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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Accurate short-term DNI forecasts 
benefit solar energy systems operation. 

• ANNs model non-linear relations be-
tween solar irradiance and atmospheric 
variables. 

• ANN models designed based on opera-
tional NWP and aerosol forecast data. 

• Improved DNI forecasts for different lo-
cations, temporal resolutions and 
horizons.  
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A B S T R A C T   

Accurate operational solar irradiance forecasts are crucial for better decision making by solar energy system 
operators due to the variability of resource and energy demand. Although numerical weather prediction (NWP) 
models can forecast solar radiation variables, they often have significant errors, particularly in the direct normal 
irradiance (DNI), which is especially affected by the type and concentration of aerosols and clouds. This paper 
presents a method based on artificial neural networks (ANN) for generating operational DNI forecasts using 
weather and aerosol forecasts from the European Center for Medium-range Weather Forecasts (ECMWF) and the 
Copernicus Atmospheric Monitoring Service (CAMS), respectively. Two ANN models were designed: one uses as 
input the predicted weather and aerosol variables for a given instant, while the other uses a period of the 
improved DNI forecasts before the forecasted instant. The models were developed using observations for the 
location of Évora, Portugal, resulting in 10 min DNI forecasts that for day 1 of forecast horizon showed an 
improvement over the downscaled original forecasts regarding R2, MAE and RMSE of 0.0646, 21.1 W/m2 and 
27.9 W/m2, respectively. The model was also evaluated for different timesteps and locations in southern 
Portugal, providing good agreement with experimental data.   
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1. Introduction 

Economic growth and an increase in energy demand are usually co- 
dependent, yet they can be partially decoupled by improving energy 
efficiency, electrification and wise use of energy. Energy generation, 
distribution and consumption are becoming more electrified, efficient, 
interconnected and clean with the increase of the use of renewable en-
ergy sources such as solar photovoltaic and wind power and the 
increasing production and use of electric vehicles [1]. However, 
renewable resources show a strong spatial and temporal variability that 
affect the power generation, which makes finding an optimum balance 
between electric generation and consumption at any moment chal-
lenging since direct and reliable large-scale storage systems of electric 
energy are not available. 

The solar photovoltaic energy, for example, is mainly dependent on 
the solar irradiance, namely direct beam irradiance (usually measured in 
the normal plane, known as Direct Normal Irradiance, DNI) and diffuse 
irradiance (usually measured in the horizontal plane, known as Diffuse 
Horizontal Irradiance, DHI), which means that having accurate forecasts 
of these variables allows for a more accurate estimation of electric power 
generation. Forecasting solar irradiance can be done through various 
models and methods, from the physical based methods such as numer-
ical weather prediction (NWP) models, models based on sky/shadow 
imagery or satellite imagery to the more data-driven and machine- 
learning based methods such as regression, artificial neural networks 
(ANN), support vector machines (SVM) and Kalman filtering, or even a 
combination of these, which are usually known as hybrid methods. 

NWP models provide the evolution of the atmosphere by integrating 
constitutive and state equations describing physical phenomena in the 
atmosphere which are subject to boundary and initial conditions. Its 
main goal is weather forecast with a focus on meteorologic variables 
such as air temperature, humidity, wind or precipitation. An accurate 
prediction of the partition between the two components of solar global 
radiation is not so relevant in that case, i.e., DNI and DHI, with global 
horizontal irradiance (GHI) being used for the closure of the energy 
balance at the Earth surface. The Integrated Forecasting System (IFS) 
developed at the European Center for Medium-range Weather Forecast 
(ECMWF) is the most widely used global NWP model in Europe being its 
performance attested by various studies such as in [2], where 24-hour 
forecasts of global solar irradiation from IFS and the American Global 
Forecasting System (GFS) were compared with observations made at 
four stations in Morocco. The authors show that the IFS/ECMWF model 
performs better than the GFS model for all-sky conditions based on the 

mean bias error and correlation coefficient. In [3], hourly GHI forecasts 
made by the IFS/ECMWF global model and GFS-driven Weather 
Research Forecasting (WRF) mesoscale model (run with different con-
figurations by various forecast providers) were compared with obser-
vations made in the US, Canada and Europe showing that the model 
from the ECMWF performs significantly better for all locations and 
different climatic conditions. Perdigão et al. [4] analyzed one year of 
hourly and daily direct normal irradiation forecasts of the ECMWF 
against observations made at Évora, Portugal, for different temporal 
forecast horizons (0 to 3 days ahead) showing that the model reproduces 
hourly and daily experimental values with a RMSE of 210.6 W/m2 and 
68.5 W/m2, respectively, for the first day ahead and that the perfor-
mance of the model tends to decrease with higher forecast horizon. 

The research on improving accuracy of solar radiation variables in 
NWP models’ output has been recently brought to light due to the need 
for development of solar energy systems [5,6]. DNI is especially difficult 
to forecast due to its strong dependency on the presence of clouds and 
aerosol type and concentration in the atmosphere. In the case of aero-
sols, NWP models such as the IFS/ECMWF use monthly-mean aerosol 
climatologies instead of more detailed aerosol forecasts to reduce 
computation time. In the comprehensive review made by Yang et al. [7], 
the impact of aerosols in the solar resource is discussed. The importance 
of including aerosols in the NWP forecasts is mentioned where the global 
models Copernicus Atmospheric Monitoring Service (CAMS) and God-
dard Earth Observing System Version 5 (GEOS-5) are shown to be of 
particular interest. Breitkreuz et al. [8] used libRadtran [9] and ach-
ieved a decrease in the relative mean squared error (rMSE) of 4.3 % in 
the case of hourly GHI from IFS/ECMWF forecasts using aerosol pre-
dictions and experimental data. Other studies on aerosol modeling and 
prediction and its use with NWP models can be found in [10], here the 
WRF model coupled with Chemistry (WRF-Chem) was used to model 
aerosol and radiation data which were compared against observations 
showing 2 to 5 times higher shortwave radiative forcing during a dust 
storm relative to values during non-dust days, and in [11], where, using 
the RRTM_SW (Rapid Radiation Transfer Model for Shortwave radia-
tion) widely used in atmospheric models, the propagation of small un-
certainties on the aerosol microphysical parameterization on the 
simulated direct radiative effects is demonstrated. 

