valor inicial







y′ + y = sen(x)

y(π) = 1.

9. Determine a solução do problema de valor inicial y′ + y = 0, y(3) = 2, sabendo que a

solução geral da equação é (x) = C e−x com C constante arbitrária.

10. Sabendo que y(x) = α e2x+β e−2x é solução da equação diferencial y′′−4y = 0, determine

as constantes reais α e β se y(0) = 3 e y′(0) = −2.

11. Descreva o comportamento do modelo populacional ilustrado na figura.

t

P (t)

B

A

0
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12. Suponha que num determinado ecossistema existe um tipo de predador e um tipo de

presa. Representemos por 100 x o número de predadores e por 1000 y o número de presas.

O matemático austŕıaco A. J. Lotka (1880-1949) e o matemático italiano Vito Volterra

(1860-1940) propuseram a seguinte relação entre o tamanho das duas populações, desig-

nada por equação de Lotka-Volterra:

dy

dx
=

y (a− bx)

x (cy − d)
.

Resolva esta equação aplicando o método de separação das variáveis. Qual é a relação

predador-presa se a população inicial de presas é 1500, a população inicial de predadores

é 200, e a = 6, b = 2, c = 4 e d = 7?
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Caṕıtulo 6

Matrizes e determinantes

6.1 Definições e generalidades

Um exemplo. Duas espécies diferentes de insectos são criadas juntas num laboratório, sendo-

lhes fornecido diariamente dois tipos de alimento diferente. Cada indiv́ıduo da espécie 1 consome

5 unidades do alimento A e 3 unidades do alimento B, enquanto que cada indiv́ıduo da espécie

2 consome 2 unidades do alimento A e 4 unidades do alimento B, em média, por dia. Por dia,

o técnico do laboratório fornece 900 unidades de alimento A e 960 unidades de alimento B.

Quanto elementos de cada espécie estão a ser criados?

Para resolvermos este problema, estabelecemos um sistema de equações.

Representando por,

x — número de indiv́ıduos da espécie 1

y — número de indiv́ıduos da espécie 2

então o seguinte sistema de equações tem de ser satisfeito

alimento A: 5x+ 2y = 900

alimento B: 3x+ 4y = 960.

Temos assim um sistema de duas equações lineares com duas incógnitas,






5x+ 2y = 900

3x+ 4y = 960.
(6.1)

163
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Este sistema pode ser resolvido eliminando uma das variáveis, por exemplo x, multiplicando a

primeira equação por −3
5
e adicionando à segunda







5x+ 2y = 900

14

5
y = 420.

Donde retiramos y = 150. Substituindo na primeira equação, obtemos x = 120.

Veremos neste caṕıtulo um outro processo de resolução de equações lineares.

O sistema de equações (6.1) pode ser representado da seguinte forma

[

5 2

3 4

][

x

y

]

=

[

900

960

]

(6.2)

e dizemos que (6.2) é a representação matricial do sistema (6.1), onde

[

5 2

3 4

]

é uma matriz de 2 linhas por 2 colunas (matriz dos coeficientes) e,

[

x

y

]

e,

[

900

960

]

.

são matrizes de 2 linhas por 1 coluna (matriz-coluna ou vector).

Dados dois números naturais m e n, chama-se matriz real de dimensão m × n uma função A

definida no conjunto {(i, j) ∈ N2 : 1 ≤ i ≤ m, 1 ≤ j ≤ n} e com valores em R; designam-se as

componentes, elementos ou entradas da matriz A por aij = A(i, j).

Convencionalmente, uma matriz é representada por uma letra maiúscula e as suas componentes

por uma letra minúscula com a linha e a coluna indicadas em ı́ndice inferior. Assim aij é

interpretado como sendo a componente da matriz A na linha i e coluna j.

Exerćıcio 6.1. Considere a matriz A =





0.21 7 −3
9 0 −0.75
0.8 −1 1



 .

