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Abstract 

Background  Ovine footrot caused by Dichelobacter nodosus (D. nodosus) is a contagious disease with serious 
economic and welfare impacts in sheep production systems worldwide. A better understanding of the host genetic 
architecture regarding footrot resistance/susceptibility is crucial to develop disease control strategies that efficiently 
reduce infection and its severity. A genome-wide association study was performed using a customized SNP array 
(47,779 SNPs in total) to identify genetic variants associated to footrot resistance/susceptibility in two Portuguese 
native breeds, i.e. Merino Branco and Merino Preto, and a population of crossbred animals. A cohort of 1375 sheep 
sampled across 17 flocks, located in the Alentejo region (southern Portugal), was included in the analyses.

Results  Phenotypes were scored from 0 (healthy) to 5 (severe footrot) based on visual inspection of feet lesions, fol-
lowing the Modified Egerton System. Using a linear mixed model approach, three SNPs located on chromosome 24 
reached genome-wide significance after a Bonferroni correction (p < 0.05). Additionally, six genome-wide suggestive 
SNPs were identified each on chromosomes 2, 4, 7, 8, 9 and 15. The annotation and KEGG pathway analyses showed 
that these SNPs are located within regions of candidate genes such as the nonsense mediated mRNA decay associ-
ated PI3K related kinase (SMG1) (chromosome 24) and the RALY RNA binding protein like (RALYL) (chromosome 9), 
both involved in immunity, and the heparan sulfate proteoglycan 2 (HSPG2) (chromosome 2) and the Thrombospodin 
1 (THBS1) (chromosome 7) implicated in tissue repair and wound healing processes.

Conclusion  This is the first attempt to identify molecular markers associated with footrot in Portuguese Merino 
sheep. These findings provide relevant information on a likely genetic association underlying footrot resistance/sus-
ceptibility and the potential candidate genes affecting this trait. Genetic selection strategies assisted on the informa-
tion obtained from this study could enhance Merino sheep-breeding programs, in combination with farm manage-
ment strategies, for a more effective and sustainable long-term solution for footrot control.
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Introduction
Ovine footrot is a highly contagious disease caused by 
Dichelobacter nodosus (D. nodosus), a gram-negative 
anaerobic bacterium [1], which, depending on its viru-
lence, could result in an acute necrotic disease. Footrot 
affects the epidermal tissues of the interdigital skin and 
horn of the hooves, being the main cause of lameness, 
decreased animal welfare and economical concern for 
sheep farming worldwide [2]. Affected sheep display a 
wide spectrum of clinical manifestations that vary from 
a mild interdigital dermatitis to under-running and sep-
aration of the hard horn of the hoof in severe stages of 
footrot. These clinical manifestations usually lead to poor 
feed intake, production losses, low fertility and reduc-
tion in milk yield [3–7]. New strategies for prevention 
of footrot are required. Treatment and control methods 
implemented so far are costly and rely mainly on the use 
of antibiotics and chemicals in footbaths which induce 
bacterial resistance, being a major challenge to profitable 
sheep farming [8–11].

Footrot incidence and severity are essentially modu-
lated by three key factors: i) environmental conditions; 
ii) virulence of D. nodosus strains; and iii) host genetics 
[2, 12, 13]. Reports indicate that footrot innate resist-
ance is a heritable trait and that some breeds, such as 
Merino sheep, are particularly susceptible to mild foot-
rot stages showing low recovery rates [14]. Moreover, 
under the same environmental conditions, the innate 
resistance varies considerably both between and within 
breeds. Understanding the genetic basis of footrot resist-
ance would facilitate the selection of more resilient ani-
mals using molecular techniques [15–17]. The finding 
of molecular markers associated with footrot resistance/
susceptibility would be a powerful aid in the develop-
ment of new methods for disease control based on breed-
ing strategies [6, 18].