The knowledge of all the complex phenomena that occur in the at-
mosphere of the Earth, including the interaction between solar radiation 
and the atmosphere, and between these and the surface, is still chal-
lenging and so is its representation, even in the most complex and 
detailed NWP models, which are also constrained by data availability 

Nomenclature 

AOD469 Aerosol optical depth at 469 nm (–) 
AOD550 Aerosol optical depth at 550 nm (–) 
AOD670 Aerosol optical depth at 670 nm (–) 
AOD865 Aerosol optical depth at 865 nm (–) 
AOD1240 Aerosol optical depth at 1240 nm (–) 
avgCF Vertical average cloud fraction (–) 
DHI Diffuse horizontal irradiance (W/m2) 
DNI Direct normal irradiance (W/m2) 
DUAOD Dust aerosol optical depth at 550 nm (–) 
GHI Global horizontal irradiance (W/m2) 
maxCF Vertical maximum cloud fraction (–) 
OMAOD Organic matter aerosol optical depth at 550 nm (–) 
SSAOD Sea salt aerosol optical depth at 550 nm (–) 
T Air temperature (◦C) 
WD Wind direction (∘) 
WS Wind speed (m/s) 
Zen Solar zenith angle (◦) 

Acronyms 
ANN Artificial Neural Network 
BSRN Baseline Surface Radiation Network 
CAMS Copernicus Atmosphere Monitoring Service 
ECMWF European Center for Medium-range Weather Forecasts 
FS Forecast Skill 
GFS Global Forecasting System 
NWP Numerical Weather Prediction 
MAE Mean Absolute Error 
ML Machine Learning 
MSE Mean Squared Error 
RF Random Forest 
rMSE Relative Mean Squared Error 
RMSE Root Mean Squared Error 
RRTM Rapid Radiation Transfer Model 
SVM Support Vector Machines 
WRF Weather Research Forecasting  
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[12] and computational limitations. A trade-off between increasing 
complexity of deterministic physical models, with the consequent higher 
computational effort, and the development of additional tools that, 
based on actual physical models output and experimental data, allow for 
better solar radiation forecasts without such effort, must be considered. 
Thus, several techniques have been developed and evaluated to further 
improve solar radiation estimations made by deterministic NWP models. 
These are divided into classic statistical methods and Machine Learning 
(ML) methods. Classic statistical methods can be as simple as interpo-
lation to improve temporal and/or spatial resolution or more complex 
methods based on stepwise linear regression to select the variables that 
best represent the errors, so they can be incorporated in a multi-variate 
regression model that gives an estimate of the forecast error as a linear 
function of the variables that have been selected in the process [13]. ML 
methods have been reported extensively in the literature for solar 
forecasts [14], such as k-nearest neighbor, SVMs, random forest (RF) or 
ANNs, and tend to focus on the prediction of solar global irradiation. 
[15] Developed a novel deep learning-based auto-selective tool that 
allows for the determination of the best GHI forecasting model from four 
different ML approaches with 81% accuracy. These models can capture 
the relation between systematic errors of the outputs of NWP models and 
relevant variables by comparing historical databases of forecasts and 
observations and thus provide improved values in a fraction of the time 
it would take with more detailed physical model approaches [16]. In the 
work by Alfadda et al. [17], hourly GHI, DNI and DHI forecasts made by 
various machine learning models and using as inputs solar irradiance 
and aerosol observations and wind and aerosol forecasts in Saudi Arabia 
were evaluated resulting in a better performance of the ANN model. 
Pang et al. [18] compared the use of feedforward artificial neural net-
works with recurrent neural networks for global solar irradiance pre-
diction using onsite measurements showing that the later moderately 
improved the prediction performance but with additional computa-
tional cost. For a short-range forecast of solar irradiance (15 to 180 min), 
McCandless et al. [19] developed a regime-dependent artificial neural 
network forecasting model that showed improvements over a global 
ANN and the persistence. Fonseca et al. [20] obtained day-ahead solar 
irradiation forecasts through SVMs using NWP data from the mesoscale 
model of the Japan Meteorological Agency as input, which resulted in a 
reduction of the root mean squared error (RMSE) of 16 % in a regional 
scale. Lima et al. [21] used artificial neural networks for the 
post-processing of NWP solar irradiation forecasts from the WRF model 
for the Brazilian Northeastern region and obtained a reduction of the 
model bias, MSE and RMSE. The same approach can be used to improve 
solar resource assessment since, once machine learning models were 
trained, they can generate more accurate spatial distribution of solar 
irradiation in a given location or region based on historical data of NWP 
forecasts. For example, Pereira et al. [22] developed and optimized an 
ANN model in order to create a method for solar resource assessment 
from the meso-scale Meso-NH NWP model outputs for a typical meteo-
rological year. In this case, the method was extended and validated for 
the South of Portugal, showing important improvements regarding the 
direct normal and global horizontal irradiation mapping with a hori-
zontal resolution of 1.25 km. Comprehensive reviews on machine 
learning methods for solar irradiance forecasting can be found in 
[23–29]. Although various ML models have been developed for solar 
irradiation forecasting, most of them focus only on GHI or cannot be 
readily used to obtain useful power output forecasts of solar energy 
systems since the temporal resolution and forecast time horizon are not 
synchronized with the real-time market forecasting requirements [30, 
31]. 

This work proposes a method for operational DNI forecasts which 
includes: (i) the spatial and temporal downscaling of the IFS/ECMWF 
and aerosol forecasts for a specific location and time step; (ii) an ANN 
model for generating improved DNI forecasts using only the predicted 
weather and aerosol data for a given instant of a specific time step; (iii) a 
second ANN model that takes as inputs a period of improved DNI 

forecasts immediately before the time step being forecasted as well as 
the season and time of day of that time step. The model was developed 
considering the location of Évora, Portugal (38.567811, -7.911459), a 
temporal resolution of 10 min and a forecast horizon of 25 to 48 h (day 1 
of forecast). After development, evaluation against observations show 
that this method can be generalized and applied to different locations, 
temporal resolutions and forecast time horizons up to 72 h. 

The paper is organized as follows: in Section 2 the different data sets 
used in this work are presented and the treatment of this data is 
explained including the methods for spatial and temporal downscaling 
of the forecast data; in Section 3 an evaluation of the downscaled DNI 
forecasts made by the ECMWF is performed; Section 4 presents the 
development of the ANN models used for the improvement of the DNI 
forecasts obtained from the ECMWF; in Section 5 is performed an 
evaluation of the models for different time steps while in Section 6 this is 
done for different sites located in the region surrounding the one used 
for model development; Section 7 presents an analysis of the ANN 
models in an operational forecast setting and finally, in Section 8, the 
conclusions of this work are presented. 

2. Forecast and experimental data 

The method was developed using forecast data from the IFS/ECMWF 
and CAMS models and observed solar radiation data from a network of 
measuring stations scattered in the South of Portugal. These models are 
operational and issued everyday which means that the developed model 
can also be used operationally. The period and area of the data used was 
from December 2016 to the end of May 2021 and between latitudes 
37.0◦ and 39.3◦ and longitudes -7.4◦ and -9.2◦, respectively. A 
description of the data, quality check, filtering and pre-processing is 
presented in the following subsections. 