(a) Identifique a12, a23 e a31.
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(b) Calcule: (i)
3∑

i=1

ai1. (ii)
3∑

i=1

a3i. (iii)
3∑

i=1

aii.

Diz-se que a matriz A é quadrada se tem o mesmo número de linhas e de colunas. Se o número

de linhas m é diferente do número de colunas n, a matriz diz-se rectangular de dimensão m×n.

Chama-se diagonal principal da matriz A às componentes aii, com o mesmo número de linha e

de coluna, ordenadas por ordem crescente dos ı́ndices.

Designa-se por traço da matriz An×n a soma dos elementos da diagonal principal,

tr(A) =

n∑

i=1

aii.

Matriz triangular é a matriz quadrada em que são nulos os elementos acima ou abaixo da diagonal

principal. Distinguimos entre: matriz triangular inferior quando são nulos os elementos acima da

diagonal principal (isto é, aij = 0 para i < j), e matriz triangular superior quando os elementos

abaixo da diagonal principal são todos nulos (isto é, aij = 0 para i > j). Uma matriz triangular

pode, eventualmente, ter zeros na diagonal. Uma matriz An×n é diagonal se aij = 0 quando

i 6= j.

A =





1 0 0
2 4 0
0 −2 2



 B =





1 3 −1
0 4 1
0 0 2



 C =





1 0 0
0 4 0
0 0 2





Quadro 6.1: A matriz triangular inferior, B matriz triangular superior, C matriz diagonal.

Uma matriz quadrada de dimensão n diz-se simétrica se aij = aji para 1 ≤ i, j ≤ n.









7 −3 0 5

−3 9 −1 −2

0 −1 11 8

5 −2 8 21









Quadro 6.2: Matriz simétrica.
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Exerćıcio 6.2. Determine os valores de a, b e c de forma que a matriz A =





−3 4.1 a

b 2 c

3.4 −1.5 1



 seja

simétrica.

Combinação linear de matrizes As operações básicas para matrizes são a multiplicação

por um escalar e a adição de matrizes. Definem-se pela aplicação dessas operações componente

a componente da matriz e, só se podem adicionar matrizes com a mesma dimensão.

Exemplo 6.1. Sendo

A =







−2 1 5

3
2 6 −4

8 0 −1







e, B =







7 −3 0

2 −5 3

1 6 8







então 2A é dado por:

2A =







2× (−2) 2× 1 2× 5

2× 3
2 2× 6 2× (−4)

2× 8 2× 0 2× (−1)






=







−4 2 10

3 12 −8

16 0 −2







e A+B é dado por:

A+B =







−2 1 5

3
2 6 −4

8 0 −1






+







7 −3 0

2 −5 3

1 6 8






=







−2 + 7 1 + (−3) 5 + 0

3
2 + 2 6 + (−5) −4 + 3

8 + 1 0 + 6 −1 + 8






=







5 −2 5

7
2 1 −1

9 6 7






.

Multiplicação de uma matriz por um vector. Dada uma matriz m × n, A = [aij ] e

um vector n × 1, u, de componentes uj (j = 1, . . . , n), o produto Au é o vector coluna cuja

componente i é:

(Au)i =
n∑

j=1

aij uj (i = 1, . . . , m).

Assim para multiplicar uma matriz por um vector é necessário que o número de colunas da

matriz seja igual ao número de componentes do vector obtendo-se um vector cujo número de

componentes é igual ao número de linhas da matriz.
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Exemplo 6.2.

Au =

[
−2 1 0

5 6 −1

]







7

−1

2







=

[
−2× 7 + 1× (−1) + 0× 2

5× 7 + 6× (−1) + (−1)× 2

]

=

[
−15

27

]

.

Multiplicação de matrizes. Se pretendermos multiplicar uma matriz A por uma matriz

B de duas colunas, definimos o produto AB como sendo uma matriz de duas colunas, em que

cada coluna se obtém multiplicando A pelo vector dado pela correspondente coluna de B.

