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Dissertação

Automatic detection of persuasion attempts on social
networks
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Abstract

The rise of social networks and the increasing amount of time people spend on them have created a perfect
place for the dissemination of false narratives, propaganda, and manipulated content. In order to prevent
the spread of disinformation, content moderation is needed, however it is unfeasible to do it manually due
to the large number of daily posts. This dissertation aims at solving this problem by creating a system for
automatic detection of persuasion techniques, as proposed in a SemEval challenge. We start by reviewing
classic machine learning and natural language processing approaches and go through more sophisticated
deep learning approaches which are more suited for this type of complex problem. The classic machine
learning approaches are used to create a baseline for the problem. The architecture proposed, using deep
learning techniques, is built on top of a DistilBERT transformer followed by Convolutional Neural Networks.
We study how our usage of different loss functions, pre-processing the text, freezing DistilBERT layers and
performing hyperparameter search impact the performance of our system. We discovered that we could
optimize our architecture by freezing the two initial DistilBERT’s layers and using asymmetric loss to
tackle the class imbalance on the dataset presented. This study resulted in three final models with the
same architecture but using different parameters where the first showed signs of overfitting, one did not
show sings of overfitting but did not seem to converge and other seemed to converge but yielded the worst
performance of all three. They presented a micro f1-score of 0.551, 0.526 and 0.509 and were placed in
3rd, 6th and 11th place respectively in the overall table. The models can only classify textual elements as
the multimodal component is not implemented on this iteration but only discussed.

Keywords: Machine Learning, Natural Language Processing, Deep Learning, Persuasion Analysis, Social
Networks
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Sumário

Deteção automática de tentativas de persuasão
em redes sociais

O crescimento das redes sociais e o aumento do tempo que as pessoas passam nelas criaram um lugar
perfeito para a disseminação de falsas narrativas, propaganda e conteúdo manipulado. Para evitar a dis-
seminação da desinformação, é necessária a moderação do conteúdo, porém é inviável fazê-la manualmente
devido ao grande número de conteúdo diário. Esta dissertação visa resolver este problema através da cri-
ação de um sistema de deteção automática de técnicas de persuasão, conforme proposto num desafio da
SemEval. Começamos por rever as abordagens clássicas de aprendizagem automática e processamento
de linguagem natural, passamos de seguida por abordagens mais sofisticadas de aprendizagem profunda
que são mais adequadas para esse tipo de problema complexo. As abordagens clássicas de aprendizagem
automática são usadas para criar um ponto de partida para o problema. A arquitetura proposta, utilizando
técnicas de aprendizagem profunda, é construída sobre um transformer DistilBERT seguido de redes neu-
ronais convolucionais. Estudamos de que forma o uso de diferentes funções ativação, pré-processamento
do texto, congelamento de camadas do DistilBERT e realização de pesquisa de hiperparâmetros afetam
o desempenho do nosso sistema. Descobrimos que poderíamos otimizar nossa arquitetura congelando as
duas camadas iniciais do DistilBERT e usando asymmetric loss para lidar com o desequilíbrio de classes
no conjunto de dados apresentado. Este estudo resultou em três modelos finais com a mesma arquitetura,
mas usando parâmetros diferentes, onde o primeiro mostrou sinais de overfitting, um não mostrou sinais de
overfitting mas não parece convergir e outro parece convergir, mas produziu o pior desempenho de todos
os três. Apresentaram micro f1-score de 0.551, 0.526 e 0.509 e ficaram em 3º, 6º e 11º lugares, respec-
tivamente, na tabela geral. Os modelos podem apenas classificar elementos textuais, pois o componente
multimodal não é implementado nesta iteração, mas apenas discutido.

Palavras chave: Aprendizagem Automática, Processamento de linguagem natural, Aprendizagem pro-
funda, Análise de persuasão, Redes Sociais

xix





1
Introduction

With the appearance of Web 2.0 regular internet users were able to upload their own content to the web
by using platforms such as blogs and social networks, amongst them: Facebook, Twitter, Instagram and
Reddit. Throughout the years time spent by users on those platforms has increased. It is reported that, on
average, each American spent more than 1300 hours on social networks during the year of 2021. [Suc21]

Whilst allowing users to post as they are pleased increases the diversity of content which, at first sight, is
good for free speech it also comes with the risk of having undesired content. People that post undesired
content are often referred as trolls, usually users with anonymous identities who use techniques such as
name calling, whataboutism, presenting irrelevant data (red herring), amongst others.

Troll ’s existence can be perceived as a minor inconvenient or even innocuous, however they can play a big
part on real world events. An well known case is the possible interference of Russian trolls on the USA’s
2016 Presidential Elections. [Sch20] They used memes as their primary weapon.

A meme can be defined, in a broad sense, as an image with text on top of it usually of humorous nature.
By using this type of media Russian trolls were able to manipulate public opinion and sabotage political
debates. [Sch20]

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Given the amount of information available today on the web, the societal challenge relative to scarcity
of information has been overcome (in certain regions of the world) lending its place to new challenges
like information filtering, unverified sources of information and the information’s fast consumption. The
latter somehow strengthen the first challenge since users spend less time doing research which can lead to
misinformation consumption.

These challenges could be fought by having regulating entities verifying the content validity and its mo-
tivations but the amount of information makes this solution unfeasible, which turns said challenges into
perfect candidates to be played by “intelligent” systems. Some companies, like Meta (previously known as
Facebook), already use [Met] these kind of systems to evaluate content, in this case, to detect hate-speech.

By the end of this dissertation we aim at an “intelligent” system capable of identifying persuasion techniques.
To achieve said goal we’ll try to solve 2 tasks, announced on a SemEval challenge [Sem], with different
modal properties. The tasks are particularly interesting since they go from plain text classification to
image+text classification.

The final result can later be integrated into an array of applications making an modular piece of software
that can be reused according to each needs.

1.2 Objectives and Methodology

The work’s main objective is to create a proper model for 2 of SemEval 2021 Task 6 challenges [Sem]
on ”detection of persuasion techniques in texts and images” sub-tasks. The sub-tasks revolve around the
same data with subtle differences both on the dataset and the approach. There are 2 of them, with one
being a multimodal problem:

• Sub-task 1:
Given the textual content of a meme, identify which persuasion techniques (out of 20 possible ones)
are used in it. This is a multilabel classification problem.

• Sub-task 3:
Given a meme, identify which persuasion techniques (out of 22 possible ones) are used in the meme,
considering both the text and the image. This is a multilabel classification problem.

Building good models requires not only a good knowledge about the problem but also about the datasets
and the many techniques that can be used on top of them. That said, it can be achieved by splitting it in
smaller tasks like:

• Study the data:
An important step in classification problems is to understand the data. By analysing the datasets we
can gather more information about its nature, how the data is structured, which classes appear most
times and other specificities.

• Explore Natural Language Processing (NLP) and Machine Learning (ML) techniques:
Textual elements will be used on all sub-taks, therefore it is important to that have a good knowledge
about the possible techniques to pre-process the text before being fed to a model. There are also
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plenty of papers which describe their approach ti similar tasks, therefore it is useful to read them and
learn from them.

• Explore Deep Learning (DL) models:
Even though certain multilabel tasks can be solved using simple ML tasks, most of them are solved
nowadays using solutions such as transformers which have gained more and more popularity nowadays.
Such architectures are used on the papers submitted by SemEval participants.

• Develop the data-pipeline and the models:
With a broader knowledge about the topics above we need to start thinking about the models
architecture. Multiple experiments should be made with different models and techniques.

• Evaluate the results:
After developing and training the models the results must be compared with the ones presented on
the challenge’s paper [DAS+21]. The results must be interpreted.

This should be an iterative process where models are implemented and trained as our knowledge about
theoretical topics expand.

1.3 Structure

This dissertation is structured in 6 chapters, with this chapter serving as an introduction to the problem.

In Chapter 2 we explain concepts used throughout this work and present other author’s solutions to
somehow similar works.

Chapter 3 contains the problem’s data analysis and some initial experiments on the data.

Chapter 4 describes the proposed solution for the sub-tasks as well as its implementation and deployment.

In Chapter 5 the experiments and its the results for the trained models are presented and compared with
the ones from the original paper.

Chapter 6 addresses what we’ve accomplished with this work and its future improvements.





2
State of the Art

Detection of propaganda and hate speech on text has been a field of interest for quite a while with multiple
academic and R&D papers on it. At the time of writing more and more multimodal tasks concerning hate
speech detection have been released with respective approaches.

In the following sections the state of the art of our problem is presented by describing important NLP, ML
and DL concepts and having in mind the approaches used by other with similar tasks.

2.1 Machine Learning

Machine Learning is a sub-field of Artificial Intelligence (AI) that “enables computers to think and learn on
their own” [ANK18]. Without having explicitly programmed instructions, the computers learns by looking
at different data and modifying their actions in order to maximize the correctness of its output.

Simply put “A computer program is said to learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by P, improves with experience E” [Mit97].

5
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Machine  
Learning

Unsupervised 
Learning

Reinforcement 
Learning

Supervised 
Learning

Figure 2.1: Types of machine learning.

Within ML there are 3 basic approaches: Unsupervised Learning, Reinforcement Learning and Supervised
Learning.

When the model is not given any set of labels on the training data it must find patterns or some data’s
structure, this is called Unsupervised Learning (UL). Clustering is an UL technique and its goal is to group
similar data points together in a way that data points in the same group (cluster) are more similar to each
other than to those in other clusters [ANK18]. Another example of UL is Anomaly Detection that aims at
finding data points which are inconsistent (outliers) with the remaining set [ANK18].

Reinforcement Learning (RL) algorithms are used when a decision is to be made based on past experiences
of learning. The machine agent learns the behaviour using trial and error sort of interaction with the
continuously changing environment. It provides a way to program agents using the concept of rewards and
penalties without specifying how the task is to be accomplished [ANK18]. Game playing programs and
automated trading systems are some popular examples.

In Supervised Learning (SL) we train an ML algorithm with a labeled dataset, where the correct output/set
of label is provided for a given input. The main objective of supervised learning is to find a mapping function
from input variables (X) to output variable (Y) [ANK18]. SL problems are categorized into Regression
and Classification problems. In a Regression problem, we are trying to predict results within a continuous
output, meaning that we are trying to map input variables to some continuous function. In a classification
problem, we are instead trying to predict results in a discrete output.

There are different types of classification problems as illustrated on figure 2.2, however not all algorithms
are suitable for them.

Toxic

No VerySoftly Mid

Toxic

Yes No

Toxic

Smear B&WDoubt Slogan

Binary 
Classification 

Multiclass 
Classification 

Multilabel 
Classification 

Figure 2.2: Different types of classification problems.

While on binary and multiclass classification each data point can only be classified as 1 class out of the
available disjointed set of classes, 1 in 2 or 1 in N respectively, on multilabel classification a data point can
be classified with 0 to N classes out of the N classes available.
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2.1.1 Algorithms

Decision Tree

Decision Tree is a supervised learning algorithm often used in classification and regression tasks. The
algorithm creates a model based on decision rules inferred from the data features.

To create the models, the features that contain the most information about the target feature are located
and then split the dataset along with their values. There are multiple measure to compute the best split,
such as: Gini impurity and Information Gain [Kot13].

The one used by default on the sklearn implementation is the Gini Impurity, which is given by the formula
below.

Gini(D) = 1−
n∑

j=1

pj
2 (2.1)

Where pj is the relative frequency of class j in the dataset (partition) D.

The models generated by decision trees are usually easy to comprehend and visualize [Kot13] but very
prone to overfitting when dealing with high dimensional data. There are strategies to prevent the model
from overfitting such as pruning and checking for data imbalance.

K Nearest Neighbors

K Nearest Neighbors (KNN) is a simple, yet flexible, algorithm that can be applied either in unsupervised
(as clustering) and supervised (classification and regression) learning.

When used in supervised learning, given a entry p and N training instances the algorithm identifies k
nearest neighbors and classifies p with the same class of the majority of k. The distance d between the
points a and b is calculated using a distance function such as the Euclidean Distance.

d(a, b) =

√√√√ n∑
i=1

(bi − ai)2 (2.2)

Where i is the number of features of the points.

Naive Bayes

Based on Baye’s theorem (2.3), it is called naive because it assumes the feature’s mutually independence
(2.4). This independence assumption is often violated, but Naive Bayes classifiers still tend to perform
very well under this unrealistic assumption [Ras14], as long as the features are not strongly correlated.

P (A|B) =
P (B|A)P (A)

P (B)
(2.3)

P (A,B) = P (A)P (B) (2.4)
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With equation 2.3 we’re trying to find the probability of event A occurring, given that event B is true. B
is also know as the evidence [Ras14]. When applied to a dataset, P(A|B) would be the probability of class
A being predicted knowing feature B occurred.

Artificial Neural Networks

The concept of Artificial Neural Network (ANN) is very popular nowadays when performing classification
tasks. The name stems from the idea of a structure that would work like the human brain, where connect
neurons pass information to each other outputting a desired result [AJO+18].

An ANN is composed by multiple layers, each of them with an parameterizable number of neurons. A
neuron can be defined as set of inputs x, a set of weitghs w, a bias b and an activation function f. These
inputs are converted by the neuron into a single output that can later be used as input by another layer of
neurons.

The function f(x1, x2, . . . , xn) can be expressed as a weight sum, although it may vary from network to
network:

f(x1, x2, . . . , xn) = b+
n∑

i=1

wixi (2.5)

The most basic form of an ANN contains only a hidden layer as well as the input and output layers, the
number of neurons at each layer can vary. This is also known as a shallow neural network.

Hidden Layer 

In
pu

t L
ay

er
O

utput Layer 

Figure 2.3: ANN example.