2.1. Weather forecast data 

In this work, various weather forecast variables from the IFS/ 
ECMWF model [32] were used. This NWP model includes the radiative 
scheme ecRad [33] which solves the 1D radiative transfer equation both 
for small and long wavelength ranges, considering the vertical profiles of 
temperature, moisture, cloud droplet and ice cloud effective radius, 
average monthly climatologies of aerosols, carbon dioxide, ozone and 
trace gases, and also ground surface temperature, albedo and emissivity 
for different spectral bands and solar zenith angle. The code is based on 
the RRTM model (Rapid Radiative Transfer Model) using the McICA 
method (Monte Carlo Independent Column Approximation), which al-
lows for the parameterization of the interactions between radiation and 
clouds. The ECMWF versions RRTMLW and RRTMSW describe the 

Table 1 
Forecast variables retrieved from the IFS/ECMWF database.  

Variable Symbol Units Range / Comments 

Longitude Lon ◦ East 0◦ to 360◦

Latitude Lat ◦

North 
-90◦ to 90◦

Time step Step h 1 to 240 h 
Date Date Days Days since 1900–01–01 

00:00:00 
Low cloud cover LCC 0–1 – 
Medium cloud cover MCC 0–1 – 
High cloud cover HCC 0–1 – 
Total cloud cover TCC 0–1 – 
10 m U wind component u10 m/s – 
10 m V wind component v10 m/s – 
2 m temperature T K Air temperature at 2 m 
Solar zenith angle Zen ◦ – 
Surface solar radiation 

downwards 
SSRD J/m2 Irradiation since forecast 

issuance 
Direct solar radiation DSRP J/m2 Irradiation since forecast 

issuance  
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radiative transfer in the long wavelength range, with 16 spectral bands, 
and in the short wavelength range, with 14 spectral bands, respectively 
[33]. 

The operational deterministic model of the ECMWF is run every day 
at 00UTC and 12UTC, providing hourly forecast values up to 90 h ahead 
(and then 3 and 6-hourly values up to 144 and 240 h ahead, respec-
tively) at discrete points of a global grid with horizontal spatial reso-
lution of 0.125◦ × 0.125◦ The variables retrieved from the ECMWF 
database are presented in Table 1. 

Data were retrieved for the maximum grid point density and with a 
temporal forecast horizon up to 72 h. The retrieved GRIB files were 
converted to netCDF format and processed with a MATLAB® routine to 
obtain hourly mean values of global horizontal and direct normal irra-
diance in W/m2, converting air temperature (T) to ◦C and computing 
wind speed (WS) in m/s and direction (WD) in degrees from North using 
the 10-meter U and V wind speed components. 

2.2. Aerosol forecast data 

CAMS developed a global atmospheric composition forecast based on 
the IFS model but with additional modules enabled for aerosols, reactive 
gases and greenhouse gases taking into consideration phenomena such 
as the emissions and transport of trace gases and aerosols, uptake and 
release by vegetation and land and sea surface, removal by dry deposi-
tion at the surface and scavenging in precipitation, chemical conversion 
and aerosol microphysics. It generates atmospheric composition vari-
ables, including aerosol optical depth at different wavelengths, in a 
three-dimensional grid with approximately 40 km of horizontal spatial 
resolution and 1 h time step [34]. Hourly mean total aerosol optical 
depth forecasts at surface level for various discrete wavelengths are 
computed every day at 00UTC and 12UTC with a temporal forecast 
horizon of 5 days. The variables retrieved from the CAMS database are 
shown in Table 2, for the same area and period as the variables retrieved 
from the IFS/ECMWF. 

2.3. Spatial and temporal downscaling of forecast data 

To obtain forecast values for a specific location and with different 
time steps, spatial and temporal downscaling techniques were employed 
to all simulated variables. The spatial downscaling is conducted using bi- 
linear interpolation of the values of the four grid points surrounding the 
desired location. This allows for the development and validation of the 

presented method against observations made at various solar radiation 
measuring stations which are not exactly located at a grid point, but 
also, in an operational setting, the inclusion of this technique allows for 
the forecasting of solar irradiance at any point of the domain. The 
temporal downscaling is computed using piecewise cubic hermite 
interpolation of the hourly mean irradiance. This method might not 
allow for the conservation of energy in each hour (forecast values) 
however, the goal is simply to obtain data in shorter timesteps which can 
be used as input for the more complex machine learning models that will 
perform the improvement of DNI forecasts. This is a compromise be-
tween developing a more elaborated physical downscaling method that 
preserves the hourly energy predictions (but preserves the error asso-
ciated with those forecasts) and feeding the machine learning models 
directly with the original hourly irradiation values, and then having to 
develop a model for each desired timestep, with the consequent loss of 
model generalization. In this way, the deviation introduced by this 
downscaling method in the input values (which, at different instants, 
can either increase or decrease the error of the energy predictions, 
taking the ground-based measurements as reference) will also be 
assimilated by the machine learning model. 

2.4. Solar radiation measurements and data quality check 

The experimental data used for the model development were 1 min 
DNI and GHI ground-based observations made at Évora–Verney 
(38.567811◦, -7.911459◦) with a Kipp & Zonen CHP1 pyrheliometer in 
the case of DNI and a Kipp & Zonen CMP11 Pyranometer in the case of 
GHI. Experimental data from this location have been widely validated 
and used in other works in this field, e.g. [22,35–37]. 

For the model validation, 1 min DNI and GHI ground-based obser-
vations obtained from the network of radiometric stations of the DNI- 
ALENTEJO project [38] were also used. This is a solar radiation mea-
surement network in the south of Portugal which comprised 13 stations 
scattered in the region, each station being typically equipped with a 
Kipp & Zonen Solys2 sun tracker, one CHP1 pyrheliometer and two 
CMP11 pyranometers. All instruments are periodically calibrated in 
accordance with ISO 9059:1990 and ISO 9847:1992 and the 

Table 2 
Forecast variables retrieved from the CAMS database.  

Variable Symbol Units Range / Comments 

Longitude Lon ◦ East 0◦ to 360◦

Latitude Lat ◦

North 
-90◦ to 90◦

Time step Step h 1 to 120 
Date Date Days Days since 1900–01–01 

00:00:00 
Total aerosol optical depth at 

469 nm 
AOD469 – – 

Total aerosol optical depth at 
550 nm 

AOD550 – – 

Total aerosol optical depth at 
670 nm 

AOD670 – – 

Total aerosol optical depth at 
865 nm 

AOD865 – – 

Total aerosol optical depth at 
1240 nm 

AOD1240 – – 

Sea salt aerosol optical depth at 
550 nm 

SSAOD – – 

Organic matter aerosol optical 
depth at 550 nm 

OMAOD – – 

Dust aerosol optical depth at 
550 nm 

DUAOD – –  

Fig. 1. Location of solar radiation measuring stations from the DNI-ALENTEJO 
network [22]. 
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observations are corrected regarding the zero offset of sensors, filtered 
according to the Baseline Surface Radiation Network (BSRN) quality 
control procedure [39] and gaps filled according to the method devel-
oped in [38]. 