The genetic architecture underlying host resistance 
traits is usually complex and generally determined by 
multiple gene interactions. With the advent of cost-effec-
tive high-throughput genotyping methods, genome-wide 
association studies (GWAS) have been widely used to 
identify disease related variants in livestock. Such studies 
have contributed to a better understanding of the com-
plex biological processes of disease pathogenesis, leading 
to the identification of molecular markers tightly linked 
to resistance genes [19, 20]. Extensive efforts have been 
made to investigate the pathogenesis and aetiology of 
footrot in sheep [21–25], but few studies were focused to 
understand innate genetic resistance. The first attempt to 
investigate the genetic association to footrot resistance/
susceptibility in sheep resulted in the identification of 
genetic variants involved in the major histocompatibil-
ity complex (MHC) class II genes [26]. More recently, 

a first GWAS used the Illumina OvineSNP50 array to 
identify seven SNPs significantly associated with footrot 
resistance/susceptibility in Texel sheep on a chromo-
some-wide level [27]. Subsequently, Niggeler et  al. [28] 
genotyped Swiss White Alpine sheep with the Illumina 
Ovine SNP600K array and reported one SNP located on 
the Multiple PDZ Domain Crumbs Cell Polarity Complex 
Component (MPDZ) gene showing significant genome-
wide association with footrot resistance/susceptibil-
ity. The function of this gene, located on chromosome 
2, is not well established but it has been reported to be 
involved in the maintenance of tight junctions integrity 
[29]. In general, these studies highlighted that footrot 
resistance/susceptibility is a complex trait determined by 
the interplay of multiple genetic mechanisms. This rein-
forces further research is needed for a more comprehen-
sive understanding of footrot.

Previous GWAS studies relied on the use of commer-
cially available SNP arrays. However, these markers are 
susceptible to ascertainment bias due to the limited num-
ber of individuals and breeds used in the array design 
[30–32]. As a result, the use of commercial SNP arrays 
could miss informative variants segregating specifically 
in local breeds.

The objective of this study was to identify genomic 
regions and candidate genes with variants significantly 
associated with footrot resistance/susceptibility in Portu-
guese Merino breeds and crossbred animals reared in the 
Alentejo region (south of Portugal). A customized SNP 
array from whole-genome sequence data collected in 
these native breeds was developed to carry out a GWAS 
for footrot resistance/susceptibility.

Materials and methods
Sampling and phenotypic data
Sampling was carried out during clinical diagnostics 
of footrot infection in 17 flocks distributed throughout 
the Alentejo region in southern Portugal. These flocks 
were identified based on epidemiologic inquiries to 
sheep breeders from the Alentejo region conducted by 
the project team to evaluate the prevalence of footrot 
(described in more detail in Albuquerque et al. [33] and 
Supplementary Note). The flocks were visited twice and 
each sheep was scored at least once. The set of animals 
sampled in the two visits per flock was not exactly the 
same due to unforeseen situations such as death, ani-
mals being sold or participation in fairs. A total of 1436 
animals, including Merino Branco (N = 356), Merino 
Preto (N = 142) and crossbreds (N = 938) were sampled 
and information regarding their breed, flock, sampling 
month and age was also registered. No control meas-
ures or footrot treatment were applied prior to animal 
inspection and sampling to avoid biased results. Briefly, 
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whole blood (10  ml) was collected from the jugular 
vein, using vacuum EDTA collection tubes and stored 
at -20ºC for subsequent DNA extraction. Foot lesions 
were scored following the Modified Egerton System 
[34], ranging from 0 (healthy) to 5 (severe footrot), 
based on visual inspection of each hoof (left and right 
hindlimb, left and right forelimb). Hence, each animal 
had a potential highest footrot score (HFS) per hoof of 
5 and a potential maximum global footrot score (GFS) 
of 20, per scoring event. In addition, a weighting factor 
was defined to better account for the overall impact of 
the injury on the animal. Scores of three, four and five 
were given a weighting factor of 2.5, 3 and 3.25, respec-
tively. The original individual foot score was converted 
into an index by multiplying it by the respective weight-
ing factor, resulting in individual foot index scores of 
0, 1, 4, 7.5, 12 and 16.25 (Table S1). This strategy was 
adopted to avoid an animal with no signs of infection 
from having a phenotype worse than an animal with a 
mild or severe footrot score. Hence, each animal had a 
potential maximum index footrot score (IFS) of 65, per 
scoring event, which was the phenotypic value consid-
ered for the association analyses. In addition, two alter-
native scenarios were used for comparison purposes: 
one considering HFS as the phenotype of interest, clas-
sified in three categories (i – no signs of footrot infec-
tion, scores 0 and 1; ii – mild signs of footrot infection, 
scores 2 and 3; iii – severe signs of footrot infection, 
scores 4 and 5); and the other based on GFS. As men-
tioned above, some of the animals had only a single 
score, so a uniform criteria was used by considering 
the highest global score between the two visits. As a 
complementary diagnostic method, the presence of 
the main causal agent, i.e. D. nodosus, was monitored 
in ~ 18% and 15% of the animals included in our study 
by qPCR and metagenomic analyses, respectively [25, 
33]. Details on flock locations, number of animals sam-
pled per flock and breed(s) are shown in Table S2.