During training, after computing an output ŷ the ANN will use the true value y to calculate how far the
prediction is from reality, and to do so a loss function is used. Gradient methods are then applied in order to
minimize the loss and they will be back-propagated to the network in order to updated the weights [Bod02].

There are different types of neural networks with different configurations and properties from which we can
take advantage to tackle different problems.

Long Short-term Memory (LSTM) networks are very popular in tasks concerning NLP and time-series [SJ19].
For image classification or object detection, Convolutional Neural Network (CNN) are the most common
choice [AG17].
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2.1.2 Problem Transformation

There are a reduced number of classifiers that support multi-label classification, due to the original al-
gorithm’s nature. Problem Transformation (PT) turns multilabel classification problems into either bi-
nary or multiclass problems. Some well known techniques are Binary Relevance (BR) and Label Power-
set (LP). [CMM11].

Binary Relevance

Given a classifier c and problem with n classes, where n > 2, n single-class binary classifiers Ci, i = 1, . . . , n
are created as illustrated on figure 2.4.

The BR initially transforms the original dataset D into n binary datasets Dyj , j = 1, . . . , n, where each
Dyj contains all the examples of D, but with with a positive or negative class related to the single class
yj . This new datasets are then fed to the Ci classifiers [CMM11].

The prediction output is the union of all classes per classifier.

L =  {L1,L2,L3} Ex# Labels

1

2

3

{L1,L2}

{L1,L3}

{L3}

Ex# L3

1

2

3

False

True

True

Ex# L2

1

2

3

True

False

Ex# L1

1

2

3

True

True

False False

Figure 2.4: Binary relevance example

Compared to other multilabel classification techniques, it offers a low computational complexity and it
is easy to parallelize since each classifier is trained independently. Assuming a classifier c is bound to a
complexity of O(C) and there are n classes, the complexity would be n×O(C).

This technique makes the assumption of class independence.

Label Powerset

This method transforms the multilabel problem into one single-label multiclass classification problem, where
the possible values for the transformed class attribute is the set of distinct unique subsets of labels present
in the original dataset [CMM11]. Figure 2.5 illustrates this idea.

This approach does not assume the labels are independent, nonetheless the computational complexity
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Figure 2.5: Label Powerset example.

tends to be higher. Given a training set with n samples and k labels the computational complexity of Label
Powerset is upper bounded by min(n, 2k) [Sor10].

Another drawback from this technique is that it cannot predict unseen labels. If the combinations of labels
has never been observed in training the generated model will never be able to predict it. This can cause
overfitting.

2.2 Deep Learning

Deep learning is a sub-field of AI that uses ANN with many layers, thus the term deep. In general,
DL approaches require more data to train the models than the ones using machine learning. ANN are
trained iteratively which allows them learn from their own experience, using loss functions and backpropa-
gation [DCWZ16].

In the last few years it has been successful in a wide range of applications, including speech recognition,
natural language processing and computer vision. The concepts bellow helped establish deep-learning as
a go-to approach for those problems.

2.2.1 Attention

Attention can be defined as a mapping between a query (Q) and a set of key-value pairs (K,V ) to an
output (O). The output (O) is computed as a weighted sum of the values (V ) where the weight assigned
to each value is computed by a compatibility function of the query with the corresponding key [VSP+17].

Scaled Dot-Product Attention

The authors of [VSP+17] proposed a new approach to attention focused on the dot-product operation.
The input consists of queries and keys of dimension dk, and values of dimension dv. The attention is
computed by first applying the dot-product between all the queries and the keys, which will be divided by√
dk. The result is then passed to a softmax function to obtain the weights of the values.

Queries, keys and values are put into matrices Q, K and V , respectively. The output is given by the
function:



2.2. DEEP LEARNING 11

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.6)

The attention function is identical to the dot-product attention, except for the scaling factor of 1√
dk

. The
scaling factor is crucial when the dot-product between Q and K grows large in magnitude, as this values
will be fed to the softmax function producing extremely small gradients. The scaling factor will counteract
this effect.

MatMult

Q K

Scale

Mask (opt.)

Softmax

MatMult

V

Figure 2.6: Scaled Dot-Product Attention, adapted from [VSP+17]

Multi-Head Attention

While the previous section showed a way to calculate attention with a single function it may be beneficial
for the system to allow our attention mechanism to jointly use different representation of the subspace of
Q, K and V .

By linearly projecting the queries, keys, and values h times with various learning projections to dk, dk,
and dv, respectively, this can be accomplished. The attention function is then applied concurrently to
each of these projected versions of the queries, keys, and values, producing dv-dimensional output values.
[VSP+17] These are concatenated and once again projected, resulting in the final values.

Multi-head attention is expressed as a function of:

MultiHead(Q,K,V ) = Concat(head1,…,headh)WO

where headi = Attention(QWQ
i , KW k

i , VW V
i )

Where the projections are parameter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv

and WO
i ∈ Rhdv×dmodel .
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Figure 2.7: Multi-Head Attention, adapted from [VSP+17]

2.2.2 Network Architectures

LSTM

Traditional neural networks are not well-suited to processing sequential data, such as time-series and natural
language, because they assume that the input data is independent which won’t allow them to capture the
effect of past inputs.

Because of that, Recurrent Neural Network (RNN) were introduced. An RNN maintains an internal state
memory based on previous information (short-term memory). The hidden state is then updated based on
the input and the previous hidden state stored in memory [HXY15].

When dealing with long sequences RNN’s performance start to resent due to what’s called vanishing
gradient. As the gradients are propagated through the layers, the gradients start to get more and more
diluted, turning it residual. The network will not be able to learn properly.

LSTMs can overcome this problem by adding gates which are units within the LSTM that control the flow
of information into and out of the cell state. These gates control how memory is affected by the current
and previous inputs, they also control the output of the current memory cell.

A LSTM still work like a regular RNN except that the hidden layer updates are replaced by purpose-built
memory cells [HXY15].

The memory is updated at each instant using the the following rules:

it = σ(Wixt + Viht−1) (2.7)

ft = σ(Wfxt + Vfht−1) (2.8)

ot = σ(Woxt + Voht−1) (2.9)
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Figure 2.8: LSTM cell.

ct = ft · ct−1 + it · tanh(Wcxt + Vcht−1) (2.10)

ht = ot · tanh(ct) (2.11)

Where it is the input gate, ft the forget gate, ot the output gate, ct the memory cell and ht the hidden
state. The symbols W and V represent weight matrices that are learnt and shared across all time steps.

CNN

Convolutional Neural Networks were first introduced in [LBBH98] as a state of the art approach for
handwritten character recognition. This ANN architecture relies on 2 operations in its hidden layers:
convolution and pooling.

...

... ... ...
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Figure 2.9: Handwritten classification example with CNN.

The convolution is a mathematical operation of two functions (f and g) that produces a third function
(f ∗ g) that expresses how the shape of one is modified by the other. It is given by:

(f ∗ g)(t) =
∫ ∞

−∞
f(τ) · g(t− τ)dτ (2.12)

It is a common technique in Computer Vision (CV) as it can be used to perform tasks such as image
smoothing and edge detection. Convolution is often performed in CV as it follows: given an input image
I and a kernel k, we apply (slide) k throughout I. The mathematical formulation is similar to 2.12 with
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some minor changes:
(I ∗ k)(x, y) =

∫ ∞

−∞
I(x− i, y − j) · k(i, j)didj (2.13)

The result of the integral applied to every pair of points (x, y) will be a feature map. Each kernel is
responsible by identifying a feature, therefore the convolution will be applied N times (one for each kernel)
and N feature maps will be generated. This process is the behaviour of a Convolution Layer.

Usually, every convolution layer is followed by a Pooling Layer. Pooling is a down-sampling technique
applied to a feature map in order to decrease its dimensions while preserving the most important features.
The most used pooling variations are Max Pooling and Average Pooling. They are very straightforward,
the first variation takes the highest value of the feature map while the second approach does an arithmetic
mean with all the values of the feature map.

Despite being very popular in CV, convolutional networks have also been used in text classification
[CDY+21] [ZWZ21]. They are known as Text-CNN and follow the same structure of a regular CNN
but instead of using an input image it takes a matrix of word embeddings.

Transformer

The paper “Attention Is All You Need” [VSP+17] presented a new network architecture: the Transformer.
It relies solely on attention mechanism, dismissing any recurrence and convolutions. By eliminating the
sequential factor the architecture can be paralleled making it faster to train the models.

The Transformer follows an encoder-decoder structure, where the encoder maps an input sequence of
symbol representations (x1, . . . , xn) to a sequence of continuous representations z = (z1, . . . , zn). Base on
representations z, the decoder then generates an output of sequence (y1, . . . , ym) of symbols one element
at the time. At each step the model is auto-regressive, consuming the previously generated symbols as
additional input when generating the next [VSP+17]. Additionally, the Transformer takes advantage of
positional encoding, self-attention mechanisms and point-wise, fully connected layers. These layers are
present on both encoder and decoder.

The encoder can be composed of multiple stacks, where each layer has two sub-layers: the first being a
multi-head self attention, and the second a position-wise fully connected feed-forward network.

The decoder is similar to the encoder but it adds a starting sub-layer of masked multi-head attention. This
extra sub-layer with masked attention prevents the leftward information flow in the decoder, preserving the
auto-regressive property.

2.2.3 Transfer Learning

Transfer Learning (TL) is a technique in which a model trained on a set of data is used as a starting point
for a second model with different data. These two datasets are usually of the same domain or, at least,
somehow related. Otherwise there will be no useful information to transfer. [ZQD+19]

The process of making TL consists essentially on re-using the initial model’s trained layers and the respective
weights. These weights can either be frozen, in which the weights will be untouched during the fine-tuning
phase for the new data, or they can be flexible and changed during the training process. [BKD21]

Using TL can sometimes mitigate the effects of having a small dataset for a specific task. Many areas
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Figure 2.10: Transformer architecture, adapted from [VSP+17]

have benefited from using it, specially NLP with the appearance of Large Language Model (LLM) such as
BERT [DCLT18] or ULMFiT [HR18].

2.3 Natural Language Processing

Natural language processing (NLP) is a sub-field of artificial intelligence and linguistics that focuses on
the interaction between computers and humans in the form of natural language [KSND21]. It involves
developing algorithms and models that can process, analyze, and generate human language. NLP is used
in a variety of applications, such as information retrieval, machine translation, and text classification.

2.3.1 Pre-processing

Each language has its own words and structure but all of them share the use of punctuation, the existence
of verb tenses, pronouns and other parts of speech. These elements give humans cues and context in order
to have a better understanding. They are not as useful to computers, in fact, some of these elements tend
to generate noise when training a model thus the need of pre-processing.

There are multiple pre-processing techniques that can be used according to each problem’s needs, they
are usually chained into a pipeline to process the raw-data. Some of the most common techniques are
explained bellow.
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Tokenization

The process of tokenization consists of breaking a stream of text into segments. These segments, also
known as tokens, can be characters, words or even full sentences.

Stop word removal

In a language there are a lot of words that do not add much meaning to a sentence such as “a”, “the”
or “and”. These words are usually called stop words. Most of the times it is useful to remove these words
because, even if they don’t add any noise to the training process, they increase our corpus dimension.

Text normalization

Small variations of the same word can affect the training process, to prevent it there are multiple things
that can be done. They can be as simple as turning all the text to lower case or replacing an acronym for
its regular word and go to as complex as to reduce a word to its base form. The latter can be achieved
with either Stemming or Lemmatization.

Stemming tries to reduce a word to its base form by chopping either its prefix or suffix. It does not
guarantee the stem is the root form of the word. For instance, given the word studied, the suffix is -ed
which would produce the stem studi [KSND21], which is not a valid word.

On the other hand, Lemmatization takes into account the part of speech in order to obtain the correct root
form, in this case called lemma [KSND21]. For this reason, Lemmatization can produced a more precise
text normalization at the expense of additional computational resources.

2.3.2 Language Representation

A language is essentially a known communication system between two parties defined by a set of rules.
Humans, usually, communicate with each other using sounds and words that are decoded when heard/read.
Computers however cannot decode words in the way they are normally encoded, and that’s when language
representation comes into play.

There are multiple ways to represent text, with some of them using simply statistical elements while others
use more advanced techniques. These representations are frequently classified as discrete or continuous.

A text representation technique is discrete when the words are considered to be mutually independent. In
order words, they do not express any relationship between words. One the same line, a continuous text
representation represents the words in such a way that there is a relationship between them.

Bellow we present some common language representation techniques.

Bag of Words

Bag of Words (BoW) is one of the simplest way to represent text. The distinct words are given and index
which will store the computed frequency of occurrence of that word.
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Given a vocabulary V = {w1,w2,…,wn} with n words and a document D with m words, it can be expressed
as a vector x, in which the xi position represents the number of times the word on position i occurs.

This technique is sometimes chosen due to its low computational complexity but its simplicity makes the
representation less robust. It does does preserve the words order nor its importance. For instance, if the
stop words are not removed from the text they will be considered the most important features they appear
more frequently.

TF-IDF

This representation improves over the previous one by taking into account both the frequency of the word
in the document and the frequency of the word in the entire corpus. Recurrent words in a document but
not in the corpus as a whole are given a higher weight, while words that appear frequently in the corpus
but not in the document are given a lower weight.

The term frequency can be calculated similarly to the BoW, given a term w and a document d in which:

TF(t, d) = count(t, d) (2.14)

The inverse document frequency expresses the importance of a term t across the space of documents D
and is given by:

IDF(t,D) = '*"
(

N

|d ∈ D : t ∈ d|

)
(2.15)

in which N is the total number of documents in D, and the expression on the denominator expresses the
number of documents and in which the term appears.

Therefore, the TF-IDF is given by:

TF-IDF(t, d,D) = TF(t, d) · IDF(t,D) (2.16)

By doing some minor tweaks over the BoW representation TF-IDF tends to show better results, as shown
by [ALA22].