The experimental data used for the model validation were retrieved 
from the following stations of the network: Évora–PECS (38.5306◦, 
-8.0112◦), Évora–EMSP (38.5289◦, -8.0053◦), Portalegre (39.2692◦, 
-7.4428◦), Beja (38.0249◦, -7.8672◦), Lisboa (38.7734◦, -9.1779◦) and 
Sines (37.9576◦, -8.8473◦). The location of these stations is shown in 
Fig. 1 including the Évora–Verney station which data were used for the 
model development. 

Original solar irradiance records from the radiometric stations are 1 
min average, maximum, minimum and standard deviation from which 
the mean irradiance values for the different temporal resolutions used in 
this work were calculated (10 min for the development stage). The same 
period defined for the forecast data was used. 

3. Analysis of NWP direct normal irradiance forecasts 

To understand the accuracy of the original solar irradiance pre-
dictions from the IFS/ECMWF model, the forecast data of DNI and other 
atmospheric variables issued at 00UTC from 1st of December 2016 to the 
31st of May 2021 were analyzed and compared against observations 
made at Évora–Verney station for each of the first three days of forecast 
time horizon. All forecast data was spatially downscaled to the location 
of the radiometric station and 10 min mean values were determined as 
described in Section 2.3. Experimental data were also averaged for the 
same 10 min time step as described in Section 2.4. 

3.1. Comparison of NWP direct normal irradiance forecasts with 
experimental data 

Firstly, a direct comparison between the 10 min DNI forecasts after 
spatial and temporal downscaling and observations at Évora–Verney 
station was conducted for each of the 3 days of forecast horizon as 
presented in Fig. 2. 

These results show a better performance (lower mean absolute error, 
MAE, and root mean squared error, RMSE) of the model for day 0 of 
forecast which decreases for higher forecast time horizons which was 
also verified by other works in the literature [4]. The correction of these 
errors can be done with many different tools, from a simple bias 
correction to more complex machine learning models, as mentioned in 
Section 1. Simple artificial neural networks offer a middle ground where 
the computational effort is not too high but the influence of the different 
variables used as inputs is taken into consideration. Day 1 of forecast 
(second day of forecast time horizon, or day-ahead) was used for the 
model development since, even though forecast issuance corresponds to 
the 00 UTC, data can take until 6:55 UTC to be available, which may 
turn the forecast unhelpful for that day depending on the location of 
interest. 

3.2. Correlations between forecast variables and DNI observations 

The various meteorological variables are to some extent all corre-
lated with each other and, in a system so complex as the atmosphere, a 
way to identify the degree of correlation between two variables is to 
compute their linear correlation coefficients. Fig. 3 was generated with 
this purpose, comparing forecast values of each variable after spatial and 
temporal downscaling (10 min) with observed DNI at Évora–Verney 
station for the three forecast days. 

The Pearson’s linear correlation coefficients (the values shown in 
each graph of Fig. 3) for each forecast variable are similar but tend to 
show a decrease in correlation across the three days of forecast time 
horizon. As expected, the highest absolute values of linear correlation 
occur with the forecasted DNI followed by GHI, cloud cover variables 
and solar zenith angle. While the aerosol variables show lower values of 
linear correlation, this does not mean that they are necessarily more 
independent since they might have a nonlinear relationship. 

It is difficult to find any physical world phenomenon which follows 
linearity straightforwardly. Thus, a non-linear model that can approxi-
mate the non-linear phenomenon is needed. Representing these kinds of 
relationships using classical methods is known to be difficult. In that 

Fig. 2. Comparison between downscaled IFS/ECMWF forecasts and DNI observations (10 min) at Évora – Verney for forecast days 0, 1 and 2 (the colormap rep-
resents the number of data points in each bin. Bin size: 20 × 20 W/m2). 
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sense, machine learning models like artificial neural networks with non- 
linear activation functions will allow the model to create complex 
mappings between the inputs and outputs of the network. The non- 
linear layers enable ANNs to learn making conditional decisions for 
controlling the computational flow which makes them better suited to 
provide accurate data fitting and forecast. 

4. Artificial neural network model development 

Artificial neural networks (ANN) are constituted of connected arti-
ficial neurons forming a network. Since the relevance of each input 
given to the neuron is not equal, different weights are assigned to each of 
the inputs, then a linear net function is used to aggregate a bias and the 
weighted inputs after which a transfer function is applied to obtain the 
output of the neuron that will then be passed on to the next neuron. 

Fig. 3. Comparison and Pearson’s linear correlation coefficients of the forecast values of each meteorological variable (y axis) with the 10 min observed DNI at 
Évora–Verney station (x axis) for each of the forecast days. The colormap represents the number of points (total number of data points for each graph: 236,592); Bins 
grid (50 × 50 bins). 

Fig. 4. Flowchart of the developed model. DNI observations are only used for the development and evaluation of the ANN models they are not required as inputs in 
an operational setting. 
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The ANNs developed in this work are multi-layer feed-forward net-
works with back propagation learning, which are some of the most 
established ANN architectures due to their ability to perform arbitrary 
non-linear mappings. These are usually composed of an input and an 
output layer and one or more hidden layers of neurons. When training, 
for a given input dataset, the information flows forward through the 
network until it reaches the output layer and errors are calculated using 
the given desired output dataset (targets). These errors are then prop-
agated backwards through the network and the weights of each neuron 
are adjusted so that the next iteration results in outputs with smaller 
error. This allows solving complex problems that can be stochastic, 
poorly defined, non-linear, non-analytic and/or non-stationary with low 
or no intervention in the program itself. 

After the spatial and temporal downscaling of the forecast data 
shown in Section 2.3, two ANN models coupled in series are applied in 
this work according to Fig. 4 for the generation of improved DNI fore-
casts from NWP data. Observations of DNI made at Évora - Verney 
described in Section 2.4 were used for the development of the two ANNs: 
(i) development of an ANN using only the predicted weather and aerosol 
variables for a given time step in the temporal horizon of forecasts 
(Section 4.1); (ii) development of an ANN using the predicted DNI data 
over a period of time before the forecasted instant (Section 4.2). 

For the evaluation and comparison of the different models, the co-
efficient of determination (R2), mean absolute error (MAE) and root 
mean squared error (RMSE) were used as metrics along with the forecast 
skill (FS), which represents the improvement in terms of MAE over the 
original ECMWF forecasts, and a global performance index (GPI) based 
on the three statistical indicators, for model configurations comparison. 
The coefficient of determination is intuitively informative as it provides 
a measure of how well observed outcomes are replicated by the model, 
based on the proportion of total variation of outcomes explained by the 
model. According to the literature, the MAE and RMSE metrics are 
suitable [40] and the most commonly used indicators to assess the 
performance of machine learning regression algorithms [41]. Each error 
contributes to MAE in proportion to the absolute value of the error while 
the RMSE involves squaring the differences, so that a few major differ-
ences will increase the RMSE to a greater degree than the MAE. 