Por outras palavras, se B é uma matriz cujas colunas são os vectores b1, . . . , bp, o produto AB

é a matriz cujas colunas são os vectores Ab1, . . . , Abp.

Uma matriz A só pode ser multiplicada por uma matriz B se o número de colunas de A for

igual ao número de linhas de B e, então, a matriz produto AB tem tantas linhas como A e

tantas colunas como B.

Exemplo 6.3.

AB =







−2 1

3
2 6

8 0







[
7 −3 0

2 −5 3

]

=







−2× 7 + 1× 2 −2× (−3) + 1× (−5) −2× 0 + 1× 3

3
2 × 7 + 6× 2 3

2 × (−3) + 6× (−5) 3
2 × 0 + 6× 3

8× 7 + 0× 2 8× (−3) + 0× (−5) 8× 0 + 0× 3







=







−12 1 3

45
2 −69

2 18

56 −24 0






.

Propriedades das matrizes. Desde que as dimensões das matrizes sejam tais que as

operações indicadas façam sentido, tem-se:

1. A multiplicação de duas matrizes é associativa: (AB)C = A (BC).

2. A multiplicação de matrizes não é comutativa: em geral AB 6= BA.

3. A multiplicação de matrizes é distributiva relativamente à adição: A (B+C) = AB+AC.
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4. Existência de elemento neutro para a multiplicação de matrizes. Designa-se por matriz

identidade n× n a matriz I cujos elementos são 1 ao longo da diagonal principal e 0 fora

dela; por exemplo, para n = 4,

I =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









.

A multiplicação de uma matriz arbitrária pela matriz identidade dá como resultado a

matriz original: AI = A e IB = B.

5. Existência de elemento neutro para a adição de matrizes. Existe uma única matriz,

a matriz nula 0, que adicionada a qualquer matriz A, dá como resultado essa matriz:

A+ 0 = 0 + A = A. A matriz nula m× n é a matriz cujos elementos são todos nulos.

Transposição de matrizes. A transposição de uma matriz é a operação que a uma dada

matriz A faz corresponder uma outra matriz, mudando ordenadamente as linhas em colunas (e,

portanto, as colunas em linhas), que se chama matriz transposta de A e se representa por AT .

Podemos também dizer que a transposta de uma matriz Am×n é uma matriz Bn×m definida por

bji = aij para j = 1, . . . , n e, i = 1, . . . , m.

Exemplo 6.4. Se
[
1 2 3

4 5 6

]

, então AT =







1 4

2 5

3 6






.

Podem demonstrar-se as seguintes propriedades:

1. (AT )T = A, a transposta da transposta de uma matriz é a própria matriz.

2. (A+B)T = AT +BT , a transposta da soma é igual à soma das transpostas das parcelas.

3. (AB)T = BTAT , a transposta do produto é igual ao produto das transpostas dos factores

por ordem inversa.
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Observe-se que tr(A) = tr(AT ).

Seja A uma matriz quadrada de ordem n. A matriz A é simétrica se é igual à sua transposta.

Matriz inversa. Um número real a diz-se ter inverso multiplicativo se existir um número real

b tal que ab = 1. Qualquer número não-nulo a tem inverso multiplicativo b = 1
a
. Generalizamos

o conceito de inverso multiplicativo a matrizes com a seguinte definição.

Uma matriz An×n diz-se não-singular ou invert́ıvel se existir uma matriz B tal que AB = BA = I.

A matriz B diz-se o inverso multiplicativo de A.

Se B e C são ambos inversos multiplicativos de A, então

B = BI = B (AC) = (BA)C = IC = I.

Assim, uma matriz tem, no máximo, um inverso multiplicativo. Referir-nos-emos a este inverso

multiplicativo de uma matriz não-singular como a matriz inversa de A e representá-la-emos por

A−1.