Word2vec

Introduced in [MCCD13] this language representation captures both syntactic and semantic similarities
between words.

Instead of being a purely statistical model this representation makes usage of an ANN and there are two
possible architectures: Continuous Bag-of-Words (CBoW ) and Skip-gram.

Both architectures require us to define a sliding window of size N where the N words before and after the
word w will be useful. The words on the sliding window are called context words and can be defined as a
group C, where C = {wt−N ,…,wt+N} \{wt}.

CBoW architecture allow us to, given C, predict the target word (wt). The training of the network will
end up generating the word’s representation which will be stored on the weight matrix (Wo) connecting
the hidden layer to the output layer. The ith row of Wo represents the ith word of the vocabulary.



18 CHAPTER 2. STATE OF THE ART

w(t-2)

w(t-1)

w(t+1)

w(t+2)

w(t)

SUM

Input Projection Output 

w(t-2)

w(t-1)

w(t+1)

w(t+2)

w(t)

Input Projection Output 

CBoW Skip-gram

Figure 2.11: Word2vec architectures, adapted from [MCCD13]

The Skip-gram architecture mirrors the CBoW and instead of taking the context-words as input it tries to
predict them. The learn representation is stored on the matrix Wi, between the input layer and the hidden
layer.

Training a model like Word2vec is computationally more expensive than using any of the previous rep-
resentations, especially the Skip-gram architecture which requires a larger amount of data in order to
converge. There is a clear trade-off between efficiency and a richer representation (word embeddings) of
the vocabulary. Even though the vocabulary representation is richer it is still context free, which means
that homonyms will only have one representation [STF21].

BERT

BERT (Bidirectional Encoder Representations from Transformers) [DCLT18] is a stack of bidirectional
encoders based on the original Transformer [VSP+17] architecture. The architecture has two steps: the
pre-training and fine-tuning. During pre-training the model is trained on unlabeled data over different
pre-training tasks [DCLT18], which will result in a pre-trained language model (LM). For the fine-tuning
step, the LM’s parameters will be used as a starting point to specific tasks which will be trained on the
task’s data.

A major concept of BERT’s representation is the bidirectionally which means that both the previous and
next words determine the representation of a word. Let’s take for example the word “bank”, given the
sentences “I am going to the bank to sit down” and “I am going to the bank to withdraw cash” the
meaning of the word “bank” is easily inferred by the words “sit” and “withdraw” respectively, however if
the model was unidirectional only the previous words to “bank” would affect the representation. [STF21]
The bidirectionally helps the representation to have an even stronger context-aware component.

Bidirectional representation is achieved by masking some percentage of the input randomly, and then
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Figure 2.12: BERT single sentence classification, adapted from [DCLT18].

predicting the masked token. The authors called this procedure as a masked language model (MLM). The
masked tokens are replaced by the special token [MASK].

There are other special tokens in BERT, such as [CLS] which represents the beginning of a sentence,
[SEP] which represents the end of a sentence and the [PAD] token which is used when the maximum input
length M|i| is greater than the sentence length |s|. For instance, given a M|i| = 5 and the sentence “I like
cake” the sentence representation would be “I like cake [PAD] [PAD]”.

Additionally, BERT uses WordPiece [WSC+16] embeddings which break down words into sub-word units,
also known as wordpieces. This token embeddings are summed with segment embeddings (which represent
to which sentence the tokens belong) and position embeddings (which tell the relative position of a token
in a sentence), resulting in the input representation.

These changes to the original Transformer architecture and the fine-tuning of BERT pre-trained LM on
specific tasks resulted in state of the art results for the GLUE [WSM+18] benchmarks, which is a collection
of diverse natural language understanding tasks [DCLT18].

2.4 Evaluation Metrics

Evaluation metrics are used to measure the performance of the model. There are many evaluation metrics
to express different results and to apply on different problems, however we’ll focus only on the metrics used
on the [DAS+21].

When trying to evaluate a classification model it is essential to know how many samples were correctly and
incorrectly classified, this information is often plotted in a confusion matrix, just like on 2.1.
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Predicted
0

Predicted
1

Actual
0 TN FP

Actual
1 FN TP

Table 2.1: Example binary confusion matrix.

One of the most common metrics is precision. It measures how many of the positive predictions made by
the model are actually correct.

Precision =
TP

TP + FP
(2.17)

Even though it is a useful metric, when used by itself it leaves a lot to be said about the model’s performance.
The model can have a high precision and still miss a lot of positive cases, since the false negative samples
are not considered with this metric.

False negatives are considered when calculating the model’s recall, which measures how many positive
predictions out all of the real positive instances are correct.

Recall = TP

TP + FN
(2.18)

But, once again, this measure by itself tells very little. Imagine a binary classification problem where we
have 70 positive samples and 30 negative samples and we opt for a majority baseline(classifying all the
instance with the predominant class), the recall of the model would be equal to 1. This is obviously an
extreme example but it shows the consequence of not choosing the right metrics.

If we think about the previous example and we opted for using precision we would have got a score of
0.7, exposing the model’s inconsistency. By combining the 2 metrics we can have a better insight of the
model’s performance, and this is exactly what f1-score does, as it is an harmonic mean of precision and
recall.

F1-Score = 2× Precision · Recall
Precision + Recall (2.19)

There are variants of f1-score that can be used in multiclass and multilabel problems such as macro and
micro, which is the [DAS+21] official metrics for sub-task 1 and 3.

Macro f1-score computes the f1-score for each class and does an arithmetic mean. By doing so we’re
attributing the same weight to all classes which might not be true on imbalanced datasets.

Macro F1-Score =

∑n
i=1 F1-Scorei

n
(2.20)

When there’s a clear class imbalance micro f1-score might be a best choice since it each instance equally
which gives a better comprehension of the classifier overall performance.

Micro F1-Score = 2× Micro-Precision · Micro-Recall
Micro-Precision + Micro-Recall (2.21)
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Micro f1-score is calculated in the same way as the regular f1-score but it uses micro-average precision and
recall.

2.5 Previous Approaches

Multi-label Hate Speech and Abusive Language Detection in Indonesian Twitter

In 2019 a group of researchers published a paper [IB19] which discusses multi-label text classification for
abusive language and hate speech detection including detecting the target, category, and level of hate speech
in Indonesian Twitter using machine learning approach with Support Vector Machine (SVM), Naive Bayes
(NB), and Random Forest Decision Tree (RFDT) classifier and Binary Relevance (BR), Label Powerset
(LP).

The problem only had 3 classes which makes it a good candidate for problem transformation. The researches
did not only tried different models but also different ways to pre-process the text and feature extraction.
In the end, the best results came out of word unigram (feature extraction), Random Forest using Label
powerset as the transformation method with an accuracy of 77.36

On the following year, the same researchers release a new paper [ISB19] with some improvements, in it
they proposed to also use part of speech (also known as grammatical tagging), emojis and the word2vec
for word embeddings. They managed to get a minor upgrade to the previous accuracy getting 79.85%.
However, this result was not obtained using word2vec, which had slightly worse results. This corpus used
was relatively small and for that reason word2vec was not able to train the model properly.

A multi-label ensemble predicting model to service recommendation from social media contents

The researcher’s investigation [JPY22] goal was to design a predictive recommendations method that
predicts the consumer recommendations in travel and tourism, particularly in the case of the airline. As
a basic classification model to train the dataset KNN, SVM, Multi-Layer Perceptron, Logistic Regression,
Random Forests and Ensemble methods were used. Further, the model was boosted by implementing
partitioning methods, to partition the label space into lower spaces, such as RAkELo (Randomized K label
set) and Louvain. This allowed to transform every label set into a multi-class classification problem.

The dataset includes categorical and text data but also numerical data, however, due to our problem we
will only concern about the text data fields approach. In this paper, in order to make text processable
Word2Vec was used.

The best results came from using an MLP with Louvain with a Micro F1-score of 0.9055 followed by the
same model with RAkELo, with a score of 0.8987.

Balancing Methods for Multi-label Text Classification with Long-Tailed Class Distribution

A common multilabel classification challenge is capturing label dependencies, it gets even more challenging
when when class distribution is long-tailed. There are some methods to counter data imbalance such as
re-sampling and re-weight however they are not very effective when strong labels dependency and class
imbalance are present simultaneously as they usually result in oversampling favouring the predominant
labels.
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This paper’s [HGK+21] authors introduce the application of balancing loss functions for multilabel text
classification in order to tackle both problems simultaneously. Although Binary Cross Entropy (BCE) is
commonly used for multilabel text classification this loss function is vulnerable to label imbalance, because
of that the authors propose the usage of 3 different loss functions: Focal Loss, Class-balanced focal loss
and Distribution-balanced loss. The idea is to reweight BCE so that rare instance labels get more attention.

To test the hypothesis 2 datasets were used: Reuters-21578 and PubMed. While the first dataset had a
reasonable number of labels (90) the latter had 18211 labels. They used SVMs with Binary Relevance and
TF-IDF features as a baseline classifier. To test the loss functions they used a Bert pre-trained model.
The evaluation metrics used were Micro F1-score and Macro F1-score.

For most of the Reuters-21578 dataset the results were pretty similiar, however when it comes to classes
with less than 8 samples the BCE presented a Micro F1-score score of 0.00. Focal Loss and Class-balanced
focal loss presented similar results to the baseline, with a score of 23.08 Distributed-balanced loss on the
other hand achieved a score of 48.89.

The improvements of using the proposed loss functions were clearer on the PubMed dataset, where they
yielded scores ≈58 Micro F1-score score for the whole label space while BCE scored only 26.17.

NLPIITR: RoBERTa Model with Data Augmentation for Persuasion Techniques Detection

On of the teams that took part in [DAS+21] is NLPIITR [GS21]. To address sub-task 1 they tried 13
different models to obtain results, with different pre-process techniques and ended up with 23 results.

It was found that strong results could be achieved by fine-tuning RoBERTa, however it was also found
that some other models behaved fairly well when being part of a voting classifier, and requires way less
computational resources than RoBERTa. Soft voting classifier and hard voting classifier were deployed to
use traditional machine learning models for the task.

They tried multiples machine learning and deep learning approaches, such as Logistic Regression, Naive
Bayes, SVMs, Random Forests, LSTMs, BERT and RoBERTa. Since some of the approaches support multi-
class classification, they wrapped the these models in a OneVsRestClassifier (scikit-learn implementation
of Binary Relevance).

To overcome the scarcity of data the researchers tried different data augmentation techniques. Some of
them boosted the model’s performance, however, others just confused the model, such as: random swap,
synonym replacement, random deletion and random insertion. Back Translation, which is a classic data
augmentation technique that translates the text data to another language and then it translates it back
to the original language, was one of the techniques that boosted the model’s performance. By applying it
new text was generated while preserving the context of the sentence.

To pre-process the data the researchers created custom functions to remove special characters and punc-
tuation and convert all the words to lower-case. After that they proceeded to remove the stopwords using
the nltk corpus. They also experimented using Stemming and Lemmatization using nltk and realized that,
even though it is computationally more complex, Lemmatization yielded better results.

In the end they were able to conclude that, on the dev-set, RoBERTa fine-tuned on the augmented data
presented the best score with an Micro F1-Score of 0.509. The second best result was achieved with an
ensemble of all machine learning models (13 models) with a hard-voting classifier of a with a threshold of
4 (which means the class is predicted if at least 4 classifiers classify it as positive). The Micro F1-Score
was 0.440.
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YNU-HPCC: Combining ALBERT and Text-CNN for Persuasion Detection in Texts and Images

In order to tackle sub-task 1 [DAS+21] the team [ZWZ21] used a pre-trained ALBERT model and added
a Text-CNN layer. By providing the hidden representation matrix outputted by ALBERT they were able
to train the CNN layer with kernels of size 3, 4 and 5. The chose Adam as a model’s optimizer and binary
cross entropy as a loss function. The hyperparameters were obtained using grid-search.

Before committing to ALBERT they also experimented pre-trained BERT and RoBERTa but they failed
to improve over ALBERT. Using the final configuration they managed to get a Micro f1-score of 0.472 on
the dev set.

AIMH: Multimodal Classification Using an Ensemble of Transformer Models

The AIMH team participated [MFGA21] on sub-task 1 and 3 [DAS+21], their main focus was sub-task 3
but they ended up using part of the model in order to participate on sub-task 1.

They started by proposing a baseline model which they called VTTE (Visual-Textual Transformer Encoder).
The transformer encoder’s visual and textual input features were extracted respectively from a CNN and
a pre-trained BERT model. The textual and visual inputs were separated by the [SEP] special character
embedding. The encoder output was followed by a fully connected layer and a sigmoid layer which would
output the probabilities for each persuasion technique.

After establishing a baseline model they presented the DVTT (Double Visual Textual Transformer) which
consists of 2 different transformers networks, able to process visual and textual inputs concurrently. Each
transformer in DVTT is dependent on the other modality, making it feasible for the entire architecture to
jointly reason on the two modalities taking two separate pathways. In order to accomplish this, they feed
the sequence of textual embeddings to the encoder of the visual transformer and the sequence of visual
embeddings to the decoder, and the same is true for the textual transformer. A fully connected layer and
a sigmoid layer come after each transformer. The ultimate probability for each label is then calculated by
averaging the probabilities of each sigmoid layer.

To tackle sub-task 1 they simply used the VTTE model, with a binary cross-entropy loss function, without
the visual features which resulted in a Micro F1-Score of 0.539 on the test set. For sub-task 3, 6 models
were trained. A ResNet50 pre-trained on image classification was used in all of them in order to encode
the image set of features. The first model trained was the VTTE and the remaining models were variants
of DVTT, with different parameters or different number of layers (encoder-decoder).

