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Vogais | Ana Maria Silva (Universidade de Évora)
Gabriel López Rodŕıguez (Universidad de Huelva - Dpto. Ingenieŕıa Eléctrica y
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Summary

In this work, the modelling and measurement of direct and circumsolar normal
irradiance (DNI and CSNI, respectively) is studied, as well as their impact on the
energy generation of concentrating solar power systems (CSP). To model DNI, two
approaches are used: (i) developing a fast and simple model to estimate diffuse
horizontal irradiance, and consequently, DNI; and (ii) assess the performance of three
distinct state-of-the-art models with different degrees of complexity. Regarding the
first approach, it was found that the developed model that considers the climate
zone was able to outperform the models available in the literature. Regarding the
second approach, it was found that the radiative transfer model libRadtran and
the parametrization model SMARTS are the models that provide the best DNI
predictions. In this way, libRadtran is used to generate a database of DNI and CSNI
values. Then, a new CSNI model is developed to estimate CSNI for a half-opening
angle of 2.5◦ that only requires solar radiation data as input. It was found that the
proposed CSNI model outperforms the models available in the literature in almost all
of the locations analysed. However, the half-opening angles of common CSP systems
are lower than 2.5◦. Therefore, an upgrade of the CSNI model is developed that
enables the determination of CSNI for a specific half-opening angle. The improved
model is then able to predict the CSNI that reaches the CSP receiver and estimate
the variation in the system’s intercept factor caused by CSNI variation. It was found
that discarding CSNI could lead to up to a 7% difference between the measured DNI
and the DNI that is captured by the CSP system. Furthermore, it was also found
that higher rim angles are needed if the impact of CSNI variation is to be mitigated
in parabolic trough concentrators.
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Resumo

Irradiância Direta Normal e radiação circunsolar: modelação, medição e
impacto em Sistemas de Concentração Solar

Neste trabalho, são estudadas a modelação e a medição da irradiância direta normal
e circunsolar direta normal (DNI e CSNI, respetivamente), assim como o seu impacto
na geração de energia em sistemas de concentração solar (CSP). São usadas duas
abordagens para modelar a DNI: (i) desenvolvimento de um modelo simples e rápido
para estimar a irradiância difusa horizontal e consequentemente a DNI; (ii) avaliar a
performance de três modelos de última geração com diferentes graus de complexidade.
Relativamente à primeira abordagem, verificou-se que o modelo desenvolvido e que
considera a zona climática é capaz de superar os modelos disponíveis na literatura.
Relativamente à segunda abordagem, verificou-se que os modelos de transferência
radiativa libRadtran e de parametrização SMARTS são os que apresentam as melhores
estimativas de DNI. Desta forma, o libRadtran é usado para gerar uma base de dados
de valores de DNI e CSNI. De seguida, é desenvolvido um novo modelo para estimar
a CSNI para um meio-ângulo de abertura de 2.5◦ que apenas necessita de dados de
radiação solar. Verificou-se que o modelo desenvolvido supera os modelos disponíveis
na literatura em quase todos os locais analisados. No entanto, o meio-ângulo de
abertura de sistemas CSP comuns é inferior a 2.5◦. Por isso, foi desenvolvida uma
atualização ao modelo que permite a determinação da CSNI para um meio-ângulo
de abertura específico. O modelo atualizado é capaz de prever a CSNI que chega
ao recetor do sistema CSP e estimar a variação do fator de interceção do sistema
causada pela variação da CSNI. Verificou-se que descartar a CSNI pode levar a uma
diferença de até 7% entre a DNI medida e a DNI que é intercetada pelo sistema CSP.
Verificou-se ainda que para mitigar o impacto da variação da CSNI em concentradores
cilindro-parabólicos é necessário ter rim angles maiores.
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Chapter 1

Introduction

1.1 Preliminary remarks

One of the biggest challenges of society nowadays is to have reliable, affordable and
sustainable energy for all people. To tackle this challenge, the world is slowly shifting
from fossil fuels such as oil and coal, to renewable energies, such as solar energy. The
efforts leading to this shift are commonly called as the energy transition.

Energy transition is a broad subject that includes energy generation, energy
storage, transportation and the efficient and rational use of energy. In this thesis, we
will focus on solar energy capturing and conversion. Solar energy systems can be used
mainly with two goals: to generate process heat (at low and high temperatures) or to
generate electricity. On one hand, process heat can be obtained using plane collectors
(low temperature) and concentrating solar power (CSP) systems (medium and high
temperature). On the other hand, electricity can be generated using photovoltaic
(PV) cells, assembled into a plane module or using concentrating photovoltaic systems
(CPV).

A CSP system uses mirrors/reflectors to concentrate solar radiation in a receiver to
achieve high temperatures. The heat resulting from the concentrated solar radiation
can be used directly as process heat in industrial processes, or it can be used to
generate steam to drive a power cycle and generate electricity. The ability to generate
electrical power and the possibility to store heat instead of electro-chemical storage
(as it’s more reliable and efficient) is what pushes CSP systems as an important part
of the energy generation mix.

Contrary to the PV technology that can generate electricity from global irradiance
on the plane of the modules, CSP systems can only use the direct component of
solar radiation, i.e., direct normal irradiance (DNI). Therefore, the measurement and
modelling of DNI and its circumsolar component (circumsolar normal irradiance,
CSNI) is of major importance for the design and operation of CSP systems. Further-
more, the detailed angular distribution of CSNI within the DNI measurements is of
great interest to accurately determine the effective DNI that is reflected by the CSP
mirrors.

1
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1.2 DNI and circumsolar irradiance modelling

According to ISO 9488:2022 [1], solar radiation refers to the emission and transfer of
energy from the sun in the form of electromagnetic waves or particles. This radiation
can refer to solar exposure, solar energy, solar irradiance or solar radiance [2]. In the
field of solar energy research, the term solar irradiance is commonly used and refers
to the radiant power incident on a surface per unit area (W/m2).

Direct normal irradiance (DNI) is the radiant flux to the area of a plane perpen-
dicular to the sun that is received from a small solid angle centred on the sun’s disk.
Despite the recommended field of view of the sensors used to measure DNI being
5 degrees, it can be measured using instruments that have a field of view up to 6
degrees [3]. However, the solar disk only has an angular diameter of approximately
0.5 degrees. This difference between the field of view of the measuring instruments
and the angular diameter of the sun, leads to the circumsolar issue, and therefore
requires the accurate determination of the circumsolar normal irradiance [4].

Circumsolar normal irradiance (CSNI) is the radiant flux to the area of a plane
perpendicular to the sun, of the radiation scattered by the atmosphere so that it
appears to originate from an area of the sky neighbouring the solar disk [1]. The
study of circumsolar irradiance is important because it enables the determination of
the circumsolar contribution, i.e., the contribution of a specific portion of CSNI to
DNI [1].

Since the field of view of the instruments that measure DNI are larger than the
field of view of the CSP systems, information on the circumsolar contribution is
crucial to accurately determine the energy that effectively reaches the CSP systems,
i.e. the DNI intensity and its angular distribution, as this will ultimately contribute
for a better design and operation of CSP systems, and therefore, higher energy
generation and efficiency..

On the same note, information on the angular distribution of CSNI can also
be useful when carrying out instrument calibration. Despite the somewhat recent
standardization of the aperture angle of field pyrheliometers, there are still pyrhe-
liometers in operation with different aperture angles. In this way, information on
CSNI when performing instrument calibration is useful in the cases when reference
and field pyrheliometers have different aperture angles.

CSNI intensity strongly depends on atmospheric constituents such as aerosols
and clouds. Aerosols are solid or liquid particles suspended in the atmosphere that
can be directly produced in the atmosphere through complex chemical reactions
or emitted to the atmosphere as particles. They can be originated from natural or
anthropogenic processes (e.g. biomass combustion, urban pollutants, marine salt
or mineral dust). In the presence of aerosols, DNI is scattered or absorbed (less
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frequent), depending on the size and type of aerosols. Regarding clouds, CSP cannot
operate under dense water clouds but its operation is possible in the presence of thin
cirrus clouds, because DNI can still be transmitted through them, despite having its
intensity and distribution altered due to scattering processes.

The scattering effect on DNI caused by aerosols and/or thin cirrus clouds results
in a transfer of radiation from the solar disk to the circumsolar region, which in
turn results in a larger circumsolar contribution, i.e., higher CSNI. Therefore, it is of
great importance to accurately characterize the circumsolar contribution, which in
turn will result in a more accurate characterization of DNI, and, consequently, in an
improvement of CSP systems design, operation and energy generation.

To gather information on DNI and CSNI, two approaches are commonly used:
to use instruments to directly or indirectly measure these quantities, and/or to use
mathematical models with several degrees of complexity to estimate these quantities.
In the next sections, DNI and CSNI modelling and measurement approaches are
briefly addressed and reviewed.

1.2.1 Radiative transfer models

Radiative transfer models (RTMs) are detailed models that are used to estimate
the radiation field within different atmospheric characteristics as well as surface
conditions [5, 6]. These models can be used to determine the solar irradiance reaching
a given surface, hence their application in solar energy, but they can also be used in
numerous other research areas such as atmospheric chemistry, weather prediction or
remote sensing [7].

RTMs are able to accurately describe the conditions of the atmosphere at a given
instant and location, addressing details such as trace gas profiles, aerosol profiles,
water vapour, and water and ice clouds to name a few [7]. Through this detailed
characterization, RTMs are able to evaluate the broadband or spectral, downwelling
or upwelling, irradiances, radiances or reflectances, in different spectral regions and
pressure levels in the atmosphere [8]. This high level of detail in both input and
output of RTMs is what allows to use them as reference (the most accurate) in solar
radiation modelling studies (e.g. [8, 9]).

One of such radiative transfer models is libRadtran [7]. LibRadtran comprises a
library of radiative transfer routines and programs that allows the user to setup and
modify the atmospheric constituents, such as molecules, aerosol particles, water and
ice clouds, and define a surface as lower boundary. It is also possible to choose from
several solvers to the radiative transfer equation such as the discrete ordinate radiative
transfer solver (DISORT) [10] or a Monte Carlo solver (MYSTIC) [11, 12, 13, 14, 15].
LibRadtran has been used in many studies available in the literature, both in the
atmospheric sciences and in the solar energy engineering fields (e.g. [16, 17, 18]).
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Another example of a radiative transfer model is the MODerate resolution at-
mospheric TRANsmission (MODTRAN) [19]. MODTRAN computes line-of-sight
atmospheric spectral transmittances and radiances across the entire solar radiation
spectrum (from infrared to ultraviolet). The atmosphere is modelled using vertical
profiles of its constituents which can be defined through built-in routines or by user-
specified radiosonde or climatological data. Similarly to libRadtran, MODTRAN is
also found in several studies available in the solar energy literature (e.g. [9, 20, 21]).

The main advantages of RTMs are related to the detail of inputs and outputs.
Regarding the inputs, RTMs are able to use information on almost all of the possible
atmosphere’s constituents, which gives them the capacity to accurately describe the
atmospheric conditions at a given instant and location. This translates into more
precise predictions of solar irradiance on any user-defined surface. Thus, regarding
the outputs, RTMs are not only able to provide both spectral and integrated data,
but can also predict the two components of solar irradiance that reach the Earth’s
surface, namely direct and diffuse irradiances (DirHI and DHI, respectively, when
considering the horizontal plane). RTM models are also able to compute the sky
radiance, which after integration over both zenith and azimuth angles can provide
information on the circumsolar irradiance.

However, this high level of detail also has its drawbacks that prevent RTMs to be
widely used in solar energy engineering, the most important being the difficulty on
accessing all of the required inputs to accurately characterize the atmosphere and
being arduous to run for a large set of data due to the management of all inputs,
complexity of the model and required computation time and power.

1.2.2 Parametrization models

When simulating solar irradiance, it is common to firstly simulate the clear-sky
irradiance and then to superimpose the impact of clouds [22]. Because of this, the use
of radiative transfer models (RTMs) as the reference model is of major importance
in solar energy. However, such models require a set of atmospheric inputs that are
not always readily available, are more difficult to operate and run, and are thus
take more time to provide results. For these reasons, parametrization models were
developed.

A parametrized model is a model that provides solar irradiance predictions based
on a number of simplifications of RTMs. These simplifications can be either of the
physical phenomena that occur in the atmosphere or based on empirical approxima-
tions. In this way, parametrization models are able to offer better predictions than
entirely empirical models, but also usually require more computation time and power
and higher input data quality and/or quantity.

One example of a parametrization model is the Simple Model of the Atmospheric
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Radiative Transfer of Sunshine (SMARTS) [23, 24]. SMARTS is a simple transmit-
tance parametrization that is able to predict direct, diffuse, global and circumsolar
irradiance on horizontal or tilted surfaces. It allows the user to choose from ten
reference atmospheres that consist of different vertical profiles of temperature, pres-
sure and concentration of the most common gases. The DNI is determined using
the extra-terrestrial irradiance (taking into account the variation of the sun-earth
distance) and several transmittances for different extinction phenomena, namely
Rayleigh scattering, absorption by nitrogen dioxide, ozone, uniformly mixed gases,
water vapour and aerosol extinction. Regarding CSNI, a correction factor is used to
predict the irradiance measured by radiometers with a field of view larger than the
solar disk. This has to due with the aforementioned scattering of the sun rays near
the vicinity of the sun caused by aerosols and cirrus clouds. In this way, SMARTS
is able to estimate all components of the solar radiation that reach a given surface
and are of importance for solar energy, namely GHI, DNI, DHI and CSNI. Some
examples of the use of the SMARTS model in solar energy engineering can be found
in [8], [25] and [26].

Another example of a parametrization model is McClear [27]. McClear is a clear-
sky model (a model that is only intended to predict solar irradiance in cloudless
skies) that was created to use the data from the Monitoring Atmosphere Composition
and Climate (MACC) project. This model uses an abacus (more known as a lookup
table) to estimate the clearness index (ratio between the global horizontal irradiance
at the Earth’s surface and at the top of the atmosphere) and direct clearness index
(ratio between the direct normal irradiance at the Earth’s surface and at the top of
the atmosphere) according to solar zenith angle, ground albedo, elevation and other
parameters that describe the optical state of the atmosphere. The main purpose of
this model is to estimate DNI and GHI at the surface under clear-sky conditions.
The McClear model has been used in several studies available in the literature, such
as in [8], [28] and [29], to name a few.

Regarding circumsolar irradiance, the availability of parametrization models is
very low. A remarkable example is the work by Sun et al. [30]. In this study, the
authors developed a phase function scaling method to determine DNI and CSNI.
This method was incorporated in two other models to estimate DNI, resulting on
improved DNI estimates because of the inclusion of CSNI.

The major issue of parametrization models is to accurately model extreme condi-
tions such as high aerosol loads, high site elevations and low solar altitudes [8]. This
issue poses a quite inconvenient problem, since high potential sites for installing solar
energy systems usually have one or more of the atmospheric conditions mentioned
above. However, parametrization models still remain one of the most effective ways
to generate solar radiation data, getting the best trade-off between model accuracy,
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input data quality/quantity and modelling speed.

1.2.3 Empirical models

Empirical models are simple mathematical relationships between different parameters.
These mathematical equations can use several input parameters (e.g. atmospheric
parameters like the ambient temperature or solar ratios such as clearness index)
and have different degrees of complexity (e.g. linear, cubic, exponential, etc.). An
example of such empirical models is the model from the American Society of Heating
Refrigeration and Air Conditioning Engineers (ASHRAE) [31], which uses the day
of year to estimate the clear-sky DNI. Many other models in this category can be
found in the literature, and the reader is advised to look into more detailed reviews
on this subject like the one by Ruiz-Arias and Gueymard [28] for more in this topic.

A more specific and widely used type of empirical models are the so-called
separation models. Separation models are simple and empirical models that are used
to separate the diffuse and direct components of GHI. These models use the clearness
index (ratio between the GHI and the extra-terrestrial horizontal irradiance) and
other parameters, to estimate de diffuse fraction (ratio between the DHI and GHI).
The majority of separation models available in the literature only require GHI as
input (e.g. [32, 33, 34]), but there are some that use more than one predictor in an
attempt to increase model performance (e.g. [35, 36, 37]). Despite the number of
predictors, separation models are able to predict DHI and DNI (through the use
of the so-called closure equation: GHI = DHI + DNI · cos(θ), where θ is the solar
zenith angle) in a very fast and simple way.

However, since separation models are empirical and simple, their performance
is not the most accurate; there is a trade-off between fastness and simplicity and
accuracy. An extensive review of such models was presented in [38]. In this work, the
authors analysed the capability of 140 separation models with different predictors
to determine DNI. It was found that model performance was related to specific
conditions in the locations under study (e.g. atmospheric turbidity) as well as to the
number of predictors of each model (e.g. solar zenith angle, air mass, air temperature,
etc.). Moreover, higher number of predictors did not guaranteed higher performance.
In the same study, the authors also highlighted the necessity for separation models
to take into account cloud enhancement effects, which are important to the design
and operation of solar energy systems.

Whilst some years ago the standard procedure was to use hourly averaged values
of solar irradiance, nowadays the standard is to use one-minute average values because
it allows representing the small time scale changes and processes. However, this also
results in more complexity in separation models due to cloud-enhancement effects
which occurs when the radiation scattered off cloud’s edges leads to a significant
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increase in global irradiance at the Earth’s surface [39]. While cloud-enhancement
effects are not observed in hourly mean values, their occurrence in one-minute data
becomes evident and the importance of the models to account for these effects cannot
be overlooked [39].

Another concern with separation models is climate-specific fitting. It is possible to
find very distinct atmospheric and climate conditions across the globe. This results
in over-fitting of the separation models to the climate where they were developed,
which in turn lowers their accuracy under different climate conditions. To address
this, researchers can use only site-specific models (which is not optimal), use an
ensemble of different models [40], or can use new worldwide models [41].

Accounting for both advantages (simple and fast) and disadvantages (relatively
low accuracy), separation models can be used in solar energy engineering to: a)
estimate the irradiance on tilted surfaces, and with that, predict the output of
photovoltaic systems; b) estimate DNI, and do a first analysis on the suitability of a
location to install CSP systems.

Contrary to the high number of empirical/separation models available in the
literature that can be used to model DNI, empirical models that can be used to
model CSNI are quite rare. Possible reasons to explain this are: a) low availability of
CSNI datasets that can be used to develop these models; and b) the magnitude of
CSNI is related to several and not so readily available data of atmospheric variables
such as aerosol optical depth and precipitable water vapour.

Nonetheless, a remarkable example of an empirical model to estimate CSNI is the
one presented by Eissa et al. [42]. This model uses different site-specific coefficients to
estimate the circumsolar ratio (CSR), using as input the sky clearness (an empirical
index that is defined using DNI, DHI and θ). The modelled CSNI values showed a
relative root mean square error of ∼ 20%, relative bias of −2.7% and a correlation
coefficient of 0.871. These statistical indicators were determined using reference CSNI
values modelled with libRadtran (using atmospheric observations as input).

When deriving empirical models, it is common practice to not use the same
data to both train and validate the newly proposed model, because it can result in
over-fitting of the model. In this work, this common practice was respected and all
of the datasets used were divided into two different groups: training; and validation
datasets.

1.2.4 Input data

Both radiative transfer models as well as parametrization models (and also a minority
of empirical models) need accurate atmospheric data to generate accurate solar
radiation estimates. Examples of these atmospheric data are: surface pressure, surface
albedo, total column ozone amount, precipitable water vapour, and Angstrom’s
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turbidity and exponent [28]. Because of the high level of detail of RTMs and of some
parametrization models, it can be stated that the quality of the model’s outputs is
closely related to the quality of the inputs.

In solar radiation modelling, there are usually two types of atmospheric datasets
that are used: measured and synthetic. The atmospheric measured data commonly
used in solar radiation estimates is obtained from AERONET (AErosol RObotic
NETwork). AERONET is a ground-based remote sensing aerosol network established
by NASA and PHOTONS (PHOtométrie pour le Traitement Opérationnel de Nor-
malisation Satellitaire) [43, 44]. The network comprises more than 500 sites scattered
around the world and provides measurements of parameters that greatly affect DNI
such as aerosol optical depth and precipitable water vapour. AERONET also has an
inversion algorithm that provides quantities such as aerosol phase function and size
distribution, which are relevant aerosol characteristics.

In solar energy engineering, AERONET is commonly used as input to RTMs and
parametrization models to estimate solar radiation (e.g. [42]). It is also used to study
the impact of atmospheric constituents in solar energy applications (e.g. [45, 46]).
Additionally, since AERONET is one of the most reliable sources of atmospheric
data, it is also used as benchmark in assessment studies of other data sources, such
as reanalyses [47, 48].

AERONET has its own quality filters and produces three datasets with three
different quality control tiers: AERONET data level 1.0, 1.5 and 2.0. AERONET
data level 1.0 are unscreened, do not have calibration applied and therefore are rarely
used in the literature. AERONET data level 1.5 are screened for anomalies and some
examples of its use can be found in the literature (e.g. [45, 49, 50]). AERONET data
level 2.0 are screened for anomalies, are calibrated and are quality assured, being
the data level used in the majority of studies (e.g. [42, 51, 52]). Despite the filtering
provided by AERONET, some researchers developed their own filters in order to
achieve an even more clean data set. For example, Gueymard and Yang [47] added
two more filters to AERONET data level 2.0 to account for sensor malfunctioning,
uncertainty in the readings with low aerosol optical depth, soiling and missing
readings at specific wavelengths that can affect the determination of output variables.

Although AERONET has a high number of stations and extensive worldwide
coverage, there are still many regions that have potential for installing solar energy
applications and systems that cannot rely on AERONET data. Thus, one way for
researchers to deal with this issue is to use reanalysis datasets such as CAMS or
MERRA-2. Reanalysis datasets (sometimes referred as "maps without gaps") are
datasets consistent in time that cover the entire globe and represent historical data
of weather and climate. These datasets are a blend of observations alongside weather
forecasts that were rerun with state-of-the-art Numerical Weather Prediction (NWP)
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models.
Reanalysis datasets are mainly used to study climate change and extreme weather

phenomena. However, solar energy researchers are increasingly adopting these datasets
into solar radiation modelling because of their time consistency and worldwide
availability [46, 48]. However, the quality of reanalysis datasets is not yet as good as
the measured AERONET data, as showed in a recent study [47]. This is the major
drawback of using these datasets in solar radiation modelling, since the quality of
solar radiation models’ outputs is closely related to the quality of their inputs.

The quality of reanalysis data has been increasing due to advances in modelling
and the increasing use of high-quality observations, however, some bias still exists
due to modelling inconsistencies or errors on the assimilation of experimental data
[47]. Therefore, a simple filter that removes impossible physically values should be
employed to account for extreme events that might trigger modelling outliers such
as extreme smoke or pollution events in densely urban populated areas, as found by
Gueymard and Yang [47].

In addition to the above data sources, solar radiation indexes derived directly
from more readily available ground-based measurements (e.g. clearness index) are
mainly used in empirical models. Almost all of the separation models described in
the literature use the clearness index as input. However, other models also use other
solar radiation data such as the model presented by Engerer [37]. In this work, the
author used both the clearness index and the clear-sky index (which is obtained
using the GHI from a clear-sky model) in the development of the proposed empirical
(separation) model to estimate the diffuse fraction at Australia. The use of solar
radiation indexes in the modelling of solar irradiance requires that both modelled
and measured data are obtained using an accurate method, in order to guarantee
the quality of the model outputs and the proper model’s assessment.

1.3 DNI and circumsolar irradiance measurement

In this section, the ways of measuring DNI and CSNI are described, from the most
accurate and expensive - complete radiometric stations - to some more affordable
but less accurate alternative sources using fewer instruments. In addition to that,
instrument calibration as well as quality control and data filtering procedures are
addressed since they are crucial to ensure the quality of the measured data.

1.3.1 Radiometric stations

A radiometric station is a set of instruments that aim to measure the solar radiation
incident on one or more surfaces at a specific location. Since there are several ways
of installing and operating a radiometric station, a standard approach in how to
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measure solar radiation using radiometric stations is needed, to ensure both the
quality of the measurements as well as a fair comparison between the measurements
available at different locations. To address this issue, the World Meteorological
Organization (WMO) published the Guide to Meteorological Instruments and Methods
of Observation [3]. In this guide, good practices for measuring solar radiation and
other atmospheric parameters, as well as other sources of additional advice, are
presented.

One of such sources is the Baseline Surface Radiation Network (BSRN) guidelines.
BSRN is a global network of radiometric stations created by the World Climate
Research Programme (WCRP) that is now incorporated in the WCRP Global
Energy and Water Cycle Experiment (GEWEX). According to BSRN guidelines, a
radiometric station must at least measure the following radiation fluxes in a high
temporal resolution: DNI, DHI, GHI, and long-wave downward radiation [53]. The
measurements must be taken preferably at 1 Hz sampling rate and one-minute
average, minimum, maximum and standard deviation values must be recorded. The
standard output should include these one-minute values for DNI, DHI, GHI, and
long-wave radiation [54].

To measure these quantities, several instruments are used. DNI is measured using
a pyrheliometer. GHI and DHI are measured using pyranometers. However, whilst
the pyranometer is unshaded in the measurement of GHI, it needs to have a separate
device (shadowing sphere or disk or shadow-band) to block the direct sun rays in
the measurement of DHI. The long-wave downward radiation is measured using a
shaded pyrgeometer.

There are two types of pyrheliometers: the more common field pyrheliometer
(usually a thermopile sensor) and the active cavity radiometer. A field pyrheliometer
is a thermopile sensor that and it is the standard and most reliable way to measure
the radiation that comes directly from the sun within a given solid angle. The
pyrheliometer has the shape of a tube and resembles a telescope. In one end of the
tube, there is a quartz window through which the direct solar radiation enters into
the tube and, in the other end, there is a thermopile sensor that generates an electric
signal according to the temperature difference between the sensor body and the
sensing element which, in turn, depends on the irradiance intensity that is to be
measured. In this way, the higher the solar irradiance, the higher the temperature of
the thermopile is, and therefore, the higher it is the electric signal that is generated.
A calibration factor characteristic of each instrument is then used to convert the
electric signal in solar irradiance units (usually W/m2).

The active cavity radiometer (ACR) is a pyrheliometer that defines the absolute
radiation scale. It has high-precision temperature sensors and heaters that make
the ACR operate at an equilibrium temperature. The electrical power given/taken
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to/from the heater to achieve the equilibrium temperature is equivalent to the
change in incident solar irradiance. However, contrary to what happens with field
pyrheliometers, active cavity radiometers are not used to perform solar resource
assessment because they are expensive, its operation is complex, and it is more difficult
to obtain continuous DNI measurements due to its working principles. Nonetheless,
active cavity radiometers are very important since they provide the most accurate
DNI measurements and, because of this, are used to calibrate field pyrheliometers.

Since pyrheliometers are used to measure the DNI that comes within a given
solid angle centred with the sun, it needs to be installed in a sun tracking system.
A sun tracking system (also known as sun tracker) is a device that rotates around
two axes (elevation and azimuth) and uses a solar position algorithm to align with
the apparent position of the sun in the sky. In addition to the algorithm, a sun
tracker can also use a dedicated sun sensor for fine alignment, thus increasing the sun
tracking accuracy. Despite the higher cost of measuring DNI with a pyrheliometer
and a sun tracker, this is, currently, the most accurate way to measure DNI.

Because pyrheliometers have an aperture angle greater than the sun disk di-
ameter, CSNI is included in the DNI measurements. This led some researchers to
use pyrheliometers in order to gather more information on CSNI by changing the
aperture angles of the instruments. This can be achieved through three ways: (i)
increasing the length of the pyrheliometer’s body; (ii) reducing the aperture diameter;
or (iii) a combination of the previous two. An example of this is the device known
as BPI CSR460 [55] used to gather information on CSNI which consists of two
pyrheliometers with different aperture angles.

A pyranometer is a device that, similarly to a pyrheliometer, uses a thermopile to
measure solar irradiance. However, instead of measuring DNI, a pyranometer is used
to measure hemispherical solar radiation due to its 2π sr view angle. In this way,
if the direct sun rays are not blocked, a pyranometer levelled with the horizontal
measures GHI. But if the direct sun rays are blocked (eith using a disk, a sphere or
a shadow band), then the same levelled pyranometer measures DHI.

Lastly, the pyrgeometer is an instrument also based on a thermopile that measures
the net radiative exchange in the infra-red range between the sensor and the atmo-
sphere. This can be used to determine the downward infra-red radiation from the
atmosphere knowing the sensor temperature but, in this case, it is used to correct the
zero-offset of pyranometers through a simple correlation. In fact, the pyranometers
are affected by a zero-offset error due to: (i) fast variation of the temperature of the
pyranometer body; and (ii) net thermal radiation exchange with the atmosphere,
despite pyranometers being equipped with special glass domes. A correlation be-
tween the net infra-red exchange measurements from the pyrgeometer and this small
zero-offset (night values) is used to improve the accuracy of measurements from
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pyranometers.
In addition to the measuring instruments and the aforementioned sun tracker, a

data logger is necessary to effectively run a radiometric station. A data logger is an
electronic device that is used to convert analogue signals to digital and to record the
readings from the sensors. It is able to measure the small voltage generated by the
sensor’s thermopiles and record it to after be converted into radiation units, using a
specific sensor calibration factor.

Contrarily to DNI, there is no standard way of measuring CSNI. Until now,
it was measured using several techniques, such as a specially designed telescope
[56], high-resolution cameras [57, 58, 59], pyrheliometers with different aperture
angles [55, 60, 61, 62] and rotative shadowband irradiometers (RSI) [63]. This lack
of standardization on the measurement of CSNI translates in lack of consistency
in the way it is measured in the radiometric stations, which highlights the need of
alternative ways of gathering information on CSNI, namely through modelling.

1.3.2 Alternative sources

In this subsection, alternative sources to gather information on DNI and CSNI are
described. As stated in the previous section, the most accurate and recommended
way of measuring DNI is using a pyrheliometer mounted on a sun tracking system.
However, to have a full radiometric station in operation is costly due to equipment
cost and maintenance. Therefore, other ways of indirectly measuring DNI were found
as described next.

An easier alternative of estimating DNI is to use two pyranometers to measure
GHI and DHI. Then, using the closure equation, DNI data can be obtained. This
option is cheaper than having a full radiometric station because the pyranometers
don’t require the sun tracking system to operate efficiently. However, it is important
to note that it is less accurate due to the higher uncertainty associated with the
measurement of pyranometers with respect to the pyrheliometer’s measurements
[54], and the fact that DHI measurements are obtained here using an adjustable
shadow-band, thus blocking an higher fraction of diffuse irradiance from the sky
(although there are empirical models that can be used to correct this).

Another way of indirectly estimating DNI that also makes use of the closure
equation is based on the measurements of a rotative shadowband irradiometer (RSI)
[64]. A RSI is a device constituted by two horizontal silicon photodiodes that detect
radiation. Directly above the sensors, there is a spherically curved rotative shadow-
band which can block the direct beam from the sun disk. This configuration allows the
RSI to measure both GHI and DHI, which in turn can be converted into DNI using
the closure equation. While the shadow-band is in the rest position, the RSI measures
GHI because the shadow-band is positioned below (or in the side, depending on the
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instrument model) the sensor. When the shadow-band is activated, it is momentarily
placed in position relative to the sensor, in order to block the direct radiation and
enabling the RSI to measure DHI.

1.3.3 Instrument calibration

Measuring DNI with a pyrheliometer is the most accurate way to gather information
on DNI, as mentioned in Section 1.3.1. However, this is true only if the instrument
is properly maintained and calibrated. And the same is also true for alternative
methods to gather DNI such as using pyranometers or any other radiometers.

Generally speaking, a field radiometer is calibrated comparing its measurements
against a previously calibrated radiometer, also known as reference radiometer.
The calibration procedure consists of exposing the two radiometers to the same
atmospheric conditions (radiation, wind speed and ambient temperature) as well
as sky conditions (presence of clouds), and comparing their outputs. A calibration
constant or responsivity of the field radiometer is then obtained in order to adjust
its output to match the reference radiometer output.

The calibration process of pyranometers and pyrheliometers is well described
in specific international organization for standardization (ISO) standards. The cali-
bration of field pyranometers can be performed by comparison against a reference
pyranometer (ISO 9847 [65]) or against a reference pyrheliometer (ISO 9846 [66]),
while the calibration of field pyrheliometers can only be carried out against a reference
pyrheliometer (ISO 9059 [67]). Despite not describing a specific calibration procedure,
ISO 9060 [68] is worth to mention here because it defines several concepts used in
the aforementioned calibration standards.

To perform a pyrheliometer calibration, the procedure described in ISO 9059 [67]
must be followed. Regarding equipment, this calibration procedure needs a reference
pyrheliometer, a sun tracker, a data acquisition system (data logger) and, obviously,
the field pyrheliometer. The reference and field pyrheliometers must be installed and
aligned on the sun-tracking system, and connected to the data acquisition system.
Then, measurements must be taken during 10 to 20 minutes until a minimum of
10, or preferably 20, data series are collected with a minimum of 10 instantaneous
readings. After this is achieved, a mathematical procedure of the data is required
in order to eliminate data series that do not meet the quality requirements. Data
that have been subject to operational problems or series in which the correspondent
responsivity deviates more than 2% of the mean responsivity of all series must be
rejected. Only then the final calibration factor should be determined.

To determine the uncertainty of the calibration procedure, the uncertainty of the
reference pyrheliometer must be taken into account as well as the uncertainty of the
data acquisition system. It is important to note that the uncertainty of the calibration
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procedure strongly depends on the atmospheric conditions, namely on circumsolar
irradiance and the aperture angles of the field and reference pyrheliometers. If the
pyrheliometers have the same aperture angle (not only in the current calibration
procedure, but also in the calibration procedure of the reference pyrheliometer) and
the circumsolar radiation is small and strongly forward, then the uncertainty of the
calibration is lower. However, if the reference and field pyrheliometers have different
aperture angles, then a circumsolar correction must be applied in the mathematical
procedure. To account for this effect, CSNI correction values are given in ISO 9059 [67]
for several atmospheric conditions (aerosol type, spectral optical thickness, spectral
Linke turbidity factors and solar elevation angles) and aperture angles.