Heritability estimates were based on footrot records 
(score 0—not affected vs score > 0—affected) collected 
in 437 ewes (239 Merino Branco and 198 Merino Preto) 
registered in the Flockbook from three flocks, between 
2016 and 2018. The pedigree matrix included genea-
logical information on a total of 1229 animals (136 
rams and 1093 ewes) comprising ~ 75% of animals with 
known parents. We used two methods (Frequentist—
REM with MTDFREML software and Bayesian—Gibbs 
sampling with TM software). In both methods, the 
model used included, in addition to the random effects 
(genetic and permanent environmental effects), the 
fixed effects of the farm, the season of the score evalua-
tion and the age of the animal [35].

SNP panel design
For the SNP panel design, whole-genome resequenc-
ing data obtained by Gaspar et  al. [36] for 39 sheep, 
including: 10 Merino Branco; 10 Merino Preto; and 19 
crossbreds, was used. The criteria used for SNP selec-
tion and probe design were the following: i) minor 
allele frequency (MAF) > 1%; ii) call rate per SNP > 90%; 
iii) flanking region of 150 base pairs (bp) upstream and 
downstream of the SNP position; and iv) no variable 
positions allowed (SNPs or INDELs) within these flank-
ing regions. SNPs in coding regions were prioritized 
and an even distribution of the SNPs across all chromo-
somes was assured. The SNP panel included a total of 
47,779 SNPs with known position across the 26 ovine 
autosomes of the sheep reference genome Rambouillet 
version 1.0 (GCA_002742125.1 Oar_rambouillet_v1.0). 
The genomic locations of the SNPs used for genotyping 
are shown in Table S3.

Genotyping, quality control and imputation
Extraction of genomic DNA was done by service acqui-
sition (LGC science Group, Teddington, UK). Samples 
were genotyped using our customized SNP panel at 
IGATech (IGA Technology Services, Udine, Italy), fol-
lowing a targeted genotyping system based on single 
primer enrichment technology (Allegro, Tecan Genom-
ics). The PLINK software v.1.90b5.2 [37] was used to 
assess SNP quality based on the following criteria: i) 
Minor allele frequency > 1%; ii) call rate per SNP > 90%; 
and (iii) no extreme deviation from Hardy–Weinberg 
equilibrium (P < 10–6). Additionally, individuals with 
more than 20% missing data were excluded from the 
analysis. After quality control, 29,716 SNPs and 1375 
samples were retained and used in the GWAS. Finally, 
missing genotypes were imputed using Beagle software 
v.5.4 [38].