Overall the DVTT models had a better performance than the suggested baseline VVTE. For the final
submission it was used an ensemble of the 6 models trained, where the probabilities were produced using
a soft-voting classifier. This submission produced a Micro F1-score of 0.540 for the test set.

MinD: Propaganda Detection using Transfer Learning and Multimodal Fusion

MinD took part on SemEval-2021 Task 6 challenge, being the contest winners for sub-task 1. They
published a paper [TGL+21] with their system’s architecture regarding sub-tasks 1 & 3.

For sub-task 1, due to data’s scarcity, transfer learning was used. Specifically by fine-tuning pre-trained
large language models (LLMs) on an external dataset from SemEval-2020 Task 11 [MBW+20] and then
continuing to fine-tune then using the proper corpus [DAS+21]. An ensemble of transformers (BERT,
RoBERTa, XLNet, DeBERTa and ALBERT ), with Focal Loss (to address the imbalanced classes), was
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used. The model’s probabilities were averaged and with that results, post-processing rules were applied.
For instance, each bi-gram appearing more than 3 times is flagged as a repetition.

Sub-task 3 is a multimodal task, combining text with images. The model trained for sub-task 1 was used to
address the textual elements. To perform feature extraction on images, they used ResNet-34, OCR-based
positional embeddings and Faster R-CNN. The 2 modalities were combined using late fusion.

Just like expected, the predominant labels (Name Calling and Loaded Language) show a reasonable per-
formance (0.667 and 0.819 Micro F1-score respectively). However, the ones with less than 20 training
samples tend not to be predicted.

2.6 Summary

In this chapter we described some State of the Art concepts used in multilabel classification tasks concerning
natural language processing and computer vision as well as some real world approaches on similar problems.

To do so we started by explaining some conventional ML algorithms that support multilabel classification
(such as KNN and Decision Trees) and also went over some techniques that allow us to turn multil-
abel classification tasks into either multiclass or binary classification (such as Label Powerset and Binary
Relevance).

Later, we talked about DL with more complex models like LSTMs and Transformers and how we can used
pre-trained models as a leverage in our solution.

Following ML and DL we also presented some common NLP pre-processing techniques as well as state of
the art words representation.

Evaluation metrics employed on this type of classification task were also discussed.



3
Problem study

In this chapter we present the datasets used and do some exploratory work on them. Simple ML classifiers
are used on the data in order to gain sensibility with the problem and the data.

3.1 Data analysis

The data we’ll been working with has been provided by the organizing team of SemEval’s 2021 Task
6 [Sem]. To do so, English memes were collected from 26 Facebook groups regarding politics, Covid-19,
vaccines and gender equality and gathering memes about such topics.

For this challenge the team considered a meme as a “photograph style image with a short text on top of
it”, excluding some of the data collected. For each meme, the textual content was annotated first and later
the whole meme was annotated. Each of these annotation were performed in 2 phases: first the annotators
independently annotated the memes; afterwards the annotators met with a consolidator do discuss and
select the final gold labels.
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The final annotated dataset consisted of 950 memes: 687 memes for training, 63 for development and 200
for training. While the maximum number of sentences in a meme is 13, the average number of sentences
per meme is 1.68.

The data used for the 2 sub-tasks is the same, even though for sub-task 1 only text elements are used whilst
sub-task 3 also use the original images. The dataset however differ on the Y (predictions) axis due to the
sub-tasks particularities. In order to give us a greater knowledge of the data the table 3.1 was provided,
where we can understand the labels distribution for the 2 tasks.

Persuasion Techniques Sub-task 1 Sub-task 3
Loaded Language 489 761
Name Calling/Labeling 300 347
Smears 264 602
Doubt 84 111
Exaggeration/Minimisation 78 100
Slogans 66 70
Appeal to Fear/Prejudice 57 91
Whataboutism 54 67
Glittering Generalities (Virtue) 44 112
Flag-Waving 38 55
Repetition 12 14
Causal Oversimplification 31 36
Thought-Terminating Cliché 27 27
Black-and-White Fallacy/Dictatorship 25 26
Straw Man 24 40
Appeal to Authority 22 35
Reductio ad Hitlerum 13 23
Obfuscation, Intentional Vagueness, Confusion 5 7
Presenting Irrelevant Data (Red Herring) 5 7
Bandwagon 5 5
Transfer — 95
Appeal to (Strong) Emotions — 90
Total 1642 2488

Table 3.1: Statistics about the persuasion techniques.

By looking at table 3.1, on the Sub-task 1 column, we can spot a clear imbalance between classes, with
Loaded Language, Name Calling and Smears appearing on over 25% of the samples while Bandwagon,
Irrelevant Data, Confusion, Reductio ad Hitlerum and Repetition are present on less than 2% of the data.

The dataset was distributed in 2 different phases: development and test. During the first phase the
training and development data were released, however no gold labels (Y ) were released for the latter.
During the test phase the labels for the development set were released as well as the test data, without
the gold labels.

To understand if the datataset’s splits (train, dev/validation, test) are balanced a graphic was plotted (3.1).
When looking at it, we realize that not only the splits are not balanced, some classes are not even present in
certain splits. For instance, Black and white Fallacy, Red Herring and Obfuscation are completely missing
from the development/validation split.

The two datasets, as well as their partitions come in the format of json files. The content of those files
is a list of dictionaries. Each dictionary represents a data entry and they consist of three fields: id, labels
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Figure 3.1: Class distribution per split on sub-task 1.

and text. The labels represents the predictions (Y ) and is a list of strings for sub-taks 1 and 3. The text
field is a string containing the textual elements of the original image. The id field is a string which maps
each entry to an image, this field is particularly useful for sub-task 3.

3.2 Data pre-processing

Labels

As told on this chapter the labels are given as a list of strings. This representation is not desirable because
it makes it harder to pass to a dataframe and later to a classifier.

A proper way to represent the predictions would be to transform the list of categorical data into a list of
binary values with 1 meaning the value is present and 0 the absence of it. Sklearn provides a function to
do what I’ve just described, called MultiLabelBinarizer.
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Id text labels
train_1
train_2

A murder in space.
Jim Carrey

sci-fi, thriller
comedy

Id text
train_1
train_2

A murder in space.
Jim Carrey

sci-fiMultiLabelBinarizer thriller comedy
1 1

1
0

00

Figure 3.2: Multilabel Binarizer transform.

The transformation of the data is represented on figure 3.2.

Textual elements

In order to reduce the dataset’s textual elements dimension and complexity a pre-processing pipeline was
created. The pipeline has the following steps:

1. Case converting: The first thing to do is to lower case all the words on the sentence and remove
the punctuation.

2. Pos-Tagging: Using nltk we perform a positional tagging to the sentence adding a syntactic meaning
to each word. This function uses a pre-trained model to find the correct tags.

3. Tokenization: We opted for doing a word level tokenization.

4. Stop-words and numbers removal: The common words that in nlp problems do not add much
meaning to the sentence are called stop-words. Nltk provides a list of english stop-words which we
used to removed them from our corpus. The numbers were removed using a regex expression.

5. Text Normalization: Once again, nltk was used to lemmatize our tokens. Lemmatization consists
of reducing a word to its root form, also known as lemma. Lemmatization can usually be improved
when providing also syntactic meaning to a word, that’s why pos-tagging was used. The lemmatizer
chosen was the WordNetLemmatizer.

The results of pre-processing are presented on table 3.2. The reduction of the corpus dimension stems
from the aggregation of words with the same lemma and stop-word removal. That way, only the most
meaningful words will be converted to a vector during the feature extraction.

Nº of Words Nº of distinct words
Unprocessed text 16840 6427
Pre-processed text 9483 3092

Table 3.2: Corpus dimension before and after pre-processing

3.3 ML models

After cleaning the data we trained some models using classical ML approaches. These initial experiments
should enable us to better understand the problems posed by the data. To perform the experiments Python
libraries such as Sklearn provided the classifiers used and Scikit-Multilearn allowed us to use those classifiers
with PT approaches.

According to the challenge’s paper [DAS+21] the development set could be used to train during the test
phase, so we used it during the training process. To evaluate the models trained, K-fold cross-validation
was used with K = 5.
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Classifier’s parameters where not chosen using advanced techniques but rather a random search of param-
eters. Multiple values were tested, however only the models yielding the best results are presented.

To convert the textual elements into features two approaches were considered. The first one uses a simple
statistical method (TF-IDF ) while the other tries a more sophisticated approach using neural networks to
generate word embeddings (Word2vec).

Sklearn provides the TfIdfVectorizer class which was used. Some results of TF-IDF based models are shown
in table 3.3.

Model Technique Algorithm N-Gram Parameter Param. Value Micro F1 Macro F1 Time

M1 - Decsision Tree (1,2) class_weight None 0.306 0.133 0.68
M2 - ExtraTrees (1,2) max_features None 0.317 0.126 0.70
M3 - KNeighbors (1,2) n_neighbors 20 0.203 0.047 0.18
M4 Binary Relevance Decsision Tree (1,1) class_weight None 0.315 0.126 5.14
M5 Binary Relevance ExtraTrees (1,1) max_features None 0.303 0.091 1.57
M6 Binary Relevance KNeighbors (1,2) n_neighbors 20 0.190 0.044 1.31
M7 Binary Relevance Gauss. Naive Bayes (1,2) None - 0.302 0.086 2.55
M8 Label Powerset Decision Tree (1,1) class_weight None 0.321 0.117 0.87
M9 Label Powerset KNeighbors (1,2) n_neighbors 20 0.120 0.029 0.10
M10 Label Powerset Gauss. Naive Bayes (1,2) None - 0.349 0.085 1.76

Table 3.3: Results using TF-IDF as feature extraction technique.

F1-Score
Label M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
Appeal to Authority - 0.222 - 0.200 - - 0.143 - - -
Appeal to Fear/Prejudice - 0.133 - - - - - 0.111 - -
Bandwagon - - - - - - - - - -
Black-and-White Fallacy/Dictatorship 0.400 0.200 - 0.182 - - - - - -
Causal Oversimplification - - - 0.182 - - - - - -
Doubt 0.053 0.093 - 0.103 0.063 - - - - -
Exaggeration/Minimisation 0.320 0.24 - 0.125 0.296 - 0.057 0.353 0.190 0.083
Flag-Waving 0.400 0.286 0.286 0.143 0.143 0.286 - 0.308 - -
Glittering Generalities (Virtue) 0.154 - - - 0.167 - - 0.154 - -
Loaded Language 0.465 0.519 0.426 0.576 0.512 0.419 0.673 0.570 0.264 0.617
Straw Man - - - - - - - - - -
Name Calling/Labeling 0.304 0.435 0.133 0.385 0.341 0.069 0.351 0.287 0.125 0.364
Obfuscation, Intentional Vagueness, Confusion - - - - - - - - - -
Presenting Irrelevant Data (Red Herring) - - - - - - - - - -
Reductio ad Hitlerum - - - - - - - - - -
Repetition - - - - - - - - - -
Slogans 0.207 0.095 0.100 0.063 - 0.100 0.200 0.143 - 0.231
Smears 0.366 0.289 - 0.326 0.306 - 0.224 0.302 - 0.263
Thought-Terminating Cliché - - - - - - - - - -
Whataboutism - - - 0.231 - - 0.074 0.118 - 0.133

Table 3.4: F1-Score by class on each model using TF-IDF.

The best micro f1-score results came from using rule based models (decision trees) and Label Powerset
(LP) with Naive Bayes. Some of these rule based models also presented the highest macro f1-score which
indicates the models make consistent predictions across the label space and not just for the predominant
labels. This can be observed on table 3.4. Still by looking at the table we can confirm that no classifier
predicts any of the least representative labels (the ones that appear in ≤ 2% of the samples).

In order to improve the previous model’s results we tried to use Word2vec to extract information from
the textual features . Gensim library provided a pre-trained Word2vec model, trained on the Google News
dataset (containing around 100 billion words). The embeddings for each sentence were obtaining by using
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a simple mean of the sum of the word embeddings on said sentence.

Model Technique Algorithm Parameter Param. Value Micro F1 Macro F1 Time
MW1 - Decsision Tree class_weight None 0.302 0.102 0.77
MW2 - ExtraTrees max_features None 0.298 0.111 0.20
MW3 - KNeighbors n_neighbors 20 0.445 0.074 0.33
MW4 Binary Relevance Decsision Tree class_weight None 0.295 0.106 4.14
MW5 Binary Relevance ExtraTrees max_features None 0.293 0.108 0.11
MW6 Binary Relevance KNeighbors n_neighbors 20 0.445 0.074 0.39
MW7 Binary Relevance Gauss. Naive Bayes None - 0.360 0.194 0.16
MW8 Label Powerset Decision Tree class_weight None 0.301 0.119 1.24
MW9 Label Powerset KNeighbors n_neighbors 20 0.415 0.083 0.06
MW10 Label Powerset Gauss. Naive Bayes None - 0.400 0.091 0.10

Table 3.5: Results using Word2vec as feature extraction technique.