The used definition of GPI results in a statistical tool that combines 
various metrics allowing for the performance comparison of different 
models and has been widely used in many works in several fields of 
study, for example in [42–44]. To compute the GPI, the n metrics need to 
be normalized into values ranging from 0 to 1 and then Eq. (1) is used, 
where the GPI value for the ith model configuration is determined using 
the median of the normalized values, ỹj, of the indicator j, the normal-
ized value of indicator j for model configuration i, yij, and a factor αj that 
has a value of 1 for all indicators except the coefficient of determination 
for which it is -1. 

GPIi =
∑n

j=1
αj
(
ỹj − yij

)
(1) 

In this work, the metrics used for the computation of GPI are the 
previously mentioned R2, MAE and RMSE. Since all the metrics used in 
this definition take the ground-based measurements as reference, a 
higher value of GPI represents a better performance of the respective 
model configuration. 

4.1. ANN model with weather and aerosol forecasts as inputs (ANN 
model A) 

The forecast data included as inputs in the development of this ANN 
model are the various weather and aerosol variables from the IFS/ 
ECMWF and CAMS global NWP models (see Tables 1 and 2) for forecast 
day 1 (25 to 48 h ahead), after temporal and spatial downscaling as 
described in Section 2.3. The 10 min ground-based observations of DNI 
at Évora–Verney station as described in Section 2.4, are used as targets. 

To obtain an ANN configuration that generates improved DNI fore-
casts while having a good generalization capability, datasets were 
divided in three subsets: the first subset for training and validation of 
various internal configurations of the tested ANNs (78,854 data points 
from 1st December 2016 to 30th November 2019), a second subset for 
testing and selection of the final ANN configuration (23,654 data points 
from 1st December 2019 to 30th November 2020) and finally a third 
subset of data for a blind test so the performance and generalization 
capability of the selected ANN configuration can be demonstrated 
(12,470 data points from 1st December 2020 to 31st May 2021). For 
training and validation, the input data is divided randomly using 80 % of 
the available data points in the first subset for training and the other 
20% for validation. 

An ANN is defined by numerous parameters and specifications, some 
of which are pre-established such as using a feedforward ANN with one 
hidden layer and a linear layer output (fitnet) with an initialization 
function that initializes the weights and biases of the layers according to 
the Nguyen–Widrow initialization algorithm (initnw), the hyperbolic 
tangent sigmoid transfer function (tansig) and the mean squared error as 
performance function (mse). The input and output data are treated by 
removing rows with constant values (removeconstantrows) and scaling 
the mean of each row to 0 and deviations to 1 (mapstd). 

Other parameters and configurations were specifically evaluated in 
this work, namely the training function, the number of neurons and the 
input variables. The training functions assessed were the Levenberg- 
Marquardt backpropagation (trainlm) and the Bayesian regularization 
backpropagation (trainbr) and, for each of these, the number of neurons 
was varied from 1 to 25 and the input forecasted variables were added 
one by one according to the sequence DNI, GHI, TCC, Zen, T, SS, 
AOD1240, WS, LCC, MCC, HCC, AOD865, AOD670, AOD550, AOD469, 
DU, WD, OM, for each combination of training function and number of 
neurons. 

Additionally, for better results, ten randomly initialized ANNs were 
trained and validated for each configuration combo mentioned above, 
being the average output of those ten ANNs considered the result of the 
corresponding ANN configuration, as already tested in other works in 
this field [22]. 

The values of R2, MAE, RMSE were computed and the performance of 
the different ANN configurations is compared using the FS and the GPI. 
The five ANN configurations with highest GPI at the training and vali-
dation stage (among the 900 cases evaluated with GPI values ranging 
between 1.159 and -1.840) are presented in Table 3. 

The configurations using the training function trainbr with all input 
variables and high number of neurons show more accurate DNI forecasts 
when considering observations as reference. For the best performing 
configuration, there is an improvement over the original ECMWF fore-
casts revealed by a forecast skill of 22 % and an increase of 0.1118 in the 

Table 3 
ANN model A training and validation results (five best configurations in descending order).  

Training function Number of neurons Number of inputs R2 MAE (W/m2) RMSE (W/m2) FS (%) GPI 

trainbr 25 18 0.7535 122.9 180.7 22.0 1.159 
trainbr 24 18 0.7528 123.0 181.0 21.9 1.144 
trainbr 23 18 0.7525 122.9 181.1 22.0 1.141 
trainbr 25 17 0.7511 123.6 181.6 21.5 1.099 
trainbr 24 17 0.7508 123.5 181.7 21.6 1.097  
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R2 and a decrease of 34.2 W/m2 and 38.4 W/m2 in the MAE and RMSE, 
respectively. 

However, regarding the final purpose of the developed model, that 
is, an algorithm that can generalize well and improve newly generated 
forecasts, the 900 combos were run for the test data set to select the best 
configuration. The five ANN configurations with highest GPI are pre-
sented in Table 4. 

Thus, the ten ANNs using the trainbr training function, 7 neurons and 
13 inputs (DNI, GHI, TCC, Zen, T, SS, AOD1240, WS, LCC, MCC, HCC, 
AOD865 and AOD670) were selected as the base configuration for this 
ANN model (ANN model A). This configuration showed an improvement 
over the original ECMWF forecasts (values in Fig. 2) with a forecast skill 
of 10.2 % and an increase of 0.0712 in the R2 and a decrease of 20.4 W/ 
m2 and 21.3 W/m2 in the MAE and RMSE, respectively. The perfor-
mance and good generalization of the selected ANN configuration was 
verified by using a new set of data (blind test), which resulted in values 
of R2, MAE and RMSE of 0.6874, 147.2 W/m2 and 207.6 W/m2, 
respectively, which is better than all statistical indicators of the original 
DNI forecasts (Fig. 2). 

4.2. ANN model with forecasted DNI time series and date/time as inputs 
(ANN model B) 

A different approach for an ANN configuration that considers the 
temporal variation of solar irradiance as input was also addressed and 
evaluated. This configuration uses the same internal parameters as the 
one described above, being the evaluated parameters the training 
function (trainlm, trainbr) and the number of neurons (from 1 to 25), 
while the inputs are the season and time of day of forecast and the 
existing time series of DNI values for a given period before the forecast 
computation. This time series can be either the original IFS/ECMWF 
predictions or experimental values but, to further improve the solar 
irradiance forecasts and to make the model independent of ground- 

based measurements, the corrected DNI forecast data from the ANN 
model A was used instead in this case. Regarding the length of the time 
series, two cases were tested: (i) a period corresponding to the previous 
2 h (12 time steps of 10 min data); and (ii) a period of 24 h (144 time 
steps of 10 min data). The same data sets of experimental data were used 
for training and validation, testing and blind testing as in the Section 4.1, 
as well as the procedure of averaging the results of ten randomly 
initialized ANNs for each configuration. The resulting metrics for the 
five configurations with highest GPI are shown in Tables 5 and 6 for 
these two cases. 