Genome‑wide association study
Prior to the GWAS, a molecular kinship matrix 
between individuals was obtained with the VanRaden 
kinship algorithm [39]. Then, the GWAS was con-
ducted using the function “GWAS” implemented in the 
R package rrBLUP v.4.6.2 [40] and a mixed linear model 
(MLM) approach [41], as follows:

where y is a vector of phenotypic values; X is a matrix 
of fixed effects; β is a vector containing fixed effects, 
such as breed, flock, sampling month, age class 
(lambs < 12  months; hoggets 12–24  months; and 
adults > 24  months) and the kinship matrix (K); Z and 
S are incidence matrices of the model; g models the 

y = Xβ + Zg + Sτ + ε
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genetic background as a random effect with Var[g] = Kσ2, 
where σ2 is the total genetic variance; τ models the addi-
tive SNP effect as a fixed effect; ε is a vector of residual 
variance. The family-wise error rate was controlled by 
using an adjusted Bonferroni p-value based on the esti-
mated number of independent SNPs. The adjusted 
genome-wide significance threshold was -log10 (p = 0.05 
/ N) (2.06 × 10−6), where N is the number of independ-
ent SNPs that was determined using a variant pruning 
estimator (-indep-pairwise 50 10 0.2) in the PLINK soft-
ware (N = 24,211). In addition, a genome-wide sugges-
tive threshold of -log10 (p = 1 / N) (4.13 ×  × 10–5) was 
considered. The R package “qqman” [42] was used for the 
graphical visualization of the results. A quantile–quan-
tile (QQ) plot was generated to represent the deviation 
of the observed p-values from the null hypothesis, which 
is useful to determine potential population stratification 
or analytical approach biases based on the comparison 
of the observed and expected (null) distributions of the 
data. Candidate genes within the range of genome-wide 
significant and suggestive SNP regions were identified 
using the Ensembl database (http://​www.​ensem​bl.​org) 
and the gene annotation information of the Oar_ram-
bouillet_v1.0 reference genome. Moreover, the biologi-
cal processes, cell components and molecular function 
of the associated genes were inferred through the Gene 
Ontology terms [43] and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [44] using the Database for Anno-
tation, Visualization and Integrated Discovery v.2022q4 
(DAVID) [45, 46].

Results
SNP panel selection and distribution
The selection of SNPs to be used in the assay was based 
on whole-genome resequencing data from 39 Merino 
Branco, Merino Preto and crossbred animals sampled 
in the south of Portugal [36]. A total of 47,779 auto-
somal SNPs were used for genotyping (Figure S1) of 
which 10,053 (21.04%) were exonic, 12,655 (26.49%) 
intronic, 15,616 (32.68%) intergenic, 6959 (14.56%) 
were in 3’ untranslated regions (UTR) and 2496 (5.22%) 
in 5’ UTRs (Figure S1). The SNPs located in coding 
regions included 6636 (66.01%) and 3291 (32.74%) asso-
ciated with synonymous and non-synonymous effects, 
respectively. On average, the distance between SNPs 
was 53.54  kb. The maximum distance between neigh-
bouring SNPs was found on chromosome 12, where no 
SNPs were detected in a gap of approximately 5.57 Mb. 
A graphical visualization of the number of selected 
SNPs per chromosome is provided in Figure S2.

Footrot statistics
Descriptive statistics for the footrot scores of the animals 
included in this study are shown in Table S4. A total of 
1436 sheep from 17 different flocks were phenotyped 
using the Modified Egerton scoring scale system (scores 0 
to 5) based on clinical signs of footrot. The distribution of 
animals per flock is presented in Figure S3. The IFS, GFS 
and HFS varied from 0 to 39 (mean = 2.87 ± 5.14), 0 to 14 
(mean = 1.62 ± 2.31) and 0 to 5 (mean 0.89 ± 1.09), respec-
tively (Table S4), with most of the animals exhibiting no 
clinical signs of disease (score 0). The distribution of phe-
notypic scores per breed is plotted in Figure S4. The com-
plementary diagnostic methods showed that for three 
flocks the causal agent was not detected, namely: I (n = 6), 
J (n = 14) and Q (n = 7) which represented ~ 6%, 32% and 
7.5% of the animals sampled, respectively. However, 
sheep in flocks I and J had feet scores that varied from 
0 to 2, and those in flock Q varied from 0 to 4, thus the 
animals of these flocks were also included in the GWAS. 
Indeed, it has been shown that about 43% and 59% of the 
animals with score 2 feet show under-running of the hoof 
(score 3) within 5 or 10 days, respectively [47]. Estimates 
of footrot heritabilities from the frequentist and Bayesian 
approaches were 0.127 and 0.130, respectively.