F1-Score

Label MW1 MW2 MW3 MW4 MW5 MW6 MW7 MW8 MW9 MW10

Appeal to Authority 0.143 - - - - - 0.143 - - -
Appeal to Fear/Prejudice - 0.114 - 0.154 0.061 - 0.151 - 0.182 -
Bandwagon - - - - - - - - - -
Black-and-White Fallacy/Dictatorship - - - - - - 0.200 - - -
Causal Oversimplification - 0.095 - 0.087 - - 0.108 0.333 - -
Doubt 0.140 0.150 - 0.100 0.179 - 0.295 0.098 - 0.286
Exaggeration/Minimisation 0.195 0.182 - 0.205 0.103 - 0.329 0.065 - 0.095
Flag-Waving 0.105 0.154 - 0.095 - - 0.200 0.200 - -
Glittering Generalities (Virtue) 0.074 0.167 - - 0.182 - 0.308 0.083 - -
Loaded Language 0.616 0.612 0.727 0.604 0.599 0.727 0.663 0.553 0.684 0.643
Straw Man - - - - - - 0.069 - - -
Name Calling/Labeling 0.352 0.254 0.306 0.313 0.301 0.306 0.425 0.366 0.429 0.323
Obfuscation, Intentional Vagueness, Confusion - - - - - - - - - -
Presenting Irrelevant Data (Red Herring) - - - - - - - - - -
Reductio ad Hitlerum - - - - - - - 0.286 - -
Repetition - - - - - - - - - -
Slogans 0.114 0.065 - 0.188 0.267 - 0.213 - - -
Smears 0.291 0.293 0.451 0.299 0.231 0.451 0.489 0.245 0.361 0.466
Thought-Terminating Cliché - 0.133 - - - - 0.130 - - -
Whataboutism - - - 0.067 0.207 - 0.161 0.160 - -

Table 3.6: F1-Score by class on each model using Word2Vec.

Using a more advanced techniques we were able to get better results for some of the models, specifically the
ones using KNeighbors and Naive Bayes. These improvements were not seen on the models using decision
trees. When using TF-IDF we capture the feature’s importance whilst with Word2vec we capture the
feature’s meaning. The rules generated by the decision tree models tend to look at the feature importance,
which might explain why there were no improvements.

The models with the best results were the ones using KNeighbors and Naive Bayes. Out of the four models,
the one with the smaller Micro F1-score was the one using Naive Bayes with BR, nonetheless, this model
also presents the highest Macro F1-score. This happens because the model is giving an higher importance
to the least representative classes as it can be seen on table 3.6 where this model (MW7) outperforms
most models for every class except for the most representative. To understand this behaviour we compared
the table A.3 with A.4 and we infer that even though the model presents and high recall for most labels,
the precision for those labels is low, which means the model is predicting a lot of false-positive cases.

When looking at the models created using simpler approaches we can say that MW7 and MW10 are at
the same level as some of the models presented on [DAS+21].
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Both models outperform the Random Baseline and TriHeadAttention’s model in micro and macro F1-score.
MW10 also outperforms the micro F1-Score of the Majority Baseline (0.374) and NLPIITR ’s model (0.379)
however its macro F1-score is smaller than the latter (0.126). The Majority Baseline simply assumed that
the predominant class occurred on every example.

Even though the model MW7 does not outperform the Majority Baseline or NLPIITR in terms of micro
F1-score it is worth noting it does outperform them in terms of macro F1-score.

3.4 Summary

Exploring the dataset revealed it has a small number of samples which is aggravated by how unbalanced
the label distribution is, as 17 out of 20 labels appear in less than 10% of the samples. This makes the
classification task for less represented labels a real challenge.

It was also explained how the dataset’s pre-processing pipeline was created and its effect on the corpus
dimension. The result of this pipeline was later fed into models using classical ML algorithms and PT
techniques.

The ML models were created using TF-IDF and Word2Vec to extract the textual features. In general,
trees presented better results when using TF-IDF and Naive Bayes performed better with Word2Vec. Even
though some of these models produce interesting results they are not ideal which justify us to employ more
sophisticated DL techniques such as Transformer based architectures, like the ones discussed on chapter 2.





4
Proposed System

The studies conducted on chapter 3 revealed that traditional ML techniques by them-self do not provide
desirable results for this problem which might have led the other participants on SemEval [DAS+21] to go
with State of the Art techniques such as different Transformer architectures.

Their approaches vary between fine-tuning the transformers on the provided dataset, using an ensemble of
transformers or using other networks on top of the fine-tuned transformer (such as LSTM and CNN).

Fine-tuning such architectures can be an expensive process, both in time and money. Our architecture’s
goal is not only to achieve the best results possible but also to try to reduce the computational cost of
training our model. The last part however cannot be precisely computed as we don’t know the machines
in which other participants trained their models and how much time it took.

4.1 Architecture

Even though we cannot precisely calculate how expensive our architecture is when compared to others there
are certain aspects that have been studied and we can take into account, such as the transformer’s choice.

33



34 CHAPTER 4. PROPOSED SYSTEM

DistilBERT [SDCW19] has made significant improvements regarding these questions, as it reduces the orig-
inal BERT model’s size by 40% and its inference time is 60% faster while retaining 97% of its functionality.
To perform knowledge distillation the DistilBERT model uses Teacher -Student architecture, where the
student has a similar architecture to the original BERT model except for the pooling layer and it reduces
the number of layers by a factor of 2.

A very straightforward approach would be to simply fine-tune a pre-trained DistilBERT model and adding
a linear layer on top of it, and it would probably produce fair results, however there are other networks
that can produce better results without much overhead. CNNs have proved to produce good results when
it comes to multi-label text classification [Als21] [YCD+20] as they are able to recognize patterns in the
text. These patterns can be simpler or more complex depending on the kernel’s size, for instance a kernel
with size 2 would be similar to using bi-grams. When compared with LSTMs they are less expensive in
time as they are highly parallelizable due to its non sequential nature.

Our model’s architecture is based on these concepts with the addition of a couple of linear and dropout
layers.
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Figure 4.1: Final model architecture.

The text embeddings are passed into a pre-trained DistilBERT model which returns an input sequence
representation, also known as hidden state, of size 768. The representation is passed to a linear layer
followed and its output is then passed to a list of convolutional layers. A pooling operation is then applied
to all the convolutional layers in order to extract the most important features. The result of the pooling
operation of each layer is then concatenated in order to be passed to another group of linear and dropout
layer which will then go into a fully connected layer with each neuron representing a label. The activation
function used at the end of each linear layer (except for the last one) as well as after the convolutional
layers is elu.
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4.2 Implementation and deployment

The architecture described in the previous section was implemented in Python using the PyTorch 1 library.
This library provides a vast set of common DL utilities with a robust documentation and a strong presence
in the open-source community. The high usage of PyTorch amongst the open-source community stems
from its pythonic way of writing code and the ease of usage when compared to other frameworks such as
Tensorflow.

While most of the code was written using PyTorch some core ideas were implemented using the Transformers
library from Hugging Face 2. This library allowed us to load up to date pre-trained models with zero-effort
instead of having us load pre-trained models from local files, amongst other things.

The model implementation using PyTorch is presented bellow:
1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 from transformers import DistilBertModel
5

6 class ADPTModel(nn.Module):
7 def __init__(self, num_classes , kernel_sizes , hidden_dim=768, num_filters=256,

dropout_rate=0.05):
8 super(ADPTModel , self).__init__()
9

10 self.distilbert = DistilBertModel.from_pretrained('distilbert -base-uncased')
11

12 self.l0 = nn.Linear(768, hidden_dim)
13

14 self.convs = nn.ModuleList([nn.Conv1d(in_channels=hidden_dim , out_channels=
num_filters , kernel_size=ks) for ks in kernel_sizes])

15

16 self.l1 = nn.Linear(len(kernel_sizes) * num_filters , hidden_dim)
17 self.d1 = nn.Dropout(dropout_rate)
18

19 self.fc = nn.Linear(hidden_dim , num_classes)
20

21 def forward(self, input_ids , attention_mask):
22 x = self.distilbert(input_ids , attention_mask)
23 hidden_state = x[0]
24 hidden_state = F.elu(self.l0(hidden_state))
25

26 hidden_state = hidden_state.permute(0, 2, 1) # (batch_size , embedding_dim , seq_len)
27

28 x_convs = [F.elu(conv(hidden_state)) for conv in self.convs] # (kernel_len x (
batch_size , num_filters , out_channels))

29 x_pools = [F.max_pool1d(conv, conv.shape[2]).squeeze(2) for conv in x_convs] # (
kernel_len x (batch_size , num_filters))

30 x_cat = torch.cat(x_pools, dim=1) # (batch_size x (kernel_len*num_filters))
31

32 out = F.elu(self.l1(x_cat))
33 out = self.d1(out)
34 out = self.fc(out)
35

36 return out

The PyTorch implementation is very intuitive because we are able to define the model as a python class
1https://pytorch.org/
2https://huggingface.co/
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which inherits the nn (neural networks) base module and simply demands us to define the layers used as
well as the model’s forward pass.

4.3 Experiment’s methodology

After defining a base architecture there are many tweaks that can be made to the model, with that in mind
it is important to define a methodology to ensure that we stay aligned with our goals.

Instead of using the dev dataset for validation, we will merge the training and dev datasets to create a
new training set and we’ll use use the stratified k cross-validation technique (with K = 5), provided by
scikit-multilearn3, just like we did on chapter 3. That way we can use the test dataset only to evaluate
the final model which prevents us from overfitting it to this particular dataset.

There are four points worth exploring when it comes to the model’s tweaking:

• Loss function: The loss function is a crucial aspect of the training process. Some loss functions can
help us deal with the imbalanced class challenge.

• Text pre-processing: When using ML models text pre-processing was very important however, the
transformer’s embedding layer does some text pre-processing of it’s own.

• DistilBERT’s fine-tuning: When using a pre-trained model we can fine-tune the whole model on
the new data, or simply fine-tune some specific layers (usually the last one).

• Hyperparameters search: We implemented our model in such a way that we can perform a search
for a sub-optimal parameters such as kernel’s size, number of convolutional layers, hidden layer’s
dimension, amongst others.

In the end it would also be useful to implement some basic models using other transformer architectures
and compare its results with our final model as well as other participant’s models.

4.4 Summary

In this chapter we went over our proposed system to tackle this problem.

We first explained our goal of achieving desirable results while reducing the computational expenses, followed
by what we though was the best model’s architecture to achieve it, using CNNs on top of smaller transformer
architectures.

It was also explained which tools were chosen to implement our model as well as the reason of its choice,
followed by the respective PyTorch implementation.

The final section consisted in the experiment’s methodology where we explained how we would proceed to
the tweaking and evaluation of the model and why we thought some factors such as the choice of the loss
function or which layers of the transformer to tune are essential aspects of this research.

3http://scikit.ml/
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Results

To evaluate the proposed architecture we started with a baseline model using an arbitrary set of hyperpa-
rameters and followed the methodology defined on the the previous chapter to understand how different
approaches impacted the model’s performance.

All the experiments were performed on a Universidade de Évora’s machine with the following specs:

• CPU: Intel Xeon Silver 4110 @ 2.10GHz;

• GPUs: 2x NVIDIA TITAN V 12GB;

• RAM: 95GB.

The models were trained inside a docker environment which allowed us to use the machine’s hardware
resources while not making any changes to the machine itself.

37
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5.1 System evaluation

5.1.1 Baseline system

In order for our model to learn we need to choose a loss function and an optimizer. Instead of choosing
a simpler optimizer such as Stochastic Gradient Descent (SGD) we opted for and adaptive optimizer such
as AdamW mainly because it generally does provide a faster convergence without much tweaking and
even though it has a computational overhead when compared to SGD, since most of the other participant’s
models also used this optimizer, its overhead is not taking into account when comparing with the remaining
models.

For the loss function we went with BCE. Although this loss function’s name might send us in the direction
of a binary classification problem, it can also be used in multilabel classification problems by looking at the
problem with binary relevance. Just like the optimizer, Binary Cross Entropy was also the loss function
chosen in most models and is defined as it follows:

BCE(p, y) =
{

− '*"(p) if y = 1
− '*"(1− p) otherwise. (5.1)

Where y is the true value (0 if it does not belong to the class or 1 if it does) and p the predicted probability
of it belonging to the class. To simplify the notation we can define:

pt =

{
p if y = 1
1− p otherwise. (5.2)

So that BCE(p, y) = BCE(pt) = − '*"(pt).

The set of hyperparameters for our baseline model is presented on table 5.1. The values chosen, except for
kernel dimensions and hidden layer dimension, do not have any particular reason apart from being in a range
of common values for each hyperparameter. Kernel dimension’s value was the one chosen by [ZWZ21]
and for the hidden layer dimension we went with the same dimension as the distilBERT hidden state.

Hyperparmeter Value

Learning rate 3e-5
Epochs 10
Batch size 8
Dropout rate 0.2
Number of filters 128
Kernel dimensions [3,4,5]
Hidden layer dimension 768

Table 5.1: Baseline system hyperparameters.

By running the experiments for the baseline model we confirmed the expected: a great improvement over
the experiments on chapter 3 with a micro f1-score of 0.516 yet there was still some inability to make
correct predictions to the less represented classes, with 13 out of 20 classes having a f1-score of 0, as it can
be observed on table 5.2. This inability is greatly reflected on the macro f1-score (0.116) which attributes
the same weight to each class.
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Technique F1-Score
Appeal to Authority 0
Appeal to Fear/Prejudice 0.036
Bandwagon 0
Black-and-White Fallacy/Dictatorship 0
Causal Oversimplification 0
Doubt 0
Exaggeration/Minimisation 0.151
Flag-Waving 0.223
Glittering Generalities (Virtue) 0
Loaded Language 0.799
Straw Man 0
Name Calling/Labeling 0.535
Obfuscation, Intentional Vagueness, Confusion 0
Presenting Irrelevant Data (Red Herring) 0
Reductio ad Hitlerum 0
Repetition 0
Slogans 0.107
Smears 0.473
Thought-Terminating Cliché 0
Whataboutism 0

Table 5.2: F1-Score for each class on final architecture’s baseline model.

5.1.2 Text pre-processing

The text fed to the baseline model did not go through any pre-processing pipeline, like we did for the ML
models, it was raw text. This was possible because of the utilities provided by the transformers1 library.

The library provides a base Tokenizer class with methods such as tokenize and encoding that combined can
turn each token in a suitable numeric representation. Custom tokenizers like the one we used, DistilBert-
Tokenizer, inherit the base class and re-implement some of these methods according to the architecture
they’re tied to.