Similar to the case of ANN model A, the configurations that show 
better performance tend to have more neurons and the more complex 
training function trainbr. However, the best models that arise from the 
training process might not be the best at generalization, thus all con-
figurations were also evaluated using the test data set to select the 
configuration that achieves good performance on new data. Tables 7 and 
8 show the five best configurations using the previous 2 and 24 h of 
predicted DNI from ANN model A as inputs, respectively. 

Selecting the best configurations for each case and applying these 
models to the blind test data set, values of R2, MAE and RMSE of 0.6934, 
142.4 W/m2 and 205.1 W/m2 for the model using a period of 2 h and 
0.6916, 142.6 W/m2 and 205.5 W/m2 for the model using a period of 24 
h were obtained, respectively. These metrics result in a forecast skill of 
12.4 % for both models and an improvement over the predicted values 
from the ANN model A with an increase in R2 of 0.0060 and a decrease of 
MAE and RMSE of 4.8 W/m2 and 2.5 W/m2 for the 2 h model and an 
increase in R2 of 0.0042 and a decrease of MAE and RMSE of 4.6 W/m2 

and 2.1 W/m2 for the 24 h model, respectively. 
Although the differences between the two cases are small, the 

selected configuration of the ANN model B was the one using as input a 
period of 2 h of DNI predictions due to its slightly better performance 
and simplicity. The resulting composite ANN model (ANN model B) is 
thus the combination of an ANN model based on the input of a complete 

Table 4 
ANN model A testing results (five best configurations in descending order).  

Training function Number of neurons Number of inputs R2 MAE (W/m2) RMSE (W/m2) FS (%) GPI 

trainbr 7 13 0.7127 136.7 197.8 10.2 0.876 
trainlm 7 13 0.7132 137.1 197.7 9.9 0.867 
trainlm 9 13 0.7121 136.8 198.0 10.1 0.844 
trainlm 5 13 0.7112 136.5 198.3 10.3 0.832 
trainbr 5 13 0.7115 136.9 198.2 10.0 0.818  

Table 5 
ANN model B training and validation results using a period of 2 h of predicted 
DNI from ANN model A as input (five best configurations in descending order).  

Training 
function 

Number of 
neurons 

R2 MAE 
(W/m2) 

RMSE 
(W/m2) 

FS 
(%) 

GPI 

trainbr 25 0.7332 126.1 188.0 20.0 1.126 
trainbr 24 0.7337 126.3 188.1 19.8 1.019 
trainbr 23 0.7335 126.4 188.2 19.8 0.977 
trainbr 22 0.7321 126.4 188.3 19.8 0.917 
trainbr 21 0.7319 126.6 188.4 19.6 0.852  

Table 6 
ANN model B training and validation results using a period of 24 h of predicted 
DNI from ANN model A as input (five best configurations in descending order).  

Training 
function 

Number of 
neurons 

R2 MAE 
(W/m2) 

RMSE 
(W/m2) 

FS 
(%) 

GPI 

trainbr 25 0.7518 123.0 181.2 21.9 1.990 
trainbr 24 0.7496 123.5 182.0 21.6 1.788 
trainbr 23 0.7485 123.9 182.5 21.4 1.672 
trainbr 22 0.7479 123.8 182. 7 21.4 1.642 
trainbr 21 0.7456 124.4 183.5 21.1 1.418  

Table 7 
ANN model B test results using a period of 2 h of predicted DNI from ANN model 
A as input (five best configurations in descending order).  

Training 
function 

Number of 
neurons 

R2 MAE 
(W/m2) 

RMSE 
(W/m2) 

FS 
(%) 

GPI 

trainlm 8 0.7197 133.3 195.3 12.4 0.709 
trainlm 7 0.7194 133.3 195.4 12.4 0.630 
trainbr 7 0.7191 133.2 195.5 12.5 0.572 
trainlm 10 0.7191 133.3 195.5 12.4 0.563 
trainbr 5 0.7190 133.3 195.5 12.4 0.512  

Table 8 
ANN model B test results using a period of 24 h of predicted DNI from ANN 
model A as input (five best configurations in descending order).  

Training 
function 

Number of 
neurons 

R2 MAE 
(W/m2) 

RMSE 
(W/m2) 

FS 
(%) 

GPI 

trainbr 3 0.7184 133.1 195.7 12.4 0.451 
trainlm 12 0.7190 133.4 195.5 12.2 0.439 
trainlm 11 0.7183 133.2 195.7 12.4 0.429 
trainlm 5 0.7191 133.5 195.4 12.2 0.429 
trainbr 4 0.7180 133.3 195.8 12.3 0.299  
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set of meteorological and aerosol forecast data for a given instant (ANN 
model A) and an ANN model based on the input of a time series of DNI 
for a given period before the forecast computation (ANN model B 
configuration), provided that the input values of the second model are 
the predicted DNI output values of the first model. 

Using two separate ANN models can result in better forecasts than a 
single model which considers both the actual and temporal variations of 
weather variables on DNI forecasts since it allows for better model 
specialization. This means that each ANN can be specialized for a spe-
cific task. The first ANN was developed for improving DNI forecasts from 
NWP data at a specific time step being designed and optimized for 
representing the relationship between the different atmospheric 

variables and DNI, being optimized to extract relevant features and re-
lationships specific to the current conditions. The second ANN was 
developed to model the temporal tendencies and patterns in DNI which 
can be complex and non-linear. By using a separate ANN model to 
capture these tendencies, it allows the model to focus solely on learning 
the temporal dependencies and trends, which might be distinct from the 
relationships governing the immediate forecast. 

5. Assessment of the developed ANN models using different 
temporal resolutions 

The proposed model was developed using 10 min mean values, but it 

Table 9 
Metrics for the original downscaled ECMWF predictions, ANN model A and ANN model B with different temporal resolution and for the different data sets used in the 
development of the models (for all data and each statistical indicator, the best performing model is represented in bold for each time step, the best performing time step 
is underlined for each model, and the best combination of time step and model is marked with *).  