Genome‑wide association analysis
Following quality control procedures, a filtered set of 
29,716 autosomal SNPs and 1375 animals were used for 
the association analysis to identify variants and genes 
linked to footrot resistance/susceptibility in Portu-
guese Merino and crossbred animals. Considering the 
adjusted Bonferroni genome-wide significance thresh-
old of p = 2.06 × 10–6, the GWAS results based on the 
IFS phenotypes revealed three genome-wide significant 
SNPs located on chromosome 24. The proportion of phe-
notypic variance explained by the significant SNPs was 
between 1.33% and 1.37%. Additionally, six genome-wide 
suggestive SNPs were detected each on chromosomes 2, 
4, 7, 8, 9 and 15 (Fig. 1). Further details on the location, 
significance level and annotation of these SNPs are sum-
marized in Table 1.

A major critical problem in GWAS is the false positive 
findings that arise from population structure and fam-
ily relatedness. Thus, a QQ plot was obtained to verify 
the validity of the p-values and identify population struc-
ture that might not have been considered in the statistical 
model. Homogeneity among populations was also inferred 
by kinship analysis, which indicated slight population 
stratification (Figure S5). The QQ plot obtained from the 
GWAS shows that the data follow a normal distribution, 
without evidence for systematic bias from population 

http://www.ensembl.org
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structure (Fig.  2). Furthermore, the deviation of the SNP 
p-values observed from their expected probability at the 
tail of the distribution suggests a strong association effect 
on footrot resistance/susceptibility, which is in accordance 
with the results shown in the Manhattan plot (Fig. 2).

When the alternative GFS scores were used as the 
main phenotype, two genome-wide significant SNPs 

were identified on chromosome 24 (16,664,127  bp; 
16,683,234  bp), which were in common with the IFS 
approach. In addition, six genome-wide suggestive 
SNPs were located on chromosomes 2 (13,704,688  bp; 
260,442,170  bp; 194,217,323  bp), 4 (42,346,212  bp), 9 
(100,456,022  bp) and 24 (16,688,212  bp) (Figure S6A), 
of which one was identified as genome-wide significant 

Fig. 1  Manhattan plot displaying the results of the genome-wide association analysis for footrot. The left vertical axis indicates the –log10 
of p-values, while the horizontal axis indicates chromosomes and physical map positions of the SNPs. Red and blue lines indicate the thresholds 
for Bonferroni-adjusted genome-wide significant and suggestive level, respectively

Table 1  Summary of genome-wide significant and suggestive SNPs associated with footrot resistance/susceptibility in Portuguese 
Merino and crossbred animals

Chr chromosome, A1 allele 1, A2 allele 2

Chr Position (bp) A1 A2 p-value Genomic Region Functional effect Gene

Genome-wide significant SNPs
  24 16,664,127 G T 1.23E-07 UTR3 - SMG1

  24 16,683,234 G A 1.69E-07 exon synonymous SMG1

  24 16,688,212 T C 6.16E-07 exon synonymous SMG1

Genome-wide suggestive SNPs
  2 260,442,170 C T 2.93E-06 exon synonymous HSPG2

  9 100,456,022 T G 4.49E-06 intron - RALYL

  8 13,714,405 G A 9.38E-06 UTR5 - CENPW

  4 42,346,212 T G 2.08E-05 intron - PCLO

  7 3,506,174 C G 2.06E-05 Intergenic - LOC106991156 
(dist = 553,763); THBS1 
(dist = 161,183)

  15 57,714,827 G A 3.66E-5 intron - KLHL35



Page 6 of 11Gaspar et al. BMC Genomics          (2024) 25:100 

and three as genome-wide suggestive in the IFS 
approach.