Having a pre-processing pipeline implemented (described on chapter 3) we were able to investigate without
extra effort the impact of pre-processing text from memes before feeding it to the transformer and if the
benefits observed for the ML models can also be observed when using more robust models.

By looking at table 5.3 we can tell that even though the text pre-processing had impact on the model’s
performance, it was not positive, making the score for every class worse than the baseline model. What
might have happened is that by pre-processing the text we lost important information that DistilBERT,
unlike the ML models, is capable of handling an relies on.

To illustrate the previous statement, given the word “walked”, the lemmatizer would have reduced the word
to its lemma “walk”. On the other hand if we passed the word to the DistilBERT tokenizer it would have
splitted it into sub-words resulting in [“walk”, “##ed”]. Not only does it preserve the meaning of the first
sub-word, just like with the lemmatization, as it adds more information, in this case the verb tense.

1https://huggingface.co/docs/transformers/index
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Technique F1-Score
Appeal to Authority 0
Appeal to Fear/Prejudice 0
Bandwagon 0
Black-and-White Fallacy/Dictatorship 0
Causal Oversimplification 0
Doubt 0.036
Exaggeration/Minimisation 0
Flag-Waving 0.094
Glittering Generalities (Virtue) 0
Loaded Language 0.772
Straw Man 0
Name Calling/Labeling 0.550
Obfuscation, Intentional Vagueness, Confusion 0
Presenting Irrelevant Data (Red Herring) 0
Reductio ad Hitlerum 0
Repetition 0
Slogans 0.084
Smears 0.453
Thought-Terminating Cliché 0
Whataboutism 0

Table 5.3: F1-Score for each class on using text pre-processing on final architecture’s baseline model.

5.1.3 Loss function

When dealing with imbalanced datasets in multilabel classification tasks the choice of the loss function can
have an huge impact on the model’s performance, specially on the least represented classes [HGK+21].
Although Binary Cross Entropy can be used it might not be the most suitable loss function for this problem
as it does not deal with the imbalanced data problem. By not doing so, the system will struggle to properly
compute the gradient for less popular classes which will result in the inability to accurately predict hard to
classify examples.

Hard to classify examples are defined as misclassified ones (for instance a false positive). This issue was
addressed in [LGG+17] where the researchers took Binary Cross Entropy as a starting point and added it
a modulating factor of (1− pt)

γ . This type of loss would be called FL and would be given by:

FL(pt) = −(1− pt)
γ '*"(pt) (5.3)

Setting γ > 0 reduces the relative loss for well-classified examples putting more focus on hard misclassified
examples. When an example is misclassified (pt ≤ 0.5), the modulating factor is nearer to 1 and the
loss is unaffected. As pt gets closer to 1 the factor goes to 0 and the loss for well-classified examples is
down-weighted.

In the original paper [LGG+17] the researchers found γ = 2 to produce the bests results, because of that
we also set the parameter with the same value.

Although effective when it comes to classify hard to predict classes Focal Loss sets a trade-off: setting
high γ, to sufficiently down-weight the contribution from easy negatives, may eliminate the gradients from
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F1-Score
Technique Focal Loss Asymmetric Loss
Appeal to Authority 0.180 0.383
Appeal to Fear/Prejudice 0.210 0.299
Bandwagon 0 0
Black-and-White Fallacy/Dictatorship 0 0
Causal Oversimplification 0 0.069
Doubt 0.165 0.267
Exaggeration/Minimisation 0.212 0.281
Flag-Waving 0.205 0.385
Glittering Generalities (Virtue) 0.067 0.229
Loaded Language 0.794 0.806
Straw Man 0 0.109
Name Calling/Labeling 0.598 0.605
Obfuscation, Intentional Vagueness, Confusion 0 0
Presenting Irrelevant Data (Red Herring) 0 0
Reductio ad Hitlerum 0 0.100
Repetition 0 0.133
Slogans 0.227 0.300
Smears 0.456 0.507
Thought-Terminating Cliché 0 0.050
Whataboutism 0.114 0.231

Table 5.4: F1-score for each class using different loss functions.

the rare positive samples. This behaviour can be troublesome, specially in situations where predicting
a false negative is more costly. To address this issue a new loss function was proposed: Asymmetric
Loss (ASL) [BRZ+20].

Asymmetric Loss relies on two principles, Asymmetric Focusing and Asymmetric Probability Shifting. The
first principle decouples the focusing levels of the positive and negative samples so that γ+ and γ− are
the respective focusing parameters. Using it we can redefine the loss as:

{
L+ = (1− p)γ+ '*"(p)
L− = pγ− '*"(1− p)

(5.4)

This mechanism is able to reduce the contribution of negative samples to the loss when their probability is
low, however it might not be very effective when class imbalance is very high. Rather than just reducing
the contributions, Asymmetric Probability Shifting fully discards negative samples when their probability is
very low. This principle, pm, is given by:

pm = (�3(p−m, 0) (5.5)

where the probability margin m ≥ 0 is a tunable hyperparameter.

By integrating pm into L− we get the definition of Asymmetric Loss:

ASL =

{
L+ = (1− p)γ+ '*"(p)
L− = pm

γ− '*"(1− pm)
(5.6)
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With ASL, we use both soft thresholding and hard thresholding to reduce the loss function contribution of
easy negative samples. Soft thresholding uses the focusing parameters γ− > γ+, and hard thresholding
uses the probability margin m.

For our experiments we followed the values suggested by the original paper [BRZ+20] researchers with
γ+ = 0, γ− = 4 and m = 0.05. By setting γ+ = 0 the positive samples will incur simple cross entropy
loss, and control the level of asymmetric focusing via a single hyper-parameter, γ−.

The experiments made show the importance of choosing the right loss function as both Focal Loss and
Asymmetric Loss improved our model’s performance, specially when considering the less represented classes.
This statement is confirmed when comparing tables 5.2 and 5.4.

Micro F1-score Macro F1-score

Focal Loss 0.523 0.162
Asymmetric Loss 0.525 0.238

Table 5.5: Micro and Macro F1-scores for different loss functions.

5.1.4 DistilBERT fine-tuning

Fine-Tuning a pre-trained transformer architecture can be an expensive process. In order to make the
training faster transformer’s layers can be frozen, which will reduce the number of tunable parameters
preventing the weights from being updated. However, this approach can lead to performance loss.

To study the impact of freezing different layers we used as baseline our best model so far, the baseline
architecture with asymmetric loss. To freeze the layers we started by freezing the initial layer and gradually
freezing the layers that come after. The results for the experiments are detailed on table 5.6, where F0 is
the baseline model, F1 freezes distilBERT’s initial layer and F6 freezes all distilBERT’s layers.

Model Micro F1-Score Macro F1-Score Parameters (Millions)

F0 0.525 0.238 68
F1 0.519 0.252 61
F2 0.515 0.244 54
F3 0.515 0.230 47
F4 0.505 0.241 40
F5 0.505 0.234 33
F6 0.503 0.177 26

Table 5.6: Macro and Micro F1-Score freezing DistilBERT’s layers.

The results show a slight decrease in micro f1-score after freezing the first 3 layers, however the macro
f1-score does not decrease and when freezing only the first and second layers it improves. As we get closer
to the final layers and freeze them the performance tends to deteriorate. The described behaviour is not
surprising since the learnt parameters on the final layer are responsible for capturing complex patterns.

By looking at table 5.6 we observe that after freezing more than 3 layers the model’s performance starts to
decrease. Because of that we opted by freezing only 2 layers. Even though there’s a slight decrease when
it comes to the micro f1-score the macro f1-score increases and by freezing the 2 initial models we reduce
the number of tunable parameters by 20%.
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5.1.5 Hyperparameter search

An important part of training a model is to find suitable values for the model’s parameters. Until now we
have been using a set of values ( 5.1) naively chosen. In this sub-section we’ll discuss different possible
approaches to hyperparameter, which one did we chose and why.

Hyperparameter optimization is generally expressed as:

x∗ = arg max
x∈X

f(x) (5.7)

Where f(x) represents the return value of an objective function to minimize (for instance, the loss) or
maximize (the score, for instance accuracy). x∗ is the set of hyperparameters that optimizes the return
value, and x can take on any value in the domain X.

The process described is the same one we use when evaluating a model. But doing this process manually
can be very expensive, inefficient and boring. Rather than doing this manually there are simple techniques
than can be used such as Grid Search and Random Search.

In Grid Search we define a set of values for each hyperparameter resulting in a grid which will be iteratively
tested with all combinations of hyperparameters. With Random Search we start with the same principle
but instead of trying all combinations we randomly sample values from the grid. The simplicity of both
techniques comes at a cost: inefficiency. Grid Search is computationally inefficient, because it reuses bad
values, Random Search overcomes this problem but does not guarantee the optimal solution within the
grid.

Both approaches described previously do not take into account past experiments, which will lead to the
re-usage of bad parameter’s values. This limitation can be overcome by using Sequential model-based
optimization (SMBO).The past experiment’s results are used to form a probabilistic model mapping hy-
perparameters to a probability of a score on the objective function, such as P (score|hyperparameters).
This is achieved by creating a surrogate model, which is a substitute model that is easier to optimize for the
objective function. The surrogate model does not try to mimic our original model but to understand the
underlying patterns in data and which parameters influence the training. It is agnostic to our original model
and tied to the SMBO approach in question. They are usually formulated as Random Forests, Mixture
Density Networks or Multi Layer Perception, depending on the approach.

A popular SMBO approach is Tree Parzen Estimator (TPE) [BBBK11]. Unlike most bayesian SMBO
methods, TPE formulates the surrogate model as P (x|y) rather than P (y|x). It is given as:

P (x|y) =
{

l(x) if y < y∗

g(x) if y ≥ y∗
(5.8)

Where l(x) are the values for the bad objective functions, g(x) are the values for the good objective
functions and y∗ is a threshold. This means that, given an y∗ = 0, 2, when maximizing the objective
function, a result is considered bad if it is smaller than the top 20% results of the previous experiments.
The next step on TPE is how to evaluate an unobserved hyperparameter combination by calculating how
promising it is, expressed by:

P =
g(x)

l(x)
=

P (x|good)
P (x|bad) (5.9)

Simply put, the promisingness of a combination of hyperparameters is given by the probability of the
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combination occurring given a good objective function over the probability of the combination ocurring
given a bad objective function. The higher the score the more likely a combination of hyperparameter is
to be a good fit.

There are many python libraries that provide implementations of TPE. We used Tune2 due to the vast
amount of hyperparameter search algorithms provided (because it wraps around other libraries such as
Optuna and HyperOpt) and the introduction of schedulers (which allow early stop for bad performing
trials). Being part of the Ray3 ecosystem, Tune allows the experiments to make usage of multiple GPUs
without much effort.

We thought of making use of the ASHA scheduler, however a scheduler might not be beneficial for our
problem since we have a small set of data. ASHA is based on Successive Halving Algorithm (SHA) [JT15].
The way SHA works is by having a pool of global resources (number of iterations) which are splitted by the
number of trials we want to perform, when the trials exhaust their resources a round is completed. After
the round is completed the halving is performed, where the worst half of the models is discarded and the
global pool of resources is restored. The process repeats itself until we have the best performing model.
ASHA improves over SHA by being able to operate asynchronously and make dynamic resource allocation,
rather than dividing them equally. However, since we ended up not using it we did not study these changes
in detail.

Given our small dataset we decided that using a scheduler would add more overhead than benefits to
the experiment, because of that we decided to not use any and simply let all the models train for the
stipulated number of epochs. In our Tune configuration we simply specified TPE (via HyperOpt) as
a search algorithm, the search space as described on table 5.7 and the number of trials we wanted to
perform, which in this case were 10. For each trial we used stratified cross validation just like we did on
previous experiments and we used the asymmetric loss function.

Hyperparameter Type Values

Learning rate Float [1e− 6, 1e− 4]
Dropout rate Float [0.05, 0.45]
Number of filters Int i ∈ [5, 8] for 2i
Kernel dimensions Choice [[1, 2], [3], [3, 4, 5]]
Hidden layer dimension Int i ∈ [8, 11] for 2i

Table 5.7: Search space for hyperparameters.

For most parameters on the search space we specified values within a reasonable interval for the parameters.
As for the kernel dimensions, we chose 3 different values, as it would not make any sense to choose a range.
The first value came from the idea that n-grams = (1, 2) could provide good results, as we’ve seen with
ML techniques on chapter 3. The second value was chosen because we’ve seen kernel size = 3 being used
on a couple of internet articles and academic papers [ZW17] [DGX18] and behaving fairly well. The last
value was the value chosen for our baseline system, which has been explained before.

The experiments results are displayed on table 5.8 and show that the model with the highest micro f1-score
is the model H6. Models H10, H7 and H5 also displayed good results, being just slightly worse than H6,
besides that, model H6 is slightly smaller than the other three in terms of trainable parameters, since it
only uses a convolution kernel. H6 has a small dropout rate however convolutional neural networks do not
have tendency to overfit [PK17] and also since we have a small number of training samples, by setting an

2https://docs.ray.io/en/latest/tune/index.html
3https://www.ray.io/
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Model Learning Rate Dropout Filters Kernels Hidden Layer Dim Micro F1 Macro F1

H1 1.189e-04 0.175 128 [3,4,5] 256 0.528 0.201
H2 6.790e-05 0.119 128 [3] 512 0.539 0.272
H3 1.879e-05 0.159 64 [3] 1024 0.504 0.240
H4 6.926e-05 0.103 64 [1,2] 512 0.536 0.246
H5 3.353e-05 0.373 64 [3,4,5] 1024 0.547 0.223
H6 4.813e-05 0.063 128 [3] 1024 0.556 0.246
H7 3.993e-05 0.095 128 [3,4,5] 1024 0.551 0.233
H8 6.925e-05 0.107 64 [3,4,5] 256 0.499 0.261
H9 1.578e-05 0.305 128 [3,4,5] 256 0.519 0.231
H10 2.433e-05 0.144 128 [1,2] 1024 0.555 0.212

Table 5.8: Models trained using TPE as search algorithm.

high dropout rate on the fully connected layer the network might forget important patterns learnt by the
previous layers.