Exemplo 6.5. As matrizes [
2 4

3 1

]

e,

[
− 1

10
2
5

3
10 −1

5

]

são inversa uma da outra, pois

[
2 4

3 1

] [
− 1

10
2
5

3
10 −1

5

]

=

[
− 1

10
2
5

3
10 −1

5

] [
2 4

3 1

]

=

[
1 0

0 1

]

.

Exemplo 6.6. A matriz [
1 0

0 0

]

não tem inversa. De facto, se B é uma matriz arbitrária 2× 2, então

BA =

[
b11 b12

b21 b22

] [
1 0

0 0

]

=

[
b11 0

b21 0

]

.

Logo, BA não pode ser igual a I.

Uma matriz n × n diz-se singular se não tem inverso multiplicativo. Adiante veremos como

calcular a inversa de uma matrix não-singular.
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6.2 Determinantes

6.2.1 Determinante de uma matriz

A uma matriz quadrada A podemos associar um número, det(A), cujo valor nos indicará se a

matriz é não-singular. Antes de darmos a definição geral, consideremos os seguintes exemplos.

Caso I: matriz 1× 1

Se A = [a11] é uma matriz 1× 1, então A terá inverso multiplicativo se e só se a11 6= 0. Assim,

definimos o determinante de A por

det(A) = a11,

e, A será não-singular se e só se a11 6= 0.

Caso II: matriz 2× 2

Seja

A =

[
a11 a12
a21 a22

]

.

O determinante desta matriz pode ser definido em termos de duas matrizes 1× 1:

M11 = [a22] e M12 = [a21].

A matriz M11 é encontrada a partir de A eliminando a primeira linha e a primeira coluna e

M12 é formada a partir de A eliminando a primeira linha e a segunda coluna.

O determinante de A pode ser escrito na forma

det(A) = a11 a22 − a12 a21 = a11 det(M11)− a12 det(M12). (6.3)

Exemplo 6.7. O determinante da matriz A =

[
2 4

3 1

]

é det(A) =

∣
∣
∣
∣
∣

2 4

3 1

∣
∣
∣
∣
∣
= 2× 1− 4× 3 = −10.

Caso III: matriz 3× 3

Para uma matriz 3× 3,

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33




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o determinante de A pode ser representado na forma

det(A) = a11 det(M11)− a12 det(M12) + a13 det(M13)

onde,

M11 =

[
a22 a23
a32 a33

]

, M12 =

[
a21 a23
a31 a33

]

, M13 =

[
a21 a22
a31 a32

]

.

Vejamos agora como generalizar para o caso n > 3. Para tal necessitamos da seguinte definição.

Seja A uma matriz n×n e representemos por Mij a matriz de ordem (n− 1)× (n− 1) obtida a

partir de A eliminando a linha e a coluna contendo aij. O determinante de Mij é denominado

por menor complementar de aij.

Definimos Aij o cofactor (ou adjunto) de aij por

Aij = (−1)i+j det(Mij).

De acordo com esta definição, para uma matriz 2 × 2, podemos reescrever a equação (6.3) na

forma

det(A) = a11 A11 + a12A12 (n = 2). (6.4)

A equação (6.4) é chamada expansão em cofactores ao longo da primeira linha de A. Observemos

que também podemos escrever

det(A) = a21 A21 + a22A22 (n = 2), (6.5)

e, neste caso, exprimimos o det(A) em termos das entradas da segunda linha de A e dos seus

cofactores. Na verdade, não é imprescind́ıvel que efectuemos a expansão ao longo de uma linha

de A; o determinante pode também ser representado pela expansão em cofactores ao longo de

uma das colunas.

Para uma matriz 3× 3, temos

det(A) = a11A11 + a12 A12 + a13A13.