Time step (min) Model R2 MAE (W/m2) RMSE (W/m2) 
Train Test Blind test All Train Test Blind test All Train Test Blind test All 

5 ECMWF 0.6290 0.6489 0.6168 0.6341 160.7 155.9 168.7 160.4 225.2 222.0 236.3 225.7 
A 0.7088 0.7017 0.6776 0.7058 135.9 140.9 151.3 138.7 199.4 204.5 213.7 202.1 
B 0.7129 0.7053 0.6802 0.7096 131.1 135.2 146.3 133.6 198.2 203.2 213.4 201.0               

10 ECMWF 0.6353 0.6579 0.6273 0.6415 157.5 152.1 165.1 157.1 220.0 216.1 230.5 219.1 
A 0.7176 0.7130 0.6874 0.7148 132.3 136.7 147.2 135.2 193.4 197.8 207.6 196.1 
B 0.7265 0.7197 0.6934 0.7234 128.3 133.3 142.4 130.9 190.3 195.3 205.1 193.0               

15 ECMWF 0.6515 0.6739 0.6422 0.6574 153.0 147.3 159.7 152.5 214.5 210.0 224.3 214.6 
A 0.7339 0.7284 0.7053 0.7314 127.8 131.9 141.7 130.2 187.3 191.5 200.4 189.7 
B 0.7411 0.7355 0.7117 0.7386* 127.4 130.4 138.4 129.3* 185.1 189.2 197.1 187.3*               

60 ECMWF 0.5527 0.5877 0.5519 0.5624 176.3 169.0 179.3 175.0 239.9 231.8 245.0 238.7 
A 0.6677 0.6705 0.6505 0.6684 153.3 154.1 157.7 153.9 203.5 204.2 209.0 204.3 
B 0.6946 0.6904 0.6685 0.6929 174.4 171.5 164.3 172.7 217.7 217.8 213.3 217.3  

Table 10 
Results of hourly mean DNI forecasts with different temporal resolutions and from different models and data sets. Color comparison within each metric and data set 
where darker color means better performance.  
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could easily be adapted to different time steps as required by solar 
system operators. Also, since mean irradiance values are used instead of 
irradiation data in the case of DNI, inputs with different time steps can 
also be directly used with the already developed model. 

In order to evaluate the performance of this feature, input data with 
temporal resolutions of 5 and 15 min and the original hourly (60 min) 
forecasts were fed to the model, generating the results shown in Table 9. 
It is important to note that, as described in Section 4.2, the ANN model B 
was developed using as inputs 12 records of 10 min DNI predictions, 
corresponding to the period of 2 h before the forecast time step, while for 
different temporal resolutions, the number of inputs used is still 12 re-
cords but instead of corresponding to a period of 2 h they are equivalent 
to periods of 1, 3 and 12 h for 5, 15 and 60 min temporal resolutions, 
respectively. 

Comparing the results for the different temporal resolutions, the 
model seems to perform better for a time step of 15 min, followed by 10, 
5 and finally 60 min. However, these results are also affected by the 
number of data points available which differs with temporal resolution 
(more data for shorter temporal resolution). Thus, to take this aspect 
into consideration, the results of the models for each temporal resolution 
were converted to hourly means for comparison and the same metrics 
were computed, as shown in Table 10. 

Regarding the temporal downscaling, although the metrics for the 
ECMWF forecasts can, for some instances, deteriorate with downscaling 
(metrics for hourly values better than for the remaining temporal reso-
lutions) due to a smoothing effect that does not capture the rapid and 
nonlinear variations of real data, these metrics are improved when using 
the developed ANN models to the downscaled data when compared with 
the original hourly ECMWF forecasts. This means that the developed 
models can not only counteract the possible deviations induced by the 
temporal downscaling but also further improve the DNI forecasts. As 
previously discussed, the ANN model B tends to perform better than the 
ANN model A and ECMWF models except for hourly temporal 
resolutions. 

Finally, the performance (measured by the GPI) of the developed 
model with a temporal resolution of 15 min is better than the one for 10, 
5 and 60 min for the data used in this work which is in accordance with 
the results shown in Table 9. 

6. Application of the ANN models for different locations 

The ANN models described in the previous sections were developed 
based on data for a specific location (Évora - Verney). In this section, the 
hypothesis of using the same models in other locations in the region 
surrounding the reference station of Évora-Verney (south of Portugal) is 
analyzed. The ECMWF and CAMS forecast data obtained for six different 
sites where solar radiation measuring stations are installed (DNI-A 
network, see Fig. 1) were used as inputs. The original 10 min down-
scaled ECMWF forecasts and the DNI forecasts obtained from the ANN 
model B were compared with the available observed DNI data for each 
station. The results and the number of data points (N) for each station 
are shown in Table 11, where the data used for evaluating Verney station 
is comprised of the test and blind test datasets. 

The results show that the developed model can improve the overall 
metrics for all stations being best at generating improved DNI forecasts 
for the station of Verney which data was used in the development of the 
algorithm, as expected. The stations for which the improvement of DNI 
forecasts is lower are Lisboa and Sines, both located near the coast of 
Portugal where the climate is more disparate from that observed at the 
station of Évora–Verney. Considering all stations and data available, the 
use of the developed models result in a forecast skill of 14.4 % and 
improve the original downscaled DNI forecats by 0.0707 in R2, 23.1 W/ 
m2 in MAE and 24.1 W/m2 in RMSE, taking experimental data as 
reference showing that the application of this model for locations in the 
surrounding area of the location for which it was developed, can 
generate improved DNI forecasts. 

Fig. 5 shows a direct comparison between the monthly forecasted 
DNI (irradiation) by the ECMWF and the developed ANN models (based 
on 10 min data) and the available monthly observed DNI for the 
different stations, while Table 12 presents the metrics resulting from this 
data. For the Verney station only the data from test and blind test 
datasets was considered. 

Considering the monthly irradiation values for all stations, an 
improvement over the original DNI forecasts from the ECMWF of 
0.0331, 5.9 kWh/m2 and 6.6 kWh/m2 for R2, MAE and RMSE, respec-
tively, is achieved by the developed algorithm with a forecast skill of 
38.1 %. 

Table 11 
Metrics for the original downscaled ECMWF DNI forecasts and ANN models B predictions (10 min) for the different stations located in the south of Portugal.  

Station R2 MAE (W/m2) RMSE (W/m2) FS (%) N 
ECMWF ANN ECMWF ANN ECMWF ANN 

Verney 0.6630 0.7237 151.3 131.8 215.1 194.4 12.9 28,101 
EMSP 0.6528 0.7222 153.2 130.5 218.1 194.2 14.8 96,323 
PECS 0.6348 0.7128 161.7 135.5 226.9 200.4 16.2 113,300 
Portalegre 0.6329 0.7083 157.5 134.8 225.9 200.8 14.4 115,997 
Beja 0.6393 0.6996 156.8 135.0 219.8 199.7 13.9 97,109 
Lisboa 0.5970 0.6659 170.9 147.6 238.3 212.2 13.6 61,942 
Sines 0.5459 0.6184 175.8 153.3 244.8 220.9 12.8 53,192 
All 0.6269 0.6976 160.4 137.2 226.5 202.4 14.4 478,574  

Fig. 5. Comparison between monthly DNI forecasts (irradiation) from the 
ECMWF (blue) and from ANN model (red) against the available experimental 
data for each station in the South of Portugal. 
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Table 12 
Metrics for the monthly original spatially downscaled ECMWF DNI (irradiation) forecasts and ANN model B predictions for the different stations located in the south of 
Portugal.  