Until now we’ve been training all the models for 10 epochs, like MinD [TGL+21], however we thought
it would be interesting to plot the macro and micro f1-score evolution as well as the loss throughout the
epochs to see how the model behaves and if we should train it for more epochs in order to improve the
results. We plotted the measures over the course of 15 epochs.

By looking at figure 5.1 we can see that the micro f1-score stops improving after only 3 epochs, having
some minor fluctuations after it. When looking at the macro f1-score the story is different, the measure
keeps improving until the 7th epoch which might tell that the model starts by predicting correctly only the
most represented classes and it needs more training to understand the more complex patterns of the least
represented classes.

Figure 5.1: H6 model score evolution.
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The model’s loss evolution surprised us because when we were doing the cross validation the micro f1-score
was being consistent across folds, which led us to believe that the model was generalizing well however the
plot (figure 5.2) tells otherwise. The validation loss starts by decreasing but after 3 epochs, around the
same time in which the micro f1-score stops increasing, the loss stabilizes for 2 epochs and after the 6th
epoch it starts continuously increasing which suggests the model is overfitting.

Figure 5.2: H6 model loss evolution.

We tried to prevent this behaviour by adding a dropout layer at the end of the second linear layer and we
were also counting on the AdamW ’s L2 regularization technique through weight decay.

Afraid that we might have created a model too complex or used an improper loss function we took some
steps back and made some experiments looking at the validation loss evolution. These experiments are
explained on appendix B. From them, we concluded that the model is not overly complex and the loss
function does not take a large part in the overfitting problem.

We were then left with two options, either to train model H6 for fewer epochs with the configuration from
table 5.8 or to tweak once more some of the parameters, this time, regarding the overfitting problem. Such
parameters are the dropout rate, the weight decay on the optimizer and the learning rate.

By using a lower leaning rate (4 −6) the validation loss goes side by side with the training loss, which
can show the model’s convergence, however the obtained results were not the best specially for the least
represented classes with a macro f1-score of 0.13. Evaluating the model’s micro f1-score shows once more
how imbalanced the data is as the score does not decrease that much (0.52).

5.2 Discussion

Looking at the prior experiments we can observe that text pre-processing does not have a positive impact
on the proposed model’s results, from figure 4.1, in fact it makes the results worse. Freezing some layers
of the pre-trained distilbert can have small boost in terms of computational performance, as it reduces



5.2. DISCUSSION 47

the number of tunable parameters, however there is a trade-off between micro f1-score and computational
performance when freezing too many layers. For that reason it is fair to say that, although producing
interesting results, they did not improve the model.

On the other hand, the loss function and hyperparameter choice had a massive impact on the model’s
results. With the proper choice we achieved acceptable results both in terms of micro and macro f1-scores
using stratified cross-validation. The optimization however did not address the validation loss curve, as
we were optimizing the model in terms of micro f1-score, which would give a better look of the model’s
overall performance. Looking at the validation loss curve is important as it can show signs of overfitting.
We rectified this aspect by making some posterior experiences.

In the end, we were left with three versions of the same model configuration with small adjustments.
Following the previous notation:

• H6.1: Original H6 model trained for 4 epochs.

• H6.2: Original H6 model trained for 15 epochs.

• H6.3: H6 model with a learning rate (4 −6) trained for 15 epochs.

By evaluating the test set we were able to get the global results as well as class-wise and compare those
results with MinD’s model, as they were the only ones in SemEval’s task who published their f1-score for
each class on the test set. The results are displayed on table 5.9

F1-Score

Technique MinD H6.1 H6.2 H6.3
Appeal to Authority 0 0.333 0.545 0
Appeal to Fear/Prejudice 0.522 0.333 0.333 0.278
Bandwagon 0 0 0 0
Black-and-White Fallacy/Dictatorship 0.400 0 0 0
Causal Oversimplification 0.500 0.286 0.222 0
Doubt 0.400 0.387 0.340 0.378
Exaggeration/Minimisation 0.550 0.375 0.542 0.333
Flag-Waving 0.615 0.286 0.444 0.316
Glittering Generalities (Virtue) 0.286 0.190 0.222 0.174
Loaded Language 0.819 0.813 0.823 0.805
Straw Man 0 0 0 0
Name Calling/Labeling 0.667 0.600 0.600 0.592
Obfuscation, Intentional Vagueness, Confusion 0 0 0 0
Presenting Irrelevant Data (Red Herring) 0 0 0 0
Reductio ad Hitlerum 0 0 0 0
Repetition 0 0 0 0
Slogans 0.154 0.303 0.250 0.242
Smears 0.511 0.468 0.486 0.467
Thought-Terminating Cliché 0 0 0 0
Whataboutism 0.375 0.190 0.333 0.292

Table 5.9: Comparing the final models results by class.

It is safe to say that both H6.1 and H6.3 models showed fairly good scores with the first showing slightly
better scores across most classes. Model H6.3 showed a clear difficulty, or even inability, to predict the 10
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least represented classes. That can be caused by the small number of samples available for training, which
did not allow the model to generalize that well. Assuming this is the cause, the fact that the model H6.1
can predict some of these classes can potentially mean that either the model has a better generalization
capability or it memorized part of the training set which enabled it to predict correctly some of the inputs
for Appeal to Authority and Causal Oversimplification.

Model H6.2 improved the scores for almost every class when compared with H6.1 and showed very com-
petitive results when compared with the MinD [TGL+21], the competition’s best model. H6.2 model’s
performance is somehow strange because even though its validation loss curve shows the model is overfitting
the truth is that the results were very consistent across the training phase, using stratified cross-validation,
and although we expected the model’s performance to decrease substantially in the test set as it would be
evaluating unseen data, the performance actually was very similar to the expected. This phenomenon can
occur when the training and test data are very similar, which is a strong possibility because the data were
extracted from multiple facebook groups related to politics and covid.

We recreated the SemEval’s original paper [DAS+21] table regarding sub-task 1 and table 5.10 shows how
our models would have behaved in a competition scenario. The table only contains submissions which are
accompanied by a scientific paper.

Rank Model Micro F1-Score Macro F1-Score
1 MinD 0.593 0.290
2 Volta 0.570 0.262
3 H6.2 0.551 0.257
5 AIMH 0.539 0.245
6 H6.1 0.526 0.228
7 DistilBERT 0.515 0.251
8 LeCun 0.512 0.227
11 H6.3 0.509 0.198
12 NLyticsFKIE 0.498 0.140
13 RoBERTa 0.497 0.240
16 YNUHPCC 0.493 0.263
19 NLPIITR 0.379 0.126

Table 5.10: SemEval’s systems comparison.

H6.2 performed worse than 2 other models however it should be taken in consideration that is also the
smallest model out of all three. The MinD [TGL+21] model uses an ensemble of 5 transformers, such as
RoBERTa and BERT and XLNET. Volta [GGM21] model is smaller when compared with MinD, since it
uses only one transformer followed by two linear layers and dropout, the base transformer is however a
RoBERTa Large, which has 355 million parameters.

While MinD model used focal loss in order to tackle class imbalance, Volta went with binary cross entropy.
They did introduce however an weighting equation, made specifically for this problem, which shows that
even though asymmetric loss granted us some good results out of the box, it is also possible to achieve
good results with binary cross entropy and some tweaking.

The training configuration for both these models left us wondering if they do not also suffer from some kind
of overfitting as both of them are trained with a learning rate of (2 −5) and (1 −5) respectively. MinD
also trained their model for 10 epochs and used the same optimizer with the default weight decay (L2
regularization) however since they were able to use augmented data that might have stopped the model
from overfitting, but there’s no evidence about that. For the Volta model it seems even harder to believe
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that the model does not overfit because not only they did not use any additional data but also didn’t
use any regularization besides a dropout layer with a 0.1 dropout rate. Once again we cannot affirm that
overfit occurs in the model as we do not know the number of epochs used to train that model nor about
its eventual overtfitting.

LeCun’s [AQA21] model was also an ensemble of transformers containing one DeBERTa Large and four
RoBERTa Large. They used different sequence max length, batch size, learning rate and number of epochs
for each part of the ensemble. Each ensemble’s component was trained for either two, three or four epochs,
probably because they also spotted some overfitting after that number of epochs. In the end, they used a
soft voting classifier with a 0.3 threshold for each label. H6.1 was able to reach a better score on the test
set showing that altough LeCun’s solution is very interesting it can be a bit of overkill and similar results
can be obtained with less computational exhaustive systems.

The YNUHPCC [ZWZ21] model is the closer to ours from an architectural point of view, as we have drawn
inspiration from it. However, instead of using DistilBERT they used ALBERT and binary cross entropy
instead of using of asymmetric loss. They are the only team to mention worries regarding overfitting,
specially when fine-tuning more robust models such as BERT or RoBERTa which they tried before going
with ALBERT. Because of that not only did they used a lighter model, with less tunable parameters, but
also used a smaller learning rate (5 −6) like we did with H6.3. Despite getting an higher micro f1-score
with H6.3, YNUHPCC got an higher macro f1-score using binary cross entropy. On their paper they do
not mention any weighting function or any tweak to the base formula of BCE. We are led to believe
that the increased macro f1-score was due to the number of epochs their model was trained for (300).
YNUHPCC model also used Batch Normalization in-between linear layers. We also tried using it in our
model but we did not observe any gains either in performance or validation loss which is not surprising
given that this normalization method is seldom used in NLP problems, with Layer Normalization being
more common [SYG+20]. The latter was also used but did not show any significant improvements.

At the end of our experiments we trained two additional models with the following architecture: a trans-
former, followed by a linear layer, a dropout layer and a fully connected linear layer. One of the models
used DistilBERT while the other used RoBERTa. This can be seen as plain fine-tuning the previous trans-
formers. We trained both of them for 4 epochs. Both these models, ranked 7th and 13th respectively,
had a worst performance on the test set that the H6.1 model. The simple DistilBERT model was able to
predict two labels that none of our models were: Black-and-White Fallacy and Straw Man. Which means
that although we passed the hidden states learnt by the distilbert model to a convolutional layer in order
to extract local patterns on top of the global relationships this might have confused the model, preventing
it to recognizing certain classes. It is also worth mentioning that despite getting similar micro f1-scores
the distilBERT model processed an epoch 5 times faster than RoBERTa (4s vs 21s), making the first a
suitable transformer for this task.





6
Conclusion

The final chapter of this work contains a reflection of all the exploratory work we did regarding this problem,
what we were able to accomplish, what we went wrong and why it might have happened.

6.1 Global overview

In order to achieve this work’s goal, the automatic detection of persuasion attempts on social networks
(proposed in a SemEval challenge), we employed natural language processing, machine learning and deep
learning techniques. The given dataset for this problem had a small dimension with only 950 samples from
which 200 were used for evaluation, leaving us with 750 samples for training which is a relatively small
number when there are 20 possible persuasion techniques. Besides the dataset’s small dimension the task is
even more challenging due to the class imbalance with 12 classes appearing in less than 5% of the samples
and 3 classes appearing on more than 25% of the samples, when looking only at the textual elements.

Given the small number of training samples we combined ML and NLP techniques to create a simple
model capable of solving the targeted problem. The usage of techniques such as stop-word removal and
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lemmatization helped us to reduce in half the corpus’s number of words which is very helpful when using
ML techniques on text. We choose Decision Trees, Extra Trees, Gaussian Naive Bayes and K-Nearest
Neighbors as our base classifiers. Since this problem is multi-label classification problem and some of these
algorithms do not support it, in sklearn, we wrapped them in problem transformation techniques like Binary
Relevance and Label Powerset. In order to feed the textual elements to the classifiers we experimented with
two methods: TF-IDF and Word2Vec. The first method provided better results for tree-based classifiers
but the latter outperformed it when it comes to the remaining classifiers. The best results came from using
Gaussian Naive Bayes with Binary Relevance and Word2Vec embeddings with a micro f1-score of 0.360
and macro f1-score of 0.194.

Although ML techniques helped us set a valid baseline, when compared to SemEval’s challenge best
submissions they were lacking, which justify the usage of more sophisticated DL techniques. We opted for
using a relatively small pre-trained transformer, DistilBERT, so that we could make use of Transfer Learning
in order to mitigate the scarcity of data. This transformer was followed by linear and convolutional networks.

Our proposed model was iterated with different experiments where we found that pre-processing the textual
elements did not improve the model, making its performance in fact worse. We also found out that for this
problem, when it comes to the trade-off between computational expenses and the model’s performance the
best thing to do is to freeze the first two distilBERT’s layers and fine-tune only the remaining. However,
the experiment that gave us the highest gains was the choice of the loss function when training the model.
Asymmetric Loss showed us the best results as, by definition, it tackles the class imbalance problem in
multi-label classification problems. At last we used TPE method to perform hyperparameter search for
parameters such as the number and size of convolutional kernels, the number of filter, the learning rate,
dropout rate and the hidden layers dimension. When investigation the loss curve for the validation set we
observed some signs of overfitting which led us to investigate it and try less complex architectures, train
our model for less number of epochs or reduce the learning rate. We discovered that reducing the model
complexity by itself did not solve the problem however changing the number of epochs or the learning rate
(while maintaining the original architecture) could help.

We were left with three models: one without any signs of overfitting, one with minor signs and one with
a very steep validation loss curve, with 0.509, 0.526 and 0.551 micro f1-score respectively. Strangely the
last model showed similar performance both on the validation set and the test set. Although none of our
models was able to outperform the best submission, the last two were able to compete with the top-5
submissions while using a model with a much smaller number of tunable parameters.