Exerćıcio 6.3. Calcule o determinante da matriz A =







2 5 4

3 1 2

5 4 6






.
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det(A) =

∣
∣
∣
∣
∣
∣
∣
∣

2 5 4

3 1 2

5 4 6

∣
∣
∣
∣
∣
∣
∣
∣

= 2×
∣
∣
∣
∣
∣

1 2

4 6

∣
∣
∣
∣
∣
− 5×

∣
∣
∣
∣
∣

3 2

5 6

∣
∣
∣
∣
∣
+ 4×

∣
∣
∣
∣
∣

3 1

5 4

∣
∣
∣
∣
∣
= 2 (6− 8)− 5 (18− 10) + 4 (12− 5) = −16.

O determinante de uma matriz A de ordem n×n, representado por det(A), é o escalar associado

à matriz A definido da seguinte forma

det(A) =

{
a11, se n = 1
a11 A11 + a12A12 + · · ·+ a1n A1n , se n > 1

onde,

A1j = (−1)1+j det(M1j), j = 1, . . . , n

são os cofactores associados aos elementos da primeira linha de A.

Enunciamos algumas propriedades dos determinantes:

• Se A é uma matriz n × n com n ≥ 2, então o det(A) pode ser exprimido como uma

expansão em cofactores usando qualquer linha ou coluna de A;

• Se A é uma matriz n× n, então det(AT ) = det(A).

• Se A é uma matriz triangular, o determinante de A é igual ao produto dos elementos

diagonais de A.

• Seja A uma matriz n× n.

– Se A tem uma linha ou uma coluna consistindo apenas de zeros, então det(A) = 0.

– Se A tem duas linhas ou duas colunas iguais, então det(A) = 0.

• Uma matriz A de ordem n× n é singular se e só se

det(A) = 0.
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Regra de Sarrus

O matemático francês Pierre Frédéric Sarrus (1798-1861) desenvolveu uma regra para o cálculo

de determinantes de matrizes de ordem 3,

det(A) =
(
a11 a22 a33 + a12 a23 a31 + a13 a32 a21

)
−
(
a11 a23 a32 + a12 a33 a21 + a13 a22 a31

)
,

ilustrada na figura (6.1).

a11

a22
??

??
??

??
??

??
??

?

a22

a33
??

??
??

??
??

??
??

?a21

a13ooooooooooooooooooooooo

a13

a32
��
��
��
��
��
��
��
��
��
��
��
��

a32

a21???????????????
a31

a12������������������������

a12

a23
??

??
??

??
??

??
??

?

a23

a31
ooooooooooooooooooooooo

a31

a22���������������

a22

a13���������������

a11

a23
OOOOOOOOOOOOOOOOOOOOOOO

a32

a23���������������a32

a11////////////////////////

a21

a12���������������

a12

a33
//

//
//

//
//

//
//

//
//

//
//

//

a33

a21OOOOOOOOOOOOOOOOOOOOOOO

Figura 6.1: Esquematização da regra de Sarrus.

6.2.2 Cálculo da inversa de uma matriz não-singular

Vamos estudar agora um método para calcular a inversa de uma matriz não-singular aplicando

determinantes.

Adjunta de uma matriz. Seja A uma matriz n× n. Se Ajk representar o cofactor de ajk,

para k = 1, . . . , n, então

ai1Aj1 + ai2Aj2 + · · ·+ ainAjn =

{

det(A) se i = j

0 se i 6= j.
(6.6)

Dada a matriz A podemos definir uma nova matriz, designada adjunta de A, por

adj(A) =










A11 A12 . . . A1n

A21 A22 . . . A2n

...

An1 An1 . . . Ann










T

=










A11 A21 . . . An1

A12 A22 . . . An2

...

A1n A2n . . . Ann










.
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Assim, para construirmos a adjunta, temos de substituir cada termo pelo seu cofactor e transpôr

a matriz resultante.

Por (6.6),

A adj(A) = det(A) I.

Se A é uma matriz não-singular, det(A) é um escalar diferente de zero e, podemos escrever,

A

(
1

det(A)
adj(A)

)

= I.

Então,

A−1 =
1

det(A)
adj(A).

Exemplo 6.8. Para uma matriz 2× 2, escrevemos

adj(A) =

[
a22 −a12

−a21 a11

]

.