When the HFS scores were used, no significant 
genome-wide SNPs were identified. However, two 
genome-wide suggestive SNPs were found on chromo-
somes 19 (45,832,644 bp) and 24 (38,953,050 bp) (Figure 
S6B).

Gene annotation and pathway analyses
The SNPs associated with footrot resistance/suscep-
tibility were found within regions of known genes in 
the GCA_002742125.1 Oar_rambouillet_v1.0 genome 
reference (Table  1). Three genome-wide significant 
SNPs were found on chromosome 24 within the non-
sense mediated mRNA decay region of the PI3K related 
kinase (SMG1) gene. Genome-wide suggestive SNPs 
were located within an exonic region of heparan sulfate 
proteoglycan 2 (HSPG2) coding gene on chromosome 
2, the UTR5 region of Centromere protein W (CENPW) 
coding gene on chromosome 8 and an intronic region 
of RALY RNA binding protein like (RALYL), Piccolo 
Presynaptic Cytomatrix (PCLO) and Kelch like family 
member 35 (KLHL35) coding genes on chromosomes 9, 
4 and 15, respectively. Furthermore, one genome-wide 

suggestive SNP was located in the intergenic region, 
161 kb away from the Thrombospodin 1 (THBS1) cod-
ing gene, on chromosome 7.

For a better understanding of their function, the 
candidate genes were functionally annotated with 
DAVID web server (Table S5) to retrieve information 
on gene ontologies and KEGG pathways. The results 
of the functional annotation showed that SMG1 and 
THBS1 have ontologies related to known immunologi-
cal processes and wound healing, including nonsense-
mediated mRNA decay (GO:0000184), cell adhesion 
(GO:0007155) and heparin-binding (GO:0008201). 
Additionally, HSPG2 and PCLO are involved in the 
reinforcement of the physical cellular structures, 
namely the extracellular matrix (GO:0031012), base-
ment membrane (GO:0005604) and cell projection 
(GO:0042995). Regarding the KEGG pathways, the 
results show that SMG1, HSPG2 and THBS1 are linked 
to seventeen pathways (Table S5). These pathways were 
mainly associated with the activation and regulation of 
innate immune cells, such as the Rap1, p53, PI3K-Akt 
and TGF-beta signalling pathways, necroptosis, mRNA 
surveillance, ECM-receptor interaction and proteogly-
cans in cancer.

Fig. 2  Quantile–quantile (QQ) plot of genome-wide association results for footrot. Top and bottom horizontal dashed lines indicate the thresholds 
for Bonferroni-adjusted genome-wide significant and suggestive level, respectively
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Discussion
The GWAS analysis to investigate the genetic basis of 
footrot resistance/susceptibility in the Portuguese native 
breeds Merino Branco and Merino Preto, and a popula-
tion of crossbred sheep, resulted in the identification of 
three and six genome-wide significant and suggestive 
SNPs, respectively (Table  1). The three significant SNPs 
were located within the SMG1 coding gene on chromo-
some 24, which could indicate a promising candidate 
region affecting footrot resistance/susceptibility. In a 
study of Texel sheep [27], a chromosome-wise significant 
SNP associated with footrot had already been identified 
in chromosome 24 (Oar_v3.1, 24:962,868). SMG1 is a 
member of the PIKK (phosphoinositide 3-kinase related 
kinases) family and plays a critical role in the DNA dam-
age response, resistance to oxidative stress, apoptosis as 
well as in the nonsense-mediated mRNA decay (NMD). 
The latter is an essential surveillance mechanism that 
modulates cellular homeostasis, response to stress, 
inflammation and immune regulation in reaction to 
pathogen infections [48–51]. In mice, decreased SMG1 
expression levels led to increased basal inflammation 
and subsequent development of either cancer or chronic 
inflammatory disorders [52].