To complete and record the calibration procedure, a calibration certificate where
information such as location, time, the calibration method, the characteristics of the
pyrheliometers used, the atmospheric conditions during which the calibration took
place, the number of data points and the newly determined calibration factor must
be stated. An example of a calibration report is presented in Appendix A. It is also
recommended to store the calibration procedure raw data during the lifetime of the
instrument.

According to ISO 9059 [67], all pyrheliometers shall be referred to the World
Radiometric Reference (WRR), a high-quality measurement standard adopted by
the World Meteorological Organization that is realized by a group of at least four
pyrheliometers of different design, which are installed and maintained at the World
Radiation Centre (Davos, Switzerland). This traceability to WRR, alongside the
detailed calibration procedure follow-up, ensures that all pyrheliometers have a similar
reference and allow for a fair comparison between measurements taken by different
instruments at different locations. Similarly, the calibration of a field pyranometer
can be performed using a reference pyranometer according to ISO 9847 [65], or,
preferably, using a reference pyrheliometer according to ISO 9846 [66].

1.3.4 Quality control and data filtering

In solar energy engineering, it is important to use data filters in order to ensure that
final results are not strongly affected by the quality of the input data. This is valid
for both input data to solar radiation models as well as measured solar irradiance to
assess model performance or study the viability, design and operation of solar energy
systems.

The most common solar radiation data filters are those developed for the BSRN
stations and account for physically possible limits, extremely rare limits and com-
parison tests [69], as shown in Table 1.1. These filters were established taking into
account the data from the several BSRN stations around the globe and are meant to
provide the user with a clean data set.
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Table 1.1: BSRN physically possible limits, extremely rare minimum limits and comparison
tests. Legend: Sa - solar constant adjusted for Earth-Sun distance; θ - solar zenith angle;
and µ0 - cos(θ).

Variable Min. value Max. value Condition
Physically possible limits
DNI −4W/m2 Sa -
DHI −4W/m2 Sa × 0.95 × µ1.2

0 + 50W/m2 -
GHI −4W/m2 Sa × 1.5 × µ1.2

0 + 100W/m2 -
Extremely rare limits
DNI −2W/m2 Sa × 0.95 × µ0.2

0 + 10W/m2 -
DHI −2W/m2 Sa × 0.75 × µ1.2

0 + 30W/m2 -
GHI −2W/m2 Sa × 1.2 × µ1.2

0 + 50W/m2 -
Comparison tests

GHI
DNI × µ0 + DHI

1.0 − 8% 1.0 + 8% θ < 75◦ and (DNI×µ0+DHI)> 50W/m2

1.0 − 15% 1.0 + 15% 93◦ > θ > 75◦ and (DNI×µ0+DHI)> 50W/m2

DHI
GHI

- 1.05 θ < 75◦ and GHI> 50W/m2

- 1.10 93◦ > θ > 75◦ and GHI> 50W/m2

In addition to the BSRN filters, some researchers developed their own filters
based on their expertise and in the specific characteristics of the radiometric stations
that are used in their studies. For example, Gueymard and Ruiz-Arias [39] used a
portion of the BSRN quality filters and added some of their own, namely a filter
that rejected data for high solar zenith angles, as this situations are of low irradiance
and have marginal importance on solar energy systems (and correspond to situations
when the solar radiation instruments and models are more prone to error), and some
ratios to ensure that the uncertainty in the measurements did not affect the overall
solar irradiance data set.

When the study requires or is intended for clear-sky conditions only, it is crucial
to guarantee that the experimental data is not affected by scattered clouds in the
sky, having a truly clear sky instead of having only a clear path between the sensor
and the sun. To ensure that these conditions are met, it is common to use clear-sky
detection models (e.g. [70, 71]). These models require as input mostly solar radiation
data to identify the presence of clouds in the sky. They can also use atmospheric
parameters (such as those provided by AERONET) in order to identify if if clouds
are present (or not) in the sky, but the basis working principle is always to compare
the solar radiation at a specific instant against its theoretical clear-sky intensity.
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1.4 Impact of DNI and circumsolar radiation on CSP systems

1.4.1 Summary on the gathering of DNI and CSNI data

DNI is the most important solar radiation component regarding CSP systems design
and operation. However, the angular distribution of CSNI can strongly affect the
capability of CSP systems to capture the available solar energy. Whilst the importance
of DNI from the sun disk is largely accepted and its measurement and modelling is
widely studied, the same cannot be stated about CSNI. In Figure 1.1, a summary of
the common approaches to obtain DNI and CSNI data are shown.

Fig. 1.1: Common approaches to obtain DNI and CSNI data.

The best approach to gather information on solar radiation is to use a well
maintained and calibrated sensor to measure it. Whilst for DNI there is a standard
process to perform measurements, the same is not true for CSNI because of the
sharp decrease of intensity between the centre of the solar disk and the outer limit of
the field of view of the measuring instruments [4]. Despite the attempts to measure
CSNI mentioned in Section 1.3.1, the next best alternative to obtain CSNI data is
to resort to modelling.

The most accurate way of modelling CSNI is through a radiative transfer model
(RTM). However, its major drawbacks are the required inputs, as they are many
and difficult to gather, and the more complicated set up and run of these models,
because they need high computation time and power and they usually are less user
friendly. This leads to the next best option that is to use parametrization models
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such as SMARTS [23, 24], for instance. Although these models are easier to use than
RTMs, the need for sophisticated atmospheric data input is similar and can be an
obstacle to being widely adopted by the solar energy engineering community.

The simplest way to obtain CSNI data is then to use an empirical model such as
the one presented by Eissa et al. [42]. These empirical models only require as inputs
the more readily available solar radiation data, namely DNI, DHI and GHI. One
can even say that these models only require GHI if a separation model is used to
derive DHI, and then, DNI (see Section 1.2.3) Therefore, they can be easily used in
engineering applications in the field, despite having a lower accuracy when compared
to the more sophisticated options mentioned above.

1.4.2 Assessing the impact of DNI and CSNI on CSP systems

The issue with DNI, CSNI and CSP systems is that CSP systems usually have a
lower acceptance angle than that of the pyrheliometers used to measure DNI. This
can lead to significant discrepancies between the measured DNI and the DNI that
reaches the CSP system, especially under turbid atmospheres [4]. The higher the
concentration of aerosols and/or the presence of cirrus clouds in the atmosphere,
the higher the amount of CSNI, and the higher are the errors of directly using DNI
measurements to design and operate CSP systems.

The impact of CSNI on the performance of CSP systems is best defined analysing
how the optical efficiency of the CSP reflectors (or heliostats, depending on the CSP
technology) varies according to CSNI or CSR. The intercept factor is defined as the
ratio of the energy intercepted by the receiver to the energy reflected by the focusing
device [72], and can be determined using different techniques such as ray-tracing or
analytical models, incidence angle modifiers or look-up tables [2].

1.4.2.1 Ray tracing tools

By using ray tracing tools, one can study the path that a single ray travels from the
sun disk until it is absorbed. The principle of ray-tracing techniques, also known
as Monte Carlo or statistical techniques, is to randomly choose a very large set of
rays coming from the solar disk and circumsolar region, and then determine which of
them arrive to the receiver or absorber of the CSP system [73]. Each ray is randomly
generated according to a given sun disk and circumsolar radiance distribution and,
in each interaction of the ray with the reflector surfaces and receiver, it is decided if
the ray is reflected or absorbed according to the properties of the materials, using
also random numbers. If reflected, a new direction is determined according to the
law of reflection and taking into account the imperfections and misalignment of the
reflectors. This process is then repeated until the ray is either absorbed or escapes.
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Since the number of rays that leave the source and that reach the receiver/absorber
are known, it is possible to determine the intercept factor. In this way, it is possible
to use several CSR profiles and assess the impact of CSNI distribution on intercept
factor.

Examples of ray-tracing software based on this algorithm are Tonatiuh [74],
MIRVAL [75], STRAL [76] and SolTrace [77]. It is worth mentioning that the
computation time increases with the number of rays used in the simulations. Examples
of works from the literature that used ray-tracing methods to study CSP systems are:
Schubnell [57] studied a solar furnace, Chapman and Arias [78] studied a parabolic
trough system, Wilbert [2] studied a solar tower and parabolic trough system, and
Fossa et al. [79] studied linear Fresnel.

1.4.2.2 Analytical models

In addition to ray-tracing, analytical optical performance models can also be used to
study the impact of CSNI in CSP systems. These models use analytical equations
that, when solved, are able to describe the path of the rays through the optical
system. One of the most used analytical models in the literature is the model from
Bendt/Rabl [80, 81]. This model can be used for two CSP technologies: parabolic
trough and solar dish. The application of this model can be found in several studies
in the literature such as the works from Malali et al. [82], Ho et al. [83] and Riveros-
Rosas et al. [84]. Another example of an analytical model is the HFLCAL software
[85] that can also be used to calculate and optimize the layout of the heliostats on
the field.

In comparison to ray-tracing, analytical models are easier and faster to use.
However, effects such as shading and blocking of the sun rays can only be included
using corrective factors, and not directly as is the case of most ray tracing algorithms.

1.4.2.3 Incidence angle modifiers and look-up tables

The simplest technique to calculate the optical performance of a CSP system is to
use incidence angle modifiers or look-up tables. This technique only uses constants
and functions that are capable of describing the change in optical performance of a
CSP system according to the solar angles [2]. One such function is called the incident
angle modifier (IAM) which is defined as the ratio of the optical efficiency as a
function of the incidence angle and the optical efficiency for zero incidence angle,
and can be derived from experiments or from calculations performed by the other
more complex techniques mentioned above.

Regarding look-up tables, an example of its use on the determination of optimal
efficiency of CSP systems, namely solar tower systems, is greenius, a software for
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technical and economic analysis of renewable energy systems [86, 87]. This software
has look-up tables for the following solar tower system components: heliostat field,
power block and receiver.

The various techniques described above allow to determine the optical efficiency of
different CSP systems with several degrees of complexity, accuracy and speed, giving
researchers the option to choose between them according to their requirements.

1.5 Objectives of the thesis

The purpose of this work is to study the modelling of direct normal and circumsolar
irradiance (DNI and CSNI, respectively), as well as their impact on the energy
generation of concentrating solar power (CSP) systems. For this purpose, DNI
and CSNI were modelled using the following approaches: (i) empirical models; (ii)
parametrization models; and (iii) radiative transfer models. To assess the impact of
DNI and CSNI on the energy generation of CSP system, a parametrization model
was used.

Thus, as a final objective, this work intends to develop simple and fast models
capable to accurately predict DNI and CSNI using widely available solar radiation
data. To achieve this, high-quality solar radiation measurements were used for model’s
development and validation, and climate zone was taken into consideration.

These efforts contribute to: (i) facilitate the modelling of DNI and CSNI; (ii)
improve the accuracy of DNI and CSNI models available in the literature; and (iii)
highlight the importance of considering CSNI and quantify the impact of its variation
when designing and operating CSP systems.

1.6 Outline of the thesis

This thesis comprises six chapters. Chapter 1 presents an introduction to the work,
including the review of the tools available to researchers and engineers to model and
measure direct normal and circumsolar irradiance (DNI and CSNI, respectively), as
well as how to assess the impact of DNI and CSNI variation on the energy generation
of concentrating solar power (CSP) systems. Chapter 2 presents a literature review
on the separation models used to estimate DHI from GHI (and, consequently, DNI) as
well as the propose of a new separation model that uses minutely data and takes into
account the climate zone. Chapter 3 presents a performance assessment of different
models and data sources that can be used to predict DNI (and, in some extent,
CSNI). Chapter 4 presents the modelling of DNI and CSNI using a radiative transfer
model and the development of a simple and fast model to estimate CSNI. Chapter
5 presents an upgrade of the CSNI model developed in Chapter 4, enabling it to
predict CSNI for different half-opening angles, thus allowing to study the impact of
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CSNI and its variation on CSP systems, namely in parabolic trough concentrators.
In resume, in Chapter 2, the most simple way to estimate DNI is addressed while
in Chapter 3 more sophisticated (and accurate) possibilities are explored, and in
Chapter 4, one of such sophisticated options (a radiative transfer model) is used to
create a database of DNI and CSNI values, which is then used as the basis for the
development of the CSNI model, as well as the study on the impact of DNI and CSNI
on the energy generation of CSP systems, presented in Chapter 5. These chapters of
the thesis are organized by and correspond to scientific papers, in which Chapters 2
through 4 are published papers in international peer-reviewed journals, and Chapter
5 is under review in one of such journals. In Chapter 6, the general conclusions of
this thesis are drawn.
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DHI Diffuse Horizontal Irradiance

DNI Direct Normal Irradiance

GHI Global Horizontal Irradiance

Sa solar constant adjusted for Earth-Sun distance (W/m2)

Greek symbols

θ solar zenith angle (◦)

µ0 cos θ
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IAM Incidence Angle Modifier
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Chapter 2

Prediction of diffuse horizontal irradiance using a new
climate zone model†

Abstract

Knowledge on the diffuse horizontal irradiance (DHI), and direct normal
irradiance (DNI) is crucial for the estimation of the irradiance on tilted
surfaces, which in turn is critical for photovoltaic (PV) applications and
for designing and simulating concentrated solar power (CSP) plants. Since
global horizontal irradiance (GHI) is the most commonly measured solar
radiation variable, it is advantageous for establishing a suitable method that
uses it to compute DHI and DNI. In this way, a new model for predicting
the diffuse fraction (Kd) based on the climate zone is proposed, using only
the clearness index (Kt) as the predictor and one-minute resolution GHI
data. A review of the literature on models that use hourly and sub-hourly
Kt values to compute Kd was also carried out, and an extensive performance
assessment of both the proposed model and the models from the literature
was conducted using ten statistical indicators and a global performance
index (GPI). A set of model parameters was determined for each climate
zone considered in this study (arid, high albedo, temperate and tropical)
using 48 worldwide radiometric stations. It was found that the best overall
performing model was the model proposed in this work.

Keywords: Diffuse horizontal irradiance; Global horizontal irradiance; Direct
Normal Irradiance; Clearness index; Diffuse fraction; Separation method.
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(1) Institute of Earth Sciences, University of Évora.
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2.1 Introduction

Global horizontal irradiance (GHI) is the most commonly measured solar radiation
variable in the ground-based meteorological stations around the world, both in
historical datasets and in geographical distribution. Therefore, it is the best dataset
available to quantify solar energy resource and assess undergoing or future solar
energy projects. On the other hand, information on both diffuse horizontal irradiance
(DHI) and direct normal irradiance (DNI) is also crucial to properly design and
optimise solar energy systems. In this way, it is advantageous to find a suitable
and accurate method based on the GHI measurements to estimate both DHI and
DNI, thus enabling the reconstitution of temporal series of these two components
in locations where only GHI measurements are available, mainly due to budget
limitations and higher requirements for maintenance and calibration procedures. In
fact, whereas pyranometer installations are relatively cheap (USD 5-10 K with a data
logger), full stations equipped with a sun tracker, pyranometers and a pyrheliometer
are quite expensive (arround USD 30 K) [1]. DHI and DNI data are essential to
accurately determine the global solar irradiance on tilted surfaces, for example in
sizing and operation of photovoltaic (PV) systems [2]. The models for the diffuse
fraction allow to estimate those components based on the GHI and then determine
the irradiance on a tilted surface, by opposition to the one-step methods of converting
GHI, as for example the isotropic sky model [3], the Klucher model [4], the Hay-
Davies model [5] and the Reindl model [6]. Concentrated Solar Power (CSP) systems
mainly use DNI in its energy capturing and conversion processes due to its directional
nature and field of view (aperture angle) that depends on the concentration factor
[7]. Therefore, the accurate computation of DHI is of vital importance to design,
assess the performance and operate such systems [8].

The response of the scientific community for the need of obtaining DHI and DNI
data at low cost was given by developing separation models in which the work of
Liu and Jordan [9] was the pioneer. That work reported the relation between the
clearness index (the ratio between GHI that reaches the surface of the earth and the
extraterrestrial irradiance on a horizontal surface, Kt) and the diffuse fraction (the
ratio of DHI to GHI, Kd) using measurements from 98 stations in Canada and United
States. The good results obtained by Liu and Jordan lead to the development of
several other separation models for different locations. Page [10] developed a model
based on monthly mean values for latitudes between 40◦N and 40◦S. Tuller [11]
analysed daily and monthly data to establish models for four locations in Canada.
Klein [12] used experimental measurements to assess and validate the model proposed
by Liu and Jordan [9] and extended it to allow calculation of monthly average solar
irradiation on surfaces with multiple orientations. Although several other daily and
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monthly basis models were presented and are available in the literature, they are not
the focus of this work. The work of Khorasanizadeh and Mohammadi [13] reports
a comprehensive review of such models. Separation models for high-frequency GHI
data are needed until high-resolution DNI measurements are available in a global
scale, since required temporal resolution of nowadays reported solar radiation data
increased, due to the requirements of high-frequency measurements in the simulation
of CSP projects [14]. Therefore, because sub-hourly models are relatively rare in the
literature, this work focuses on the available hourly and sub-hourly separation models
whose solo predictor is the Kt and on their ability in representing high-frequency
data in a global scale and for different climates. The main reason for using only
Kt as the predictor is due to the greater availability of GHI data worldwide, thus
allowing a straightforward evaluation of the model for the higher number of locations
as possible. Regarding this type of models that use only Kt as the predictor, Orgill
and Hollands [15] presented a separation model using hourly measurements covering
the period from September 1967 to August 1971 for Toronto Airport, Canada. This
was the first model found in the literature that met the features mentioned above.
In Section 2.2 are presented all the other models reviewed in this work.

The assessment of new separation models is usually carried out through the com-
parison of that new model against ground measurements and other models [1] using
statistical indicators. Beside some researchers have already presented performance
analysis using only models available in the literature [14, 16, 17], the majority of
the validation studies were reported when new models were derived, as is the case
of this work. The first hourly models presented [15, 18] were compared against the
Liu and Jordan monthly model [9]. As time went by, more hourly models became
available for test, and therefore models such as the Orgill and Hollands [15] and the
Erbs et al. [19] were used in numerous validation studies (e.g. [20, 21, 6]). Liu and
Jordan’s model is still occasionally used with the purpose of presenting a historical
comparison of the separation models evolution [22]. Regarding the validation using
ground-based measurements, the most used statistical indicators to assess the perfor-
mance of separation models are the mean bias error (MBE), the root mean square
error (RMSE) and the correlation coefficient (R).

One-minute data resolution models are very scarce in the literature. One of the
few examples is the work of Engerer [1], which presents a diffuse fraction model based
on one-minute clearness index data together with other predictors for southeastern
Australia. Gueymard and Ruiz-Arias [14] reported the incapability of hourly models
to account for cloud enhancement effects, aiming at the need for reliability in hourly
models until more specific minutely models appear in the literature. Therefore, the
purpose of this study is to develop a new diffuse fraction model based on one-minute
measurements from stations around the globe. Since the model presented by Engerer
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[1] requires more than one input parameter, the performance assessment of the model
developed in this work will be conducted against hourly and sub-hourly models whose
only predictor is Kt. To that end, ten statistical indicators were used, namely the
mean bias error (MBE), mean absolute error (MAE), root mean square error (RMSE),
mean percentage error (MPE), uncertainty at 95% (U95), relative root mean square
error (RRMSE), maximum absolute error (erMAX), correlation coefficient (R) and
mean absolute relative error (MARE). These statistical indicators were also combined
into a global performance index (GPI). The GPI was used in previous studies in
this field by Jamil and Akhtar [23]. Other option to combine different statistical
indicators is the combined performance index (CPI), as described by Gueymard
[24]. A Taylor diagram and a skill score [25] were also used to provide an additional
statistical analysis. In this view, a comprehensive performance assessment of the
proposed model as well as of other models in the literature is presented aiming at
the identification of the best performing model for the estimation of DHI in a minute
resolution all over the world. The organization of this paper is as follows: Section
2.2 presents a review of the hourly and sub-hourly models for estimating the diffuse
fraction, Section 4.7 presents the data used in this study and the model development,
Section 2.4 presents the results and discussion , and, finally, conclusions are drawn
in Section 4.9.

2.2 Review of the available models

The models available in the literature were developed using several functional forms,
number of predictors and for different time resolutions. The first form to obtain
the diffuse fraction was a second degree polynomial as a function of the clearness
index, as first proposed by Liu and Jordan [9] in 1960. Later, other models were
presented using higher polynomial degrees as well as other functions such as the
logistic [26] and the double exponential [27] forms. Several models included other
predictors than Kt, such as sunshine duration, zenith angle, air mass, etc. Regarding
time resolution, the available models were proposed to estimate the monthly, daily,
hourly and sub-hourly diffuse fraction. In this work, a review of the models that use
only Kt as the predictor with hourly or sub-hourly time resolutions is presented. The
authors were able to find 121 different models that met the requirements specified
above, although more models may be available in other publications or internal
reports and communications that are not readily acessible. In many cases, authors
present the same model but for different locations. These models are treated here as
unique models when assessing their performance in Section 2.4. Table 2.1 presents
the models studied in this work. The various locations from which authors used data
to develop their models are classified according to the climate region as follows [14]:
temperate (TM), arid (AR), tropical (TR) and high albedo (HA).
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Table 2.1: Review of hourly and sub-hourly Kd models whose only predictor is Kt.

Model Reference Location Climate Data period Constrains Kd

1 Orgill and Hollands [15] Toronto, Canada TM 1967-1971 Kt ≤ 0.35 1.0 − 0.249Kt

0.35 ≤ Kt ≤ 0.75 1.557 − 1.840Kt

Kt > 0.75 0.177
2 Bruno [18] Hamburg, Germany TM 1973-1974 - 0.310Kt + 0.139 sin(4.620Kt)
3 Erbs et al. [19] Four cities in the

United States
Various climates 1974-1976 (Vari-

ous data periods)
Kt ≤ 0.22 1.0 − 0.0900Kt

0.22 < Kt ≤ 0.80 0.9511−0.1604Kt+4.3880K2
t −16.6380K3

t +12.3360K4
t

Kt > 0.80 0.165
4 Spencer [28] Albany, Australia AR 1973-1977 Kt < 0.35 0.890

0.35 ≤ Kt ≤ 0.75 1.414 − 1.736Kt

Kt > 0.75 0.110
5 Spencer [28] Alice Springs, Australia AR 1974-1977 Kt < 0.35 0.750

0.35 ≤ Kt ≤ 0.75 1.183 − 1.444Kt

Kt > 0.75 0.110
6 Spencer [28] Geraldton, Australia AR 1972-1977 Kt < 0.35 0.850

0.35 ≤ Kt ≤ 0.75 1.345 − 1.644Kt

Kt > 0.75 0.110
7 Spencer [28] Guildford, Australia AR 1975-1977 Kt < 0.35 0.780

0.35 ≤ Kt ≤ 0.75 1.254 − 1.595Kt

Kt > 0.75 0.060
8 Spencer [28] Hobart, Australia TM 1971-1977 Kt < 0.35 0.860

0.35 ≤ Kt ≤ 0.75 1.360 − 1.678Kt

Kt > 0.75 0.100
9 Spencer [28] Laverton, Australia AR 1976-1977 Kt < 0.35 0.860

0.35 ≤ Kt ≤ 0.75 1.360 − 1.678Kt

Kt > 0.75 0.150
10 Spencer [28] Melbourne, Australia AR 1970-1977 Kt < 0.35 0.850

0.35 ≤ Kt ≤ 0.75 1.352 − 1.668Kt

Kt > 0.75 0.100
11 Spencer [28] Mildura, Australia AR 1972-1977 Kt < 0.35 0.870

0.35 ≤ Kt ≤ 0.75 1.366 − 1.666Kt

(continued on next page)
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Model Reference Location Climate Data period Constrains Kd

Kt > 0.75 0.120
12 Spencer [28] Mt Gambier, Australia AR 1974-1977 Kt < 0.35 0.930

0.35 ≤ Kt ≤ 0.75 1.450 − 1.744Kt

Kt > 0.75 0.140
13 Spencer [28] Port Hedland, Aus-

tralia
AR 1974-1977 Kt < 0.35 0.710

0.35 ≤ Kt ≤ 0.75 1.142 − 1.431Kt

Kt > 0.75 0.070
14 Spencer [28] Rockhampton, Aus-

tralia
AR 1974-1977 Kt < 0.35 0.790

0.35 ≤ Kt ≤ 0.75 1.245 − 1.527Kt

Kt > 0.75 0.100
15 Spencer [28] Waga Waga, Australia AR 1974-1977 Kt < 0.35 0.800

0.35 ≤ Kt ≤ 0.75 1.280 − 1.605Kt

Kt > 0.75 0.080
16 Spencer [28] Australia (average) Various climates 1970-1977 (Vari-

ous data periods)
Kt < 0.35 0.830

0.35 ≤ Kt ≤ 0.75 1.321 − 1.624Kt

Kt > 0.75 0.100
17 Hawlader [20] Singapore TM 1962 Kt < 0.225 0.9150

0.225 ≤ Kt ≤ 0.775 1.1389 − 0.9422Kt − 0.3878K2
t

Kt > 0.775 0.2150
18 Ineichen et al. [29] Geneva, Switzerland TM 1978-1984 Kt < 0.15 0.98

Kt ≥ 0.15 0.80 + 2.25Kt − 7.93K2
t + 5.26K3

t

19 Ineichen et al. [29] Geneva, Switzerland TM 1978-1984 Kt < 0.25 1.0
0.25 ≤ Kt ≤ 0.80 1.38 − 1.52Kt

Kt > 0.80 0.16
20 Ineichen et al. [29] Geneva, Switzerland TM 1978-1984 Kt < 0.25 1.0

Kt ≥ 0.25 1.28Kt − 1.40K2
t

21 Muneer et al. [21] New Delhi, India TR 1971, 1974 Kt < 0.175 0.9500
0.175 ≤ Kt ≤ 0.775 0.9698 + 0.4353Kt − 3.4499K2

t + 2.1888K3
t

Kt > 0.775 0.2600
(continued on next page)
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22 Bakhsh et al. [30] Dharan, Saudi Arabia AR 1983-1984 Kt < 0.23 1.0 − 0.220Kt

0.23 ≤ Kt ≤ 0.80 1.235 − 1.260Kt

Kt > 0.80 0.225
23 Hollands [31] Toronto, Canada TM 1967-1971 - [1 − b −

√
(1 − b)2 − 4ab2Kt(1 − aKt)]/(2abKt)

a = 1.115; b = 0.491
24 Reindl et al. [6] Five locations in North

America and Europe
Various climates 1979-1982 (Vari-

ous data periods)
Kt ≤ 0.30 1.020 − 0.248Kt

0.30 < Kt < 0.78 1.450 − 1.670Kt

Kt ≥ 0.78 0.147
25 Al-Rihai [32] Fudhaliyah, Iraq AR 1984-1987 Kt < 0.25 0.932

0.25 ≤ Kt ≤ 0.70 1.293 − 1.631Kt

Kt > 0.70 0.151
26 Bourges [33] 37 stations across Eu-

rope
TM At least four years

of measurements
Kt ≤ 0.20 1.0

0.20 < Kt ≤ 0.35 1.116 − 0.580Kt

0.35 < Kt ≤ 0.75 1.557 − 1.840Kt

Kt > 0.75 0.177
27 Chandrasekaran and

Kumar [34]
Madras, India TR 1983-1987 Kt ≤ 0.24 1.0086 − 0.1780Kt

0.24 < Kt ≤ 0.80 0.9686+0.1325Kt +1.4183K2
t −10.1860K3

t +8.3733K4
t

Kt > 0.80 0.1970
28 Chendo and Maduekwe

[35]
Lagos, Nigeria TM Two years of mea-

surements
Kt ≤ 0.30 1.022 − 0.156Kt

0.30 < Kt < 0.80 1.385 − 1.396Kt

Kt ≥ 0.80 0.264
29 Maduekwe and Chendo

[36]
Lagos, Nigeria TM 1990-1991 Kt ≤ 0.30 1.021 − 0.151Kt

0.30 < Kt < 0.80 1.385 − 1.396Kt

Kt ≥ 0.80 0.295
30 Lam and Li [37] Hong Kong, China TM 1991-1994 Kt ≤ 0.15 0.977

0.15 < Kt ≤ 0.70 1.237 − 1.361Kt

Kt > 0.70 0.273
(continued on next page)
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Model Reference Location Climate Data period Constrains Kd

31 Hijazin [38] Amman, Jordan AR 1985 Kt < 0.10 0.744
0.10 ≤ Kt ≤ 0.80 0.842 − 0.977Kt

Kt > 0.80 0.060
32 Hijazin [38] Amman, Jordan AR 1985 - 0.847 − 0.985Kt

33 González and Calbó [39] Two locations in
Iberian Peninsula

TM 1994-1996 (Vari-
ous data periods)

0.25 < Kt < 0.75 1.421 − 1.670Kt

Kt ≥ 0.75 −0.043 + 0.290Kt

34 Boland et al. [26] Geelong, Australia TM 67 days - 1.0/[1.0 + exp{8.645(Kt − 0.613)}]
35 Boland et al. [26] Geelong, Australia TM 67 days - 1.0/[1.0 + exp{7.997(Kt − 0.586)}]
36 De Miguel et al. [40] North Mediterranean

belt area (11 stations)
TM 1974-1996 (Vari-

ous data periods)
Kt ≤ 0.21 0.995 − 0.081Kt

0.21 < Kt ≤ 0.76 0.724 + 2.738Kt − 8.320K2
t + 4.967K3

t

Kt > 0.76 0.180
37 Li and Lam [41] Hong Kong, China TM 1991-1998 Kt ≤ 0.15 0.976

0.15 < Kt ≤ 0.70 0.996 + 0.036Kt − 1.589K2
t

Kt > 0.70 0.230
38 Oliveira et al. [42] São Paulo, Brazil TM 1994-1999 0.17 < Kt < 0.75 0.97 + 0.80Kt − 3.00K2

t − 3.1K3
t + 5.2K4

t

39 Ulgen and Hepbasli [43] Izmir, Turkey TM 1994-1998 Kt ≤ 0.32 0.6800
0.32 < Kt ≤ 0.62 1.0609 − 1.2138Kt

Kt > 0.62 0.3000
40 Ulgen and Hepbasli [43] Izmir, Turkey TM 1994-1998 Kt ≤ 0.32 0.6800

0.32 < Kt ≤ 0.62 0.0743 − 19.3430Kt + 206.9100K2
t − 719.7200K3

t +
1053.4000K4

t − 562.69K5
t

Kt > 0.62 0.3000
41 Karatasou et al. [44] Athens, Greece TM 1996-1998 Kt ≤ 0.78 0.9995 − 0.0500Kt − 2.4156K2

t + 1.4926K3
t

Kt > 0.78 0.2000
42 Tsubo and Walker [45] Southern Africa AR 2000 - 0.613 − 0.334Kt + 0.121K2

t

43 Tsubo and Walker [45] Southern Africa AR 2000 Kt < 0.140 0.907
0.140 ≤ Kt ≤ 0.794
Kt > 0.794 0.138

44 Tsubo and Walker [45] Southern Africa AR 2000 Kt < 0.140 0.907
0.140 ≤ Kt ≤ 0.794 1.063 − 1.114Kt

(continued on next page)
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Kt > 0.793 0.180
45 Soares et al. [46] São Paulo, Brazil TM 1998-2001 - 0.90 + 1.10Kt − 4.50K2

t + 0.01K3
t + 3.14K4

t

46 Mondol et al. [47] Ballymena, Northern
Ireland

TM 21 months of data Kt ≤ 0.20 0.9800

Kt > 0.20 0.5836 + 3.6259Kt − 10.1710K2
t + 6.3380K3

t

47 Jacovides et al. [48] Athalassa, Cyprus AR 1998-2002 Kt ≤ 0.10 0.987
0.10 < Kt ≤ 0.80 0.940 + 0.937Kt − 5.010K2

t + 3.320K3
t

Kt > 0.80 0.177
48 Elminir et al. [49] Aswan, Egypt AR 1999-2001 Kt ≤ 0.22 0.653 − 1.728Kt

0.22 < Kt ≤ 0.80 0.724 − 1.821Kt + 8.221K2
t − 16.370K3

t + 9.845K4
t

Kt > 0.80 0.217
49 Elminir et al. [49] Cairo, Egypt AR 2003 Kt ≤ 0.22 0.793 − 2.198Kt

0.22 < Kt ≤ 0.80 1.341 − 9.566Kt + 32.200K2
t − 47.909K3

t + 25.419K4
t

Kt > 0.80 0.131
50 Elminir et al. [49] South-Valley, Egypt AR 2003 Kt ≤ 0.22 0.8526 − 1.7780Kt

0.22 < Kt ≤ 0.80 0.8140 − 1.1060Kt + 0.3660K2
t − 0.9970K3

t + 1.2210K4
t

Kt > 0.80 0.213
51 Boland et al. [50] Adelaide, Australia AR - - 1.0/[1.0 + exp(−5.83 + 9.87Kt)]
52 Boland et al. [50] Bracknell, England TM - - 1.0/[1.0 + exp(−4.38 + 6.62Kt)]
53 Boland et al. [50] Darwin, Australia TM - - 1.0/[1.0 + exp(−4.53 + 8.05Kt)]
54 Boland et al. [50] Lisbon, Portugal TM - - 1.0/[1.0 + exp(−4.80 + 7.98Kt)]
55 Boland et al. [50] Macau, China TM - - 1.0/[1.0 + exp(−4.87 + 8.12Kt)]
56 Boland et al. [50] Maputo, Mozambique AR - - 1.0/[1.0 + exp(−5.18 + 8.80Kt)]
57 Boland et al. [50] Uccle, Belgium TM - - 1.0/[1.0 + exp(−4.94 + 8.66Kt)]
58 Boland et al. [50] Multi-location average Various climates - - 1.0/[1.0 + exp(−4.94 + 8.30Kt)]
59 Boland and Ridley [51] Multi-locations world-

wide
Various climates - - 1.0/[1.0 + exp(−5.00 + 8.60Kt)]