By the end of this work we partially achieved what we had initially proposed. We were able to create
a usable model, with its due limitations, to detect persuasion attempts on social networks given textual
elements. Unfortunately, we were not able to tackle the multimodal challenge, using text and images,
which would have been very interesting as text when combined with the images can drastically have a
different intent. The sub-task 1 required a deeper study that what we had initially though which eventually
took more time than estimated, leaving the sub-task 3 out of scope for this thesis. Although we did not
implement a solution for sub-task 3 we studied what the other participants had done, which is documented
on chapter 2, providing us important information for future work regarding the multimodal classifier.

We also learnt how difficult it is to build an entirely accurate robust global system to identify persuasion
attempts due to various factors such as the wide array of topics, the need to keep the system information
up to date and the difficulty to relate different information. Another obstacle for this kind of task is the
vocabulary used on social media where we can find a lot of slang and words with typos. Although text
pre-processing can help regarding this problem this is not always the case. Researchers [Moh18] suggest
that sometimes text pre-processing, if not made with maximum caution, can deteriorate the model’s
performance.
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6.2 Future Work

Although we are happy with the results we have achieved there is still a lot of room for improvement. One
of the biggest challenges we’ve had was the scarcity of the data. To overcome it we can try to use similar
data from a previous SemEval challenge [MBW+20]. Despite having a slightly different scope, the previous
challenge also had most of the techniques we are trying to predict. We think this can be a valid way
to augment our dataset without sacrificing the quality of data, unlike translation and word replacement
techniques where changing a word might change the sentence meaning, producing misleading data.

Given the class imbalance it would also be interesting to experiment an ensemble of classifiers, with a global
classifier, like the one we had, and a couple of simpler classifiers that would only predict two or three of
the least represented classes. In the end we could average the probabilities for each class. By having those
multiple classifiers targeting specific classes the model could explicitly focus on those, possibly improving
the overall performance while adding some computational overhead.

Leaving the multimodal challenge out of the thesis was a decision brought by the time restraints we faced
during this work, nonetheless we would like to tackle this challenge by experimenting both early fusion and
late fusion techniques. Early fusion technique extracts the features from both textual and visual elements
and combines them into a unique representation, by doing so the classifier captures the underlying relation-
ship between the two modalities. Late Fusion, on the other hand, represents each modality independently
and and only combines the final result for each modality at the end with approaches such as averaging
and weighting. While it can provide fairly good results, as we’ve seen for MinD [TGL+21], late fusion is
a sub-optimal approach since two modalities on its own might not contain any persuasion technique or
hateful discourse but when combined get a new intent, just like it has been shown on [KFM+21]. The
main reason for us to consider its adoption is the fact that it is a computationally less expensive approach
and it allows us to reuse our textual model. With early fusion we would not be able to reuse our model
from sub-task 1 and would have to think in a new model from the ground, fortunately there are frameworks
such as Facebook’s MMF 1 which provide us with state of the art visual and textual models allowing us
to create multimodal models writing less boilerplate code.

Ultimately, the work we have produced so far can be useful for automatic content moderation in any
platform as we plan on making our models available online for free use. It might not have the robustness
of a Meta or Twitter powered models but smaller platforms, who don’t want to put a lot of effort into this
topic, could really benefit of this by using it to enforce some of their community guidelines without having
a human person reviewing all the reported content.

1https://mmf.sh/





A
ML Models

This appendix contains the Precision and Recall tables for each class for the models created using conven-
tional Machine Learning techniques.

The tables are complementary to the ones on chapter 3 where the tables of F1-Score, which is an harmonic
mean of precision and recall, are presented.

By having these tables in here we can have a deeper understanding of the results for each class and infer
new insights such as if a class is predicting a lot of false-positives.

In the following pages, the first two tables are related to the models which used TF-IDF while the last two
relate to the ones using Word2Vec.
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Precision

Label M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Appeal to Authority - 0.500 - 0.333 - - 0.143 - - -
Appeal to Fear/Prejudice - 0.200 - - - - - 0.125 - -
Bandwagon - - - - - - - - - -
Black-and-White Fallacy/Dictatorship 0.667 0.333 - 0.250 - - - - - -
Causal Oversimplification - - - 0.125 - - - - - -
Doubt 0.100 0.133 - 0.182 0.250 - - - - -
Exaggeration/Minimisation 0.667 0.500 - 0.154 0.500 - 0.063 0.400 1.0 0.200
Flag-Waving 0.500 1.00 1.00 0.125 0.125 1.0 - 0.286 - -
Glittering Generalities (Virtue) 0.500 - - - 1.0 - - 0.500 - -
Loaded Language 0.574 0.707 0.522 0.662 0.611 0.522 0.648 0.646 0.586 0.579
Straw Man - - - - - - - - - -
Name Calling/Labeling 0.360 0.513 0.571 0.375 0.429 0.400 0.274 0.318 0.364 0.324
Obfuscation, Intentional Vagueness, Confusion - - - - - - - - - -
Presenting Irrelevant Data (Red Herring) - - - - - - - - - -
Reductio ad Hitlerum - - - - - - - - - -
Repetition - - - - - - - - - -
Slogans 0.300 0.500 1.0 0.077 - 1.0 0.273 0.222 - 0.429
Smears 0.405 0.355 - 0.319 0.325 - 0.169 0.317 - 0.241
Thought-Terminating Cliché - - - - - - - - - -
Whataboutism - - - 0.188 - - 0.059 0.143 - 0.200

Table A.1: Precision by class on each model using TF-IDF.

Recall

Label M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Appeal to Authority - 0.143 - 0.143 - - 0.143 - - -
Appeal to Fear/Prejudice - 0.100 - - - - - 0.100 - -
Bandwagon - - - - - - - - - -
Black-and-White Fallacy/Dictatorship 0.286 0.143 - 0.143 - - - - - -
Causal Oversimplification - - - 0.333 - - - - - -
Doubt 0.036 0.071 - 0.071 0.036 - - - - -
Exaggeration/Minimisation 0.211 0.156 - 0.105 0.211 - 0.053 0.316 0.105 0.0053
Flag-Waving 0.333 0.167 0.167 0.167 0.167 0.167 - 0.333 - -
Glittering Generalities (Virtue) 0.091 - - - 0.091 - - 0.091 - -
Loaded Language 0.390 0.410 0.360 0.510 0.440 0.350 0.700 0.510 0.170 0.660
Straw Man - - - - - - - - - -
Name Calling/Labeling 0.264 0.378 0.075 0.396 0.283 0.038 0.491 0.264 0.075 0.451
Obfuscation, Intentional Vagueness, Confusion - - - - - - - - - -
Presenting Irrelevant Data (Red Herring) - - - - - - - - - -
Reductio ad Hitlerum - - - - - - - - - -
Repetition - - - - - - - - - -
Slogans 0.158 0.053 0.053 0.053 - 0.053 0.158 0.105 - 0.158
Smears 0.333 0.244 - 0.333 0.289 - 0.333 0.289 - 0.289
Thought-Terminating Cliché - - - - - - - - - -
Whataboutism - - - 0.300 - - 0.100 0.100 - 0.100

Table A.2: Recall by class on each model using TF-IDF.
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Precision

Label MW1 MW2 MW3 MW4 MW5 MW6 MW7 MW8 MW9 MW10

Appeal to Authority 0.143 - - - - - 0.095 - - -
Appeal to Fear/Prejudice - 0.080 - 0.125 0.043 - 0.093 - 1.0 -
Bandwagon - - - - - - - - -
Black-and-White Fallacy/Dictatorship - - - - - - 0.333 - - -
Causal Oversimplification - 0.056 - 0.050 - - 0.059 0.333 - -
Doubt 0.200 0.250 - 0.094 0.179 - 0.217 0.154 - 0.429
Exaggeration/Minimisation 0.182 0.214 - 0.200 0.100 - 0.217 0.083 - 0.500
Flag-Waving 0.077 0.143 - 0.067 - - 0.125 0.250 - -
Glittering Generalities (Virtue) 0.063 0.154 - - 0.182 - 0.195 0.077 - -
Loaded Language 0.622 0.594 0.596 0.571 0.574 0.596 0.657 0.538 0.603 0.656
Straw Man - - - - - - 0.036 - - -
Name Calling/Labeling 0.306 0.231 0.406 0.290 0.250 0.406 0.333 0.308 0.344 0.375
Obfuscation, Intentional Vagueness, Confusion - - - - - - - - - -
Presenting Irrelevant Data (Red Herring) - - - - - - - - - -
Reductio ad Hitlerum - - - - - - - 0.250 - -
Repetition - - - - - - - - - -
Slogans 0.125 0.083 - 0.231 0.363 - 0.179 - - -
Smears 0.246 0.239 0.341 0.258 0.203 0.341 0.362 0.213 0.273 0.414
Thought-Terminating Cliché - 0.111 - - - - 0.075 - - -
Whataboutism - - - 0.050 0.158 - 0.096 0.133 - -

Table A.3: Precision by class on each model using Word2Vec.

Recall

Label MW1 MW2 MW3 MW4 MW5 MW6 MW7 MW8 MW9 MW10

Appeal to Authority 0.143 - - - - - 0.286 - - -
Appeal to Fear/Prejudice - 0.200 - 0.200 0.100 - 0.400 - 0.1 -
Bandwagon - - - - - - - - -
Black-and-White Fallacy/Dictatorship - - - - - - 0.143 - - -
Causal Oversimplification - 0.333 - 0.333 - - 0.667 0.333 - -
Doubt 0.107 0.107 - 0.107 0.179 - 0.464 0.071 - 0.214
Exaggeration/Minimisation 0.211 0.158 - 0.211 0.105 - 0.684 0.053 - 0.053
Flag-Waving 0.167 0.167 - 0.167 - - 0.500 0.167 - -
Glittering Generalities (Virtue) 0.091 0.182 - - 0.182 - 0.727 0.091 - -
Loaded Language 0.610 0.630 0.930 0.640 0.620 0.930 0.670 0.570 0.790 0.630
Straw Man - - - - - - 1.0 - - -
Name Calling/Labeling 0.415 0.283 0.245 0.340 0.377 0.245 0.585 0.453 0.566 0.283
Obfuscation, Intentional Vagueness, Confusion - - - - - - - - - -
Presenting Irrelevant Data (Red Herring) - - - - - - - - - -
Reductio ad Hitlerum - - - - - - - 0.333 - -
Repetition - - - - - - - - - -
Slogans 0.105 0.053 - 0.158 0.2111 - 0.263 - - -
Smears 0.356 0.378 0.667 0.356 0.267 0.667 0.756 0.289 0.533 0.533
Thought-Terminating Cliché - 0.167 - - - - 0.500 - - -
Whataboutism - - - 0.100 0.300 - 0.500 0.200 - -

Table A.4: Recall by class on each model using Word2Vec.





B
Taking a step back

After realizing the tweaked model following the proposed architecture could be overfitting, by looking at
figure 5.2, we thought about taking a step backwards and inspect if we had made any mistakes during our
research process.

B.1 Looking at the different loss functions

The change that required less effort was to look at the model using the loss functions mentioned previously
and inspect how the validation loss would evolve.

When comparing figures 5.2 and B.1 we observe a smoother curve for validation loss on the latter, however
the model using FL still show signs of overfitting around the same number of epochs. When comparing the
score evolution, figures 5.1 and B.2, of both models we see that around the time they start showing signs
of overfitting both models display similar micro f1-scores, however when looking at the macro f1-score we
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Figure B.1: H6 model loss evolution, using FL.

Figure B.2: H6 model score evolution, using FL.

observe a clear disparity. The model using FL shows a substantially lower macro f1-score, both by the end
of the 15 epochs as well as at the time of overfitting.

By plotting the evolution of the loss and score for the model using the BCE (figures B.3 and B.4
respectively) we observe a smoother curve, that slowly increases after 10 epochs, which makes it seem the
closer to converge while still being far from it. Nonetheless, the performance in terms of macro f1-score
is very poor, even after 15 epochs, when the model starts overfitting, which indicates the model cannot
extract any underlying pattern for most of the classes apart from the most represented ones.
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Figure B.3: H6 model loss evolution, using BCE.

Figure B.4: H6 model score evolution, using BCE.

Looking at the plotted graphs we conclude that there’s no point in assuming ASL was a bad choice since
it would still be preferable to train the model for only 5 epochs then to train the same model with FL
and BCE with more epochs, as eventually both of them show signs of overfitting while having a worse
performance.
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B.2 Using simple DistilBERT

One of the factors that can lead a model to over-fit is its complexity. Our model has some complexity
because, on top of a pre-trained language model (DistilBERT) we add two linear layers, a dropout layer
and a couple of convolutional layers and we train it, while also fine-tuning DistilBERT’s pre-trained layers.

To understand the possible relationship between the extra complexity and the overfitting problem we trained
a new model where we tried to remove said complexity. We were left with a simple DistilBERT model
(with the two initial layers frozen) and a linear and a dropout layer.

Figure B.5: Plain DistilBERT model loss evolution.

Figure B.6: Plain DistilBERT model score evolution.

The outcome of training a plain DistilBERT and plot its loss and score evolution is what we expected. The
added complexity on model H6 is not the reason for overfitting. In fact the signs of overfitting appear even
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earlier on this model which besides being simpler has a higher dropout rate (20%).

We went even further and made the model’s training even simpler by freezing all DistilBERT’s pre-trained
layers except for the last one.

Figure B.7: Plain DistilBERT model, with 5 layers frozen, loss evolution.

Figure B.8: Plain DistilBERT, with 5 layers frozen, model score evolution.

The results are very similar to the ones from the previous experience since after a couple of epochs the
model starts overfitting. This leads us to believe that reducing the model’s complexity or change its loss
function is not the solution and that overfitting is probably caused due to the small number of training
samples and its class distribution.
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