Se A for não-singular, então

A−1 =
1

a11 a22 − a12 a21

[
a22 −a12

−a21 a11

]

.

Exerćıcio 6.4. Seja A =







2 1 2

3 2 2

1 2 3






. Determine adj(A) e A−1.

adj(A) =













∣
∣
∣
∣

2 2
2 3

∣
∣
∣
∣

−
∣
∣
∣
∣

3 2
1 3

∣
∣
∣
∣

∣
∣
∣
∣

3 2
1 2

∣
∣
∣
∣

−
∣
∣
∣
∣

1 2
2 3

∣
∣
∣
∣

∣
∣
∣
∣

2 2
1 3

∣
∣
∣
∣

−
∣
∣
∣
∣

2 1
1 2

∣
∣
∣
∣

∣
∣
∣
∣

1 2
2 2

∣
∣
∣
∣

−
∣
∣
∣
∣

2 2
3 2

∣
∣
∣
∣

∣
∣
∣
∣

2 1
3 2

∣
∣
∣
∣













T

=







2 1 −2

−7 4 2

4 −3 1







A−1 =
1

det(A)
adj(A) =

1

5







2 1 −2

−7 4 2

4 −3 1






=







2
5

1
5 −2

5

−7
5

4
5

2
5

4
5 −3

5
1
5






.
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6.2.3 Regra de Cramer

Aplicando a fórmula para a inversa

A−1 =
1

det(A)
adj(A)

podemos deduzir uma regra para determinar a solução do sistema Ax = b em termos dos

determinantes.

Regra de Cramer. Seja A uma matriz não-singular n× n e seja b = (b1, b2, . . . , bn). Seja

Ai a matriz obtida substituindo a i-ésima coluna de A por b. Se x é a solução única de Ax = b,

então

xi =
det(Ai)

det(A)
, para i = 1, 2, . . . , n.

A regra de Cramer fornece-nos um método de determinar a solução de um sistema de n equações

lineares com n incógnitas em termos dos determinantes. No entanto, este método não é viável

para sistemas de ordem muito elevada.

Com este método podemos resolver agora o sistema (6.2) do ińıcio do caṕıtulo.

Assim,

x =

∣
∣
∣
∣

900 2
960 4

∣
∣
∣
∣

∣
∣
∣
∣

900 2
960 4

∣
∣
∣
∣

=
3600− 1920

20− 6
= 120 e, y =

∣
∣
∣
∣

5 900
3 960

∣
∣
∣
∣

∣
∣
∣
∣

900 2
960 4

∣
∣
∣
∣

=
4800− 2700

20− 6
= 150.

Exemplo 6.9. Utilize a regra de Cramer para resolver o seguinte sistema







x1 + 2x2 + x3 = 5

2x1 + 2x2 + x3 = 6

x1 + 2x2 + 3x3 = 9.

O sistema dado escreve-se matricialmente na seguinte forma,







1 2 1

2 2 1

1 2 3













x1

x2

x3






=







5

6

9






.
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Calculamos então,

det(A) =

∣
∣
∣
∣
∣
∣
∣
∣

1 2 1

2 2 1

1 2 3

∣
∣
∣
∣
∣
∣
∣
∣

= −4, det(A1) =

∣
∣
∣
∣
∣
∣
∣
∣

5 2 1

6 2 1

9 2 3

∣
∣
∣
∣
∣
∣
∣
∣

= −4,

det(A2) =

∣
∣
∣
∣
∣
∣
∣
∣

1 5 1

2 6 1

1 9 3

∣
∣
∣
∣
∣
∣
∣
∣

= −4, det(A3) =

∣
∣
∣
∣
∣
∣
∣
∣

1 2 5

2 2 6

1 2 9

∣
∣
∣
∣
∣
∣
∣
∣

= −8,

onde A1, A2 e A3 são as matrizes obtidas a partir de A substituindo a primeira, segunda e terceira

colunas, respectivamente, por





5
6
9



.