60 Furlan and Oliveira [52] Sâo Paulo, Brazil TM 2002 Kt ≤ 0.228 0.961
Kt > 0.228 1.337 − 1.650Kt

61 Mondol et al. [53] Aldergrove, Northern
Irland

TM 1989-1998 Kt ≤ 0.20 0.9800

0.20 < Kt ≤ 0.70 0.6109 + 3.6259Kt − 10.1710K2
t + 6.3380K3

t

(continued on next page)
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Kt > 0.70 0.6720 − 0.4740Kt

62 Moreno et al. [54] Seville, Spain TM 2000-2008 Kt ≤ 0.27 0.9930
0.27 < Kt ≤ 0.82 1.4946 − 1.7899Kt

Kt > 0.82 0.0450
63 Pagola et al. [55] 3 locations in Spain TM 2005-2008 Kt ≤ 0.35 0.9818 − 0.5870Kt

0.35 < Kt ≤ 0.75 1.2056 − 1.3240Kt

Kt > 0.75 0.2552
64 Pagola et al. [55] 3 locations in Spain TM 2005-2008 Kt ≤ 0.22 0.9522 − 0.3119Kt

0.22 < Kt ≤ 0.80 0.6059+2.9877Kt−10.5675K2
t +10.1833K3

t −3.0475K4
t

Kt > 0.80 0.3209
65 Posadillo and Lopez

Luque [56]
Córdoba, Spain TM 1993-2002 - Kt(1.17 − 1.381Kt)

66 Posadillo and Lopez
Luque [56]

Córdoba, Spain TM 1993-2002 - −0.00829 + 1.16300Kt + 0.43300K2
t − 5.83900K3

t +
4.64880K4

t

67 Janjai et al. [57] Chiang Mai, Thailand TR 1995-2006 - 0.9429 − 0.3707Kt + 6.4927K2
t − 30.3560K3

t +
39.1626K4

t − 15.4850K5
t

68 Janjai et al. [57] Nakhon Pathom, Thai-
land

TR 1995-2006 - 0.7699 + 2.3552Kt − 8.1480K2
t + 5.3811K3

t

69 Janjai et al. [57] Songkhla, Thailand TR 1995-2006 - 0.869 + 1.559Kt − 11.176K2
t + 26.143K3

t − 38.302K4
t +

31.799K5
t − 10.602K6

t

70 Janjai et al. [57] Ubon Ratchathani,
Thailand

TR 1995-2006 - 0.846 + 1.841Kt − 13.425K2
t + 42.888K3

t − 85.804K4
t +

84.476K5
t − 30.637K6

t

71 Ruiz-Arias et al. [27] Albacete, Spain TM 2002-2006 - 0.086 + 0.880e− exp(−3.877+6.138Kt)

72 Ruiz-Arias et al. [27] Boulder, USA TM 1961-1990 - 0.967 − 1.024e− exp(2.473−5.324Kt)

73 Ruiz-Arias et al. [27] Dresden, Germany TM 1981-1990 - 0.140 + 0.962e− exp(−1.976+4.067Kt)

74 Ruiz-Arias et al. [27] Pittsburgh, USA TM 1961-1990 - 1.001 − 1.000e− exp(2.450−5.048Kt)

75 Ruiz-Arias et al. [27] Savannah, USA TM 1961-1990 - 0.988 − 1.000e− exp(2.456−5.172Kt)

76 Ruiz-Arias et al. [27] Talkeetna, USA HA 1961-1990 - 0.985 − 0.962e− exp(2.655−6.003Kt)

77 Ruiz-Arias et al. [27] Tucson, USA AR 1961-1990 - 0.988 − 1.073e− exp(2.298−4.909Kt)

78 Ruiz-Arias et al. [27] 7 locations in Europe
and USA

Various climates 1961-2006 (Vari-
ous data periods)

- 0.952 − 1.041e− exp(2.3−4.702Kt)

79 Torres et al. [58] Pamplona, Spain TM 2006-2008 Kt ≤ 0.24 1.0058 − 0.2195Kt

(continued on next page)
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0.24 < Kt < 0.75 1.3264 − 1.5120Kt

Kt ≥ 0.75 0.1923
80 Torres et al. [58] Pamplona, Spain TM 2006-2008 Kt ≤ 0.22 0.9920 − 0.0980Kt

0.22 < Kt < 0.75 1.2158 − 1.0467Kt − 0.4480K2
t

Kt ≥ 0.75 0.1787
81 Torres et al. [58] Pamplona, Spain TM 2006-2008 Kt ≤ 0.22 0.9923 − 0.0980Kt

0.24 < Kt ≤ 0.755 1.1459 − 0.5612Kt − 1.4952K2
t + 0.7103K3

t

Kt > 0.755 0.1755
82 Torres et al. [58] Pamplona, Spain TM 2006-2008 Kt ≤ 0.225 0.9943 − 0.1165Kt

0.225 < Kt ≤ 0.755 1.4101−2.9918Kt +6.4599K2
t −10.3290K3

t +5.5140K4
t

Kt > 0.755 0.1800
83 Chikh et al. [59] Alger, Algeria AR 1992 Kt ≤ 0.175 1.0 − 0.232Kt

0.175 < Kt ≤ 0.87 1.170 − 1.230Kt

Kt > 0.87 0.203
84 Chikh et al. [59] Bechar, Algeria AR 1990-1992 Kt ≤ 0.175 1.0 − 0.3000Kt

0.175 < Kt ≤ 0.87 1.1370 − 1.0770Kt

Kt > 0.87 0.2043
85 Chikh et al. [59] Tamanrasset, Algeria AR 1990-1992 Kt ≤ 0.175 1.0 − 0.640Kt

0.175 < Kt ≤ 0.87 1.052 − 0.935Kt

Kt > 0.87 0.240
86 Sanchez et al. [60] Badajoz, Spain TM 2009-2010 Kt < 0.30 0.78

0.30 ≤ Kt ≤ 0.75 1.23 − 1.43Kt

Kt > 0.75 0.13
87 Lee et al. [61] South Korea TM 1986-2005 Kt ≤ 0.20 0.9200

Kt > 0.20 0.6910 + 2.4306Kt − 7.3371K2
t + 4.7002K3

t

88 Yao et al. [62] Shanghai, China TM 2012 Kt ≤ 0.30 0.9381 − 0.1481Kt

0.30 < Kt ≤ 0.80 1.5197 − 1.5340Kt

Kt > 0.80 0.2700
89 Yao et al. [62] Shanghai, China TM 2012 - 0.8142 + 2.0792Kt − 6.1439K2

t + 3.4707K3
t

90 Yao et al. [62] Shanghai, China TM 2012 Kt ≤ 0.20 0.8755 + 1.3991Kt − 4.9285K2
t

0.20 < Kt ≤ 0.80 1.1209 − 2.1699Kt + 11.0600K2
t − 22.3550K3

t +
12.8630K4

t

(continued on next page)
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Kt > 0.80 0.2700
91 Yao et al. [62] Shanghai, China TM 2012 - 0.2421 + 0.7202/[1 + exp{(Kt − 0.6203)/0.0749}]
92 Tapakis et al. [63] Athalassa, Cyprus AR 2001-2010 Kt < 0.10 0.9100 + 2.4993Kt − 18.8580K2

t

0.10 ≤ Kt ≤ 0.78 0.9605 + 0.4482Kt − 2.0011K2
t − 1.5581K3

t + 2.0080K4
t

Kt > 0.78 −2.4518 + 3.3014Kt

93 Abreu et al. [64] Évora, Portugal TM 2015-2016 - [1.0 + (1.502 − 1.820Kt)−48.589]−1.0/48.589

94 Marques Filho et al. [65] Rio de Janeiro, Brazil TM 2011-2014 - 1.0/[1.0 + exp(−4.90 + 8.78Kt)]
95 Marques Filho et al. [65] Rio de Janeiro, Brazil TM 2011-2014 - 0.13 + 0.86/[1.0 + exp(−6.29 + 12.26Kt)]
96 Paulescu and Blaga [66] Timisoara, Romania TM 2009-2010 Kt < 0.247 0.936 + 0.194Kt

Kt ≥ 0.247 1.436 − 1.824Kt

97 Abal et al. [67] Montevideo, Uruguay TM 2011-2013 Kt < 0.20 1.0
0.20 ≤ Kt ≤ 0.85 0.50+5.92Kt −22.22K2

t +29.51K3
t −19.54K4

t +6.09K5
t

Kt > 0.85 0.10
98 Abal et al. [67] Salto, Uruguay TM 1998-2003 Kt < 0.20 1.0

0.20 ≤ Kt ≤ 0.85 0.72 + 2.80Kt − 6.62K2
t − 4.66K3

t + 14.13K4
t − 6.20K5

t

Kt > 0.85 0.09
99 Abal et al. [67] Luján, Uruguay TM 2011-2012 Kt < 0.20 1.0

0.20 ≤ Kt ≤ 0.85 0.80 + 1.97Kt − 3.93K2
t − 5.97K3

t + 10.96K4
t − 3.56K5

t

Kt > 0.85 0.11
100 Abal et al. [67] Artigas, Uruguay TM 2014-2015 Kt < 0.20 1.0

0.20 ≤ Kt ≤ 0.85 0.86+0.87Kt +3.53K2
t −28.43K3

t +39.51K4
t −16.21K5

t

Kt > 0.85 0.11
101 Abal et al. [67] Treinta y Tres,

Uruguay
TM 2014-2015 Kt < 0.20 1.0

0.20 ≤ Kt ≤ 0.85 1.04−1.45Kt+13.21K2
t −43.80K3

t +48.79K4
t −17.60K5

t

Kt > 0.85 0.12
102 Abal et al. [67] Uruguay TM 1998-2015 (Vari-

ous data periods)
Kt < 0.20 1.0

0.20 ≤ Kt ≤ 0.85 0.77 + 2.16Kt − 3.91K2
t − 9.02K3

t + 17.00K4
t − 6.79K5

t

Kt > 0.85 0.10
103 Abal et al. [67] Montevideo, Uruguay TM 2011-2013 Kt < 0.35 1.0 − 0.40Kt

0.35 ≤ Kt ≤ 0.75 1.51 − 1.86Kt

(continued on next page)
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Kt > 0.75 0.12
104 Abal et al. [67] Salto, Uruguay TM 1998-2003 Kt < 0.35 1.0 − 0.29Kt

0.35 ≤ Kt ≤ 0.75 1.60 − 2.00Kt

Kt > 0.75 0.10
105 Abal et al. [67] Luján, Uruguay TM 2011-2012 Kt < 0.35 1.0 − 0.24Kt

0.35 ≤ Kt ≤ 0.75 1.60 − 1.95Kt

Kt > 0.75 0.14
106 Abal et al. [67] Artigas, Uruguay TM 2014-2015 Kt < 0.35 1.0 − 0.33Kt

0.35 ≤ Kt ≤ 0.75 1.56 − 1.93Kt

Kt > 0.75 0.11
107 Abal et al. [67] Treinta y Tres,

Uruguay
TM 2014-2015 Kt < 0.35 1.0 − 0.19Kt

0.35 ≤ Kt ≤ 0.75 1.63 − 1.99Kt

Kt > 0.75 0.14
108 Abal et al. [67] Uruguay TM 1998-2015 (Vari-

ous data periods)
Kt < 0.35 1.0 − 0.28Kt

0.35 ≤ Kt ≤ 0.75 1.59 − 1.96Kt

Kt > 0.75 0.12
109 Abal et al. [67] Montevideo, Uruguay TM 2011-2013 Kt < 0.22 1.0 − 0.24Kt

0.22 ≤ Kt ≤ 0.80 0.70 + 2.63Kt − 7.38K2
t + 1.86K3

t + 2.67K4
t

Kt > 0.80 0.13
110 Abal et al. [67] Salto, Uruguay TM 1998-2003 Kt < 0.22 1.0

0.22 ≤ Kt ≤ 0.80 0.38 + 6.54Kt − 21.25K2
t + 21.37K3

t − 6.99K4
t

Kt > 0.80 0.09
111 Abal et al. [67] Luján, Uruguay TM 2011-2012 Kt < 0.22 1.0 − 0.06Kt

0.22 ≤ Kt ≤ 0.80 0.62 + 3.70Kt − 10.83K2
t + 7.00K3

t − 0.30K4
t

Kt > 0.80 0.12
112 Abal et al. [67] Artigas, Uruguay TM 2014-2015 Kt < 0.22 1.0 − 0.15Kt

0.22 ≤ Kt ≤ 0.80 0.68 + 2.91Kt − 7.75K2
t + 1.47K3

t + 3.24K4
t

Kt > 0.80 0.13
113 Abal et al. [67] Treinta y Tres,

Uruguay
TM 2014-2015 Kt < 0.22 1.0 − 0.10Kt

(continued on next page)
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0.22 ≤ Kt ≤ 0.80 0.85 + 0.98Kt − 0.06K2
t − 9.75K3

t + 8.62K4
t

Kt > 0.80 0.13
114 Abal et al. [67] Uruguay TM 1998-2015 (Vari-

ous data periods)
Kt < 0.22 1.0 − 0.09Kt

0.22 ≤ Kt ≤ 0.80 0.60 + 3.97Kt − 11.74K2
t + 7.76K3

t − 0.28K4
t

Kt > 0.80 0.11
115 Abal et al. [67] Montevideo, Uruguay TM 2011-2013 - 0.95 − 0.97e− exp(2.96−6.07Kt)

116 Abal et al. [67] Salto, Uruguay TM 1998-2003 - 1.00 − 1.07e− exp(2.82−5.82Kt)

117 Abal et al. [67] Luján, Uruguay TM 2011-2012 - 0.98 − 1.05e− exp(2.96−5.75Kt)

118 Abal et al. [67] Artigas, Uruguay TM 2014-2015 - 0.95 − 0.92e− exp(3.57−7.32Kt)

119 Abal et al. [67] Treinta y Tres,
Uruguay

TM 2014-2015 - 0.96 − 0.97e− exp(3.46−6.68Kt)

120 Abal et al. [67] Uruguay TM 1998-2015 (Vari-
ous data periods)

- 0.97 − 1.01e− exp(3.07−6.17Kt)

121 Al-Najar and Al-
Khazzar [68]

Baghdad, Iraq AR 2015 - 1.5973 − 4.6603Kt + 5.7190K2
t − 2.5719K3

t
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Based on the information of Table 2.1, it is notorious that the majority of the
models were derived using a polynomial form, followed by the double exponential and
logistic functions. This information is also useful to see the distribution of the data
used to derive the models according to the climate zone and to identify the length
of the datasets, as this is a crucial factor on the determination of the coefficients
of the models. Figure 2.1 presents the distribution of models as a function of the
number of years of the datasets and climate zone. Only the models that presented
an explicit dataset length in their respective publications were used to produce
Figure 2.1. Models based on data from several locations, different climatic zones
or models derived from distinct dataset lengths were not considered, hence the 100
models examined in Figure 2.1. The higher number of models was developed for
the temperate (TM) zone, followed by the arid (AR), tropical (TR) and finally the
high albedo (HA) zones. This representativeness of the climate zones is also useful
to perceive the distribution of solar radiation measuring stations around the globe
and how this may affect the model’s development. One can conclude that the high
albedo and the tropical climate zones are not well represented. However, nowadays
there are more meteorological stations in these climate zones (see, e.g. [69]). The
most typical length of the training datasets is two years, followed by one, three and
four years. It worths to note that some authors used twenty and even thirty years of
data to derive their models (e.g. [27, 61]).
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Fig. 2.1: Distribution of the models according to the length of the training datasets and
climate zone: temperate (TM), arid (AR), tropical (TR) and high albedo (HA).
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2.3 Model development and test data

2.3.1 Model formulation

The model proposed in this study is based on the correlation of two limiting functions
for large and small values of Kt through the expression disclosed by Churchill and
Usagi [70] for the correlation of transfer phenomena, described as follows:

Y = (1 + Zn) 1
n (2.1)

where the arbitrary exponent n needs to be selected in order to correlate those
functions accurately [70]. This expression can be used to any phenomenon varying
uniformly, for example in heat transfer modelling [71] and fluid flow and heat transfer
optimisation when combined with the concept of the intersection of asymptotes
[72, 73]. In the case of modelling the diffuse fraction as a function of the clearness
index, the functions used here are the physically possible limit of Kd = 1 and a
function Z that is the best fit for the clear sky periods. The occurrence of cloud
enhancement effects in one-minute resolution data is quite frequent [1, 14], then
function Z was defined as the best fit to the clear sky data using a second degree
polynomial in the form:

Z = A(Kt − 0.5)2 + B(Kt − 0.5) + 1 (2.2)

Since Kd is a concave function of Kt, the exponents used in Eq. 1 must be −n and
−1/n, and thus, the final form of the model is given by:

Kd =
{
1 + [A(Kt − 0.5)2 + B(Kt − 0.5) + 1]−n

}− 1
n (2.3)

Figure 2.2 shows the fitting of the model to the data of Fort Peck station (FPE),
USA, as an example of the procedures implemented in this work for all the analysed
stations. Red lines represent the limiting functions Kd = 1 and Z (fitted to the FPE
dataset), and the blue line represents the fitted model. The three parameters of the
adjusted model for FPE station are also presented, as well as the period of data used.
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Fig. 2.2: Data for the FPE station (Fort Peck, USA) and representation of the limiting
functions (red) and model correlation (blue).

2.3.2 Test stations and data quality control

The data used in this study is from the Baseline Surface Radiation Network (BSRN)
[69, 74] and the Institute of Earth Sciences (IES) at the University of Évora, Portugal.
The BSRN is a project of the Global Energy and Water Cycle Experiment (GEWEX)
under the umbrella of the World Climate Research Programme (WCRP). The primary
objective of this network is to detect changes in the radiation field at the Earth’s
surface which may be related to climate changes. Measurements of solar radiation in
the IES station are taken likewise as in the BSRN stations: the diffuse horizontal
irradiation (DHI) is measured by a Kipp&Zonnen CM6B pyranometer and shading
ball attached to the sun tracker and the global horizontal irradiance is also measured
by a Kipp&Zonnen CM6B pyranometer. The sensors are installed on a Kipp&Zonnen
Solys2 sun tracker and are properly maintained and calibrated according to the
BSRN and WMO guidelines and recommendations [69, 75]. Table 4.1 shows detailed
information on the stations used in this study : location, climate zone, data period,
number of valid data points and mean GHI of all valid measurements.
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Table 2.2: Information on the data of BSRN and IES stations. Acronyms: AR (Arid), HA
(High albedo), TM (Temperate), and TR (Tropical).
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Alert ALE 82.490 −62.420 127 HA 2009-2011 631284 223.84
Alice Springs ASP −23.798 133.888 547 AR 2007-2009 704784 561.96
Bermuda BER 32.267 −64.667 8 TM 2006-2008 458837 497.33
Billings BIL 36.605 −97.516 317 TM 2005-2007 631822 451.65
Bondville BON 40.067 −88.367 213 TM 2007-2009 220046 507.54
Boulder BOU 40.050 −105.007 1577 TM 2002-2004 481571 519.33
Brasilia BRB −15.601 −47.713 1023 TR 2009-2011 598116 472.22
Carpentras CAR 44.083 5.059 100 TM 2003-2005 619585 419.19
Chesapeake Light CLH 36.905 −75.713 37 TM 2011-2013 681269 408.60
Cener CNR 42.816 −1.601 471 TM 2010-2012 666202 374.60
Cocos Island COC −12.193 96.835 6 TR 2006-2008 556163 505.99
De Aar DAA −30.667 23.993 1287 AR 2002-2004 592787 518.07
Darwin DAR −12.425 130.891 30 TR 2009-2011 699416 489.94
Concordia station DOM −75.100 123.383 3233 HA 2005-2007 255370 377.86
Desert Rock DRA 36.626 −116.018 1007 AR 2007-2009 324644 596.47
Évora EVR 38.568 −7.912 293 TM 2016-2017 199169 504.11
Eureka EUR 79.989 −85.940 85 HA 2009-2011 654421 230.99
Fort Peck FPE 48.317 −105.100 634 TM 2007-2009 227621 481.02
Fukuoka FUA 33.582 130.376 3 TM 2011-2013 715368 337.10
Goodwin Creek GCR 34.250 −89.870 98 TM 2007-2009 244471 529.24
Gobabeb GOB −23.561 15.042 407 AR 2012-2014 627165 596.64
Georg von Neumayer GVN −70.650 −8.250 42 HA 2011-2013 509631 316.63
Ilorin ILO 8.533 4.567 350 TR 1995,1999,2000 160661 307.77
Ishigakijima ISH 24.337 124.163 6 TM 2011-2013 710421 374.30
Izana IZA 28.309 −16.499 2373 AR 2011-2013 680660 612.14
Kwajalein KWA 8.720 167.731 10 TR 1998-2000 517467 544.96
Lauder LAU −45.045 169.689 350 TM 2005-2007 583349 399.17
Lerwick LER 60.139 −1.185 80 TM 2004-2006 586958 213.18
Lindenberg LIN 52.210 14.122 125 TM 2001-2003 665675 285.77
Momote MAN −2.058 147.425 6 TR 2008-2010 689159 470.82
Minamitorishima MNM 24.288 153.983 7 TM 2011-2013 727974 470.67
Nauru Island NAU −0.521 166.917 7 TR 2005-2007 649304 513.96
Ny-Alesund NYA 78.925 11.930 11 HA 2007-2009 619576 187.06
Palaiseau PAL 48.713 2.208 156 TM 2009-2011 701389 302.24
Payerne PAY 46.815 6.944 491 TM 2008-2010 573646 349.50
Rock Springs PSU 40.720 −77.933 376 TM 2007-2009 203868 471.41
Petrolina PTR −9.068 −40.319 387 TR 2007-2009 149097 566.04
Regina REG 50.205 −104.713 578 TM 2009-2011 620001 365.50
Sapporo SAP 43.060 141.328 17 AR 2011-2013 722699 305.91
Sede Boqer SBO 30.860 34.779 480 TM 2009-2011 662564 542.45
Sonnblick SON 47.054 12.958 3109 HA 2013-2015 462080 371.23
Solar Village SOV 24.907 46.397 768 AR 2000-2002 717011 564.91
Sioux Falls SXF 43.730 −96.620 473 TM 2007-2009 228600 475.41
Tamanrasset TAM 22.790 5.529 1385 AR 2006-2008 644908 596.17
Tateno TAT 36.050 140.133 25 TM 2008-2010 683402 334.39
Tiksi TIK 71.586 128.919 48 HA 2011-2013 617716 211.72
Toravere TOR 58.254 26.462 70 TM 2010-2012 649189 245.32
Xianghe XIA 39.754 116.962 32 TM 2008-2010 561393 381.54
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Data quality control was performed by applying the quality filters defined by Long
and Shi [76] for the global horizontal irradiance (GHI). Furthermore, Kd values higher
than 1 and lower than 0 were removed for the fitting of the model parameters A and
B, since measurements of diffuse irradiance higher than global irradiance are very
dubious. However, instrumental errors can occur, and therefore, the Kd maximum
value was set to 1.2 when determining the parameter n. Finally, measurements taken
when the zenith angle was higher than 85◦ were also removed due to disturbances
caused mainly by the horizon line and also due to instrumental and modelling
accuracy issues in that case [14]. Since one-minute data was used in this work, the
extraterrestrial irradiance on a horizontal surface, Eoh, that is needed to determine
the Kt was simply calculated based on the solar constant (Gs = 1361.1Wm−2 [77])
and the solar zenith angle, this last being calculated through the very accurate
solar position algorithm developed by Reda and Andreas [78]. The data was divided
into two sets: the training set with two years of data used to determine the fitting
parameters of the proposed model; and the validation set with one year of data,
used to validate the developed model as well as the models available in the literature
(Section 2.2). These datasets are composed of years with high number of valid
measurements, i.e., records that successfully passed the quality control procedures
[76], as shown in Table 4.1.

2.3.3 Statistical indicators for model assessment

The developed model, as well as the models reviewed in Section 2.2, were evaluated
using the statistical indicators described below taking the measured values as reference.
Lower values indicate better model accuracy except for the mean bias error and mean
percentage error, in which values closer to zero indicate a better model accuracy, and
for the correlation coefficient, in which a value closer to 1 represents better model
accuracy. In the following, H and N stand for minutely diffuse horizontal irradiance
(DHI) and number of observations, respectively, and the subscripts m, e and avg

stand for measured, estimated and average, respectively.

2.3.3.1 Mean bias error (MBE)

MBE = 1
N

N∑
i=1

(He,i − Hm,i) (2.4)

2.3.3.2 Mean absolute error (MAE)

MAE = 1
N

N∑
i=1

|He,i − Hm,i| (2.5)
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2.3.3.3 Root mean square error (RMSE)

RMSE =
 1

N

N∑
i=1

(He,i − Hm,i)2

 1
2

(2.6)

2.3.3.4 Mean percentage error (MPE)

MPE = 1
N

N∑
i=1

He,i − Hm,i

Hm,i

× 100 (2.7)

2.3.3.5 Uncertainty at 95% (U95)

U95 = 1.96(SD2 + RMSE2) 1
2 (2.8)

where SD represents the standard deviation of the difference between He and Hm.

2.3.3.6 Relative root mean square error (RRMSE)

RRMSE = RMSE

Hm,avg

(2.9)

2.3.3.7 t-statistics (TSTAT)

TSTAT =
 (N − 1)MBE2

RMSE2 − MBE2

 1
2

(2.10)

2.3.3.8 Maximum absolute relative error (erMAX)

erMAX = max

∣∣∣∣∣∣He,i − Hm,i

Hm,i

∣∣∣∣∣∣, i = 1, ..., N

 (2.11)

2.3.3.9 Correlation coefficient (R)

R =
∑N

i=1(He,i − He,avg)(Hm,i − Hm,avg)√∑N
i=1(He,i − He,avg)2∑N

i=1(Hm,i − Hm,avg)2
(2.12)

2.3.3.10 Mean absolute relative error (MARE)

MARE = 1
N

N∑
i=1

∣∣∣∣∣∣He,i − Hm,i

Hm,i

∣∣∣∣∣∣ (2.13)
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2.3.3.11 Global Performance Index (GPI)

The global performance index, firstly proposed by Behar et al. [79], then modified
by Despotovic et al. [80] and used by Jamil and Akthar [23, 81], is also used
here to combine all the statistical indicators presented in Subsections 2.3.3.1 to
2.3.3.10. The need for using this index is due to the incapacity of those statistical
indicators to, consistently, identify the best model (see Table 2.4). The values of
the statistical indicators need to be scaled between 0 (worst performing model) and
1 (best performing model) to determine the GPI values, which otherwise would
make difficult to compare the models. This normalisation also allows using the same
statistical weight for all of the indicators when determining the GPI, as follows:

GPI =
10∑

j=1
αj(ȳj − yij) (2.14)

where ȳj is the median of the scaled values of the indicator j, yij is the scaled value
of the statistical indicator j for the model i, and αj equals to 1 for all statistical
indicators except R, in which αj equals to -1. The GPI also allows to combine several
indicators regardless if the value of a single indicator is 0 or not, which is not possible
if a simple product of the indicators is computed, and therefore a higher GPI stands
for better accuracy of a given model.

2.4 Results and discussion

2.4.1 Determination of model parameters and climate analysis

Figure 2.3 shows the distribution of the Kt values for the climate zones considered,
which is useful to identify the range of the clearness index and the clear sky occurrences
(frequency). The AR climate zone presents the highest relative frequency for high
values of Kt, reaching a relative frequency of 0.038 for Kt ≃ 0.77, followed by
the TM and TR climate zones with maximum relative frequency around 0.030 for
approximately the same Kt value. The HA climate zone presents the lower values of
Kt relative frequency for clear sky. The training of the model was performed using
the stations from the BSRN network, while the IES station (EVR) was used only in
the validation of the model. The parameters A and B for each station were found by
fitting Eq. 2.2 to the data in the range of Kt ≥ 0.5, using the non-linear least squares
method. Then, the parameter n was obtained through an optimisation process in
order to achieve the maximum GPI value for the entire range of the data. One also
investigated the existence of a possible relationship between these parameters and
the elevation of the stations according to the climate zone, as shown in Figure 2.4.
However no conclusions can be drawn on the existence of any clear dependence,
and therefore, no traditional fitting equations using the parameters of the model
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Fig. 2.3: Relative frequency of Kt in BSRN stations according to the climate zone.

and the elevation of the stations were able to present an acceptable coefficient of
determination. To develop a model based only on the Kt as predictor for each climate
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Fig. 2.4: Variation of the parameters A, B and n according to the elevation of the stations
and climate zone: Arid (AR), High Albedo (HA), Temperate (TM) and Tropical (TR).
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region, the mean value and standard deviation of these parameters were calculated
for the four zones considered, and the stations in which at least one of the three
parameters were out of the confidence interval defined by the mean ± standard
deviation were excluded from this calculation. After this procedure, the values inside
this imposed range are averaged in order to obtain the mean values of A, B and n

for each climate zone, as shown in Table 2.3. These parameters were used for the
model performance assessment as presented in the following section.

Table 2.3: Parameters of the developed model according to the climate zone: Arid (AR),
High Albedo (HA), Temperate (TM) and Tropical (TR).

Parameters
Climate Zone

AR HA TM TR

A 11.39 7.83 10.79 11.59
B −6.25 −4.59 −5.87 −6.14
n 1.86 3.25 2.24 1.87

2.4.2 Performance assessment

The statistical tools presented in Section 2.3.3 were used to assess the performance of
the models from the literature as well as of the model developed in this work using
measurements from the EVR station and the datasets from the BSRN, as presented
in Table 2.2. The performance assessment was carried out using the corresponding
set of parameters according to the climate zone of the 48 radiometric stations
analysed in this study. The performance assessment is presented in detail for the
EVR station as an example of both the methodology used in this study and as a
completely independent assessment since data from this station was not included
in the determination of the model parameters. Table 2.4 presents the results of the
statistical analysis of the selected models using the indicators shown in Section 2.3.3
for the EVR station. The bold font indicates the optimal values of the statistical
indicators, i.e., it indicates the best model according to each statistical indicator.