Station R2 MAE (kWh/m2) RMSE (kWh/m2) FS (%) 
ECMWF ANN ECMWF ANN ECMWF ANN 

Verney 0.9431 0.9771 13.0 7.4 16.3 9.4 43.0 
EMSP 0.9483 0.9758 15.0 9.8 17.6 12.1 34.9 
PECS 0.9518 0.9803 13.6 7.8 16.8 9.7 43.1 
Portalegre 0.9402 0.9717 15.9 11.9 19.7 14.9 25.5 
Beja 0.9472 0.9689 14.0 9.6 16.2 12.3 31.0 
Lisboa 0.8948 0.9598 22.2 11.4 25.7 13.6 48.6 
Sines 0.8244 0.8742 18.3 9.6 22.1 13.9 47.6 
All 0.9313 0.9644 15.5 9.6 18.9 12.3 38.1  

Fig. 6. Example of operational use of the developed model for 3 consecutive days.  

Fig. 7. Variation of statistical indicators (a) R2, (b) MAE and (c) RMSE for Jan. 11, 2020 using 00:00 UTC forecasts at day 0 (forecast issue: Jan. 11), 1 day ahead 
(forecast issue: Jan. 10) and 2 days ahead (forecast issue: Jan. 9), based on 10 min data. 
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7. Application of the developed model for operational DNI 
forecasts 

The model developed in this work can be used operationally to 
obtain more accurate DNI forecasts which can help solar energy systems 
and power grid operators to estimate the energy generation and make 
better informed decisions. After retrieving the operational forecasts of 

ECMWF of the 00UTC run, the model is applied resulting in 10 min DNI 
forecasts for the present day and the next 2 days. As an example, Fig. 6 
was generated, where the model was used to generate DNI forecasts for 3 
consecutive days (forecast issue time at 00:00 UTC of 9, 10 and 11 of 
January 2020, as example) at the location of Évora - Verney station. 
Here, the model results show very good agreement with observations for 
clear sky conditions, with larger errors for overcast or partially cloudy 

Fig. 8. Results of ANN model A for test and blind test 10 min data of Évora-Verney station (the colormap represents the number of data points in each bin. Bin size: 
20 × 20 W/m2). 

Fig. 9. Results of ANN model B for test and blind test 10 min data of Évora-Verney station (the colormap represents the number of data points in each bin. Bin size: 
20 × 20 W/m2). 
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skies, as expected. The day January 11 is forecasted for all presented 
runs of the model and, in order to assess the variation of model per-
formance along the successive forecast issues, the variation of statistical 
indicators R2, MAE and RMSE for this day is shown in Fig. 7. 

In this case, the performance of both ANN models is better for smaller 
forecast time horizons where the ANN model B achieved the best results 
followed by the ANN model A and finally the ECMWF model. It should 
be noted that this is not a typical behavior. As previously indicated in 
Figs. 2 and 3, the irradiation forecast tends to worsen with the horizon. 
However, although, in general, the predictability of solar irradiance 
decreases with the time horizon, in particular cases the forecast for two 
days ahead can be better than the forecast for the next day. A recent and 
good discussion about the predictability of the numerical prediction of 
solar irradiation and its variation with the horizon can be found in [45]. 

As this is just an example for a specific day, the same operational test 
was carried out for the test and blind test datasets of Évora–Verney 
station and the results can be seen in Figs. 8 and 9 for the ANN model A 
and ANN model B, respectively. Comparing these figures with the one 
obtained for the original downscaled ECMWF forecasts (Fig. 2), a higher 
density of data points near the bisection line is found for the forecasts of 
the ANN models. 

A similar way to visualize these results to that of Fig. 7 is shown in 
Fig. 10 for each forecasting model and each of the forecast days, now for 
all data and not for a specific day. Again, all models show an overall 
increase in performance for shorter forecast time horizons and all met-
rics are improved by the models developed in this work for all days of 
the forecast time horizon. 

8. Conclusions 

This work presents the development of a model that can successfully 
generate improved DNI forecasts based on data from NWP models in an 
operational setting. This model uses forecast data from the IFS/ECMWF 
and CAMS of several atmospheric variables including aerosol data which 
affects the transport of solar radiation through the atmosphere. These 
forecasts are spatially and temporally downscaled to the location and 
time resolution desired using bi-linear interpolation of the values of the 
four surrounding grid points and piecewise cubic interpolation of the 
hourly mean variables, respectively. Then, two different models based 
on artificial neural networks were designed and optimized to generate 
improved DNI forecasts with the desired temporal resolution and for a 
forecast time horizon of 72 h. Different configurations of these models 
were tested and the selected configuration uses two feedforward ANNs 
in series, that is, the second ANN uses the output of the first as input. In 
an operational setting, the model is run every day when the ECMWF and 
CAMS operational forecasts are available for retrieval (maximum 
dissemination time 06:55 UTC) and results for the next two days can be 
used by solar energy producers and power grid operators to estimate the 

energy production and make better informed decisions. 
Comparing the final model results using only test and blind test 

datasets with a temporal resolution of 10 min and for the location of 
Évora–Verney (the location used for model development) with the 
ground-based observations at the same location, values of R2, MAE and 
RMSE of 0.7195, 133.9 W/m2 and 191.7 W/m2 for forecast day 1 and of 
0.6812, 141.7 W/m2 and 209.0 W/m2 for forecast day 2 were achieved, 
respectively. This results in an improvement over the original down-
scaled DNI forecast from ECMWF of 0.0646, 21.1 W/m2 and 27.9 W/m2 

for forecast day 1 and of 0.0608, 19.8 W/m2 and 21.2 W/m2 for forecast 
day 2 for R2, MAE and RMSE, respectively. 

The model was also applied to other locations scattered in the region 
surrounding the site for which it was developed showing improvements 
of the DNI forecasts of 0.0713, 23.3 W/m2 and 24.2 W/m2 for day 1 of 
forecast and for R2, MAE and RMSE respectively, when compared to the 
ECMWF forecasts and taking the ground-based measurements in each 
location as reference. 

It was also shown that the already developed algorithm can be 
applied to similar temporal resolutions, such as 5 or 15 min, achieving 
good results which can be extremely helpful when forecasts with 
different time steps are needed so that they are in accordance with the 
real-time market forecasting requirements. 

With these improved forecasts, more accurate estimations of energy 
generation in solar energy systems can be achieved which is extremely 
important for solar power plant and energy market operators. 
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