Logo, pela regra de Cramer, obtemos

x1 =
−4

−4
= 1, x2 =

−4

−4
= 1, x3 =

−8

−4
= 2.

6.3 Exerćıcios e complementos

1. Escreva as matrizes 3× 2, A e B, que têm como componentes aij = i+ j e bij = (−1)i+j ,

respectivamente.

2. Sejam A =

[
−1 2
0 −3

]

, B =

[
0 1
2 4

]

, C =

[
1 −2
1 −1

]

.

(a) Determine A− B + 2C.

(b) Determine −2A + 3B.

(c) Determine D de forma que A+B = 2A−B +D.

3. Sejam A =





1 3 −1
2 4 1
0 −2 2



 , B =





5 −1 4
2 0 1
1 −3 −3



 , C =





−2 0 4
1 −3 1
0 0 2



 .

(a) Determine 2A+ 3B − C.

(b) Determine 3C − B + 1
2
A.

(c) Determine D tal que A+B + C +D = 0.

(d) Determine D tal que A+ 4B = 2 (A+B) +D.
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4. Dê exemplo de uma matriz 4× 4 que seja:

(a) Triangular superior. (b) Simétrica. (c) Diagonal.

5. Determine as transpostas de: (a) A =

[
−1 0 3
2 1 −4

]

; (b) B =





1
−3
4



.

6. Sejam A =

[
1 3
0 −2

]

e B =

[
1 2 0 −1
2 1 3 0

]

.

(a) Calcule AB.

(b) Calcule BTA.

7. Sejam A =





1 −1
3 0
5 2



 e B =

[
2 4 1
6 0 0

]

. Mostre que (AB)T = BTAT .

8. Uma matriz P diz-se idempotente se P 2 = P . Mostre que a matriz A =

[
25 −20
30 −24

]

é

idempotente.

9. Dada a matriz

A =







3 2 4

1 −2 3

2 3 2







(a) Determine os valores de det(M21), det(M22) e det(M23).

(b) Determine os valores de A21, A22 e A23.

(c) Use as respostas da aĺınea anterior para determinar det(A).

10. Utilize determinantes para averiguar se as seguintes matrizes são não-singulares.

A =

[
3 5
2 4

]

, B =

[
3 6
2 4

]

, C =

[
3 −6
2 4

]

.

11. Calcule os seguintes determinantes:

(a)

∣
∣
∣
∣

3 5
−2 −3

∣
∣
∣
∣

(b)

∣
∣
∣
∣

5 −2
−8 4

∣
∣
∣
∣

(c)

∣
∣
∣
∣
∣
∣
∣
∣

3 1 2

2 4 5

2 4 5

∣
∣
∣
∣
∣
∣
∣
∣

(d)

∣
∣
∣
∣
∣
∣
∣
∣

4 3 0

3 1 2

5 −1 −4

∣
∣
∣
∣
∣
∣
∣
∣
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12. Determine todos os valores de λ para os quais o seguinte determinante é nulo.
∣
∣
∣
∣

2− λ 4
3 3− λ

∣
∣
∣
∣

13. Encontre todos os valores posśıveis de c para os quais a seguinte matriz é singular.







1 1 1

1 9 c

1 c 3







14. Para cada uma das matrizes seguintes, calcule (i) det(A), (ii) adj(A), e (iii) A−1.

(a) A =

[
3 5
−2 −3

]

(b) A =

[
5 −2
−8 4

]

(c) A =







3 1 2

2 4 5

2 4 5







15. Utilize a regra de Cramer para resolver os seguintes sistemas:

(a)

{

2x1 + 3x2 = 2

3x1 + 2x2 = 5
(b)







2x1 + x2 − 3x3 = 0

4x1 + 5x2 + x3 = 8

−2x1 − x2 + 4x3 = 2
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de l’Hôpital, 84

de Sarrus, 173

de Simpson, 125

do ponto médio, 123

do trapézio, 124
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