Table 2.4: Statistical analysis of the selected models for the EVR station.
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1 −40.31 111.13 36.42 −6.42 297.74 2.00 0.86 75.41 0.19 0.55 0.22
2 −29.87 102.79 28.42 3.82 278.84 2.11 0.79 71.26 0.30 0.54 0.64
3 −46.36 112.67 42.25 −12.76 298.80 1.79 0.87 75.05 0.19 0.53 0.13
4 −74.08 124.44 69.34 −41.84 312.87 0.89 0.96 79.87 0.19 0.50 −0.46
5 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63

(continued on next page)
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6 −74.08 124.44 69.34 −41.84 312.87 0.89 0.96 79.87 0.19 0.50 −0.46
7 −99.29 140.53 93.43 −68.28 337.45 0.94 1.08 99.29 0.19 0.68 −1.46
8 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
9 −53.92 115.14 49.60 −20.69 301.16 1.54 0.89 75.16 0.19 0.51 0.00
10 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
11 −69.04 121.78 64.41 −36.56 309.23 1.03 0.94 77.95 0.19 0.49 −0.32
12 −58.96 117.11 54.53 −25.98 303.36 1.37 0.90 75.67 0.19 0.50 −0.10
13 −94.25 136.99 88.73 −62.99 331.75 0.93 1.06 94.31 0.19 0.63 −1.24
14 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
15 −89.21 133.59 83.95 −57.70 326.42 0.92 1.03 89.69 0.19 0.58 −1.02
16 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
17 −21.15 109.03 18.51 13.67 299.35 2.64 0.84 78.71 0.19 0.64 0.24
18 28.34 79.71 35.61 56.30 213.84 2.98 0.62 63.06 0.68 0.69 0.91
19 −48.88 113.43 44.69 −15.41 299.45 1.71 0.88 75.01 0.19 0.52 0.09
20 −38.25 107.47 35.65 −3.12 288.30 2.10 0.83 69.93 0.24 0.49 0.45
21 1.53 112.10 1.28 37.46 310.72 3.40 0.87 85.97 0.19 0.78 −0.01
22 −16.11 109.19 13.96 18.96 301.01 2.81 0.84 80.05 0.19 0.67 0.20
23 0.42 82.32 0.48 28.96 228.18 2.45 0.64 54.46 0.59 0.51 1.66
24 −55.43 115.71 51.08 −22.28 301.76 1.49 0.89 75.28 0.19 0.50 −0.03
25 −53.41 114.96 49.11 −20.17 300.96 1.56 0.89 75.13 0.19 0.51 0.01
26 −40.31 111.13 36.42 −6.42 297.74 2.00 0.86 75.41 0.19 0.55 0.22
27 −30.22 109.49 26.88 4.15 297.65 2.34 0.85 76.76 0.19 0.59 0.29
28 3.55 112.66 2.95 39.58 312.20 3.47 0.87 86.76 0.19 0.80 −0.09
29 19.18 118.40 15.36 55.97 326.03 3.99 0.91 93.67 0.19 0.91 −0.69
30 8.09 114.07 6.65 44.34 315.79 3.62 0.88 88.64 0.19 0.83 −0.26
31 −99.29 140.53 93.43 −68.28 337.45 0.94 1.08 99.29 0.19 0.68 −1.46
32 −56.45 105.00 59.68 −26.47 269.19 1.77 0.81 60.44 0.49 0.33 0.64
33 −47.02 121.55 39.26 −12.54 324.08 2.03 0.94 82.07 0.08 0.60 −0.29
34 −129.12 164.09 119.34 −99.48 377.92 1.00 1.27 129.12 0.18 0.99 −2.82
35 14.18 77.91 17.32 42.93 214.17 2.63 0.60 58.39 0.65 0.60 1.37
36 −38.79 110.81 34.98 −4.83 297.59 2.05 0.86 75.56 0.19 0.56 0.24
37 −13.59 109.39 11.72 21.60 302.03 2.89 0.84 80.77 0.19 0.69 0.18
38 21.99 87.63 24.26 45.07 239.04 5.94 0.68 60.85 0.61 0.60 0.49
39 21.70 119.55 17.27 58.61 328.63 4.08 0.92 94.89 0.19 0.93 −0.79
40 21.70 119.55 17.27 58.61 328.63 4.08 0.92 94.89 0.19 0.93 −0.79
41 −28.71 109.34 25.47 5.74 297.82 2.39 0.84 77.04 0.19 0.60 0.28
42 91.34 162.12 63.82 130.84 412.18 6.25 1.25 131.34 0.23 1.48 −3.61
43 −59.97 117.54 55.52 −27.04 303.86 1.34 0.91 75.82 0.19 0.50 −0.12
44 −38.79 110.81 34.98 −4.83 297.59 2.05 0.86 75.56 0.19 0.56 0.24
45 4.17 75.61 5.17 28.26 209.41 4.19 0.58 52.45 0.67 0.47 1.56
46 35.49 81.81 45.07 63.51 215.83 3.10 0.63 65.77 0.69 0.74 0.64
47 −40.31 111.13 36.42 −6.42 297.74 2.00 0.86 75.41 0.19 0.55 0.22
48 −20.14 109.03 17.59 14.73 299.64 2.67 0.84 78.97 0.19 0.65 0.23
49 −63.50 119.10 58.98 −30.74 305.76 1.22 0.92 76.47 0.19 0.49 −0.20
50 −22.16 109.03 19.43 12.61 299.08 2.61 0.84 78.47 0.19 0.64 0.25
51 0.97 74.95 1.21 27.30 207.75 2.63 0.58 50.05 0.67 0.47 1.92
52 80.04 123.80 79.32 114.80 305.19 4.66 0.96 101.68 0.51 1.22 −1.94
53 −1.70 75.32 2.12 25.91 208.75 2.26 0.58 51.50 0.67 0.47 1.96
54 25.21 82.06 30.22 54.78 222.02 2.88 0.63 64.16 0.64 0.69 0.89
55 22.66 80.81 27.34 51.93 219.55 2.85 0.62 62.57 0.64 0.67 1.01
56 8.51 75.99 10.54 36.20 209.99 2.64 0.59 54.50 0.67 0.54 1.62

(continued on next page)
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57 −2.72 74.91 3.40 24.30 207.57 2.33 0.58 50.11 0.67 0.46 1.97
58 17.72 78.78 21.61 46.49 215.59 2.77 0.61 59.71 0.65 0.62 1.23
59 5.25 75.53 6.53 32.87 209.11 2.52 0.58 53.32 0.67 0.52 1.75
60 −48.27 108.42 46.53 −19.98 285.25 2.48 0.84 57.67 0.42 0.36 0.56
61 38.92 113.31 34.23 75.18 304.68 4.23 0.87 92.15 0.31 0.97 −0.91
62 −106.85 146.12 100.33 −76.21 346.67 0.96 1.13 106.85 0.19 0.76 −1.80
63 −0.89 111.49 0.74 34.92 309.04 3.32 0.86 85.04 0.19 0.77 0.06
64 32.23 124.95 24.99 69.66 340.53 4.43 0.96 100.26 0.19 1.01 −1.23
65 −72.77 123.26 68.46 −39.64 310.46 2.34 0.95 74.37 0.23 0.42 −0.50
66 −57.44 104.79 61.34 −28.93 267.76 2.56 0.81 65.17 0.51 0.39 0.43
67 17.89 77.44 22.22 44.70 211.78 2.80 0.60 58.85 0.67 0.60 1.30
68 17.38 74.36 22.50 44.68 203.28 2.59 0.57 57.34 0.70 0.60 1.44
69 54.08 108.58 53.76 86.97 281.68 4.31 0.84 87.56 0.47 0.99 −0.92
70 10.66 75.44 13.35 38.81 208.07 6.90 0.58 56.61 0.68 0.56 0.86
71 8.27 74.35 10.48 36.44 205.45 2.64 0.57 55.35 0.69 0.55 1.66
72 −24.73 80.84 30.08 2.11 218.76 1.88 0.62 47.74 0.66 0.33 1.87
73 −7.55 78.20 9.08 21.51 216.24 2.09 0.60 55.36 0.66 0.47 1.84
74 18.79 80.38 22.50 48.26 219.75 2.67 0.62 61.71 0.64 0.64 1.15
75 3.70 76.96 4.50 32.28 213.19 2.17 0.59 55.20 0.65 0.52 1.78
76 −16.42 77.36 20.33 10.66 211.99 1.89 0.60 49.07 0.68 0.38 1.97
77 −20.39 80.17 24.61 6.91 218.59 1.91 0.62 48.59 0.65 0.36 1.87
78 −9.96 78.53 11.97 18.35 216.80 1.92 0.61 51.70 0.64 0.43 1.88
79 −32.59 109.77 29.10 1.67 297.48 2.26 0.85 76.37 0.19 0.58 0.29
80 −39.45 110.95 35.60 −5.52 297.65 2.03 0.86 75.49 0.19 0.55 0.23
81 −41.06 111.30 37.15 −7.21 297.83 1.97 0.86 75.35 0.19 0.55 0.21
82 −38.79 110.81 34.98 −4.83 297.59 2.05 0.86 75.56 0.19 0.56 0.24
83 −27.20 109.23 24.06 7.33 298.03 2.44 0.84 77.34 0.19 0.61 0.27
84 −26.54 109.18 23.46 8.01 298.14 2.46 0.84 77.48 0.19 0.61 0.27
85 −8.55 110.00 7.29 26.89 304.45 3.06 0.85 82.35 0.19 0.72 0.14
86 −64.00 119.33 59.47 −31.27 306.06 1.20 0.92 76.58 0.19 0.49 −0.21
87 84.34 128.86 81.01 116.82 316.63 5.10 0.99 103.80 0.50 1.24 −2.17
88 6.58 113.58 5.43 42.75 314.55 3.57 0.88 88.00 0.19 0.82 −0.20
89 92.63 132.94 90.92 126.87 320.66 5.13 1.03 108.04 0.51 1.32 −2.49
90 88.67 123.26 96.91 119.65 294.17 4.67 0.95 100.93 0.61 1.24 −2.00
91 87.44 121.89 96.37 119.29 291.17 4.63 0.94 100.66 0.61 1.24 −1.97
92 −179.35 287.33 74.77 −141.81 714.66 5.68 2.22 202.48 −0.30 1.59 −6.35
93 −18.41 72.93 24.41 5.27 198.91 2.15 0.56 44.95 0.72 0.36 2.08
94 −11.85 75.52 14.87 14.47 208.03 2.23 0.58 47.25 0.68 0.39 1.98
95 −5.82 71.58 7.64 19.72 198.07 2.30 0.55 47.76 0.72 0.41 2.12
96 −60.98 121.20 54.48 −33.86 313.97 2.74 0.94 67.90 0.38 0.46 −0.10
97 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
98 −84.16 130.36 79.13 −52.42 321.48 0.91 1.01 85.68 0.19 0.55 −0.82
99 −74.08 124.44 69.34 −41.84 312.87 0.89 0.96 79.87 0.19 0.50 −0.46
100 −74.08 124.44 69.34 −41.84 312.87 0.89 0.96 79.87 0.19 0.50 −0.46
101 −69.04 121.78 64.41 −36.56 309.23 1.03 0.94 77.95 0.19 0.49 −0.32
102 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
103 −69.04 121.78 64.41 −36.56 309.23 1.03 0.94 77.95 0.19 0.49 −0.32
104 −79.12 127.30 74.25 −47.13 316.96 0.90 0.98 82.42 0.19 0.52 −0.63
105 −58.96 117.11 54.53 −25.98 303.36 1.37 0.90 75.67 0.19 0.50 −0.10
106 −74.08 124.44 69.34 −41.84 312.87 0.89 0.96 79.87 0.19 0.50 −0.46
107 −58.96 117.11 54.53 −25.98 303.36 1.37 0.90 75.67 0.19 0.50 −0.10

(continued on next page)
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108 −69.04 121.78 64.41 −36.56 309.23 1.03 0.94 77.95 0.19 0.49 −0.32
109 −64.00 119.33 59.47 −31.27 306.06 1.20 0.92 76.58 0.19 0.49 −0.21
110 −84.16 130.36 79.13 −52.42 321.48 0.91 1.01 85.68 0.19 0.55 −0.82
111 −69.04 121.78 64.41 −36.56 309.23 1.03 0.94 77.95 0.19 0.49 −0.32
112 −64.00 119.33 59.47 −31.27 306.06 1.20 0.92 76.58 0.19 0.49 −0.21
113 −64.00 119.33 59.47 −31.27 306.06 1.20 0.92 76.58 0.19 0.49 −0.21
114 −74.08 124.44 69.34 −41.84 312.87 0.89 0.96 79.87 0.19 0.50 −0.46
115 −15.14 76.83 18.81 11.50 210.89 2.11 0.59 47.82 0.67 0.38 1.95
116 −24.37 80.74 29.63 1.31 218.65 2.19 0.62 45.81 0.65 0.32 1.84
117 −6.69 76.75 8.19 20.13 212.34 2.34 0.59 49.23 0.66 0.43 1.91
118 −14.95 75.02 19.03 10.74 205.86 2.27 0.58 46.33 0.69 0.36 2.01
119 −2.52 74.47 3.16 23.97 206.36 2.44 0.57 49.39 0.68 0.45 1.98
120 −16.08 77.31 19.90 10.01 211.97 2.25 0.60 46.70 0.67 0.36 1.93
121 1.42 92.87 1.44 34.45 257.41 2.85 0.72 69.35 0.42 0.62 0.95

This work 25.84 70.80 36.68 47.87 189.61 2.59 0.55 53.70 0.76 0.58 1.43

The statistical evaluation regarding the accuracy of the models presented in Table
2.4 for EVR does not give a unanimous decision on which of the models is considered
the most accurate. The model developed in this work is the best performing model if
we consider the RMSE (70.80 W m−2), U95 (189.61 W m−2), RRMSE (0.55) and R
(0.76) statistical indicators. On the other hand, the model 23 presented by Hollands
[31], is the most accurate model regarding the MBE (0.42 W m−2) and TSTAT (0.48)
indicators. Considering the values of MPE (1.31%) and MARE (0.32) of the model
116 derived by Abal et al. [67], it would be selected as the best performing model
for this station. Regarding the erMAX, it does not allow identifying the single most
accurate model, due to presenting the same value for several models. The analysis of
these results shows the advantage of using the GPI in order to present a more concise
performance evaluation, allowing the combination of several statistical indicators
and providing, through a simple procedure, a result easy to understand. Therefore,
the model with higher GPI for the station being analysed (EVR) is the model 95
presented by Marques Filho et al. [65] with a GPI value of 2.12, although it was not
considered the best performing model according to any of the statistical indicators
separately. This result is due to the scaling down of the values of the statistical
indicators mentioned above in the GPI determination procedure, which allows for a
fair comparison of the models under study.

This analysis was also carried out for all of the BSRN stations in order to identify
the best performing model for various locations in different climate zones. Figure 2.5
presents the result of this comprehensive performance assessment, where the absolute
frequency of selection as the best performing model (based on the maximum GPI) is
shown, also according to the climate zone of the stations. The best overall performing
model is the one presented in this work (Eq. 2.3 and Table 2.3), followed by model
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Fig. 2.5: Best performing models according to the climate zone: arid (AR), high albedo
(HA), temperate (TM) and tropical (TR).

46 by Mondol et al. [47]. The best performing model for the AR climate zone is the
model 118 proposed by Abal et al. [67] while the best performing model for the HA
climate zone is the model 46 derived by Mondol et al. [47]. The best performing
model for the TM and TR climate zones is the model presented in this work (Eq. 2.3
and Table 2.3). The results presented in Figure 2.5 show the advantage in deriving
specific model parameters for each climate zone as suggested by Gueymard and
Ruiz-Arias [14], despite the good performance of the model proposed by Mondol [47].
Only the model proposed here, and the model proposed by Mondol [47] were selected
as best performing models for the four climate zones considered, showing excellent
versatility regarding climate zone selection. On the other hand, the higher number of
stations in the temperate (TM) zone allows for a better characterisation of the model
parameters in comparison against other climate zones, where less data is available.

To further test the closeness of the two best performing models from Figure
2.5 to the measured data, i.e., model 46 and the one proposed in this work, a
Taylor diagram [25] is presented in Figure 2.6 for all stations. This diagram helps
to identify the closeness between the modelled and observed data in terms of their
correlation coefficient (azimuthal position, R) and standard deviation of model
output normalised by the standard deviation of the corresponding observations
(radial distance, nSD). In this diagram, a better accuracy is achieved when the model
is located close to the normalised standard deviation unit line [14], while the open
circle in the coordinates (nSD=1, R=1) represents the point of perfect match between
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model and observations. It is worth to mention that the distance between the model
representation and this point is the so-called centred pattern Root Mean Square
Difference, which accounts for the mean values of both data series, and is also a
measure of the model closeness to the observed data (not shown). Instead, a more
elaborated skill score proposed by Taylor [25] was determined as a function of the
correlation coefficient (R) and the normalized standard deviation (nSD) in the form
S = 4(1 + R)/[(nSD + 1/nSD)2(1 + R0)] with R0 = max(R), which is represented in
Figure 2.6 by the S isolines. This definition allows guaranteeing that the skilfulness
of the model increases when nSD → 1, which is not assured by the centred pattern
RMSE for lower values of R. Best model accuracy is achieved when skill score values
tend to unity. In this way, the best performing model according to Figure 2.6 is the
model proposed in this work, with a skill score higher than 0.80 for the majority of
the stations and with nSD values in general higher than those of model 46. This
conclusion is in agreement with the results presented in Figure 2.5, showing that the
proposed model has best accuracy, using two distinct statistical analysis.
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2.5 Conclusions

In this work is presented a newly developed model based on minute resolution data
and climate zone classification. A review of the literature on models that use hourly
and sub-hourly Kt values to compute Kd was carried out. An extensive statistical
analysis of the proposed as well as of other 121 models found in the literature was
performed, using one-minute resolution data. In this analysis, the elevation of the
stations was not an essential factor when determining the parameters of the new
model. The performance assessment was done using several statistical indicators and
a Global Performance Index (GPI), which is a composite indicator that simplifies
the analysis. The best performing model for the arid (AR) climate zone was found to
be the model proposed by Abal et al. [67], while the best model for the high albedo
(HA) climate zone is the model proposed by Mondol et al. [47]. The best model
for the temperate (TM) and tropical (TR) climate zones is the model proposed in
this work. It was also found that the best overall performing model (highest GPI
in the more significant number of stations and highest skill score) was the model
proposed in this work followed by the model by Mondol et al. [47]. This work helps
to identify the best model that uses only the Kt according to the climate zone, thus
allowing to easily estimate the diffuse horizontal irradiance (DHI) and consequently
the direct normal irradiance (DNI), based only on global horizontal irradiance (GHI)
measurements. The proposed model is also a tool for long-term data series quality
control and gap-filling.
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Nomenclature

A model parameter

B model parameter

Eoh extraterrestrial irradiance on a horizontal surface (W/m2)

erMAX maximum absolute relative error

GPI Global Performance Index

Gs Solar constant (W/m2)

H minutely diffuse horizontal irradiance

Kd diffuse fraction

Kt clearness index

MAE mean absolute error

MARE mean absolute relative error

MBE mean bias error

MPE mean percentage error

n model parameter

N number of observations
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nSD normalized standard deviation

R correlation coefficient

RMSE root mean square error

RRMSE relative root mean square error

S skill score

TSTAT t-statistics

U95 uncertainty at 95%

y scaled value of a statistical indicator

ȳ median of scaled values of a statistical indicator

Greek symbols

α part of GPI equation (= 1 or -1)

Subscripts

avg average

e estimated

i measurement / model

j statistical indicator

m measured

Acronyms

AR arid climate zone

BSRN Baseline Surface Radiation Network

CSP Concentrating Solar Power

DHI Diffuse Horizontal Irradiance

DNI Direct Normal Irradiance

GHI Global Horizontal Irradiance

HA high albedo climate zone

IES Institute of Earth Sciences

MAE mean absolute error

MARE mean absolute relative error
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MBE mean bias error

MPE mean percentage error

nSD normalized standard deviation

PV photovoltaics

R correlation coefficient

RMSE root mean square error

RRMSE relative root mean square error

TM temperate climate zone

TR tropical climate zone

TSTAT t-statistics

U95 uncertainty at 95%



Chapter 3

Performance assessment of clear-sky solar irradiance
predictions using state-of-the-art radiation models and input
atmospheric data from reanalysis or ground measurements†

Abstract

In this work, the performance of clear-sky direct normal irradiance (DNI)
and global horizontal irradiance (GHI) predictions generated with three
state-of-the-art solar radiation models with different degrees of complexity is
assessed by comparison with high-quality measured irradiance data at Évora,
Portugal. The libRadtran, SMARTS, and REST2 radiation models are
alternatively operated using input data from three different data sources: co-
located AERONET ground-based measurements, and CAMS and MERRA-2
gridded reanalysis data. For these nine combinations (three models and
three data sources), the results are assessed using five statistical indicators,
namely mean bias error (MBE), root mean square error (RMSE), fractional
bias (FB), fractional gross error (FGE), and coefficient of determination
(R2). Overall, it is found that AERONET is the data source that provides
the best DNI estimates. In general, libRadtran and SMARTS produced
closer estimates to the ground-based DNI observations. For GHI, however,
no firm conclusion can be drawn regarding the best data source. MERRA-2
produces better estimates in combination with libRadtran and SMARTS
according to all statistical indicators except R2, whereas AERONET is to
be preferred according to FB, FGE, and R2 when using REST2.

†Edgar F.M. Abreu(1), Christian A. Gueymard(2), Paulo Canhoto(1,3), and Maria J. Costa(1,4,5). Perfor-
mance assessment of clear-sky solar irradiance predictions using state-of-the-art radiation models and input
atmospheric data from reanalysis or ground measurements. Solar Energy, 252:309-321, 2023.
(1) Institute of Earth Sciences, University of Évora.
(2) Solar Consulting Services, Colebrook, NH 03576, USA
(3) Mechatronic Engineering Department, School of Sciences and Technology, University of Évora.
(4) Physics Department, School of Sciences and Technology, University of Évora.
(5) Earth Remote Sensing Laboratory – EaRSLab, University of Évora.
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Curiously, the latter generates better GHI estimates despite being the
simplest model. Overall, it is concluded that the best combinations of
model/data source to estimate DNI are either libRadtran/MERRA-2
(according to MBE and FB) and SMARTS/AERONET (according to
RMSE, FGE, and R2). In the case of GHI, the best combinations are
REST2/AERONET (according to FB, FGE, and R2) and REST2/MERRA-
2 (according to MBE and RMSE).

Keywords: Solar Energy; Solar radiation; DNI; Ground-based measurements;
Reanalysis data; Solar radiation models.

3.1 Introduction

The successful development of solar energy projects is strongly related to the reliability
of their solar resource assessment since it has a direct impact on the design, simulation,
financing, and performance evaluation of such systems [1]. The most reliable solar
radiation data source are still ground-based radiometric measurements [2], with
the caveat that the installation and maintenance of radiometric stations are highly
demanding [3] and high-quality ground-based measurements are thus not available at
most potential locations of interest. In general, therefore, resource assessment analyses
must be primarily conducted using modelled (as opposed to measured) data. Recent
studies indeed suggest that ground-based measurements can be complemented or
replaced by gridded products from satellite data or reanalysis of Numerical Weather
Prediction (NWP) model outputs [4, 5]. Reanalyses have the advantage of being
available globally, even at high latitudes, and for longer periods than satellite-derived
irradiance estimates. Several studies exist on the accuracy of such irradiance databases
relatively to reference ground-based measurements [5, 6, 7, 8, 9]. Nevertheless, Yang
and Bright Yang and Bright [5] concluded that, regarding surface solar irradiance
estimates, satellite-derived products are better than reanalysis products under squared
loss. This adds to the generally accepted conclusion that the former’s performance is
still superior to the latter’s; e.g., [2, 10, 11]. This situation is apparently related to
the fact that reanalysis models are focused on the global atmospheric circulation,
but have difficulty with the proper modeling of cloud-radiation interactions at high
spatio-temporal resolution. Moreover, reanalyses are focused on the assimilation
of vast quantities of meteorological observations to initialize the NWP algorithms
[12], rather than on solar energy applications. To provide an alternative and reliable
approach for solar resource assessments, a potentially interesting avenue would consist
in combining reanalysis datasets with state-of-the-art solar radiation modelling, using
advanced site adaptation procedures [13].

Reanalysis data sets such as ERA5 [13], the Modern-Era Retrospective analysis
for Research and Applications, Version 2 (MERRA-2) [14, 15, 16], or the Copernicus



3.1 Introduction 71

Atmosphere Monitoring Service (CAMS) [17, 18, 19, 20] offer important atmospheric
variables for solar applications, such as temperature, atmospheric pressure, and
relative humidity at the surface, or columnar estimates of atmospheric constituents
such as aerosols, water vapour, or ozone. Such atmospheric information is central
to the present investigation. Some of these reanalyses also provide surface solar
irradiance predictions.

Under clear-sky conditions, the main atmospheric variables that affect the surface
irradiance are the aerosol optical depth (AOD) and precipitable water vapour (PWV)
[21, 22, 23]. In solar applications, two irradiance components are of paramount
importance: Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI).
GHI is essential to evaluate the maximum solar potential as well as the limits of
energy generation from photovoltaic or solar thermal systems [23]. In parallel, DNI
(which is normally the main part of GHI, at least under cloudless or partly cloudy
conditions) constitutes the solar resource for concentrating technologies, and is
also necessary to evaluate the total irradiance incident on tilted surfaces. DNI is
primarily affected by the total scattering effect, hence ultimately AOD [21, 24, 25].
Therefore, to obtain accurate predictions of DNI (and, consequently, GHI) based on
reanalysis-derived atmospheric inputs, it is critical to assess the accuracy of such
gridded AOD information against ground-based reference measurements. The latter
are typically provided by AERONET, a remote-sensing aerosol network created by
NASA and PHOTONS [26]. The AERONET sunphotometers provide aerosol and
water vapor data at hundreds of sites worldwide and at relatively high temporal
resolution. This extensive database is often used in studies covering many fields,
such as solar energy, atmospheric physics, meteorology, climate, or water resource
assessment [19, 27, 28, 29, 30, 31, 32, 33]. In particular, Gueymard and Yang [28]
evaluated the CAMS and MERRA-2 AOD data against the "ground truth" from
793 AERONET stations scattered worldwide. They found that, in general, CAMS
and MERRA-2 perform relatively similarly, and that these data sets offer significant
advantages over satellite observations because of the absence of gaps over space or
time, their global coverage, and their data availability extending over longer periods.

Considering these advantages, reanalysis-based aerosol data products have been
used in various studies related to solar energy. For example, Ruiz-Arias et al. [34]
analysed the impact of the accuracy of aerosol datasets, namely from MERRA-2 and
MACC (the precursor of CAMS), on the modelling of DNI under clear-sky conditions
at four arid locations. Two experiments were carried out: one using AERONET
aerosol data and the other using MERRA-2 or MACC data as input to the SMARTS
radiation model. They found that the bias and random errors in the modelled DNI
increase by a maximum factor of six when MERRA-2 or MACC AOD values are
used in lieu of AERONET reference data. The need for an efficient cloud-screening
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procedure was also highlighted in their study. Similar results were demonstrated
in other studies at Tamanrasset, Algeria [35], and Shagaya, Kuwait [36]. Psiloglou
et al. [37] studied the performance of the Meteorological Radiation Model [38],
when using either satellite-based or PVGIS-ERA5 reanalysis atmospheric data. They
found good agreement under clear-sky conditions between the modelled data and
ground-based irradiance measurements at Athens, Greece. Carra et al. [27] studied
the atmospheric extinction coefficient that characterizes the atmospheric extinction
in DNI between the heliostats and central receiver of concentrating solar power plants
with a tower design. Their results showed good agreement on average when using
either AERONET or MERRA-2 aerosol data, considering the uncertainty of the
measuring system, even though the MERRA-2 AOD showed variance compared to
AERONET’s.

When modelling DNI under clear-sky conditions, the literature reviewed above
demonstrates that a major source of uncertainty is related to the composition of
the atmosphere [34]. Stated differently, some propagation of errors exists between
the atmospheric inputs and the modelled irradiances. That is why, normally, the
validation of clear-sky radiation models is preferably done using observed atmospheric
data from, e.g., AERONET [25, 39, 40], even though that can only be done at stations
having radiometers collocated with a sunphotometer — a relatively rare situation.
Hence, validation studies dealing with a large number of world stations need to use
reanalysis atmospheric data, which introduces uncertainty [41, 42, 43]. In general, it
is therefore difficult to separate the errors caused by the radiation model itself from
those caused by the input errors. This difficulty is the reason why the uncertainty
in modeled irradiance data — as opposed to that of measured data — cannot be
established precisely, as discussed further in Chapter 7 of [2].

To clarify this situation, it appears important to evaluate the performance of
different atmospheric data sets when used to provide key inputs to high-performance
radiation models, and to evaluate how such models behave vis-à-vis the error propa-
gation issue. This provides the justification for the present investigation, where both
DNI and GHI are modelled using reanalysis data from MERRA-2 and CAMS for
comparative purposes. Additionally, the AERONET ground truth is also used to
validate the reanalysis-based modelled solar irradiance estimates.

To investigate the relative impacts of error propagation, three state-of-the-art and
high-performance models with different approaches and complexities (both in model
formulation and execution) are used: the libRadtran radiative transfer model [44, 45],
the Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS)
[46, 47], and the Reference Evaluation of Solar Transmittance, 2 bands (REST2)
model [48], in decreasing order of sophistication. To predict the surface irradiance,
libRadtran uses rigorous methods to solve the equation of radiative transfer spectrally
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and at multiple atmospheric levels. This approach is extremely time consuming,
hence the model might require a supercomputer if a large number of situations is to
be simulated. This explains why that model is normally more appropriate in the field
of atmospheric sciences than in solar engineering. In the present context, however,
it is very useful because it represents the ultimate reference in terms of modelling
accuracy. In contrast, SMARTS also provides spectral irradiance outputs, but its
solver is highly parametrized, which makes it fast enough for many solar applications
requiring spectral information. Finally, REST2 is a two-band model that has been
derived from parametrizations of SMARTS results. It is very fast and widely used
in solar applications that require consistently good broadband irradiance estimates
with no spectral detail. The three models have apparently never been inter-compared
directly, which adds novelty here.

To guarantee a fair comparison, the assessment of clear-sky models is usually
done considering only a single source of input data for all models. However, the
validation results (e.g., model ranking) are somewhat dependent on the accuracy
of this data source at each site, which makes these results specific to the input
data source. Hence, selecting a different source of input data would likely lead to a
different model ranking. For that reason, there are two different views on selecting
the ideal input data source. For some studies (e.g.: [40, 25]), the important criterion
is to use the input data with the least uncertainty (typically AERONET) as a way
to make sure that the prediction error is almost entirely attributable to the model
itself — inasmuch as the irradiance measurements are consistently unbiased, which
is typically assumed but might not always be the case in practice. The downside
of that approach is that it is possible at only a few stations in the world where a
radiometric station is collocated with a sunphotometric station, which limits the
geographical representativeness of the results. The other option is to use reanalysis
data whenever the goal is to (i) evaluate models at a large number of sites, such
as in Sun et al. [43, 49], (ii) intercompare models globally without explicit ranking
[50], or (iii) analyse the irradiance’s small-scale spatial variability [51]. This other
option does increase spatial representativeness, but at the expense of prediction
accuracy. That occurs because the irradiance predictions are then not only affected
by the intrinsic model performance but also by error propagation from the uncertain
inputs. A novelty in the present study is that this contradiction is addressed by
using both approaches. This is possible because the measurements from the research-
class radiometric station of Évora, Portugal [24, 52] are used in combination with
the quality-controlled observations from the collocated AERONET station, thus
providing reference performance results against which the reanalysis-based results
can be assessed.

The three radiative models under scrutiny are alternatively operated with the
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three sources of atmospheric data described above, thus resulting in a total of nine
modelled datasets of both DNI and GHI, whose performance is evaluated here
using various statistical metrics. These datasets and their performance assessment
are then used to address the main goals of this study, which are: (i) to assess
whether reanalysis-based atmospheric data are conducive to accurate solar irradiance
predictions under clear skies; and (ii) to assess the impact of atmospheric data
uncertainty on solar irradiance predictions under clear skies, using several solar
radiation models with different levels of complexity and spectral detail. Additionally,
this study also aims to (i) provide a comparison between ground-observed and
reanalysis-modelled atmospheric information, such as aerosol optical depth and
precipitable water vapour; (ii) assess the performance of several solar radiation
models with different degrees of complexity when using various sources of input data;
and (iii) determine which combination of data source and model provides the most
accurate DNI and GHI estimates under clear skies.

This paper is organized as follows: Section 5.2 describes the data used and the
quality control procedure. Section 5.3 presents algorithmic details on how the three
models evaluate both DNI and GHI. Section 5.4 discusses the results and puts them
in context. Conclusions are finally drawn in Section 5.5.

3.2 Data sources and quality control

3.2.1 AERONET data

The AErosol RObotic NETwork (AERONET) project consists of a ground-based
network of stations that provide continuous and free-access to data of aerosol optical,
microphysical, and radiative properties. It was set up by the National Aeronautics and
Space Administration (NASA) and the PHOtométrie pour le Traitement Opérationnel
de Normalisation Satellitaire (PHOTONS). In this work, the following retrievals are
used at Level 2.0 from Version 3.0 of the retrieval algorithm [53]: AOD at multiple
wavelengths, and PWV. The ozone total column concentration data are interpolated
from a climatology obtained by NASA’s Total Ozone Mapping Spectrometer (TOMS).
The AERONET AOD’s four main wavelengths (440, 500, 675 and 870 nm) are used
here to determine the Ångström’s exponent, α, through a linear fit after linearisation
of Ångström’s law [54]:

τλ = τλ0

(
λ

λ0

)−α

, (3.1a)

hence
ln(τλ) = ln(τλ0) − α ln

(
λ

λ0

)
, (3.1b)

where τλ is AOD at wavelength λ (in nm) and τλ0 is the AOD at the reference
wavelength λ0 (λ0=1000 nm). Since the Ångström turbidity coefficient (τλ0 , often
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represented as β) is not known, both α and τλ0 can be determined through the
fitting of Eq. 3.1 to the data. This linear fitting process is how AERONET’s retrieval
algorithm derives α. In the current literature, however, the Ångström turbidity
coefficient has been relegated as a legacy measure of atmospheric turbidity and is
just ignored in practice, whereas the AOD at 550 nm, τ550, has now become the
reference turbidity quantity in most databases, such as MERRA-2. This quantity,
which is not directly observed by AERONET, is obtained here by fitting the spectral
data to a modified version of Eq. 3.1b:

ln(τλ) = ln(τ550) − α ln
(

λ

550

)
. (3.1c)

It is emphasized that τ550 is required to allow a fair comparison between data
sources and radiation models since it can be obtained from all the data sources
considered here (AERONET, CAMS, and MERRA-2), and is also a key input to
libRadtran, SMARTS, and REST2.

Although high-quality AERONET data are used here, it is known that Level-2.0
data can still contain anomalous values [36]. Furthermore, soiling of the sunpho-
tometer optics or other issues can affect the AOD retrieval and increase the AOD
uncertainty. For these reasons, only those values that comply with the following
criteria are kept in the present study: 0 < τ550 < 5 and, -0.25 ≤ α ≤ 2.5. In addition,
it is known that the evaluation of α through Eq. 3.1b is sensitive to the number of
available wavelengths, and that its uncertainty increases when that number decreases
[36]. Hence, records that had one or more AOD missing in the 440–870 nm range are
filtered out.

3.2.2 CAMS data

The CAMS reanalysis data covers the period 2003-2018 with a three-hourly tem-
poral resolution and a spatial resolution of 0.5×0.5◦. This dataset of atmospheric
composition is generated by the Copernicus Atmosphere Monitoring Service (CAMS)
and can be retrieved through the ECMWF Web API. Although surface level data
are used here, atmospheric data are available for several pressure and potential tem-
perature levels as well as at one potential vorticity level. CAMS assimilate data from
the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced
Along-Track Scanning Radiometer (AATSR). The CAMS variables used in this work
are: AOD, ozone total column concentration, precipitable water vapour, surface
pressure, and surface albedo for both the visible and near infrared. These variables
are interpolated to 1-minute resolution using a piecewise cubic Hermite interpolating
polynomial. Similar to the procedure performed to AERONET data, the α and τλ0

values are obtained through a linear fit (Eq. 3.1) to the AOD values provided natively
by CAMS at 469, 550, 670, and 865 nm.
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3.2.3 MERRA-2 data

The MERRA-2 reanalysis provides a large volume of atmospheric information that
spans many decades, starting in 1980. Data can be retrieved using NASA’s Goddard
Earth Sciences Data and Information Services Center (GES DISC) with an hourly
temporal resolution and a spatial resolution of 0.5×0.625◦. MERRA-2 assimilates data
from MODIS, the Multi-angle Imaging SpectroRadiometer (MISR), the Advanced
Very High-Resolution Radiometer (AVHRR), and AERONET. The variables used in
this work are: AOD (for both total extinction and its scattering part), Ångström
exponent, ozone total column, precipitable water vapour, surface pressure, and surface
albedo for both the visible and near infrared spectral ranges. The same interpolation
process used in the case of CAMS data is also applied to MERRA-2 data to generate
a dataset with a 1-minute resolution. The aerosol single-scattering albedo (an input
variable required by all radiation models under scrutiny here) is simply obtained as
the ratio between the pure-scattering AOD and the total-extinction AOD.