The immune response is triggered by a complex bio-
logical network system as a reaction to pathogens. It can 
be classified as either innate, which is non-specific, or 
adaptive which is highly specific [53]. While the innate 
immune system constitutes the first line of defence, 
representing an essential mechanism to prevent the 
spread of infection and maintain homeostasis, the adap-
tive immune system is the basis for the development of 
an immunologic memory that can lead e.g. to an effec-
tive immunization against infectious diseases [53–55]. A 
genome-wide suggestive SNP was identified on chromo-
some 9 within the intronic region of the RALYL coding 
gene, indicating a possible involvement in the response to 
footrot infection. However, additional research is needed 
to uncover its specific role. Recent evidence suggests that 
post-transcriptional regulatory machinery, controlled by 
RNA-binding proteins, is essential for the maintenance 
and modulation of immune responses [56, 57]. RALY 
RNA binding protein is a member of the heterogeneous 
nuclear ribonucleoproteins involved in mRNA splicing 
and metabolism processes [58]. A recent study described 
the role of RALY in the expression regulation of immu-
nity and inflammatory response-related genes, by mod-
ulating the splicing of regulatory factors and alternative 
splicing, despite it remains poorly characterized in mam-
mals [59].

Interdigital skin ulcerations and necrotic lesions are 
among the most frequent clinical manifestations of 
severe footrot infections [4, 60]. When a cutaneous injury 

occurs, a range of complex molecular processes is trig-
gered towards wound healing and reestablishment of tis-
sue structure and function [61, 62]. The results suggest 
a potential association of HSPG2 with footrot infection, 
as a genome-wide suggestive SNP was identified within 
its exonic region on chromosome 2. The HSPG2 protein, 
also known as Perlecan, is a basement membrane of the 
extracellular matrix (ECM) that plays a key role in both 
structural and regulatory mechanisms of wound repair 
activity through all phases of the healing process. HSPG2 
mediates both scaffold support and signal transduction 
events by mainly controlling a range of growth factors 
activity to promote cell proliferation and differentia-
tion, ECM organization and metabolism, as well as tissue 
remodelling [63–66]. It is worth highlighting the find-
ings of a study that identified changes in HSPG2 patterns 
significantly associated with delayed wound repair and 
malformation of connective tissues rich in fibrillar col-
lagens [67]. In addition, HSPG2-deficient keratinocytes 
have been reported to form a strikingly thin and poorly 
organized epidermis [68, 69]. HSPG2 has a crucial role 
in the reinforcement of physical barriers through which 
pathogens must penetrate, as it mediates both the sur-
vival and terminal differentiation events of keratinocytes, 
the major cell type of epidermis, being essential to epi-
dermal integrity. The role of HSPG2 in relation to footrot 
could be split in two distinct stages: it could be involved 
in the reinforcement of structural defences as a primary 
physical barrier against pathogens; following infection, it 
could act in wound healing and tissue recovery. Recently, 
Niggeler et al. [28] reported one SNP significantly asso-
ciated with footrot resistance in Swiss White Alpine 
sheep [70–72] located on chromosome 2 (Oar_v3.1, 
2:81205092), upstream of the multi-PDZ domain protein 
1 coding gene (MUPP1). Likewise, this gene seems to be 
associated with the reinforcement of the physical barrier 
function and integrity.