3.2.4 Solar radiation data

The ground-based DNI, diffuse irradiance (DIF), and GHI data used in this work are
measured at the radiometric station of the Institute of Earth Sciences (IES), University
of Évora, Portugal (Lat. 38.568◦, Lon. -7.912◦, Elev. 293 m). The solar irradiance
observations used here are from the period 2015-2018 and follow the detailed Baseline
Surface Radiation Network (BSRN) protocol [24, 52]. DNI is measured with a Kipp
& Zonen CHP1 pyrheliometer, whereas both GHI and DIF are measured with CM6B
pyranometers. All sensors are installed on a Solys2 sun tracker from Kipp & Zonen,
which also supports the tracking shade for the diffuse measurements. Additionally, the
net infrared radiation is measured with a shaded Eppley PIR pyrgeometer, installed
also on the sun tracker just beside the pyranometers. The sensors are properly
maintained and calibrated, and their outputs are sampled every second. The mean,
maximum, minimum, and standard deviation values are recorded every minute.

Regarding sensor calibration, four calibration procedures have been carried out
during the period 2010-2021 in the case of the diffuse pyranometer and five calibration
procedures in the period 2014-2022 in the case of the pyrheliometer. The transition
between responsivity values is obtained here through a linear interpolation instead of
the standard approach of just replacing the old responsivity value by the new value
after each calibration procedure (see Appendix 5.6).

The BSRN quality check filters [55] are used in the data quality control procedure.
These filters account for physically possible and extremely rare limits, and also for the
ratios between the different solar radiation components. Additionally, measurements
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that do not meet the following requirements are filtered out [56]:

Z < 85◦

DNI < 1100 + 0.03Elev

Abs(Closr) < 5%

where Elev is the elevation of the station in meters, Z is the solar zenith angle, and
Closr is the closure equation error in percent (Closr = 100[(DNI cos(Z) + DIF −
GHI)/GHI]). The solar zenith angle filter is meant to eliminate measurements with
low solar irradiance and avoid the perturbations of the horizon line, which are more
prone to both experimental and modelling errors [56]. Additionally, consecutive
1-minute DNI measurements with a difference higher than 5 W/m2 are removed to
account for random errors in the clear-sky detection procedure (see Section 3.2.5).

Finally, the expanded uncertainty in both DNI and DIF measurements is deter-
mined using the International Guidelines of Uncertainty in Measurement (GUM),
following [57]. This procedure relies on the measurement equation of the solar radia-
tion component being measured, and also accounts for the standard uncertainties in
instrument responsivity and in the data acquisition system. The procedure addition-
ally accounts for the longwave radiation transfer between the pyranometers and the
sky and its resulting effect on the zero offset of the instruments, as described in [57];
see Appendix 5.6. Any DNI or DIF observation with an expanded uncertainty higher
than 2.5% and 5%, respectively, is filtered out. Finally, the GHI data used in the fol-
lowing sections is actually calculated from the filtered DNI and DIF measurements to
decrease its uncertainty, per the best practices [2, 58], i.e., GHI = DNI cos(Z) + DIF.

3.2.5 Clear-sky detection and data synchronization

Although AERONET data Level 2.0 are cloud screened, some situations can occur
where a clear line of sight to the sun might not exist, namely during the passage
of thin and homogeneous cirrus clouds. Such situations are infrequent but cannot
be easily detected by the AERONET cloud-screening process [53]. Similarly, the
pyrheliometer might be obscured by a cloud just before or after the AERONET
measurement [34], all the more that the aperture half-angle (2.5◦) of the pyrheliometer
is much larger than that of the sunphotometer (0.63◦). Additionally, a clear line of
sight to the sun is not sufficient here because truly cloudless situations are needed to
validate the model predictions of clear-sky GHI. To account for these requirements,
the state-of-the-art Bright-Sun clear-sky detection method [59] is used, based on
the Matlab (MathWorks, Natick, MA) code provided by the method’s authors [60].
This detection method addresses the issues pointed by Gueymard et al. [61] and
others, who concluded that the performance of radiation models was not the same
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for distinct atmospheric conditions. The Bright-Sun model adopts and efficiently
adapts the best features from several methods available in the literature, and can
thus be considered the current state of the art. In the present implementation, the
theoretical clear-sky GHI and DIF data needed as input to the Bright-Sun model
are determined with the MAC2 model [43, 62], available from Bright [60].

The necessary synchronization between the AERONET atmospheric data and the
ground-based solar radiation data is obtained by considering that each AERONET
data point is representative of the atmospheric conditions during the solar radiation
measurements within a period of ±1 minute centred on the AERONET timestamp.
In this way, two consecutive 1-minute solar radiation measurements are normally
associated to a single AERONET timestamp. After this, the CAMS and MERRA-2
data are synchronized with the solar radiation data, using the temporal interpolation
procedure described in Sections 3.2.2 and 3.2.3, respectively. Although AERONET
and reanalysis data are available before 2015, there are no adequate solar radiation
measurements at the location of interest before that date.

3.2.6 Comparison between ground-based and reanalysis atmospheric data

In this section, the τ550, α, and PWV values from CAMS and MERRA-2 are compared
with the corresponding AERONET data. Fig. 3.1 shows such a comparison for τ550.
Taking AERONET as the reference, the performance of the reanalysis data is
assessed using the mean bias error, MBE, the root-mean square error, RMSE, and
the determination coefficient, R2.

MBE = 1
n

n∑
i=1

(pi − oi), (3.2)

RMSE =

√√√√√
 1

n

n∑
i=1

(pi − oi)2 (3.3)

R2 = 1 −
∑n

i=1(oi − pi)2∑n
i=1(oi − o)2 (3.4)

where pi are the model predictions, oi are the corresponding observations, o is the
mean value of the observations, and i = 1, . . . , n, where n is the total number of data
points.

Both CAMS and MERRA-2 agree moderately well with AERONET’s τ550, with
R2 values of 0.7085 and 0.7469, respectively. In particular, the MERRA-2 estimates
appear more appropriate than those of CAMS under very clear conditions (AOD <
0.1), which are the most frequent at Évora, and correspond to the highest possible
DNI situations.

In the case of α, conversely, Fig. 3.2 indicates that the two reanalysis databases
agree much less with AERONET. In particular, a somewhat better performance is
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obtained by CAMS (R2=0.3520) in comparison with MERRA-2 (R2=0.1982). These
suboptimal results tend to corroborate those from earlier validation studies (e.g.:
Gueymard and Yang [28]).

Regarding PWV, Fig. 3.3 clearly indicates that both reanalysis datasets are
slightly positively biased relatively to AERONET. MERRA-2 (MBE = 12.98%) has
a lower bias than CAMS (MBE = 16.86%). By comparison with Figs. 3.1 and 3.2,
however, it is obvious that, for both reanalyses, PWV is much better correlated
than AOD with the ground measurements. A positive bias is also observed when
comparing AERONET data to local Global Navigation Satellite System (GNSS)
PWV measurements (MBE = 5.61%). This positive bias is in accordance with other
studies found in the literature (e.g.: Pérez-Ramírez et al. [63]). Hence, PWV from
both MERRA-2 and CAMS is too high (18.6-22.5%) compared to the reference
GNSS observations.

Since both τ550 and PWV - and less critically α — do affect DNI much more
strongly than GHI [21], it can be expected that the errors observed in the reanalysis-
derived input variables ultimately impact the modelled DNI relatively to its reference
determination using "ground truth" AERONET data. This expectation stems, in
particular, from the results in Gueymard [36], although those were obtained for a
station in a widely different climate.

Fig. 3.1: Comparison of τ550 values between reanalysis datasets and AERONET: a) CAMS
and b) MERRA-2.
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Fig. 3.2: Comparison of α values between reanalysis datasets and AERONET: a) CAMS
and b) MERRA-2.
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Fig. 3.3: Comparison of PWV values between reanalysis datasets and AERONET: a)
CAMS and b) MERRA-2.

3.3 DNI and GHI modelling

As mentioned earlier, three state-of-the-art radiation models are used here to evaluate
DNI and GHI: libRadtran [44, 45], SMARTS [46, 47], and REST2 [48]. These three
models encompass a large range of sophistication, from a spectral code developed
for detailed atmospheric applications (libRadtran), to a parametrized spectral code
mainly intended for solar applications (SMARTS), and finally to a two-band simplified
engineering-type model (REST2).

LibRadtran is a rigorous code that consists of several routines and functions that
allow the user to construct and modify a representation of the atmosphere’s structure
and composition considering various components such as clouds, aerosols, and gases.
LibRadtran also provides the user with several options to solve the radiative transfer



3.3 DNI and GHI modelling 81

equation, the most popular ones being DISORT [64] and MYSTIC [65]. In this
work, libRadtran version 1.7 is used for consistency with previous work [24]. Despite
version 2.0.1 being now available, both versions are known to produce the same
outputs in the present context of evaluating the shortwave irradiance incident at
the surface [66]. The radiative transfer solver used here is DISORT [64], using 16
streams. This approach is considered to provide "exact" irradiance predictions [44].
Because libRadtran uses first principle to solve the radiative transfer equation, its
execution is extremely slow, which is why it is typically not used in the practice of
solar energy applications. For the present study, libRadtran was operated on the
Institute of Earth Sciences’ (University of Évora) supercomputer.

SMARTS is a parametrized spectral model that estimates the clear-sky solar
irradiance at the surface using spectral transmittance functions to describe various
atmospheric extinction processes [46, 47]. It was designed to offer an optimal com-
promise between the more detailed but also time- and resource-demanding radiative
transfer models (e.g., libRadtran) and the simpler and less satisfactory approaches
that attempt to replace detailed modelling with empirical parametrizations. The
latest version (2.9.9) is used here. It includes the possibility to determine the direct
irradiance emanating from both the sun’s disk only and from a larger sky area, i.e.,
the sun’s disk and a circumsolar zone up to 10◦ from sun center, hence making it
possible to simulate what is sensed by a pyrheliometer. Further discussion about the
definition and simulation of circumsolar radiation is available in [24, 66, 67].

REST2 is a two-band model to predict the broadband irradiance, illuminance, and
photosynthetically active radiation from atmospheric data, under clear-sky conditions
[48]. It is based on a parametrization of a large number of SMARTS simulations,
and it is easier and much faster to use than SMARTS or, even more so, libRadtran.
It simulates what is sensed by a pyrheliometer with a 2.5◦ aperture angle. Its latest
version (v9.9) is used here.

From the description just above, it becomes apparent that one of the objectives of
the present study is to evaluate the impact of model sophistication on the accuracy of
DNI and GHI estimates, particularly when the atmospheric inputs are not measured
on site and are rather modelled, thus having significant uncertainty.

In this work, ground-based measurements of aerosol and water vapour properties
from AERONET are taken as the reference data source to evaluate DNI and GHI
at the location of interest, using the three solar radiation models mentioned above.
Then, the same models are used with alternate atmospheric data from CAMS and
MERRA-2, aiming at assessing the impact of any error propagation from these data
sources to the prediction of DNI and GHI. The inputs required by each model with
respect to the specificity of each data source are described in Table 3.1, in which
τ550 is the aerosol optical depth at 550 nm, α is the Ångström exponent, SSA is the
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aerosol single-scattering albedo, PWV is the precipitable water vapour, O3 is the
total column ozone concentration, SP is the surface pressure, and ALBvis and ALBnir

are the surface albedo in the visible and near-infrared spectral regions, respectively.

Table 3.1: Inputs required by each radiation model, as obtained from the AERONET,
CAMS and MERRA-2 data sources. Key: X - as provided in the dataset; C - calculated
from other available variables; D - defaulted to a fixed value (between brackets).

Data source τ550 α SSA PWV O3 SP ALBvis ALBnir

AERONET Ca X D (0.932) X X X D (0.070) D (0.252)
CAMS X Cb D (0.932) X X X X X
MERRA-2 X X Cc X X X X X

aCalculated using Ångström’s law, Eq. 3.1
bCalculated using linear interpolation between 469 and 865 nm in log-log scale
cCalculated as the ratio between the scattering and total aerosol optical depths.

3.4 Results and discussion

The accuracy of each pair of data source/model for the prediction of both DNI
and GHI is assessed using a variety of statistical indicators. The three conventional
statistics (MBE, RMSE, and R2) - whose usefulness was reviewed in Gueymard
[68] - are defined in Eqs. 3.2, 3.3 and 3.4. Two lesser-known statistical indicators of
recent uptake (e.g.: Gueymard and Yang [28]) are also added for increased scrutiny:
fractional bias (FB) and fractional gross error (FGE), defined as follows:

FB = 2
n

n∑
i=1

pi − oi

pi + oi

, (3.5)

FGE = 2
n

n∑
i=1

|pi − oi|
|pi + oi|

, (3.6)

A comparison between ground-based measurements and model predictions is
shown in Figs. 3.4 and 3.5 for DNI and GHI, respectively. Furthermore, to facilitate
the comparison between the different models and data sources, the performance
results of the model/data source combinations for DNI and GHI are shown in Tables
3.2 and 3.3, respectively. In Table 3.2, the SMARTS statistics include results for
the simulations for both the sun-only DNI, DNIS, and for the sun + circumsolar,
DNIS+CS. As explained above, the results for libRadtran are for DNIS only, whereas
those for REST2 are for DNIS+CS only.

When comparing data sources, the statistical results in Table 3.2 show that
AERONET is the data source that provides the best DNI estimates when using either
REST2 or SMARTS (for both sun-only and sun + circumsolar DNI). Surprisingly,
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the bias in the libRadtran/AERONET combo is non-negligible (3%) and is virtually
the same here as in the GHI case. One possible explanation is that the measured DNI
is underestimated by ≈3% since - considering that the measured DNI constitutes the
major part of GHI - this would also explain the observed bias of the same magnitude
in the GHI modelled results. Nevertheless, the overestimation of DNI obtained here
using this combo was unexpected because it disagrees with the virtually unbiased
results obtained in a previous study [24]. Although the same version 1.7 of libRadtran
was used then, both its AERONET-based inputs and the reference DNI data were
processed slightly differently. It is possible, for instance, that the use of AOD at
550 nm only (which is determined from a fit to the original AERONET values
at other wavelengths) in the present libRadtran simulations, might not represent
the local conditions accurately enough. More generally, that sophisticated model
depends on a number of specialized assumptions regarding its inputs. These need to
be made by the user a priori, but might not be the best at each possible instant or
location. That makes it the most susceptible model to such misrepresentations. In
the present work, and in contrast with the previous study [24], the libRadtran inputs
were systematically simplified to match the same inputs as those of the other two
models under scrutiny, and to also accept those variables that are common between
AERONET and the reanalysis datasets (Table 3.1). Conversely, the two other models
evaluated here (particularly REST2) only consider bulk aerosol properties, which
makes them presumably less susceptible to this kind of error propagation. Even
though this ambiguous situation is not critical, while actually providing some useful
context about the current limitations of validation studies of this kind, additional
scrutiny and a follow-up study would be desirable to evaluate the dependence of the
performance of libRadtran and/or similar models on the specific selection and degree
of detail of their input data.

When considering the dispersion metrics, i.e., RMSE and R2, AERONET is the
data source that performs better regardless of the model used, as could be expected
(see Fig. 3.4 a), d), g), and j)). On the reanalysis side, MERRA-2 induces better
performance according to MBE, FB, and FGE when used with libRadtran, whereas
CAMS does not perform best in any circumstance.

Regarding model performance, libRadtran is the best performing model when
using the MERRA-2 data source according to all statistical indicators. In contrast,
SMARTS and REST2 deliver the best results when using AERONET according to
all metrics. Moreover, the SMARTS DNIS+CS predictions perform best according to
R2, whereas their DNIS counterpart performs best according to all other statistics.

The overall combination of model and data source that delivers the best DNI
performance is libRadtran/MERRA-2 when MBE and FB are considered, and alter-
natively SMARTS/AERONET when rather using RMSE, FGE, and R2. AERONET
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is the data source that provides results with the lowest dispersion (lower RMSE and
higher R2 values); this is contrary to what occurs with GHI, as discussed below. This
may be related to the more accurate ground measurements of AOD in comparison
with the model estimates in the reanalyses datasets, interacting with the much larger
sensitivity of DNI to AOD than GHI [21].

Regarding the best possible combinations of data source and model (marked with
* in Table 3.2), it is found that the more sophisticated models - libRadtran and
SMARTS - perform better than REST2. A tentative explanation is that the two
spectral models have a better capability to take the precise impacts of AOD and
PWV on DNI into account, possibly thanks to their much greater spectral resolution.

Compared to the predictions obtained with AERONET, the results in Table 3.2
indicate that the use of CAMS inputs results in an additional bias of 1.80%, 1.97%,
1.90%, and 1.85% for libRadtran (DNIS), SMARTS (DNIS), SMARTS (DNIS+CS),
and REST2 (DNIS+CS), respectively. Similarly, the alternate use of MERRA-2 inputs
results in a change in bias of -3.30%, -3.48%, -3.43%, and -3.45% for the same models,
respectively. The consistency of the inter-model agreement in these differences is
remarkable, which suggests that, for DNI, all these models respond similarly to
minute changes in atmospheric conditions - which would not usually be the case
with simpler empirical models, for instance. Moreover, the sign of the change in bias
(positive for CAMS and negative for MERRA-2) is consistent with the (opposite)
sign of their overall AOD bias relative to AERONET, as displayed in Fig. 3.1.

Regarding GHI, the statistical results presented in Table 3.3 show that MERRA-2
is the data source that produces closer estimates to the ground-based GHI measure-
ments, according to MBE and RMSE. For all models, the bias is positive (Fig. 3.5)
and larger with AERONET than with the reanalysis data, which can be viewed as
counter-intuitive, considering the discrepancies of the latter data in Figs. 3.1, 3.2 and
3.3. Tentative explanations include: (i) an imperfect clear-sky classification, resulting
in some data points having a lower actual GHI than its ideal clear-sky value; and
(ii) the calibration factor of at least one (most likely the pyrheliometer) of the two
radiometers involved in the calculated GHI being too low. The input-dependent
bias range (between the highest and lowest MBEs) is 1.3–1.6% depending on model,
whereas the model-dependent bias range is 1.7–2.1% depending on input. These
results suggest that, for the state-of-the-art models analysed here, the inter-model
differences are similar to - albeit a bit higher than - those created by using alternate
high-quality input sources in a specific model. Additionally, it can be concluded that,
in terms of bias, the error propagation from inadequacies in the input to the resulting
accuracy of the output is somewhat model specific: some input errors might be either
compensated or amplified depending on model architecture. Since this is contrary to
what was observed above in the case of DNI, it is likely that each model’s diffuse
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Fig. 3.4: Comparison between measured and predicted DNI using AERONET and reanalysis
(CAMS, MERRA-2) data for different models: a) - c) libRadtran (DNIS); d) – f) SMARTS
(DNIS); g) - i) SMARTS (DNIS+CS); j) – l) REST2 (DNIS+CS).

algorithm responds more or less specifically to a change in atmospheric conditions.
It thus appears desirable to analyse the multi-dimensional response of a model to
changes in its main atmospheric inputs. A complete analysis of such impacts is well
beyond the objectives of this study. Nevertheless, for the case of REST2, a limited
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Fig. 3.5: Comparison between measured and predicted GHI using AERONET and reanalysis
(CAMS, MERRA-2) data for different models: a) – c) libRadtran; d) – f) SMARTS; g) – i)
REST2.

case study is presented in Fig. 3.6 for further reference. It shows the differences
("deltas") between AERONET and reanalysis AOD, α, and PWV, and the resulting
percent differences in predictions when using reanalysis data vs. AERONET.

In Table 3.3, the FB and FGE metrics provide mutually-consistent results, where
MERRA-2 is outperformed only by AERONET in combination with REST2. Regard-
ing R2, all values are similarly high (>0.998), contrarily to the DNI case discussed
above, in which the R2 statistics differed significantly according to both model and
input data source. Although MERRA-2 is not the best-performing data source for
any of the three models, its R2 values are only within 0.0002 of those of AERONET,
which can be considered insignificant. Overall, AERONET is the data source that
generates higher R2 values, regardless of the model used.
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Table 3.2: Statistical analysis of data sources/models combinations for DNI prediction. The
best performing data source is represented in boldface for each model, the best performing
model is underlined for each data source, and the best combination of data source and
model is marked with *. Total number of data points N = 11,611; mean measured DNI =
798.7 W/m2.

Statistical
Indicator

Data source
libRadtran
DNIS

SMARTS
DNIS

SMARTS
DNIS+CS

REST2
DNIS+CS

MBE (%)
AERONET 3.00 0.87 1.17 1.23
CAMS 4.84 2.84 3.07 3.08
MERRA-2 -0.30* -2.61 -2.26 -2.22

RMSE (%)
AERONET 3.38 1.73* 1.88 1.96
CAMS 6.58 5.35 5.43 5.43
MERRA-2 3.93 4.80 4.58 4.57

FB
AERONET 0.0320 0.0086 0.0121 0.0124
CAMS 0.0518 0.0305 0.0331 0.0330
MERRA-2 -0.0016* -0.0279 -0.0236 -0.0234

FGE
AERONET 0.0325 0.0132* 0.0150 0.0151
CAMS 0.0568 0.0445 0.0452 0.0453
MERRA-2 0.0323 0.0396 0.0377 0.0381

R2
AERONET 0.9930 0.9931 0.9932* 0.9929
CAMS 0.9383 0.9355 0.9367 0.9371
MERRA-2 0.9517 0.9504 0.9510 0.9512

Looking at Table 3.3 from another perspective, it is found that REST2 is the
model that performs best based on all statistical indicators, regardless of the data
source used (except for FGE when MERRA-2 is used). Curiously, this is the opposite
to what was found above for DNI, in which case the more complex models performed
better (Table 3.2).

A possible explanation for these counter-intuitive results is that, since REST2 is
a less sophisticated model derived from parametrizations for only two wide bands, it
is less affected by the input uncertainty. Its simplified nature, compared to the two
other models, might also introduce (by chance) favourable compensations of errors.
As a result, the model then produces better GHI estimates - at least in appearance
(i.e., if there is no bias in the irradiance measurements). A similar phenomenon,
where simpler models appear to perform better than more sophisticated ones because
of the input data bias, was emphasized in a recent study [51].

In contrast, both SMARTS and libRadtran obtain their best GHI results when
coupled with MERRA-2 (except for R2). If AERONET data were not available on
site and only reanalysis data could be used, the REST2/MERRA-2 combination
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Table 3.3: Statistical analysis of data sources/models combinations for GHI prediction. The
best performing data source is represented in boldface for each model, the best performing
model is underlined for each data source, and the best combination of data source and
model is marked with *. Total number of data points N = 11,611; Mean measured GHI =
483.9 W/m2.

Statistical
Indicator

Data source libRadtran SMARTS REST2

MBE (%)
AERONET 2.96 2.45 1.14
CAMS 2.82 2.20 1.14
MERRA-2 1.58 1.12 -0.50*

RMSE (%)
AERONET 3.52 3.00 2.18
CAMS 3.58 3.04 2.51
MERRA-2 2.64 2.26 2.08*

FB
AERONET 0.0308 0.0263 0.0076*
CAMS 0.0306 0.0246 0.0088
MERRA-2 0.0152 0.0117 -0.0116

FGE
AERONET 0.0310 0.0264 0.0135*
CAMS 0.0314 0.0261 0.0189
MERRA-2 0.0195 0.0173 0.0198

R2
AERONET 0.9990 0.9990 0.9991*
CAMS 0.9983 0.9983 0.9983
MERRA-2 0.9984 0.9984 0.9985

would be the solution of choice (according to MBE, RMSE and R2). Additionally, if
AERONET data are to be used, REST2 still provides better results.

It is undeniably surprising that the best GHI results are not always obtained with
the AERONET input data, since these are always considered "ground truth" and of
much better accuracy than any reanalysis. Furthermore, it is also surprising that the
best results are obtained by the simplest model (REST2) and not by libRadtran,
even though the latter’s calculations are considered "exact" from a pure radiative
transfer perspective. Conversely, if it is postulated that the libRadtran/AERONET
combo results are actually "exact", it would mean the experimental conditions must
be suboptimal, for the reasons indicated above (imperfect cloud screening and/or
radiometer calibration). For instance, increasing the experimental GHI by 2.96%
would zero out the libRadtran/AERONET bias, and would simultaneously introduce
an underestimation of 1.82% in REST2. All the other metrics would obviously be
affected too, now essentially in favour of libRadtran. This exercise confirms that,
when it comes to state-of-the-art irradiance models, it might be difficult to determine
their relative performance under clear conditions since it is then comparable to



3.4 Results and discussion 89

the irradiance measurement accuracy [40]. This has obvious consequences when
conducting large-scale performance assessments of clear-sky irradiance models, in
particular (e.g.: [49]).

Fig. 3.6: Impact of the differences between reanalysis (first column: CAMS; second column:
MERRA-2) and AERONET atmospheric data of AOD, α, and PWV on the percent
differences between the respective predicted values of DNI (first row) and GHI (second
row) for the REST2 model. All differences, indicated by the symbol ∆, are relative to
AERONET inputs or irradiance predictions obtained with them.

To put the present results in perspective, it is worth emphasizing again that the
results obtained in this work are affected by errors in both experimental radiation
data and atmospheric input data. Regarding the solar radiation measurements, the
maximum expanded uncertainty is 2.5% and 5% for DNI and GHI, respectively
(see Appendix 5.6). In parallel, the AERONET AOD uncertainty of ≈0.010–0.021
[49], as well as the perceptible PWV bias in all data sources (Fig. 3.3), contribute
to an inevitable error propagation of the inputs into the irradiance estimates (Fig.
3.6), with more impact on DNI because of its much larger sensitivity to AOD than
GHI [21]. This error propagation appears to be the main reason why the assumed
"reference" combination of model/data source i.e., libRadtran/AERONET, does not
produce the best estimates for either DNI or GHI. However, further analysis of this
critical issue is beyond the goal of this study and should be addressed in future work.
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3.5 Conclusions

In this contribution, three different atmospheric data sources (AERONET, CAMS,
and MERRA-2) and three distinct solar radiation models (libRadtran, SMARTS,
and REST2) have been used to assess the performance of DNI and GHI irradiance
predictions using the nine possible combinations of model/data sources, taking as
reference the high-quality DNI and GHI ground-based measurements obtained at
Évora, Portugal. Both the atmospheric inputs to the models and the reference
irradiance data were filtered for optimal quality, and then processed using clear-sky
detection techniques as well as a data synchronization procedure. A total of 11,611
valid data points were obtained over the period 2015-2018.

A comparison between AERONET (commonly referred to as "ground reference"
in the literature) and reanalysis data (CAMS and MERRA-2) was performed for
the most important variables. The reanalysis AOD at 550 nm, τ550, was found to
compare moderately well to its AERONET counterpart, with R2 values higher than
0.70. Conversely, the reanalysis Ångström’s exponent, α, displays significant scatter,
with a R2 lower than 0.36. Regarding the precipitable water vapour, PWV, a positive
bias higher than 12% was found for both CAMS and MERRA-2 against AERONET,
albeit with low dispersion.

Using AERONET data as inputs, the prediction of DNI was found better when
the SMARTS model is used. It was also found that the overall combination of
model/data source that delivers the best DNI performance is libRadtran/MERRA-2
when mean bias error, MBE, and fractional bias, FB, are considered, and alternatively
SMARTS/AERONET when rather using the root mean square error, RMSE, the
fractional gross error, FGE, or the coefficient of determination, R2.

Regarding GHI, the best performing data sources are AERONET and MERRA-2.
The latter produces closer estimates according to MBE and RMSE. In contrast,
AERONET performs better when considering FB, FGE, and R2. Similarly, for DNI,
AERONET performs better according to R2, regardless of the model used. From a
modeling perspective, REST2 performs best according to MBE and RMSE, regardless
of the input data set used (except for FGE when MERRA-2 is used). To estimate
GHI, in particular, REST2/AERONET was found to be the best overall combination
of model/data source.

Overall, the present findings suggest that, for Évora at least, the clear-sky direct
and global irradiances can be simulated with relatively similar accuracy using any of
the tested models, combined with either one of three input datasets. This suggests
that is not necessary to rely on a highly sophisticated model, such as libRadtran, to
obtain high-quality clear-sky irradiance predictions. It also confirms previous studies
to the effect that high-performance radiative models can provide excellent predictions
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with an uncertainty similar to that of actual measurements. In turn, this implies
that any accidental bias in these irradiance measurements is likely to lead to the
wrong conclusions when comparing the performance of such models.

Some of the results here were unexpected or counter-intuitive. Most importantly,
considering that libRadtran was the more complex model here, whose rigorous
radiative transfer solver is assumed to provide "exact" irradiance predictions, and
that AERONET is commonly considered in the literature as the ultimate reference
(or "ground truth") for the instantaneous determination of the essential atmospheric
inputs, it was expected that the combination of libRadtran with AERONET would
produce the best irradiance estimates. That logical assumption was not verified
in the present analysis, however. The proposed possible explanations included (i)
imperfect clear-sky classification, (ii) measurement uncertainty in AOD, α, and/or
PWV and subsequent error propagation to the irradiance estimates, and (iii) impact
of experimental errors (such as bias) associated to the measured DNI and GHI values
(despite the high level of station’s maintenance and data quality control achieved
here). Possible reasons to explain the slight discrepancy between the present results
and those of a previous study that focused on DNI, in which no prediction bias was
found when using libRadtran, have been provided.

In any case, further work is required to address and quantify the impact of various
modelling issues on solar radiation estimates at multiple high-quality stations, and
to better understand the propagation of errors from the atmospheric inputs to the
modelled irradiance, depending on radiation model architecture and local conditions.

3.6 Appendix A – Additional information on the processing of the reference
solar radiation data

In this work, the variation of the responsivity of the sensors along time was modelled
using linear interpolation instead of just using constant responsivity values between
calibration events. This procedure is shown in Fig. 3.7 for both the pyranometer
measuring DIF and the pyrheliometer measuring DNI.

Four calibration events were used in the pyranometer’s fitting procedure, whilst
five calibration events were used for the pyrheliometer. The first responsivity value
corresponds to the factory calibration, whereas the remaining responsivities were
obtained according to the calibration procedures described in ISO 9847:1992 and
ISO 9059:1990 standards, for the pyranometer and pyrheliometer, respectively.

Additionally, the expanded uncertainty of the measured solar radiation data used
as reference in this work was determined. According to the International Guidelines of
Uncertainty in Measurement ("GUM"), the expanded uncertainty is determined using
the measurement equation of the variable being studied. Whereas the measurement
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Fig. 3.7: Interpolation procedure between the different responsivity values through time (the
first data point is the original factory calibration; the experimental data period considered
here is shaded in grey): a) pyranometer, b) pyrheliometer.

equation of DNI has only two variables (the responsivity and the output voltage of
the pyrheliometer), the measurement equation of DIF has four variables (responsivity,
output voltage, net longwave responsivity of the pyranometer, and net longwave
irradiance measured by a pyrgeometer). After determining the standard uncertainties
induced by each variable, the combined uncertainty is obtained. Using a coverage
factor of 1.96 (which results in a 95% confidence interval), the expanded uncertainty
(U95) of the DIF and DNI measurements are found.

Fig. 3.8 shows the variation of U95 according to zenith angle, Z. For DIF, U95
increases with Z and exhibits some dispersion. In contrast, DNI’s U95 remains nearly
constant for Z < 60◦, but increases sharply for Z > 75◦. Aiming at a reference
solar radiation dataset as accurate as possible, any DIF or DNI data point with
an expanded uncertainty higher than 5% and 2.5%, respectively, was filtered out
[57, 69].

Fig. 3.8: Expanded Uncertainty with a 95% confidence interval (U95) variation according
to the zenith angle for (a) DIF and (b) DNI.
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Nomenclature

Closr closure equation

DNI direct normal irradiance

Elev elevation

FB fractional bias

FGE fractional gross error

GHI global horizontal irradiance

MBE mean bias error

n total number of data points

o observation

o observation’s average

O3 total column ozone concentration

p prediction

R2 coefficient of determination

RMSE root mean square error

Z solar zenith angle
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Greek symbols

α Ångström’s exponent

β Ångström’s exponent

∆ difference between AERONET and reanalyses

λ wavelength

τ aerosol optical depth

Subscripts

0 reference wavelength (1000 nm)

i data point

S sun

S + CS sun + circumsolar

Acronyms

AERONET Aerosol Robotic Network

ALBnir surface albedo in the near-infrared spectral region

ALBvis surface albedo in the visible spectral region

AOD aerosol optical depth

BSRN Baseline Surface Radiation Network

CAMS Copernicus Atmosphere Monitoring Service

Closr closure equation

DIF diffuse horizontal irradiance

DNI direct normal irradiance

Elev elevation

FB fractional bias

FGE fractional gross error

GHI global horizontal irradiance

IES Institute of Earth Sciences

MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Ver-
sion 2

NWP numerical weather prediction

PWV precipitable water vapour
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R2 coefficient of determination

REST2 Reference Evaluation of Solar Transmittance, 2 bands

RMSE root mean square error

SMARTS Simple Model of the Atmospheric Radiative Transfer of Sunshine

SP surface pressure

SSA single scattering albedo

U95 expendend uncertainty at 95%



Chapter 4

Development of a clear-sky model to determine circumsolar
irradiance using widely available solar radiation data†

Abstract
Accurate assessment of the solar irradiance reaching the absorber of
concentrating solar power (CSP) systems is crucial for accurate energy
generation estimates as well as for power plants design and operation. Due
to a larger aperture angle, direct normal irradiance (DNI) measurements
taken by pyrheliometers include circumsolar normal irradiance (CSNI), i.e.,
the diffuse radiance from the vicinity of the sun disk, which in some cases is
not totally captured by the CSP systems because of their lower aperture
angles. This work reports the modelling of DNI and CSNI using a radiative
transfer model and atmospheric measurements and aims to develop a fast and
simple model to estimate the CSNI based on more common solar irradiance
measurements such as the DNI, global horizontal irradiance (GHI) and
diffuse horizontal irradiance (DHI). The proposed model performs better
than other models available in the literature for the six locations analysed
(scattered around the globe), thus contributing to a more accurate solar
resource assessment and CSP systems design and operation.

Keywords: Circumsolar irradiance; Direct Normal Irradiance; DNI; Solar resource
assessment; Concentrating Solar Power; CSP.

4.1 Introduction

Concentrating solar power (CSP) systems are seen by the solar energy community
as a reliable technology for energy production (thermal and thermo-electric) [1].
The high potential of these systems stimulated the development of several studies

†Edgar F.M. Abreu(1), Paulo Canhoto(1,2), and Maria J. Costa(1,2). Development of a clear-sky model
to determine circumsolar irradiance using widely available solar radiation data. Solar Energy, 205:88-101,
2020.
(1) Institute of Earth Sciences, University of Évora.
(2) Physics Department, School of Sciences and Technology, University of Évora.
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covering a variety of research fields, from the solar radiation modelling and forecast
to the concentrator optics and solar thermal receivers design and optimisation. Solar
resource assessment is a crucial step in any CSP system installation since it is
important to estimate energy production and, therefore, economic viability of the
project [2]. It is also needed to design, operate and maintain the CSP power plants.
High concentration ratio CSP systems use only the direct irradiance component on a
plane normal to the sun rays, i.e., direct normal irradiance (DNI) [3], to generate
heat, which is then used to generate electricity.

High-quality solar radiation data are needed to produce a useful solar resource
assessment study [4]. Usually, these data are obtained from meteorological stations
with state-of-the-art instruments and periodic calibrations and maintenance proce-
dures. DNI is measured using a pyrheliometer aligned with the sun, in which sunlight
reaches a thermopile placed at the bottom of a tube through a window at the other
end of the tube, with the thermopile converting temperature increase to an electrical
signal [5]. The issue when recording DNI data is that the aperture angle of the
pyrheliometer, which depends on the window and thermopile diameters and tube
length, is larger than the sun disk, resulting in the measurement of not only direct
beam irradiance from the sun, but also of the diffuse irradiance in the vicinity of the
sun disk, known as circumsolar irradiance (CSNI) [3]. However, high concentration
ratio CSP systems have low aperture angles, usually lower than the pyrheliometers,
which leads to an overestimation of the energy reaching the solar thermal receivers
if pyrheliometer measurements are directly used as input in the analysis of these
systems, depending on the intensity and angular distribution of CSNI. In this way,
information on CSNI is crucial to assure a proper solar resource assessment, design,
operation and modelling of CSP systems [6].

CSNI is caused by the scattering of the sun rays by molecules, aerosols and cirrus
clouds. These atmospheric constituents scatter the solar rays from the direct beam to
a broader cone-shaped circumsolar region [7]. Whereas DNI from the sun disk only is
strongly related to the atmospheric transmittance and total scattering effect, CSNI
is also strongly related to the scattering angle, i.e., the angular distance from the
center of the sun disk [8]. Measuring CSNI is difficult because of this sharp decrease
of intensity between the centre of the sun disk and the outer limit of the measuring
instrument field of view [3]. Some attempts of measuring CSNI are available in the
literature and are presented and reviewed in the following.

CSNI was measured for the first time at the Lawrence Berkeley Laboratory
(LBL) at 11 locations in the United States from 1976 to 1981 [9]. In that work, the
measurement of the sunshape, i.e, azimuthal average radiance profile normalized
with the radiance at the center of the sun [3], was done using a special telescope.
This instrument measured the radiance inside the sun disk and in its vicinity up to a
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scattering angle of ≈ 3◦, with an aperture of 0.025◦ within 0.5◦ on either side of the
sun disk, and an aperture of 0.075◦ in the circumsolar region. The database created
in this way by Noring et al. [9] is the basis of the widely known Buie model [10],
which allows a determination of the sunshape using the circumsolar ratio (CSR), i.e.,
the ratio between CSNI and DNI.

Later, Schubnell [11] used a standard high-resolution CCD-camera mounted on
a tracker to record the sunshape at Paul Scherrer Institute, Switzerland. His goal
was to study the influence of the sunshape on the overall optical efficiency of solar
concentrators. Neumann et al. [12] used a camera developed at the German Aerospace
Center (DLR) to measure the sunshape in various locations in France, Germany
and Spain. Their measurements were found to be slightly different from the LBL
measurements, which can be explained by the averaging of LBL data caused by the
telescope aperture field of view and the higher number of points in the LBL database
[6, 12]. The CCD-camera method was also used by Gambardella and Galleano [13]
with the system uncertainty being determined using indoor test procedures.

Wilbert et al. [14] developed a sunshape measurement system that consists of a
sun and aureole measurement instrument (SAM), an AERONET (AErosol RObotic
NETwork) sun photometer [15] and post-processing software. The SAM device
consists of two cameras: one used to observe the sun disk and one to observe the
aureole. Both cameras have changeable filters that provide spectral measurements at
440 nm, 670 nm and 870 nm. To obtain the sunshape in a broadband spectral range,
the AERONET sun photometer is used alongside post-processing software based
on the simple model of the atmospheric radiative transfer of sunshine (SMARTS)
[16]. According to Wilbert et al. [14], this method results in lower uncertainty than
that of the camera used by DLR. In the study of Wilbert et al. [17], a comparison
between different techniques to measure CSNI is presented. The reference system
was the aforementioned SAM device and measurements were compared against data
from the BPI-CSR460 system. The BPI-CSR460 system was developed by Black
Photons Instruments and consists of two pyrheliometers with different aperture
angles. Different types of collimators can be attached to the sensor enclosures to
obtain different aperture angles. Wilbert et al. [17] found that the BPI-CSR460
provides accurate measurements of circumsolar radiation in the angular interval
of the selected collimators (corresponding to opening angles of 0.704◦ and 2.638◦).
Although CSR values can be obtained through this method, deviations from the
reference system (SAM) were found due to the application of the Buie model, since
the same CSR value can be representative of distinct atmospheric conditions [17].
The use of two pyrheliometers to obtain information on the angular distribution of
circumsolar radiation was previously used by Jeys and Vant-Hull [18], Hickey and
Karoli [19] and Major [20].
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Al-Ansary et al. [21] measured CSR using a photographic camera. Their method
consists in taking high-resolution photographs of the sun and identifying the sun
disk through a computer code that uses pixel intensity to obtain the intensity
distribution across the sun’s disk and in the circumsolar region. However, their
study was exploratory and preliminary, and no validation of the measured data was
presented.

Wilbert et al. [22] used a conventional rotating shadowband irradiometer (RSI)
without any hardware modification to measure the sunshape. Their method consists in
analysing the RSI signal to determine the circumsolar distribution, and, consequently,
CSR. Results were validated with four RSIs in Spain, India and Morocco and their
method is presented as requiring lower maintenance, producing less data gaps and
lower cost when compared to other devices and methods.

CSNI modelling is usually done using radiative transfer models (RTM). Thomalla
et al. [23] calculated CSNI for various atmospheric conditions. In their work, the
variation of CSNI was demonstrated taking into account the absorption and scattering
of solar radiation by molecules, aerosols and cirrus clouds. The absorption by gases
and the effect of different solar elevation angles were also studied. Eissa et al. [24]
compared the CSR obtained from the Perez and Michalsky [25] model against the
CSR calculated by the RTM called library for radiative transfer (libRadtran) [26],
over cloudless turbid atmospheres. They found that the former is lower than the
latter. However, high correlation between the CSRs obtained from the two methods
was found, suggesting that corrections to the Perez and Michalsky [25] model can be
made to improve the modelling of CSR.

Reinhardt et al. [27] developed a method that uses satellite-retrieved cirrus cloud
properties to determine CSNI. After retrieving the optical thickness and the effective
radius of the cirrus cloud, CSNI is determined through a look-up table generated
from a modified version of the MYSTIC RTM [28]. They also found that manual
screening of sub-scale cumulus clouds improves the agreement between satellite and
ground-based measurements. In the work of Eissa et al. [29], the monochromatic
CSNI was modelled using AERONET data as input to libRadtran [26] and SMARTS
[16] models. Results were compared against the SAM measurements, and both models
produced accurate estimates of the sun-disk DNI. They also found that libRadtran
exhibited the most accurate results when the AERONET aerosol phase function was
represented as a two-term Henyey-Greenstein phase function. Abreu et al. [8] reported
the modelling of monochromatic CSNI using libRadtran and AERONET data at
Évora, Portugal. The simulated data indicate an improvement in the modelling of
DNI when CSNI is included, taking DNI ground-based measurements from a field
pyrheliometer as reference.

Cole and Gottschalg [30] proposed a modification to the Buie et al. [10] model
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based on an improved parametrisation of CSNI. Their model reduces the DNI
overestimation of the Buie et al. [10] model through a more accurate representation
of CSR. A model extension including the differences between the spectral distributions
in the sun disk and circumsolar regions is also presented, which is useful for the
analysis of concentrator photovoltaics (CPV) systems. Sun et al. [31] studied the
inclusion of CSNI in the DNI determination using numerical weather prediction
(NWP) models. They found that using the delta-Eddington scaling method in the
DNI modelling results in higher errors than if it is not used. Therefore, they presented
a simple parametrisation of dust aerosols effect that can be used to account for the
scattering contribution of this specific type of aerosols. Haapanala et al. [32] reported
the influence of ice clouds in the disk and circumsolar radiances using a Monte Carlo
RTM and compared their results against SAM measurements. They found that ice
crystal roughness is the most sensitive parameter regarding angular dependence of
the sun disk and circumsolar radiances. They also report that better agreement
with the SAM measurements is found if ice crystals are assumed as rough and the
ground-based measurements of DNI are corrected to take into account the higher
values and broader distribution of circumsolar radiance in the presence of ice clouds.
Eissa et al. [7] reported the modelling of CSNI using libRadtran and AERONET data
in a desert environment. A good agreement between ground-based DNI measurements
and the modelled DNI data when adding the CSNI component was found. They
also reported a model to estimate CSR using the sky clearness [33, 25], defined
through the solar zenith angle (θ), Global Horizontal Irradiance (GHI), DNI and
Diffuse Horizontal Irradiance (DHI). Sun et al. [34] presented a method that modifies
the radiative transfer equation for DNI calculation, including the CSNI within a
cone of the pyrheliometer field-of-view and considering the contributions from all
aerosol species and clouds. This is achieved by using a new phase function scaling
method instead of the delta-Eddington method. They found a good agreement with
the results of other models in the literature as well as ground-based measurements.
Regarding CSNI, the results found were poor when compared with the model from
Eissa et al. [7] and other models. A possible explanation for this is the low magnitude
of CSNI, which can be strongly affected by the uncertainties in the input data.

The circumsolar ratio (CSR) provides information on the amount of energy in
the circumsolar region. This information can be used to assess locations regarding
CSP systems design and deployment as well as to improve the operation of such
systems, aiming at a more accurate determination of the irradiance that is effectively
reaching the solar absorber, since the optical efficiency strongly depends on CSR, as
shown by Zou et al. [35]. It can also be used to select the technology to be installed
at a specific location. On one hand, CSP systems with larger aperture angles should
be installed in locations with higher probability of occurrence of high CSR values,
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thus slightly decreasing the concentration factor while maintaining the level of solar
energy harvesting. On the other hand, CSP systems with lower aperture angles can
be installed in locations with higher probability of occurrence of low CSR values,
since the irradiance in the circumsolar region is lower.

Since CSNI modelling through RTM is not an easy task to perform, and due to
the necessity of high-quality measurements of aerosol properties and other relevant
meteorological parameters, such as precipitable water vapour, that may not be
readily available at locations of interest for CSP systems installation, simple models
to compute CSR using more commonly available measurements such as DNI or GHI
(or parameters derived from these measurements) are referred in the literature. In
addition to the model from Eissa et al. [7], Neumann et al. [36] used the ratio between
GHI and DNI as well as the solar altitude angle as predictors to develop their model
at the Plataforma Solar de Almeria, Spain. Ivanova [37] developed a model based
on DNI, GHI, DHI and beam horizontal irradiance measurements, taking the LBL
data as reference. Such models are not able to produce as accurate CSR values or
circumsolar radiance distributions as RTMs. However, due to their simplicity of use
and fast computing, they can be used to easily assess and report CSR at a given
location under study depending on the local meteorological conditions.

In this work, a new model to estimate the CSR is presented. This model is devel-
oped based on a reference database of modelled CSNI values using libRadtran RTM
and AERONET data for six locations scattered around the globe. The libRadtran
RTM is used to independently compute both the sun-disk DNI and CSNI. Then,
since CSNI measurements are scarce and are not available at the locations under
study, the validation of the modelled values is done by comparing ground-based
measurements of DNI taken by field pyrheliometers against the modelled DNI, with
and without the CSNI component. A sensitivity analysis of the latter, considering
the solar zenith angle, number of moments of the aerosol phase function and mesh
size when characterizing the circumsolar region, is also performed.

The paper is organised as follows: Section 4.2 presents the general concepts
and assumptions when modelling DNI and its circumsolar component. Section 4.3
describes the experimental datasets used. Section 4.4 reports the DNI and CSNI
modelling. In Section 4.5, a sensitive study is presented and discussed. Section 4.6
details the DNI and CSNI simulation results. Section 4.7 describes the developed
CSR model and Section 4.8 presents results and discussion. Finally, conclusions are
drawn in Section 4.9.
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4.2 Direct normal and circumsolar irradiance definition

According to ISO-9488 standard [38], DNI (Bn) is defined as the radiant flux received
on a plane perpendicular to the axis of a small solid angle centred on the sun disk.
Due to the ambiguous definition of this small solid angle and the use of different
instruments with distinct aperture angles to measure Bn, several definitions can be
found in the literature. This issue led several experts in this field to produce a study
on the Bn definition [3]. A consensual definition has been proposed for Bn as well
as the terminology that should be used in the field of solar resource assessment,
namely DNI and CSNI. The guidelines of the World Meteorological Organization
(WMO) include a recommendation on the aperture angle of pyrheliometers. In this
way, similar instruments can be used around the world and, for that reason, the
same definition of Bn is applied. This leads to a more reliable comparison between
the solar resource of different locations. The ISO definition of Bn is given by:

Bn(αl) =
∫ 2π

0

∫ αl

0
P (ξ, φn)L(ξ, φn) cos(ξ) sin(ξ)dξdφn, (4.1)

where αl is the limit angle of the pyrheliometer, P (ξ, φn) is the penumbra function of
the instrument, also known as acceptance function, L(ξ, φn) is the sky radiance, ξ is
the angular distance from the centre of the sun, also known as scattering angle, and
φn is the azimuth angle measured in the plane perpendicular to the axis of the solid
angle aligned with the centre of the sun disk. The scattering angle is given by [39]:

ξ = cos−1(cos(θS) cos(θ) + sin(θS) sin(θ) cos(φ − φS)), (4.2)

where θS and φS stand for the solar zenith and azimuth angles, respectively, and θ

and φ are the zenith and azimuth angles of a given point in the sky (sky element),
respectively. In the literature, it is common to consider the radiance in the vicinity of
the sun as radially symmetrical under clear-sky conditions [7, 3, 40]. This assumption
is reasonable for solar zenith angles lower than ≈ 85◦ and allows a simplification of
Eq. 4.1 into:

Bn(αl) ≈ 2π
∫ αl

0
P (ξ)L(ξ) cos(ξ) sin(ξ)dξ. (4.3)

A more detailed analysis of this assumption is addressed in Subsection 4.5.1. Each
model of pyrheliometer has its own geometrical characteristics, and thus a specific
penumbra function. The penumbra function accounts for the response of the pyrhe-
liometer according to the scattering angle due to the effect of the opening window
edge on the radiation intensity attenuation. In this work, the geometric penumbra
function proposed by Major [41] is used, defined as a function of the slope and limit
angles of the pyrheliometer, αs and αl, respectively. Considering the referred radial
symmetry, the penumbra function is defined by:

P (ξ) = 1
2π

∫ 2π

0
P (ξ, φn)dφn. (4.4)
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For scattering angles between 0◦ and αs, the penumbra function is equal to 1, whereas
for scattering angles greater than αl the penumbra function is equal to 0. Between
αs and αl, the penumbra function decreases monotonically from 1 to 0 as given by
the Major [41] formulas. The azimuthally averaged sky radiance is given by:

L(ξ) = 1
2π

∫ 2π

0
L(ξ, φn)dφn, (4.5)

while the averaged CSNI as measured by a pyrheliometer with a limit angle αl

(CSexp
n ) is given by:

CSexp
n (δS, αl) ≈ 2π

∫ αl

δS

P (ξ)L(ξ) cos(ξ) sin(ξ)dξ, (4.6)

where δS ≈ 0.2664◦ is the mean angular distance between the centre of the sun and
its edge as observed on the surface of the earth (angular radius of the sun) [12]. The
sun disk radius varies slightly during the year due to the elliptic orbit of the Earth
around the Sun, however the associated error is less than 1.7% if the mean value of
δS is used [3]. Then, the DNI as measured by a pyrheliometer (Bexp

n ) is given by:

Bexp
n (αs, αl) = CSexp

n (δS, αl) + Bsun
n (δS), (4.7)

in which Bn(δS) is obtained by integrating Eq. 4.3 between 0◦ and δS. A useful
parameter used in solar resource assessment and CSP modelling is the circumsolar
ratio (CSR), which is defined as:

CSR(αs, αl) = CSexp
n (δS, αl)

Bexp
n (αs, αl)

. (4.8)

4.3 Experimental data

In this work, aerosol and precipitable water data are needed for the DNI and CSNI
simulations, and ground-based measurements of solar irradiance are needed for vali-
dation. Aerosol data were obtained from AERONET (AErosol RObotic NETwork),
which consists on a ground-based remote sensing aerosol network established by
NASA and PHOTONS (PHOtométrie pour le Traitement Opérationnel de Normalisa-
tion Satellitaire) [15], and the following products were selected: aerosol optical depth
(AOD), aerosol single-scattering albedo (SSA), aerosol phase function (PHFN) and
surface albedo (SA) for various wavelengths (440, 675, 870 and 1020 nm), and precip-
itable water vapour (PWV) content. AERONET V3 Level 1.5 data are automatically
filtered to eliminate cloud effects [42] and were used here instead of Level 2.0 in order
to have a larger data set, aiming at a better characterization of the locations being
assessed. The AERONET data server (https://aeronet.gsfc.nasa.gov) provides a tool
to download coincident measurements of several variables at the referred wavelengths
except for the case of PWV data, which were linearly interpolated to match exactly
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the time stamp of the aerosol parameters listed above, as will be explained in Section
4.4.

Ground-based measurements were obtained from the Baseline Surface Radiation
Network (BSRN) [43] and the Institute of Earth Sciences (IES) stations. The BSRN
is a project of the Global Energy and Water Cycle Experiment (GEWEX) under the
umbrella of the World Climate Research Programme (WCRP). The main objective of
this network is to detect changes in the radiation field at the Earth’s surface that may
be related with climate change. The IES is a Portuguese research centre dedicated to
the study of the Earth’s system. It includes the Observatory of Atmospheric Sciences
installed at the University of Évora, which conducts BSRN-like solar radiation mea-
surements and atmospheric characterization observations, including an AERONET
site. Solar radiation measurements in the Évora station of the IES are taken in
similar way as in the BSRN stations: two pyranometers (Kipp & Zonen CM6B)
and one pyrheliometer (Kipp & Zonen CHP1) are mounted on a sun tracker system
(Kipp & Zonen Solys2), including a shading ball assembly for the pyranometer that
measures the diffuse component. The sensors are properly maintained and calibrated,
and their outputs are sampled every second. The mean, maximum, minimum and
standard deviation values of DNI, DHI and GHI are recorded every minute through a
programmable data logger. This station is particularly useful to this study since the
AERONET and solar radiation stations are at the same location and altitude, only
a few meters apart. BSRN and IES data were filtered to ensure data quality using
the physically possible and extremely rare limits [44] for DNI, GHI and DHI. The
AERONET and BSRN records were matched by rounding the AERONET records
to the next minute. Although minor discrepancies may occur, both network records
should be representative of the same atmospheric conditions at any given time.

An analysis of other sites with both AERONET and BSRN stations is also carried
out, and the locations presented in Table 4.1 are selected because aerosol and solar
radiation measurements are available at a short distance and at similar altitudes, and
therefore are considered as representative of the same meteorological conditions. The
aim here is to study how different meteorological conditions around the globe affect
both DNI and CSNI, regarding solar resource assessment and the installation of CSP
systems. Detailed information on the stations used in this study can also be found
in Table 4.1. For conciseness, each station is identified by its 3-letter BSRN code in
what follows. For model development and performance assessment purposes (Sections
4.7 and 4.8), data in each dataset are randomly divided into a training dataset and a
validation dataset. The training dataset is composed of approximately two thirds
of the total records while the validation dataset is composed of the remaining one
third.
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Table 4.1: AERONET and BSRN stations used in this study.

Location
BSRN AERONET Period

selectedCode Lat. (◦N) Long. (◦E) Alt. (m) Code Lat. (◦N) Long. (◦E) Alt. (m)
Darwin,

AUS
DAR -12.425 130.831 30 ARM_Darwin -12.425 130.891 29.9 2012-2014

Évora,
PRT

EVR 38.568 -7.912 293 Evora 38.568 -7.912 293 2015-2017

Gobabeb,
NAM

GOB -23.5614 15.042 407 Gobabeb -23.562 15.041 405 2015-2017

São Martinho da
Serra, BRA

SMS -29.4428 -53.823 489
Sao_Martinho_

SONDA
-29.443 -53.823 489 2014-2016

Tamanrasset,
DZA

TAM 22.7903 5.529 1385
Tamanrasset_

INM
22.790 5.530 1377 2014-2016

Xianghe,
CHN

XIA 39.754 116.962 32 Xianghe 39.754 116.962 36 2008-2010

4.4 Direct normal and circumsolar irradiance modelling

The DNI and CSNI simulations were performed using the libRadtran software
package [26]. LibRadtran version 1.7 [26] was used despite version 2.0.1 [45] is
currently available. The authors are more familiar with version 1.7 and, as stated in
Eissa et al. [7], both versions produce the same outputs. LibRadtran is a library of
radiative transfer routines, which provides multiple options to set-up and modify an
atmosphere with several elements such as gas molecules, clouds and aerosol particles
[26]. The main tool of libRadtran is the radiative transfer routine uvspec, which
allows the user to choose among several solvers of the radiative transfer equation,
such as DISORT [46] for the discrete ordinates method or MYSTIC [28] for the
Monte Carlo method. In this way, AERONET measurements were used to create
an input file to the uvspec tool, in order to simulate both DNI and CSNI at the
locations and periods of Table 4.1, following a similar methodology to Eissa et al.
[7] and Eissa [39]. The first step was to access and process the AERONET data,
which is described in the following. The spectral range of simulations used in this
work is 200-5000 nm, which covers the spectral range of response of a conventional
pyrheliometer (300-4000 nm) [3]. Although the upper limit of response of a standard
pyrheliometer is 4000 nm, the wavelength limit of 5000 nm is selected to account for
the calibration of the pyrheliometers against windowless absolute cavity radiometers.

The aerosol optical depth (AOD) was retrieved from the AERONET Direct
Sun Algorithm while the single-scattering albedo, surface albedo and aerosol phase
function were obtained through an inversion method (V3) of the AERONET radiance
measurements [42]. The uncertanties associated with these variables are the following:
∼0.01-0.02 for the AOD [42], ∼0.03 for the single-scattering albedo [47], ∼50% for
surface albedo [47] and ∼5% for the aerosol phase function [47]. The precipitable
water vapour was obtained through the sky irradiance measurements at 940 nm with
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an uncertanty of ∼10% [48]. This leads to slightly different timestamps for precipitable
water vapour with respect to aerosol data. For this reason, the precipitable water
vapour values were linearly interpolated in order to match the aerosol data timestamps.
On the other hand, libRadtran requires that the aerosol PHFN be described as a
series of Legendre polynomials. Since the AERONET’s PHFN data points have
irregular angular steps between 0◦ and 180◦, a preliminary spline interpolation was
made to obtain a PHFN with a regular angular step of 0.1◦, thus providing a finer
decomposition. Because aerosol measurements are available at the wavelengths of
440 nm, 675 nm, 870 nm and 1020 nm, the PHFN functions need to be interpolated
and extrapolated to define them between 200 and 5000 nm. The interpolation was
performed using the Fraunhofer method as presented in Eissa et al. [7], Wilbert et al.
[14]. Through this method, the 440 nm and 1020 nm PHFN were used to compute
the 200 nm and 5000 nm phase functions, respectively. Finally, the decomposition
of the phase functions in Legendre polynomials was performed through the pmom
tool available with libRadtran [26]. In Section 4.5.3, a more detailed analysis of the
number of Legendre polynomials used to decompose the PHFN is presented.

Aerosol optical depth data at 200 and 5000 nm were obtained using aerosol optical
data at 440 and 5000 nm, respectively, and Ångström’s law [49, 7]. The surface
albedo and the single-scattering albedo values at 440 nm and 1020 nm were used to
represent the same variables at 200 nm and 5000 nm, respectively. This procedure
was adopted for two reasons: (i) because it can be difficult to accurately characterize
the spectral surface albedo near the ground-based stations; and (ii) because the type
of aerosols available in the several stations is not always the same. Therefore, using
a simple model to scale the single-scattering albedo could change its variation along
the spectrum.

The input file of the libRadtran simulations was built in the following way:
firstly, the auxiliary files were created: (i) the file containing the atmospheric layers
(aerosol_files), where the wavelength, extinction coefficient, aerosol single-scattering
albedo and the moments of Legendre polynomials for the PHFN are specified, and
(ii) the file containing the surface albedo data. Next, the libRadtran primary input
file is created. A mid-latitude summer atmospheric profile (afglms) available in the
libRadtran and the solar spectrum reported by Gueymard [50] were used. Latitude,
longitude, and altitude were specified according to the location simulated. The
command correlated_k was used with the option lowtran to obtain the spectrally
integrated values of irradiance, where the gas absorption parametrisation code is
adopted from the SBDART toolbox [51]. The solar zenith and azimuth angles were
determined using the BSRN timestamp and latitude and longitude, through the
zenith tool based on the Blanco-Muriel et al. [52] algorithm. A 1D grid of sky elements
with the centre of the sun in one end was created to determine the sky radiance in
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the circumsolar region, with 6◦ of scattering angle in the zenithal direction (constant
azimuth) and a mesh interval of 0.1◦. The zenith and azimuth angles of these sky
elements were determined as a function of the respective scattering angles and solar
zenith and azimuth angles thus allowing to obtain the diffuse radiance in the sun
disk and circumsolar regions. The number of streams used was 16, which is the
default value in libRadtran. All simulations, except for those reported in subsection
4.5.3, were carried out using 2048 Legendre moments to decompose the aerosol phase
function.

The sky radiance from the libRadtran output file was used to calculate CSNI
(Eq. 4.6) at each station, since not all stations have the same pyrheliometer model
installed, which has a direct impact on the penumbra function due to different
aperture angles of the instruments. The stations of EVR, GOB and XIA are equipped
with a Kipp & Zonnen CHP1 whereas the stations of DAR, SMS and TAM are
equipped with an Eppley NIP. These instruments have distinct half-aperture angles.
The Kipp & Zonnen CHP1 has an half-aperture angle of 2.5◦ a slope angle (αs) of
1.0◦ and a limit angle (αl) of 4.0◦ whereas the Eppley NIP has an half-aperture angle
of 2.9◦, a slope angle of 1.8◦ and a limit angle of 4.0◦ [3]. Both instruments have a
reported uncertainty of ∼ 2% [7, 53]. The numerical integration of sky radiance (Eq.
4.6) was done through Riemann sums, taking into account the slope and limit angles
of the instruments installed at each location. The direct horizontal irradiance from
the libRadtran output file was converted into DNI using the zenith angle and it was
compared against BSRN ground-based measurements, both without and with the
circumsolar contribution, following the methodology presented in Eissa et al. [7] and
Eissa [39]. This allows for an indirect validation of the modelled CSNI values, since
no measurements of CSNI are available at the locations studied. This procedure is
addressed in more detail in Section 4.6.

4.5 Sensitivity analysis

4.5.1 Analysis of the sky radiance distribution in the circumsolar region

In the literature, it is common to present CSNI as the integral of the azimuthally
averaged sky radiance, thus assuming both the sun disk and circumsolar region as
symmetric. However, for high solar zenith angles (θ) and/or atmospheres with high
aerosol concentrations, this assumption may not always hold. In this analysis, a 2D
grid of sky elements was created to determine the sky radiance in the circumsolar
region, with 6◦ of scattering angle in the azimuthal direction and 12◦ in the zenithal
direction (half circumsolar region), with a mesh interval of 0.1◦. The zenith (θ)
and azimuth (φ) angles of these sky elements were determined as a function of the
respective scattering angles and solar zenith and azimuth angles. As an example,
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the cumulative distribution functions of solar zenith angle, aerosol optical depth
at 440 nm and precipitable water vapour at Évora (EVR) are presented in Fig.
4.1, and the CSNI determined along the directions with constant zenith (θ) and
azimuth (φ) angles is shown in Fig. 4.2. In the analysis presented in this section,
all the CSNI values were calculated for an half-aperture angle of 2.5◦, which is the
standard half-aperture angle for a pyrheliometer as stated by the WMO [54]. The

Fig. 4.1: Cumulative distribution functions of: a) aerosol optical depth at 440 nm; b)
precipitable water vapour; and c) solar zenith angle for EVR station.

Fig. 4.2: Comparison of circumsolar irradiance obtained through the integration of sky
radiance along constant zenith (θ) and azimuth (φ) lines.

results presented in Fig. 4.2 show that CSNI obtained through the integration of
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sky radiance along a line of constant φ is close to the CSNI obtained along a line
of constant θ, with a mean bias error (MBE) of -0.81%, a root mean square error
(RMSE) of 8.63% and a correlation coefficient (R) of 0.997, taking the CSNI obtained
along a line of constant φ as reference. Differences are slightly higher with increasing
values of CSNI, typically for higher solar zenith angles and/or aerosol concentration
in the atmosphere. Nevertheless, since this difference is still small, the azimuthally
averaged sky radiance was used in this work to determine CSNI. This simplification
also results in lower computation times, since it is sufficient to simulate a smaller
portion of the circumsolar region, only along a line of constant azimuth angle.

4.5.2 Variation of circumsolar irradiance with the solar zenith angle

In this subsection, the influence of the solar zenith angle in the determination of
DNI and CSNI is studied. Instead of using random values for the input parameters,
in this analysis the values for three different points in the cumulative distribution
functions (CDF) of the AERONET variables for the EVR station are selected as
libRadtran inputs. To do this, the AERONET measurements that were closer to the
values that correspond to a CDF of 0.25, 0.50 and 0.75 were found.

AERONET records were selected using the CDF of aerosol single-scattering
albedo, aerosol optical depth and surface albedo values for all wavelengths. This
procedure consisted in defining an initial small tolerance interval centred on the CDF
values. The tolerance interval was then reduced until only one AERONET record
remained. In this way, the AERONET records selected to represent the CDF values
of 0.25, 0.50 and 0.75 were 10/08/2015 16:55:07, 28/06/2016 18:35:32 and 23/08/2016
07:14:23, respectively. The precipitable water vapour was not used in this selection
procedure due to the need of a high tolerance interval to find the representative
AERONET records.

Having selected the AERONET measurements to be used in the simulations, only
the solar zenith angle was changed between the minimum value for the day of each
record and 85◦, i.e., the aerosol properties and precipitable water conditions were
assumed constant. The value of 85◦ was chosen considering the known difficulties
of models to simulate sky radiance for high solar zenith angles. Fig. 4.3 shows the
variation of the sun-disk DNI (Bsun

n ), the apparent DNI (Bexp
n ), as well as CSR, as a

function of θ. Three cases are presented referring to the selected records that best
represent the three points of the CDF values at EVR station.

The circumsolar component for the cases presented in Fig. 4.3 increases as the
solar zenith angle also increases. This occurs because of the concomitant increase of
the path-length that the sun rays travel in the atmosphere (air mass), leading to
a higher dispersion (scattering) of the sun rays, hence higher values of CSNI, and
consequently, higher values of CSR.
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Fig. 4.3: Variation of sun disk DNI (Bsun
n (δS), dashed line) and DNI including the CSNI

(Bexp
n (αs, αl), solid line) (a) and CSR (b) with the solar zenith angle (EVR station).

4.5.3 Effect of the number of moments of the aerosol phase function on the circumsolar
irradiance modelling

LibRadtran requires that the aerosol phase function be decomposed in a series of
Legendre polynomials. Using the pmom tool, the aerosol phase function can be
decomposed in a user-defined number of polynomials through the nmom parameter.
In this way, a sensitivity analysis of the number of Legendre polynomials of the
PHFN was performed. The number of Legendre polynomials tested was 32, 64, 128,
256, 512, 1024, 2048, 4096 and 8192, for the same representative AERONET records
of the CDF values 0.25, 0.50 and 0.75 for the EVR station (Section 4.5.2), as shown
in Fig. 4.4.

A lower number of Legendre polynomials results in an underestimation of the
CSNI due to the less accurate representation of PHFN. For nmom above 256, the
CSNI tends to a nearly constant value. Therefore, it is recommended to use a
minimum of 256 Legendre polynomials to decompose the PHFN. This number of
Legendre polynomials should produce the same outputs as simulations with higher
number of polynomials, but saving simulation time and computation resources.
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Fig. 4.4: Variation of modelled circumsolar irradiance with the number of Legendre polyno-
mials used in the aerosol phase function decomposition (EVR station).