On chromosome 7, a genome-wide suggestive SNP was 
identified in an intergenic region 161  kb away from the 
THBS1 coding gene. THBS1 is an extracellular calcium-
binding multifunctional protein, secreted by endothelial 
cells and fibroblasts, involved in a broad spectrum of cel-
lular processes, such as the initial inflammatory events 
throughout the chronic inflammatory processes and 
tissue repair including cell adhesion, migration, prolif-
eration and extracellular matrix expression and organiza-
tion [70–72]. THBS1 is known to be a major activator of 
transforming growth factor-Beta (TGF-β) that mediates 
multiple physiological processes such as wound heal-
ing, cell proliferation, extracellular matrix formation and 
T-cells immune responses [73–75]. TGF-β plays a cru-
cial role indistinct phases of the wound healing process, 
including epithelialization and tissue regeneration [76, 
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77]. TGFβ1 may have a therapeutic potential for atopic 
dermatitis as it is an important fibrogenic and immu-
nomodulatory factor that regulates cellular processes 
implicated in the suppression of atopic dermatitis skin 
lesions [78, 79].

A genome-wide suggestive SNP was located on chro-
mosome 15, within the intronic region of Kelch-like fam-
ily gene KLHL35. An important paralog of this gene is 
KLHL24, which is involved in maintenance of mechani-
cal stability of keratinocytes, the major cell type found in 
the epidermis, and turnover of intermediate filaments, in 
particular of keratin 14 [80, 81]. KLHL35 was associated 
with pyroptosis regulation in cell inflammatory necrosis 
despite being poorly studied [82].

A genome-wide suggestive SNP was found on chromo-
some 8 within UTR5 of CENPW coding gene. However, 
its function in footrot remains unclear. CENPW (cen-
tromere protein W), also known as cancer-upregulated 
gene 2 is suggested to have oncogenic activity as it is 
frequently upregulated in various cancer tissues and is 
known to play an important role in tumorigenesis [83, 
84]. A recent study pointed out the role of CENPW on 
the regulation of gene expression in Treg cells [85].

In this study we identified genetic variants significantly 
associated with footrot resistance/susceptibility in two 
Portuguese native Merino sheep breeds and a popula-
tion of crossbred animals. The candidate genes identified 
have specific roles in immune response against infection 
and wound healing processes. These findings contribute 
to a better understanding of the mechanisms underly-
ing footrot disease in Merino sheep. Nonetheless, footrot 
resistance/susceptibility results from the interaction of 
many genes and is determined by multiple factors other 
than the genetic make-up of the animals. This is reflected 
in the heritability estimates obtained which were slightly 
lower than those previously reported for other breeds, 
i.e. below 13% of the variation between animals is due to 
genetic factors [15, 16, 27]. A limitation of this study is a 
low prevalence of severe footrot lesions in the flocks ana-
lysed which could overestimate the SNP effects observed. 
A major challenge inherent to field sampling conditions 
results from the limitation to carry out repeated scor-
ings to monitor disease progression. This is due to the 
breeders’ need to treat animals before their welfare is 
compromised and could affect comparisons between 
individuals for their susceptibility [47]. As future work, 
it seems important to investigate how host genetic vari-
ation interplays with the footrot microbiome. Hence, 
examining the impact of host genetics on the composi-
tion of the foot-skin microbiome could contribute to fur-
ther clarify the processes involved in footrot resistance/
susceptibility. Identifying likely candidate genes that 
influence the relative abundance of certain taxa in the 

ovine foot-skin microbial communities may offer new 
perspectives to employ in breeding programs aiming to 
prevent footrot.

Conclusion
This study represents a first attempt to infer the genetic 
basis of resistance/susceptibility to footrot in Portuguese 
Merino Branco and Merino Preto breeds and crossbreds. 
The GWAS analysis revealed three genome-wide signifi-
cant SNPs located on chromosome 24 and six genome-
wide suggestive SNPs each located on chromosomes 
2, 4, 7, 8, 9, and 15. We disclosed novel information on 
the candidate genes involved in footrot resistance/sus-
ceptibility, contributing to a better understanding of 
the genetic architecture of this condition in Portuguese 
native sheep. The pratical use of the significant SNPs may 
be limited by the fact that no specific genomics regions 
with a high controbution to the genetic variance were 
identified. Nonetheless, our results could have a positive 
impact on future breeding programs in these breeds, by 
providing additional information aiming to select ani-
mals with the potential to be less susceptible to footrot.
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