4.5.4 Grid independence test

The sky radiance is calculated by libRadtran in the sky elements defined by the user.
Therefore, the grid of sky elements can be adjusted considering the time required
for a simulation to be completed and the desired level of detail in the circumsolar
region. Aiming at an accurate characterization of the circumsolar region as well
as the fastest possible simulations, several meshes with different scattering angle
intervals were tested for the selected records that best characterise the CDF values
0.25, 0.50 and 0.75 (Section 4.5.2). The scattering angle intervals tested were 0.01◦,
0.02◦, 0.05◦, 0.1◦, 0.2◦ and 0.5◦. The variation of modelled CSNI values with the
scattering angle interval at Évora for the selected records that best characterise the
CDF are shown in Fig. 4.5. The modelled CSNI is nearly constant when considering
scattering angle intervals up to 0.10◦ in all cases. On one hand, higher scattering
interval values (above 0.20◦) lead to a decrease in the accuracy of CSNI modelling,
including the numerical integration process of Eq. 4.6, because of the difficulty in
defining the sun disk limit with larger mesh intervals. This leads to a less accurate
characterization of the circumsolar region and, therefore, to a lower CSNI value, even
if efficient interpolation techniques are used. On the other hand, scattering angle
intervals lower than 0.10◦ can be used if a more detailed analysis at the limits of
the circumsolar region is required, at the expense of computational resources and
simulation time. The scattering angle interval can affect the determination of CSNI
to a certain extent, which in turn can affect the fitting and performance assessment



4.6 Simulation results 119

Fig. 4.5: Variation of modelled circumsolar irradiance with the mesh interval (EVR station).

of models, if different scattering angle intervals were used in the model development.
Therefore, it is recommended to use a maximum scattering angle mesh interval of
0.10◦ when simulating CSNI, aiming for accurate model results and faster simulation
times.

4.6 Simulation results

4.6.1 Modelled direct normal and circumsolar irradiance validation

The common procedure to evaluate the performance of a model is to directly compare
simulated values against high-quality ground-based measurements. However, CSNI
measurements are very scarce and are not available at the locations analysed in this
study. Therefore, an indirect validation of the CSNI measurements is carried out [7].
In this way, firstly the sun-disk DNI (Bsun

n (δS)) is compared against measurements
from pyrheliometers, which is expected to result in a negative bias because CSNI is
not included. Secondly, the apparent DNI (Bexp

n (αs, αl)) is compared to the same
measurements, with an expected bias close to zero. An error reduction when adding
the CSNI component is taken as an improvement on the simulated data and used
here to validate the modelling approach. Statistical indicators such as mean bias
error (MBE), root mean square error (RMSE) and correlation coefficient (R) are
used to evaluate the accuracy of the simulations. The comparison between sun-disk
DNI (Bsun

n (δS)) and observations is shown in Fig. 4.6, whereas Fig. 4.7 shows the
same comparison for the case of the apparent DNI (Bexp

n (αs, αl)).
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Fig. 4.6: Comparison of sun-disk DNI (Bsun
n (δs)) to ground-based measurements.

The simulated DNI values show good agreement with the ground-based measure-
ments for all locations simulated in this work. In Fig. 4.6, the simulated values of
Bsun

n (δS) present a negative bias at DAR, EVR, GOB and XIA, as expected. Only
the simulated values for SMS and TAM show a positive bias. This can be explained
by small disagreements between the time stamps when the AERONET and BSRN
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Fig. 4.7: Comparison of apparent DNI (Bexp
n (αs, αl)) to ground-based measurements.

measurements were taken, and both observations and model output uncertainties.
Nevertheless, results still agree well with experimental values, with a maximum MBE
of -4.38%, a maximum RMSE of 6.32% and a minimum R of 0.977. Adding the
CSexp

n (αs, αl) to the modelled Bsun
n (δS) (Fig. 4.7), the bias between simulated and

measured Bexp
n (αs, αl) is close to zero at all stations, except for the SMS and TAM
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stations. The RMSE decreases at DAR, GOB and XIA stations, slightly increases at
EVR station and increases at SMS and TAM. Regarding the correlation coefficient,
no relevant differences between including or not the CSexp

n (αs, αl) are found. The
small decrease in performance of the simulations according to MBE and RMSE when
adding the CSexp

n (αs, αl) for the SMS and TAM stations does not invalidate the
modelled values of CSNI, since MBE values around 5% and RMSE values around
6% are in accordance with recent studies from the literature, e.g. [55, 34]. Therefore,
the general agreement between Bexp

n (αs, αl) and ground-based measurements is an
indicator of the good quality of the simulated CSexp

n (αs, αl) data. For the case of
TAM, some malfunctions have been detected by Gueymard [56] on the retrieval
of AOD. Although these cases are rare, they can have some impact on the results
presented in Fig. 4.6 and Fig. 4.7.

The uncertainties of the pyrheliometer measurements used as reference must
be taken into account when analysing the results from Fig. 4.6 and Fig. 4.7. The
instruments installed at these locations both have a reported uncertainty of ∼
2%. Following the approach presented in Habte and Sengupta [57], the overall
uncertainty with a 95% confidence interval (CI) was determined for both Bsun

n (δS)
and Bexp

n (αs, αl), as shown in Fig. 4.8. The overall uncertainty is determined using
the uncertainty from the reference data as well as the MBE and RMSE values from
the modelled data. This allows for an easy comparison between different data sets,
taking into consideration the uncertainties of the reference data.

Fig. 4.8: Overall uncertainty of Bsun
n (δS) and Bexp

n (αs, αl) at 95% confidence interval (CI)
for all stations, in percentage.

From Fig. 4.8, the overall uncertainty is higher at SMS, TAM and XIA for both
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Bsun
n (δS) and Bexp

n (αs, αl). Adding the CSexp
n (αs, αl) to Bsun

n (δS) results in a decrease
of the overall uncertainty at DAR, GOB and XIA and in small increase at EVR and
SMS. At TAM, a larger increase on the overall uncertainty is observed. In general,
the average overall uncertainty is 4.35% in Bsun

n (δS) and 4.44% in Bexp
n (αs, αl), which

approximately doubles the uncertainty in the reference data.

4.6.2 Circumsolar Normal Irradiance and Circumsolar Ratio analysis

Under clear skies, the CSNI is strongly related to the aerosol optical depth and
aerosol type [56]. The CSNI relative frequency for the six locations analysed in this
study is presented in Fig. 4.9, which allows a comparison of the magnitude of CSNI
at the different stations. TAM and XIA have the higher relative frequencies for high
values of CSNI, whereas at locations such as GOB and SMS, the relative frequency
is higher for low values of CSNI. This implies that the addition of CSNI to the DNI
modelled values can have a higher impact on the modelled DNI for locations such as
TAM and XIA than in the case of SMS, for instance.

The cumulative distribution functions (CDF) of the CSR for the stations analysed
are presented in Fig. 4.10. The SMS and GOB stations have the lowest CSR,
with 95% of values under 0.0175 and 0.0423, respectively. On the contrary, TAM
and XIA stations present the higher CSR, with 25% of values above 0.0982 and
0.0963, respectively. This information is useful for CSP systems design and operation,
alongside more commonly used parameters such as DNI or soiling rate data.

Fig. 4.10: CSR cumulative distribution functions for all stations (αs = 1.0 for EVR, GOB
and XIA and αs = 1.8 for DAR, SMS and TAM; αl = 4.0 for all stations).
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Fig. 4.9: Relative frequency of CSNI.

4.7 Circumsolar irradiance model parametrisation

In this section, a parametrisation is proposed for the determination of CSNI. The
objective is to provide a simple model based on widely available solar radiation
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measurements such GHI, DHI or DNI, in order to easily estimate CSR and CSNI. To
the authors’ best knowledge, only Neumann et al. [36], Ivanova [37] and Eissa et al.
[7] presented models of this type. A novel model is presented in this work, aiming at
a better characterization of the CSNI using the sky clearness index (Kt) - the ratio
between GHI at the Earth surface and its counterpart at the top of the atmosphere
[58]; the diffuse fraction (Kd) - the ratio between DHI and GHI [59]; and the beam
clearness index (Kb) - the ratio between DNI at the Earth surface and DNI at the
top of atmosphere [60].

Under clear-sky conditions the circumsolar normal irradiance (CSNI) is directly
proportional to the diffuse irradiance, that is, if the diffuse horizontal irradiance
(DHI) is higher, then the CSNI is also higher due to augmented scattering of solar
radiation in the atmosphere:

CSNI ∼ DHI. (4.9)

Still under clear-sky conditions, the same relationship can be established between
the circumsolar ratio (CSR = CSNI/DNI) and Kd:

CSR ∼ Kd. (4.10)

In other words, the ratio between CSNI and the irradiance actually measured by a
pyrheliometer (sun-disk DNI plus CSNI) is directly proportional to the ratio between
DHI (excluding the circumsolar component) and GHI. However, due to the very
different magnitudes of CSNI with respect to sun-disk DNI plus CSNI, and of DHI
compared to GHI, it is found that the variation of CSR is better described as a
function of Kd if the following relation is used:

CSR ∼ Kd

1 − Kd

, (4.11)

which still assures that CSR is higher when Kd is also higher, provided that 0 ≤
Kd < 1, which is always the case under clear-sky conditions. On the other hand, if
the measured direct normal irradiance increases with respect to the extraterrestrial
irradiance on a plane normal to the sun axis, this is an indication of a lower air mass
and/or cleaner atmosphere with lower scattering effect (higher intensity but lower
fraction of sky radiance from the solid angle between the sun radius and the limit
angle, not considering here the absorption), and thus lower CSR. These relations
can be represented as follows:

CSR ∼ 1
Kb

; (4.12)

CSR ∼ 1
Kt

. (4.13)

It should be noted that Kb and Kt provide a measure of the total transmissivity of
the atmosphere under clear-sky conditions, including the effect of the solar zenith
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angle and air mass. Combining the three relations above, the following expression is
proposed to model CSR:

CSR ∼ Kd

KtKb(1 − Kd) . (4.14)

For a better representation, and due to the different orders of magnitude of the
variables involved, the following form is more suitable:

CSR(1 − Kd) ∼ Kd

KtKb

, (4.15)

and, in order to determine how the group CSR(1 − Kd) depends on the right-hand
term of this relation, a transform of Eq. 4.15 is finally proposed:

CSR(1 − Kd) = a

b + (KtKb/Kd)c
, (4.16)

in which a, b and c are fitting coefficients that are determined using the training
datasets of the various locations under analysis. Under uniform diffuse sky radiance
conditions, CSNI and sun-disk DNI are of the same order of magnitude, and a CSR
different from zero can be calculated in that limit (but hardly measured), which
depends only on the angular radius of the sun and the limit angle of the pyrheliometer
if a uniform diffuse sky radiance is assumed (L in Eq. 4.3, 4.6 and 4.5) and if the
penumbra effect is neglected. Also, in that limit, Kd is slightly different from one,
with that difference being of the same order of magnitude of the CSR, while the
group KtKb/Kd tends to zero. This is the reason why the group CSR(1 − Kd) tends
to a fixed value at the origin. In the opposite limit of very clear skies (or in the
hypothetical limit in which scattering tends to zero), the CSNI and DHI decrease
(and in the mentioned hypothetical limit tend to zero) while the group KtKb/Kd

increases (and tends to infinity in the mentioned limit), which is in accordance with
the proposed model.

The model fitting presents low values of mean bias error (MBE), thus indicating
a good representation of the training datasets (see Table 4.2). The only exception
is the case of XIA, where MBE unexpectedly increases, for reasons still unclear
and, therefore, a more detailed analysis on this issue would be required. In Table
4.2, an average value for each coefficient regarding the pyrheliometers installed at
each station is also shown. This provides a global model, albeit at a preliminary
stage because of the sparse data it is built from. Fig. 4.11 shows data and model
adjustment for the case of EVR. The CSR values were obtained from the libRadtran
simulations while the clearness indexes Kt and Kb and the diffuse fraction Kd were
determined from the experimental values.

The uncertainties associated with the CSR determination are worth noting. For
that reason, the relative uncertainty associated to the determination of CSR at EVR
is computed and is presented in Fig. 4.12. The uncertainties of the model parameters
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Fig. 4.11: Circumsolar ratio model parametrisation for the EVR station (αs = 1.0, αl = 4.0).

Table 4.2: Model parameters and respective 95% confidence intervals and mean bias error
(MBE) of model fitting for each station and pyrheliometer model.

Station
Parameter

MBE (%)
a b c

DAR
(αs = 1.8◦, αl = 4.0◦)

0.0282±0.002 0.5535±0.0795 1.4136±0.1084 -0.5571

EVR
(αs = 1.0◦, αl = 4.0◦)

0.0386±0.0017 0.5229±0.0401 1.6478±0.0734 -0.6896

GOB
(αs = 1.0◦, αl = 4.0◦)

0.0478±0.0041 1.3078±0.1713 1.8250±0.0972 -0.0287

SMS
(αs = 1.8◦, αl = 4.0◦)

0.0376±0.0075 2.3817±0.6336 2.2632±0.2257 -1.3910

TAM
(αs = 1.8◦, αl = 4.0◦)

0.0876±0.0039 0.8481±0.0529 1.3540±0.0613 0.0092

XIA
(αs = 1.0◦, αl = 4.0◦)

0.1160±0.0563 4.5406±2.3210 2.4988±0.7156 6.8648

Mean Eppley NIP
(αs = 1.8◦, αl = 4.0◦)

0.0598 1.4589 1.9587 -

Mean Kipp&Zonen CHP1
(αs = 1.8◦, αl = 4.0◦)

0.0453 1.0379 1.6301 -

a, b and c are obtained from their confidence intervals, as presented in Table 4.2.
The uncertainties of Kt, Kb and Kd are determined using the uncertainty of the
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instruments used to measure GHI, DNI and DHI, respectively, ∼ 2% for DNI [53, 7]
and ∼ 5% for GHI and DHI [61]. This results in an average relative uncertainty of
approximately 9.5%.

Fig. 4.12: Circumsolar Ratio relative uncertainty at EVR.

4.8 Parametrisation results and discussion

In order to perform a fair comparison against models available in the literature, the
model coefficients from Neumann et al. [36] and Eissa et al. [7] were fitted to the
same training datasets used in this work. The model from Ivanova [37] is also used
in this comparison, however without fitting that model to the data since this is a
global model. Thus, the Ivanova [37] model was then compared against the global
model presented in this work, determined through the mean values of the site-specific
coefficients depending on the pyrheliometer model (i.e., slope and limit angles). Since
the number of points is different for each station, this approach is selected instead of
determining new coefficients. In this way, each station has the same weight when
determining the global model coefficients. The performance of the models is assessed
using the validation datasets and the MBE, RMSE, R, fractional bias (FB) and
fractional gross error (FGE) statistical indicators. The fractional bias and fractional
gross error are defined as:

FB = 2
N

N∑
i=1

Ie,i − Im,i

Ie,i + Im,i

; (4.17)

FGE = 2
N

N∑
i=1

|Ie,i − Im,i|
|Ie,i + Im,i|

, (4.18)
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respectively, where Ie is the estimated irradiance by the model from Eq. 4.16, Im is
the irradiance determined using libRadtran and N is the total number of observations.
Results are presented in Table 4.3, where values in bold represent the best model
(site-fitted and global) according to each station/statistical indicator.

Table 4.3: Performance assessment of circumsolar parametrisation models.

Station
Statistical
indicator

Adjusted coefficients Global coefficients
Neumann et al. [36] Eissa et al. [7] This work Ivanova [37] This work

DAR
(αs = 1.8◦, αl = 4.0◦)

MBE (%) -5.34 1.19 -0.88 93.34 14.94
RMSE (%) 76.08 62.25 50.58 132.23 53.63

R 0.69 0.59 0.74 0.71 0.73
FB 0.29 0.09 0.04 0.62 0.20

FGE 0.70 0.35 0.28 0.64 0.33

EVR
(αs = 1.0◦, αl = 4.0◦)

MBE (%) -26.71 -0.19 -1.98 56.18 -11.52
RMSE (%) 158.03 59.17 43.19 95.99 55.17

R 0.79 0.81 0.90 0.86 0.86
FB 0.49 0.04 0.05 0.52 0.01

FGE 1.04 0.37 0.31 0.55 0.33

GOB
(αs = 1.0◦, αl = 4.0◦)

MBE (%) 1.40 4.77 1.92 105.47 15.74
RMSE (%) 61.21 68.89 54.82 147.54 58.73

R 0.73 0.64 0.79 0.74 0.78
FB -0.39 0.14 0.11 0.76 0.20

FGE 5.30 0.40 0.35 0.77 0.37

SMS
(αs = 1.8◦, αl = 4.0◦)

MBE (%) 6.04 6.37 -3.70 238.24 114.53
RMSE (%) 65.40 66.70 52.34 319.95 144.99

R 0.68 0.69 0.81 0.68 0.80
FB -0.17 0.10 -0.04 1.13 0.80

FGE 1.04 0.35 0.35 1.14 0.81

TAM
(αs = 1.8◦, αl = 4.0◦)

MBE (%) -10.16 5.57 1.22 8.67 -55.05
RMSE (%) 73.44 49.52 29.59 49.43 67.43

R 0.84 0.68 0.88 0.83 0.88
FB 0.39 0.09 0.01 -0.08 -0.80

FGE 0.61 0.35 0.22 0.35 0.80

XIA
(αs = 1.0◦, αl = 4.0◦)

MBE (%) 4.12 8.37 14.26 285.48 61.80
RMSE (%) 62.72 69.79 176.28 358.33 256.63

R 0.49 0.32 0.02 0.15 0.03
FB 0.21 0.19 0.20 1.10 0.45

FGE 0.45 0.47 0.52 1.10 0.61

From the adjusted coefficients section of Table 4.3, it is clear that the model
developed here performs better considering the datasets used. The only exception,
again, occurs at XIA, where the model proposed by Neumann et al. [36] outperforms
the model presented here. However, closer examination reveals that the decrease of
model performance at XIA occurs not only for the proposed model but also for the
models of Eissa et al. [7] and Ivanova [37] as well. Generally, even if models have a
low bias (some MBE values are under 1% for the model developed in this work),
the RMSE values are high due to the difficulty in finding an independent variable
that is highly correlated with the CSR data. The second best performer is the model
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proposed by Eissa et al. [7]. In their work, they found values of -1.5%, 19.6% and
0.935 for MBE, RMSE and R, respectively, for the TAM station. However, they used
a different dataset (AERONET level 2.0 data and different selected periods) and
a different libRadtran input file, namely a different PHFN. Regarding the global
coefficient section of Table 4.3, the model presented here outperforms the model
from Ivanova [37] at every location except TAM. Based on these results, the model
developed in this work can be used to estimate CSR, and thus CSNI, at several
locations using more common solar radiation data, such as GHI, DHI or DNI.

4.9 Conclusions

In this work, a review and historical perspective of circumsolar irradiance (CSNI)
modelling and measurement is presented, alongside a theoretical background on
direct normal irradiance (DNI) and CSNI definitions. Furthermore, both sun-disk
DNI and CSNI were modelled using AERONET data and the libRadtran RTM. CSNI
was validated indirectly by comparing both sun-disk DNI alone and sun-disk DNI
plus CSNI against ground-based measurements. The decrease in the error metrics
when adding the CSNI predictions to the sun-disk DNI indicates the validity of the
modelling approach. This type of validation was performed because there are no
CSNI measurements at the locations of interest. MBE, RMSE and R values of around
1%, 2% and 0.99, respectively, were found for DAR, EVR and GOB stations and
values around 5% and 6% for MBE and RMSE, respectively, were found for SMS,
TAM and XIA stations, when comparing the modelled DNI with CSNI values against
ground-based measurements. The slightly higher dispersion between modelled and
measured data can be related to the uncertainties associated with the ground-based
data and also to the distance between AERONET and BSRN stations. However, a
more detailed analysis on this issue would be required.

A fast and simple model has been developed, aiming at the determination of
CSNI for a half-aperture angle of 2.5◦, using widely available GHI, DHI and DNI
measurements. The proposed model performs generally better than other models
available in the literature, with lower MBE, RMSE, FB and FGE, and higher
correlation coefficient, for most of the datasets used. This model can be used to easily
estimate the circumsolar ratio (CSR), and thus CSNI, resorting to widely available
solar radiation data. Conversely, it can also be used to estimate the sun-disk DNI
measured by a field pirhelyometer.
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Nomenclature

a model coefficient

B direct irradiance

b model coefficient

c model coefficient

CS circumsolar irradiance

CNSI circumsolar normal irradiance

CSR circumsolar ratio

FB fractional bias

FGE fractional gross error

Ie estimated irradiance by the model

Im irradiance determined using libRadtran

Kb beam clearness index

Kd diffuse fraction
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Kt sky clearness index

L sky radiance

MBE mean bias error

N total number of observations

P penumbra function

R correlation coefficient

RMSE root mean square error

Greek symbols

α half-opening angle

δ angular distance from the centre of the sun

θ solar zenith angle

ξ scattering angle

φ azimuth angle

Subscripts

n normal

l limit angle

S sun

s slope angle

Superscripts

exp experimental

sun sun-disk

Acronyms

AERONET Aerosol Robotic Network

AOD aerosol optical depth

BSRN Baseline Surface Radiation Network

CDF cumulative distribution function

CI confidence interval
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CPV concentrating photovoltaics

CNSI circumsolar normal irradiance

CSP concentrating solar power

DHI diffuse horizontal irradiance

DNI direct normal irradiance

FB fractional bias

FGE fractional gross error

GHI global horizontal irradiance

IES Institute of Earth Sciences

MBE mean bias error

NWP numerical weather prediction

PHFN aerosol phase function

PWV precipitable water vapour

R correlation coefficient

RMSE root mean square error

RSI rotating shadowband irradiometer

RTM radiative transfer model

SA surface albedo

SSA single scattering albedo

WMO World Meteorological Organization



Chapter 5

Prediction of circumsolar irradiance and its impact on CSP
systems under clear skies†

Abstract

In this work, a model to estimate circumsolar normal irradiance (CSNI) for
several half-opening angles under clear skies is developed. This approach
uses a lookup table to determine the model parameters and estimate CSNI
for half-opening angles between 0.5◦ and 5◦.To develop and validate the
proposed model, data from five locations worldwide were used. It was found
that the proposed model performs better at the locations under study than
the models available in the liteThe impact of CSNI for these different half-
opening angles on concentrating solar power (CSP) systems was also studied.
It was found that neglecting CSNI could lead to up to a 7% difference between
the direct normal irradiance (DNI) measured by a field pyrheliometer and
the DNI that is captured by CSP systems. Additionally, a case study for
parabolic trough concentrators was performed as a way to estimate the
impact of higher circumsolar ratios (CSR) on the decrease of the intercept
factor for these systems. It was also concluded that if parabolic trough
designers aim to reduce the impact of CSNI variation on the intercept factor,
then parabolic troughs with higher rim angles are preferred.

Keywords: Solar Energy; Direct Normal Irradiance; Circumsolar radiation;
Concentrating Solar Power systems; Parabolic trough
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5.1 Introduction

Concentrating Solar Power (CSP) systems highly depends on the intensity of Direct
Normal Irradiance (DNI) in their aperture angle [1]. Therefore, it is crucial that
designers have access to accurate DNI data to avoid compromising the proper
operation and economic viability of such systems. The most reliable way of obtaining
accurate DNI data is using a ground-based stations equipped with a pyrheliometer
in a sun-tracker system. This instrument needs to track the apparent movement
of the sun along its path in the sky to measure the direct beam. However, as this
tracking cannot be done with perfect accuracy, these instruments are designed in
such a way that they receive radiation not only from the solar disk but also from the
surrounding area, known as circumsolar region [2], that is, the aperture half-angle of
the instrument is larger than the apparent sun disk radius in order to accommodate
the tracking misalignments and errors. On the other hand, this radiosity in the
circumsolar region around the sun disk, known as circumsolar irradiance, is not
negligible when designing CSP systems, because these systems usually have opening
half-angles lower than those of the pyrheliometers, depending on the concentration
factor.

The World Meteorological Organization (WMO) recommends that pyrheliometers
have an opening half-angle of 2.5º to enable a fair comparison between the DNI
measured at different locations around the globe [3]. However, the upper limit of the
opening half-angles of common CSP technologies such as parabolic trough, linear
Fresnel, dish-Stirling and solar tower are 0.8◦, 1.0◦, 1.6◦ and 1.8◦, respectively [2, 4],
that is, lower than the standard aperture half-angles of pyrheliometers. In other
words, CSP systems will not receive the same levels of irradiance as measured by
collocated standard pyrheliometers. This difference will increase when the circumsolar
radiosity also increases as result of solar radiation scattering in the atmosphere due
to higher concentrations of aerosols. The quantification of this difference between the
measured DNI and the DNI that is reflected by the mirrors of a given CSP system is
one of the principal motivations of this study.

The molecules, aerosols and cirrus clouds scatter the sun rays from the sun disk
region to the circumsolar region [5]. When the irradiance from this region of the
sky is measured in a surface normal to the sun line it is known as circumsolar
normal irradiance (CSNI). In that sense, while experimental values of DNI obtained
from pyrheliometer measurements are related only to the total scattering effect and
transmittance of the atmosphere, the CSNI is also related to the angular distance
from the centre of the sun disk, i.e., the scattering angle [6, 7]. The measurement
of CSNI is not straightforward because of the sharp decrease in intensity between
the centre of the sun disk and the limit of the field of view of the instrument [2].
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However, some attempts to measure CSNI were made and a review on these can be
found in Abreu et al. [6].

Regarding CSNI modelling, it is usually carried out using radiative transfer models
(RTM) such as libRadtran [8]. However, because RTM models often need high-quality
atmospheric data such as aerosol optical depth and precipitable water vapour, some
authors have proposed more simple models to predict CSNI. In these models, CSNI
is usually estimated as a function of more commonly available solar irradiance data
and presented as a circumsolar ratio (CSR), i.e., the ratio between the CSNI and
DNI [5, 6, 9, 10]. Such models are defined for a fixed aperture angle except the
model from Eissa et al. [5] in which, in addition, the authors presented a way of
varying the aperture angle. This takes a similar form of the fixed aperture angle
model, but the model coefficients are determined using a sixth-degree polynomial of
the aperture angle and allows to estimate CSNI for any defined aperture angle in
the range [0.4◦, 5.0◦]. Although the model of Abreu et al. [6] was initially developed
for a fixed aperture angle, the way it was constructed also allows its generalization
for any aperture angle with the advantage that it only needs widely available solar
irradiance data to predict CSNI, which is one of the main objectives of this study.

Furthermore, information on CSNI is crucial for the design and operation of
CSP systems. In CSP plants, the solar irradiance is focused onto an absorber using
mirrors [11]. However, due to the difference between the opening half-angles of the
pyrheliometers and CSP systems mentioned above, the use of imprecise DNI data
(without correctly accounting for the differences of the opening half-angle, that is,
without considering CSNI) leads to incorrect assumptions about the solar irradiance
that reaches the CSP mirrors. This will increase the uncertainty of the energy
generation predictions of CSP systems, which ultimately increases the difficulty of
its operation.

The impact of CSNI on CSP systems can be assessed using a variety of tools,
namely ray tracing tools, analytical optical performance models and models that
use look-up tables or parametrizations of the solar position relative to the CSP
mirrors [2]. Ray tracing models describe the solar irradiance as a multitude of solar
rays that originate from the sun, reach the concentrator and, finally, the receiver.
Examples of ray tracing models can be STRAL [12] and MIRVAL [13], to name a few.
Analytical models use analytical equations that can describe the ray’s path trough
the optical system. Examples of analytical models can be the Bendt-Rabl model
[14] and the HFLCAL method [15], to name a few. Lastly, models based on look-up
tables use parametrizations or look-up tables to assess the optical performance of
a CSP collector according to the solar position. SAM [16] and greenius [17, 18] are
examples of look-up tables-based models. The approach followed in this study was
to use an analytical model to determine how the intercept factor (the ratio of the
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irradiance reaching the receiver over the incident irradiance) is affected according to
CSR.

In this work, a simple and fast model to derive CSNI is proposed for clear-sky
conditions at any desired aperture angle. In other words, the proposed model is able
to determine the CSNI that reaches the receiver of any CSP system, such as parabolic
troughs, tower systems or dish systems, to name a few. The developed model is
also aimed to identify the difference between using ground-based DNI measurements
(for the aperture half-angle of the respective pyrheliometer) and DNI modelled data
according to the aperture half-angles of typical CSP technologies (with lower aperture
angles) at several locations around the globe. This allows to quantify the errors
associated with using directly measured DNI data on the simulation of CSP systems.
To the authors’ best knowledge, the model proposed in this work is the only fast
and simple model capable to estimate CSNI at several locations in more than one
climate zone, which constitutes another novelty here. Furthermore, the impact of
CSNI in CSP systems, specifically in parabolic trough systems, is also studied using
the optical performance model from Bendt and Rabl [14].

This paper is organized as follows: Section 5.2 describes the data used; in Section
5.3, the model development and performance assessment are presented; in Section
5.4, prediction of CSNI and its impact on CSP systems, namely in a parabolic trough,
is assessed; and in Section 5.5, conclusions are drawn.

5.2 Data

5.2.1 Experimental solar radiation data

In this work, CSNI data corresponding to several half-opening angles and necessary to
develop the proposed model were obtained using the libRadtran RTM [8] simulations
based on AERONET [19] input data for five locations worldwide. AERONET is a
ground-based aerosol network that provides aerosol optical data and microphysical
and radiative properties for aerosol research and characterization over more than 25
years. The values retrieved from the AERONET database were the following: aerosol
optical depth, aerosol single scattering albedo, aerosol phase function, surface albedo
and precipitable water vapour. The AERONET data was retrieved at the wavelengths
of 440 nm, 675 nm, 870 nm and 1020 nm. However, the simulations were carried out
for the wavelength interval between 200 nm and 5000 nm. This wavelength interval
covers not only the spectral response of a conventional pyrheliometer (300-4000 nm)
but also the spectral response of windowless absolute cavity radiometers (the 5000
nm upper limit), against which field pyrheliometers are commonly calibrated. To
extrapolate the AERONET aerosol data to 200 nm and 5000 nm, Ångström’s law
was used. For further details on this process, the reader can consult the previous
work of Abreu et al. [6]. Ground-based DNI values from BSRN database was also
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used in the validation process of the CSNI data for the same locations. BSRN is a
network of ground-based radiometric stations with the aim of detecting changes in
the radiation field at Earth’s surface [20].

The five locations analysed in this work are scattered in the globe and have collo-
cated AERONET and BSRN stations, thus allowing to assume that measurements
from both stations at close timestamps. The time difference between AERONET
and the radiometric stations data is not higher than 1 minute and therefore it is
assumed that, under clear skies, they are representative of the same atmospheric
conditions. More information about the locations is presented in Table 5.1.

Table 5.1: Information on the AERONET and radiometric stations and data period used
in this work. Legend: Lat. – Latitude, Long. – Longitude, Alt. – Altitude, TR – Tropical,
TM – Temperate, AR – Arid.

Location Code
Lat.
(ºN)

Long.
(ºE)

Alt.
(m)

Climate
zone

Period
Data
points

Darwin, AUS DAR -12.425 130.831 30 TR 2012-14 974
Évora, PRT EVR 38.568 -7.912 293 TM 2015-17 1163
Gobabeb, NAM GOB -23.561 15.042 407 AR 2015-17 1833
S. M. da Serra, BRA SMS -29.443 -53.823 489 TM 2014-16 614
Tamanrasset, DZA TAM 22.790 5.529 1385 AR 2014-16 1060

Regarding data quality control, AERONET data Level 1.5 Version 3 were used
here for two main reasons: to use single scattering albedo measurements instead
of mean values, and because Version 3 processing algorithm marks a significant
improvement in the quality controls of the sun photometer AOD measurements,
eliminating the need for manual quality control and cloud screening by an analyst
[21, 22]. Concerning solar radiation data, the quality filters from BSRN [20] were
used to ensure that extremely rare or physically impossible values were discarded.

The quality control procedure used here ensures that: (i) the simulations to
determine DNI and CSNI are as accurate as possible; (ii) the model developed here
was created and validated using the most accurate solar irradiance ground-based
data available. Moreover, the data used in this work were screened and classified as
clear sky by the AERONET algorithm alongside solar radiation data from collocated
radiometric stations, in order to ensure that both AERONET and BSRN/Evora
data are representative of the same atmospheric conditions.

5.2.2 Modelled DNI and CSNI data

In this work, modelled DNI and CSNI data from the libRadtran RTM are used
to develop the proposed CSNI model. The generation of these kind of data is



144 Chapter 5. Prediction of circumsolar irradiance and its impact on CSP systems

complex because of: (i) the availability and processing of the required inputs; (ii)
the computation time required to simulate extensive datasets such as the one used
here. Therefore, the DNI and CSNI data used here were generated and validated in
a previous work from the same authors [6]. However, it is worth to mention that the
data processing in this work is not the same as in the previously mentioned study [6].

In the previous study mentioned above [6], the libRadtran radiative transfer model
was used alongside AERONET to generate DNI and the sky radiance. The latter was
then used to generate CSNI data through the integration of sky radiance from the
RTM model output in the circumsolar region. The quality of the modelled DNI and
CSNI data was then assessed using ground-based DNI data. This validation process
was indirect, i.e., the DNI modelled data was compared against the ground-based
DNI data, with and without its CSNI counterpart. Since the comparison between
modelled and ground-based data was better when the modelled CSNI counterpart
was used, it was then concluded that the modelled CSNI data exhibited an acceptable
accuracy. Further information of the modelled data, the procedure to generate it and
the validation procedure can be found in [6].

5.3 Model development and assessment

5.3.1 Model development

Each pyrheliometer model has its own penumbra function because it has its own
geometrical characteristics. This function accounts for the pyrheliometer’s response as
a function of the scattering angle due to the effect of the opening window edge, which
attenuates the intensity of radiation in a transitions range between illuminated and
non-illuminated areas [6]. However, assuming a more simple model, the penumbra
function can be assumed as a rectangular function [2], i.e., there is no transition
range, and an ideal DNI for the opening half-angle α can be defined as follows:

Bideal
n (α) = 2π

∫ α

0
L(ξ) sin(ξ)dξ, (5.1)

where L is the sky radiance and ξ is the scattering angle (the angular distance from
the centre of the sun). In this way, the direct normal irradiance from the sun disk
(Bsun

n ), can be defined replacing α by the half-angle of the solar disk (δS) in the Eq.
5.1. In a similar way, the ideal CSNI, CSideal

n can be defined as follows:

CSideal
n (δS, α) = 2π

∫ α

δS

L(ξ) sin(ξ)dξ, (5.2)

where the constraint α ≥ δS is required. In ideal conditions, following a fundamental
closure relationship, we can define the ideal DNI as follows:

Bideal
n (α) = CSideal

n (δS, α) + Bsun
n . (5.3)
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The circumsolar ratio (CSR) for this ideal case can also be defined as follows:

CSR(α) = CSideal
n (δS, α)

Bideal
n (α) . (5.4)

The model proposed in this work is based on these fundamental relationships regarding
the simpler penumbra model of the instruments and, therefore, CSNI and CSR can
be determined using only α. To that end, starting from the results of the libRadtran
simulation [6], CSNI and CSR were calculated for half-opening angles ranging from
0.5◦ to 5◦ with steps of 0.1◦, resulting in 46 data points for each record timestamp
in each location. Then, the adjustable parameters a, b and c from the CSR model
for a given half-opening angle developed by Abreu et al. [6] (described below by Eq.
5.5 and collocated text) were fitted to the data points for each value of α, for all
five locations. Finally, the model parameters a, b, and c (46 data points for each
parameter) were modelled by fitting a polynomial relation with α according to Eq.
5.6, where f(α) represents the required model parameter. The referred CSR model
[6] is given by:

CSR(1 − Kd) = a

b + (KtKb/Kd) , (5.5)

where Kt is the sky clearness index, i.e., the ratio between global horizontal irradiance
at the Earth’s surface and its counterpart at the top of the atmosphere [23], Kb is
the beam clearness index, i.e., the ratio between DNI at the Earth’s surface and DNI
at the top of atmosphere [24], and Kd is the diffuse fraction, i.e., the ratio between
diffuse horizontal and global horizontal irradiance [25]. The general polynomial form
to model these parameters as a function of the half-opening angle is in the form:

f(α) = C0 + C1α + C2α
2. (5.6)

Regarding the polynomial fitting to determine the new model parameters, it was
verified that the parameter a can be obtained accurately through a first-degree
polynomial while parameters b and c are better adjusted using a second-degree
polynomial. The polynomial coefficients to obtain the model parameters are presented
in Table 5.2 according to each location as well as their respective coefficients of
determination. The locations are grouped according to climatic zone. The model
parameters were obtained using a nonlinear least squares method through the Matlab
fit function. It is worth noting that training and validation datasets comprised of
approximately two thirds and one third of the original datasets shown in Table 1,
respectively, were created, in order to avoid overfitting.

The polynomial coefficients derived here differ from station to station and from
climate zone to climate zone. This can be an indication of the differences in the
mean aerosol values and other relevant local meteorological or surface conditions
at different stations and climate zones. For example, the atmospheric conditions at
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Table 5.2: Polynomial coefficients and respective coefficients of determination of model
parameters a, b and c fitting as a function of alpha. Legend: TR – Tropical; TM – Temperate;
AR – Arid.

Station Parameter
Polynomial coefficients

R2
C0 C1 C2

DAR
(TR)

a -0.0094 0.0137 0 0.9978
b 0.7667 -0.0727 0.0152 0.4325
c 1.4199 -0.0063 0.0045 0.3446

EVR
(TM)

a -0.0152 0.0206 0 0.9962
b 0.7403 0.0033 0.0056 0.8524
c 1.6770 0.0343 -0.0017 0.8817

SMS
(TM)

a -0.0158 0.0213 0 0.9931
b 2.0406 0.1906 -0.0227 0.3278
c 2.1955 0.0439 -0.0121 0.2684

GOB
(AR)

a -0.0238 0.0303 0 0.9938
b 1.2546 0.0286 0.0128 0.9250
c 1.7457 0.0161 0.0016 0.6406

TAM
(AR)

a -0.0698 0.0740 0 0.9801
b 1.4890 0.0944 0.0427 0.9919
c 1.4051 0.0739 0.0024 0.9359

EVR and SMS should be very different even though these two stations belong to
the same climate zone. Whilst the EVR station is located at a semi-rural small city,
the SMS station is located in a rural area, causing these two sites to have different
aerosol profiles. Whilst at SMS the predominant aerosol should be the rural aerosol,
at EVR a combination of rural and urban aerosols is shown. This may be the reason
why a global model (using all of the data) would not produce acceptable results and,
therefore, is not shown here.

5.3.2 Performance assessment

To assess the performance of the proposed procedure based on the model of Abreu
et al. [6], including the determination of model parameters through Eq. (6), the
CSNI values obtained here and the values from the model of Eissa et al. [5] were
compared against the libRadtran CSNI values, for the following values of α: 0.8◦,
1.0◦, 1.6◦ and 1.8◦. These α values were selected because they represent the upper
bound acceptance half-angles of the following CSP technologies: parabolic through,
linear Fresnel, dish-Stirling and solar tower, respectively [2, 4]. The performance
assessment was carried out using the following statistical indicators: relative mean
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bias error (rMBE), relative root mean square error (rRMSE), correlation coefficient
(R), fractional bias (FB) and fractional gross error (FGE), defined as follows:

rMBE =
1
n

∑n
i=1(pi − oi)

o
, (5.7)

rRMSE =

√√√√√
 1

n

∑n
i=1(pi − oi)2

o
(5.8)

FB = 2
n

n∑
i=1

pi − oi

pi + oi

, (5.9)

FGE = 2
n

n∑
i=1

|pi − oi|
|pi + oi|

, (5.10)

R =
∑n

i=1(pi − p)(oi − o)√∑n
i=1(pi − p)2∑n

i=1(oi − o)2
, (5.11)

where pi is the model prediction, oi is the corresponding libRadtran simulations, p is
the average of the model predictions, o is the average of the libRadtran simulations
and n is the total number of data points.

Since there are no CSNI measured data at the required half-opening angles and
locations, the proposed CSNI model was compared against the models from Eissa et
al. [5]. In the work of Eissa et al. [5], the authors developed three models: one model
for Sollar Village (SV in their work, SOV here), one model for Tamanrasset (TAM)
and a third model that resulted in a combination of the data from these two stations.
It is worth to mention that these models were derived for a desert environment (i.e.,
arid climate zone) and its performance is being assessed here at other climate zones.
However, to the best knowledge of the authors, there are no other CSNI models
available in the literature derived for the remaining climate zones. In this way, the
statistical analysis results of the models from Eissa et al. [5] and the model proposed
here are presented in Table 5.3 as an example for the half-opening angle of 0.8◦. The
statistical analysis for the remaining half-opening angles of 1.0◦, 1.6◦ and 1.8◦ can
be found in Appendix A.

This statistical analysis shows that the model proposed in this work generates
more accurate results than the other models available in the literature for the datasets
used in this study, regardless of the value of half-opening angle, α, for all climate
zones (see also Tables in Appendix A).

Looking more closely to the results, the proposed CSNI model performs better at
DAR (tropical climate zone) the higher α is, according to all statistical indicators
except MBE. The same overall trend is shown for the stations in the temperate
climate zone (EVR and SMS stations). Regarding the arid climate zone, all statistical
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Table 5.3: Statistical analysis of circumsolar models for a half-opening value of 0.8◦. Legend:
TR – Tropical; TM – Temperate; AR – Arid.

Station Statistical indicator
Models
Eissa et al. Eissa et al. Eissa et al.

This work
(2018) SOV (2018) TAM (2018) Combined

DAR
(TR)

MBE (%) -3.6909 -12.7882 -8.8191 -1.9568
RMSE (%) 73.6326 75.1784 74.2138 65.5111
R 0.4558 0.4462 0.4529 0.6098
FB 0.1111 0.0280 0.0619 0.0783
FGE 0.4059 0.3986 0.3984 0.3373

EVR
(TM)

MBE (%) -14.5644 -21.9949 -19.0593 -5.3790
RMSE (%) 69.7619 74.1385 71.8608 51.5307
R 0.7372 0.7333 0.7363 0.8503
FB 0.0960 0.0256 0.0473 0.0501
FGE 0.4720 0.4771 0.4700 0.3787

SMS
(TM)

MBE (%) 54.8555 43.9161 47.2877 -7.8958
RMSE (%) 99.2818 91.2930 93.9774 62.3977
R 0.5886 0.5887 0.5902 0.7664
FB 0.6248 0.5683 0.5809 -0.0267
FGE 0.6940 0.6570 0.6616 0.4119

GOB
(AR)

MBE (%) -5.5326 -13.1627 -10.2862 0.7049
RMSE (%) 77.7761 79.8855 78.6863 66.0703
R 0.5857 0.5800 0.5845 0.7205
FB 0.1736 0.1059 0.1264 0.1519
FGE 0.4739 0.4657 0.4637 0.4149

TAM
(AR)

MBE (%) -43.2006 -48.8579 -46.3205 -10.1562
RMSE (%) 63.0100 67.4481 65.3594 37.9758
R 0.6365 0.6360 0.6370 0.7870
FB -0.5482 -0.6302 -0.5975 -0.0651
FGE 0.5774 0.6440 0.6171 0.2760

indicators of the present model show better results with the increase of α at GOB.
However, the same is not so readily shown at TAM, where the only statistical
parameters that increase performance with the increase of α are R and FGE.

The aerosol characteristics and meteorological conditions of the different climate
zones have a direct impact on the results presented here. The mean statistical
indicators for each climate zone show that the tropical climate zone is where the
proposed model performs best according to rMBE and FGE. Regarding the other
statistical indicators (RMSE, R and FB), the climate zone in which the proposed
model provides best results is the arid climate zone. However, if XIA is taken out of
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this analysis due to the reasons mentioned above, then the proposed model would
perform best according to R and FB at the other stations located the temperate
climate zone.

5.4 Prediction of CSNI and of its impact on the energy capture of CSP
systems

5.4.1 Impact on the energy that reaches the aperture of CSP systems

In the work of Abreu et al. [6], modelled DNI values with and without CSNI were
validated against ground-based DNI measurements for an aperture half-angle equal of
the pyrheliometer. The modelled DNI and CSNI values were there obtained through
the integration of sky radiance from libRadtran simulations on the aperture solid
angle of the pyrheliometer, with an overall uncertainty of 4,44%. In the present
work, those validated DNI data are compared against the modelled DNI obtained
in the same way but for typical half-opening values of CSP technologies: 0.8◦,
1.0◦, 1.6◦ and 1.8◦, for parabolic through, linear Fresnel, dish-Stirling and solar
tower, respectively [2, 4]. This comparison was performed using the mean average
difference (in percentage) between the DNI corresponding to the half-opening angle
of the pyrheliometer installed at each location (DNI(αpyr)) and the modelled DNI
corresponding to each of the half-opening angles mentioned above (DNI(α)), and is a
measure of the error or bias between the energy assessment using the pyrheliometer
values and the real value of irradiance that is captured by the CSP systems, as shown
in Fig. 5.1. At DAR, SMS and TAM, DNI is measured using a Eppley NIP (α =
2.9◦) whilst at EVR and GOB, DNI is measured using a Kipp&Zonnen CHP1 (α =
2.5◦).

The average difference between DNI(αpyr) and DNI(α) is higher for lower half-
opening angles as expected, and for locations with higher CSR. The locations with
higher average difference are TAM and DAR, whilst locations such as GOB and SMS
show low average differences between the DNI of the pyrheliometer and the DNI
for lower half-opening angles. This is related to the CSR magnitude across different
locations, and in turn, with the composition of the atmosphere, in particular with
the type and concentration of aerosols. It is worth mentioning that not only the
magnitude of the average difference across locations depends on the composition of
the atmosphere, but also the slope of lines shown in Fig. 5.1.

Locations with higher aerosol concentration have higher slopes (e.g. TAM) as
can be seen in Fig. 5.2, where boxplots for aerosol optical depth (AOD) and single
scattering albedo (SSA) at 675 nm are shown. Fig. 5.1 and Fig. 5.2 highlight the need
for the consideration of both half-opening aperture angle and CSNI when designing
and simulating CSP systems, especially in locations with higher aerosol concentration.
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Fig. 5.1: Average difference between DNI(αpyr) and DNI(α).

Differences in the incoming DNI of around 7% and 2% for locations such as TAM
and DAR, respectively, can lead to erroneous energy generation estimates, which in
turn can jeopardize the economic viability of CSP projects.

5.4.2 Impact on the intercept factor of CSP systems: the case of parabolic trough concen-
trators

The model from Bendt et al. [14] was used here to quantify in a simple way the
impact of CSR in the optical efficiency of a parabolic trough CSP system with
cylindrical receiver.

In Bendt et al. [14], an analytical approach is proposed to perform the optical
analysis of a solar concentrator instead of using ray tracing software. The former
approach is simpler and faster than the later, hence it was used here. By assuming a
Gaussian distribution for the sun shape, Bendt et al. [14] were able to determine the
intercept factor (the ratio of the irradiance reaching the receiver over the incident
irradiance) as a function of the group σC, where σ stands for total optical error and
C for concentration ratio.

To achieve this, the model by Bendt et al. [14] determines an effective source
that accounts for the shape of the sun, and for all optical errors from the parabolic
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Fig. 5.2: Boxplots for aerosol optical depth (AOD) and single scattering albedo (SSA) for
the stations analysed in this work.

trough system. In this way, it is possible to determine the intercept factor.
The total optical error (σ) is defined as the root mean square of angular spread

caused by all optical errors of the concentrator (σopt) and angular width of the sun
shape in line focus geometry (σsun), through the equation:

σ =
√

σ2
opt + σ2

sun. (5.12)

To study the impact of CSNI (or CSR) variation on CSP systems, namely parabolic
trough systems, a relationship between σsun and CSR was established using data
from Table 4-1 in Bendt et al. [14]. This table contains data from the 16 standard
Lawrence Berkeley Laboratory (LBL) circumsolar irradiance scans [26], namely σsun

and CSR, and its relationship is shown in Figure 5.3. Then, a fit to the data shown
in Figure 4-1a of Bendt et al. [14] was performed, enabling the determination of the
intercept factor according to CSR using the procedure described below. Firstly, σopt

was fixed at 10 mrad and σsun varied from 2.5 mrad to 10 mrad. In this way, it was
possible to determine the intercept factor for various combinations of concentration
factors (C) and rim angles, as shown in Figure 5.4 for a given parabolic trough
system. From Figure 5.4, it is clear that higher concentration ratios imply a higher
effect of the CSR on the intercept factor of a parabolic trough system, regardless of
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Fig. 5.3: Relationship between CSR and σsun.

the selected rim angle. Higher CSR values stands for higher dispersion of reflected
solar rays from the parabolic through concentrator to the receiver, resulting in a
lower intercept factor.

For lower rim angles, the CSR seems to have a larger impact on the intercept
factor than for higher rim angles, for the same concentration ratio. This has to do
with the aperture angle of the reflector, because lower rim angles correspond to lower
acceptance angles of the reflector. Therefore, lower reflector aperture angles result in
less irradiance reflected when the circumsolar region is larger (i.e., higher CSR).

Regarding the mitigation of CSR effects on the intercept factor of parabolic
trough systems, it appears that using higher rim angles is the best approach based on
the results from Figure 5.4. It is expected that the same conclusions could be draw
for other CSP systems. For instance, Rabl and Bendt [27] found that the intercept
factor of a parabolic dish strongly depended on the rim angle. They also stated that
concentrators with a rim angle of 30◦ are twice more sensitive to CSNI variation
than those with a rim angle of 60◦. However, those systems are not addressed here
for conciseness.
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Fig. 5.4: Variation of intercept factor according to CSR for a parabolic trough system with
rim angle of 45◦ (top), 75◦ (middle) and 90◦ (bottom).
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5.5 Conclusions

In this work, a model to predict circumsolar normal irradiance (CSNI) for several
half-opening angles was developed. The model is based on the CSR model developed
by Abreu et al. [6] and use a polynomial fitting of the model parameters to estimate
CSNI for half-opening angles of interest for CSP systems such as parabolic trough
and parabolic disk. It was found that the proposed model performs significantly
better at the locations under study here than the other models available in the
literature. It was also found that the local aerosol regime and atmospheric conditions
have higher impact on model fitting and performance than the overall climate zone
of the locations under study.

Regarding the impact of CSNI in CSP systems, it was found that discarding an
accurate CSNI estimate could lead to up to a 7% difference between the DNI that is
measured by a pyrheliometer and the DNI that is effectively captured by the system.
It was also found that these differences are higher for lower half-opening angles, as
expected, since the difference between the half-opening angle of the pyrheliometer
and the half-opening angle of the CSP system is higher.

The impact of CSNI in the operation of a CSP system, namely with parabolic
trough concentrators, was also studied in this work. The authors found that higher
CSR values lead to lower intercept factors (the ratio between the irradiance reaching
the receiver over the incident irradiance) for these systems. It was also found that if
parabolic trough designers aim to reduce the impact of CSNI on the intercept factor,
then parabolic troughs with higher rim angles are preferred.

This study also found that further study on the direct impact of the different
aerosol and atmospheric characteristics on the development of local or global CSNI
models as well as the evaluation of the impact of CSNI in other CSP systems is
needed and should be addressed in future work.
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5.6 Appendix A

Table 5.4: Statistical analysis of circumsolar models for a half-opening value of 1.0◦. Legend:
TR – Tropical; TM – Temperate; AR – Arid.

Station Statistical indicator
Models
Eissa et al. Eissa et al. Eissa et al.

This work
(2018) SOV (2018) TAM (2018) Combined

DAR
(TR)

MBE (%) -8.2830 -16.5275 -12.9445 -2.2546
RMSE (%) 74.3442 76.3812 75.2309 64.8538
R 0.4616 0.4516 0.4585 0.6277
FB 0.0647 -0.0137 0.0180 0.0694
FGE 0.3966 0.3979 0.3946 0.3282

EVR
(TM)

MBE (%) -17.4693 -24.2959 -21.6079 -4.1334
RMSE (%) 68.0582 72.5984 70.2776 48.0732
R 0.7515 0.7475 0.7506 0.8641
FB 0.0549 -0.0116 0.0084 0.0634
FGE 0.4575 0.4660 0.4577 0.3657

SMS
(TM)

MBE (%) 51.2288 41.2298 44.2498 -7.8774
RMSE (%) 94.9101 87.5297 90.0278 59.3243
R 0.5944 0.5952 0.5963 0.7761
FB 0.5935 0.5399 0.5512 -0.0536
FGE 0.6657 0.6321 0.6352 0.4101

XIA
(TM)

MBE (%) 5.6189 -3.9613 0.3783 16.8597
RMSE (%) 75.4881 75.9470 75.3239 167.6824
R 0.1380 0.0843 0.1183 0.0046
FB 0.1962 0.1124 0.1510 0.2039
FGE 0.5259 0.5243 0.5226 0.5388

GOB
(AR)

MBE (%) -9.6566 -16.5366 -13.9658 0.3956
RMSE (%) 76.1568 78.5794 77.2887 63.2621
R 0.5963 0.5905 0.5950 0.7356
FB 0.1261 0.0626 0.0812 0.1404
FGE 0.4574 0.4542 0.4506 0.4007

TAM
(AR)

MBE (%) -46.4198 -51.5974 -49.2616 -11.0781
RMSE (%) 64.1861 68.5203 66.4761 35.9810
R 0.6587 0.6591 0.6596 0.8105
FB -0.6053 -0.6832 -0.6521 -0.0800
FGE 0.6179 0.6882 0.6597 0.2596
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Table 5.5: Statistical analysis of circumsolar models for a half-opening value of 1.6◦. Legend:
TR – Tropical; TM – Temperate; AR – Arid.

Station Statistical indicator
Models
Eissa et al. Eissa et al. Eissa et al.

This work
(2018) SOV (2018) TAM (2018) Combined

DAR
(TR)

MBE (%) -7.3218 -14.4590 -11.3793 -2.9744
RMSE (%) 71.5192 73.2395 72.2564 61.4056
R 0.4884 0.4792 0.4856 0.6585
FB 0.0677 -0.0004 0.0262 0.0495
FGE 0.3861 0.3865 0.3836 0.3096

EVR
(TM)

MBE (%) -18.2166 -24.2169 -21.8995 -6.0038
RMSE (%) 69.0040 73.0695 70.9620 47.4889
R 0.7651 0.7615 0.7644 0.8773
FB 0.0501 -0.0126 0.0050 0.0379
FGE 0.4479 0.4538 0.4470 0.3495

SMS
(TM)

MBE (%) 55.7121 46.3008 48.9693 -8.7893
RMSE (%) 97.6470 90.2461 92.7546 58.1584
R 0.6026 0.6060 0.6058 0.7872
FB 0.6128 0.5599 0.5702 -0.0604
FGE 0.6748 0.6359 0.6409 0.3856

XIA
(TM)

MBE (%) 14.4717 5.9863 -2.4130 1.5554
RMSE (%) 165.6173 75.3853 75.5905 75.2117
R -0.0007 0.1490 0.1050 0.1325
FB 0.1795 0.1941 0.1213 0.1558
FGE 0.5254 0.5139 0.5111 0.5108

GOB
(AR)

MBE (%) -9.4728 -15.5302 -13.3448 0.3541
RMSE (%) 74.0108 76.0091 74.9340 60.1126
R 0.6099 0.6058 0.6095 0.7565
FB 0.1208 0.0614 0.0776 0.1306
FGE 0.4457 0.4389 0.4367 0.3819

TAM
(AR)

MBE (%) -47.7705 -52.1866 -50.1597 -13.1196
RMSE (%) 65.6072 69.3790 67.5585 36.7252
R 0.6736 0.6744 0.6748 0.8230
FB -0.6253 -0.6952 -0.6679 -0.1024
FGE 0.6334 0.6981 0.6728 0.2593
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Table 5.6: Statistical analysis of circumsolar models for a half-opening value of 1.8◦. Legend:
TR – Tropical; TM – Temperate; AR – Arid.

Station Statistical indicator
Models
Eissa et al. Eissa et al. Eissa et al.

This work
(2018) SOV (2018) TAM (2018) Combined

DAR
(TR)

MBE (%) -11.2779 -17.8084 -15.0134 -3.1077
RMSE (%) 69.4722 71.4864 70.3942 58.1455
R 0.5053 0.4969 0.5029 0.6813
FB 0.0232 -0.0431 -0.0176 0.0445
FGE 0.3809 0.3856 0.3815 0.3012

EVR
(TM)

MBE (%) -22.2488 -27.8376 -25.7046 -6.4557
RMSE (%) 70.1129 74.1871 72.1038 46.6078
R 0.7747 0.7717 0.7744 0.8822
FB 0.0009 -0.0634 -0.0456 0.0261
FGE 0.4434 0.4518 0.4445 0.3420

SMS
(TM)

MBE (%) 50.2532 41.0570 43.6248 -8.9122
RMSE (%) 92.8426 86.0116 88.3135 56.7631
R 0.6065 0.6118 0.6106 0.7919
FB 0.5766 0.5198 0.5312 -0.0668
FGE 0.6454 0.6036 0.6094 0.3789

XIA
(TM)

MBE (%) 0.4977 -7.0951 -3.4456 12.4336
RMSE (%) 74.0838 74.8387 74.2577 162.6876
R 0.1570 0.1161 0.1414 0.0043
FB 0.1442 0.0747 0.1079 0.1622
FGE 0.5015 0.5038 0.5010 0.5180

GOB
(AR)

MBE (%) -13.7353 -19.3993 -17.3911 0.0122
RMSE (%) 74.0969 76.2379 75.1409 59.0701
R 0.6138 0.6110 0.6140 0.7617
FB 0.0719 0.0109 0.0273 0.1230
FGE 0.4310 0.4270 0.4244 0.3730

TAM
(AR)

MBE (%) -50.6642 -54.6602 -52.8180 -13.9390
RMSE (%) 68.0443 71.5566 69.8481 37.1550
R 0.6778 0.6787 0.6792 0.8243
FB -0.6735 -0.7412 -0.7149 -0.1121
FGE 0.6772 0.7426 0.7171 0.2589
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Nomenclature

a model coefficient

B direct irradiance

b model coefficient
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C concentration ratio

c model coefficient

CS circumsolar irradiance

CSR circumsolar ratio

FB fractional bias

FGE fractional gross error

Kb beam clearness index

Kd diffuse fraction

Kt sky clearness index

L sky radiance

MBE mean bias error

n total number of data points

o libRadtran simulations

o average of libRadtran simulations

p model prediction

p average of model predictions

R correlation coefficient

RMSE root mean square error

Greek symbols

α half-opening angle

δ angular distance from the centre of the sun

ξ scattering angle

σ optical error
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Subscripts

n normal

i data point

pyr pyrheliometer

opt optical

sun angular width of the sun shape

Superscripts

ideal under ideal conditions

Acronyms

Alt altitude

AOD aerosol optical depth

AR arid climate zone

CSNI circumsolar normal irradiance

CSP concentrating solar power

CSR circumsolar ratio

DNI direct normal irradiance

FB fractional bias

FGE fractional gross error

Lat Latitude

Long Longitude

MBE mean bias error

R correlation coefficient

RMSE root mean square error

RTM radiative transfer model

SSA single scattering albedo

TM temperate climate zone

TR tropical climate zone

WMO World Meteorological Organization
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Conclusions

In this thesis, the modelling and measurement of direct and circumsolar normal
irradiance (DNI and CSNI, respectively) was addressed as well as their impact on
the energy generation of CSP systems.

Regarding the modelling of DNI, a new simple and fast model was developed
based on minute resolution data and climate zone classification. After an extensive
review of the literature and statistical analysis, it was found that the developed
model outperformed the other 121 analysed models at the temperate and tropical
climate zones, and ranked high at the remaining arid and high albedo climate zones.
The developed model is one of the few present in the literature that can be used
to estimate diffuse horizontal irradiance (DHI), and consequently DNI, using only
global horizontal irradiance (GHI) data and that can be customized according to
the climate zone under study. Furthermore, this model can also be used to perform
quality control of long-term data series as well as gap-filling.

Other options to model DNI were also studied in this thesis, namely the use
of parametrization and radiative transfer models, because this is, presumably, the
most accurate way of gathering information on DNI. Furthermore, as these more
complex models require several (and often complex) input variables, three data
sources were also studied in combination with three models. To that end, the models
under analysis were the libRadtran radiative transfer model (RTM) [1, 2], and the
SMARTS [3, 4] and REST2 [5] parametrization models. Concerning the data sources,
AERONET [6], MERRA-2 [7, 8, 9] and CAMS [10, 11, 12, 13] were the selected
databases. Experimental measurements of direct normal, diffuse horizontal and global
horizontal irradiance from the radiometric station of ICT at Évora were used as
reference for the assessment of the model/data source combos. It was found that
at Évora, clear-sky DNI can be simulated with similar accuracy using any of the
tested models, combined with either one of three input datasets. In more detail, it
was found that the model/data source combos that provide the best performance in
predicting DNI are libRadtran/MERRA-2 according to some statistical indicators,
and SMARTS/AERONET according to other statistical indicators. Interestingly, it
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was also found that the more complex model (libRadtran) and the "reference" dataset
(AERONET) did not always produce the best DNI estimates. Tentative explanation
for this findings can be (i) imperfect clear-sky screening, (ii) measurement uncertainty
in the AERONET data and subsequent error propagation to the irradiance estimates,
and (iii) experimental errors associated to the measured DNI (despite the high level
of station’s maintenance and data quality control).

Regarding the modelling of CSNI, the libRadtran RTM was used together with
AERONET data to estimate the sky radiance and, from that, the CSNI through
numerical integration in the typical field of view of a pyrheliometer. Alongside the
CSNI modelling, the sun-disk DNI was also estimated which enabled the indirect
validation of the CSNI data. This was done by comparing the sun-disk and sun-disk
+ circumsolar irradiance against the experimental (measured) DNI. Since adding
the circumsolar irradiance to the sun disk irradiance resulted in an improvement
of the modelled data accuracy taking the experimental values as reference, it was
therefore concluded that the modelled CSNI values were reliable. This resulted in
the creation of a CSNI database that served to train and validate a newly proposed
CSNI model that only requires as input widely available solar radiation data such
as GHI, DHI and DNI. The proposed CSNI model performs generally better than
other models available in the literature according to statistical analysis presented in
Section 4.8. It is worth to mention that this fast and simple model to determine CSNI
opened new possibilities, including: (i) estimate the sun-disk DNI from pyrheliometer
measurements; and (ii) determine the DNI for any aperture angle with a given
imposed circumsolar irradiance profile. However, instead of this second possibility,
and due to the simplicity of the proposed model and since a database of sky radiance
was already created, the option was to generalize the proposed model for any aperture
angle aiming to make it readily usable for CSP design and operation tasks. This
also has the advantage of implicitly modelling the circumsolar irradiance profile as a
function of the mentioned widely available solar irradiance measurements.

The original CSNI model mentioned above was developed to estimate CSNI to a
half-aperture angle of 2.5◦, the recommended half-aperture angle of pyrheliometers by
the WMO [14]. However, this half-aperture angle is larger than the half-aperture angle
of the common concentrating solar power (CSP) systems. Therefore, a generalized
CSNI model capable of estimating CSNI for different half-aperture angles (based
on the CSNI model described above) was also developed. It was found that this
proposed general CSNI model performs significantly better at the locations under
study than the other models available in the literature. Furthermore, it was also
confirmed that the local aerosol regime and atmospheric conditions impact the model
fitting and performance more than the climate zone of the locations under study.

Regarding the impact of CSNI in CSP systems, it was found that discarding an
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accurate CSNI estimate could lead to a difference up to a 7% between the DNI that is
measured by a pyrheliometer and the DNI that is effectively captured by the system.
It was also found that these differences are higher for lower half-opening angles, as
expected, since the difference between the half-opening angle of the pyrheliometer
and the half-opening angle of the CSP system is higher. To assess the impact of CSNI
in CSP systems, a case study using parabolic trough concentrators was analysed. It
was found that higher CSR values lead to lower intercept factors (the ratio between
the irradiance reaching the receiver and the incident irradiance in the concentrator
aperture). Furthermore, it was also found that if the impact of CSNI variation on
the intercept factor is to be reduced, then parabolic troughs with higher rim angles
are preferred.

The measurement of DNI, DHI and GHI was conducted concurrently with the work
presented in this thesis. The radiometric station of ICT at Évora was maintained
regularly, namely cleaning the pyrheliometer’s window and pyranometers’ glass
domes, checking the sun tracker and instruments alignment and performing periodic
calibrations of the sensors, as the example shown in Appendix A. Regarding the
measurement of CSNI, the first steps to modify a conventional pyrheliometer in order
to change its half-opening angle and, consequently, gather information on CSNI, were
taken. More information about this on-going experiment can be found in Appendix
B.

Regarding future work, there are several research lines that can be explored
following this thesis, namely: (i) studying the error propagation from the atmospheric
data inputs to modelled irradiance, taking into consideration model architecture
and local conditions; (ii) studying the impact of different aerosol and atmospheric
conditions in the development of local and global CSNI models; (iii) evaluating the
impact of CSNI in other CSP systems such as parabolic dishes, solar towers, linear
Fresnel with and without secondary optics and beam-down central tower systems;
(iv) generating CSNI datasets for more locations, aiming to better characterize this
part of the solar radiation and to have more data to develop more accurate models;
and (v) constructing affordable and easy to operate systems capable of accurately
measuring CSNI.
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Appendix A

Example of a calibration protocol according to ISO 9059:1990

        

 

Calibration Protocol 

Calibration site 
latitude: 

38.567773˚ 
Linke turbidity 
range: 

2.45 to 3.90 

Calibration site 
longitude: 

-7.911419˚ 
Temperature 
range: 

12.7˚C to 31.1˚C 

Calibration site 
altitude: 

290 m Wind speed range: 0 m/s to 4.8 m/s 

Pyrheliometer model Kipp&Zonen CHP1 Calibration period: 
24/10/2017 to 
31/10/2017 

Serial number: 131241 Valid readings: 
3919 readings 
distributed over 
183 series 

Reference 
pyrheliometer: 

K&Z CHP1 (140129) Sensitivity: 7.70 µV/(W/m2) 

Solar azimuth range: -0.22˚ to 66.35˚  
Std of Fj related to 
F: 

0.044 W/m2 

Solar elevation range: 8˚ to 39.19˚ 
Root mean square 
deviation of DNI: 

0.854 W/m2 

DNI range: 
302.8 W/m2 to 961.2 
W/m2 

Bias of DNI: -0.021 W/m2 

 

 

Figure 1 - DNI with identified sensibility versus DNI reading reference. 

 

Évora, 06/11/2017 
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Appendix B

Modification of a pyrheliometer to measure CSNI

In this section, the first steps to modify the field-of-view of a conventional pyrhe-
liometer through the variation of its collimator length and opening diameter in order
to gather information on CSNI are described.

The modified pyrheliometer is composed by a revolver with four possible com-
binations of tube lengths and diameters and a stepper motor, which automatically
enable varying the field-of-view of the pyrheliometer.

Firstly, a 3D software was used to draw a 3D model of all components in order to
study the best fit of the revolver, stepper motor and motor support enclosure in the
pyrheliometer body and its connection to the sun tracker axis, considering all the
constraints to this system to function properly. Such 3D model is shown in Fig. B.1.

Fig. B.1: 3D model of the system’s components.

Secondly, the revolver was printed using a 3D printer and the stepper motor
shaft and enclosure were built at the workshops of ICT and Physics Department of
the University of Évora. In a first approach, the system was then controlled using
an Arduino board. Later, it is intended to test controlling the stepper motor with
the same datalogger of the radiometric station in order to synchronize the different
measurements. The pyrheliometer with the motor and revolver attached is shown in
Fig. B.2.
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Fig. B.2: Field pyrheliometer (Eppley NIP) with motor and revolver attached.

Thirdly, an indoor test and calibration procedure of the modified pyrheliometer
is to be performed using a collimated illuminator and a reference pyrheliometer. The
indoor calibration experimental setup is shown in Fig. B.3. Lastly, the system is to
be installed in a suntracker and information on CSNI will be gathered.

Fig. B.3: Indoor calibration experimental setup.
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