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Abstract

The quality and yield of a soil can be measured by using a wide range of
soil indicators. One such indicator is soil’s electro-conductivity which is
an excellent indicator of the presence of soil nutrients. This work aims to
create a machine learning model to predict the soil’s electro-conductivity
(EC) using radar images from the satellite Sentinel-1. Using EC readings
from 14 corn field parcels and Sentinel-1 readings over the course of one
agriculture year, several regression models were generated. These mod-
els were designed using information from the full agriculture year or only
3 months, both or only one of the VV and VH polarisations. The results
show that when using a full year data VV and VH polarisations are able to
generate models with similar performance (R2 of 0.888 for VH and 0.884
for VV) but when using only 3 months data, only April to June trimester
using both polarisations are able to reach similar a performance (R2 of
0.867); moreover VH polarisation seems to carry out more descriptive in-
formation when compared with VV (specially when using only 3 months
data). Finally, performance results seem to be independent of the yearly
radar data time-window.

Keywords: Soil electro-conductivity, Remote sensing, Sentinel-1,
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1 Introduction

Precision farming incorporates a series of strategies and tools that allow
farmers to optimise and increase soil quality and productivity putting in
place a set of targeted key interventions. These interventions are se-
lected based on collected information of minerals, nutrients, water, soil
texture, drainage conditions, salinity, and other soil characteristics over
farmland [3]. Soil electro-conductivity (EC) is one of simplest, and least
expensive soil measurements available to precision farming [5].

Recently, soil properties are being obtained using remote sensing
techniques [2]. Sentinel-1 [4] is a synthetic aperture radar instrument
(SAR) satellite that consists of a set of two satellites, Sentinel-1A and
Sentinel-1B, which share the same orbital plane with a 12-day revisiting
period. This set of satellites provides images in two different polarisa-
tions: VV (vertical transmit, vertical receive) and VH (vertical transmit,
horizontal receive).

In a previous work [1], Sentinel-1 information was used to build mod-
els able to classify soils as sandy, free and clayish (by discretizing EC
values) achieving F1-scores between 54.44% and 75.6% for clayish and
free soils, respectively, over a test set of 13001 points. The current work,
instead, aims at predicting the EC value itself. Besides studying if polar-
isations have different discriminative power, it also studies which months
are more informative and if the sentinel data from different years gener-
ates models with similar performances.

The rest of the paper is organized as follows: Section 2 introduces
the data sets and algorithms used, describes the experiments performed
and the experimental setup; Section 3 presents and discusses the results
obtained; finally, Section 4 concludes the paper and presents future work.

2 Materials and Methods

2.1 Data sets

The on-site EC values were obtained between March 28 and May 3, 2016,
on a set of 14 parcels of corn fields located in Alentejo with a 10-meter
interval resulting in a total of 65003 points. Measured values ranged be-
tween 0.226 and 240.592; Figure 1 presents the distribution of the values.

Figure 1: Histogram of EC values on the data set.

Radar data was collected from two time windows each corresponding
to full agricultural years: (a) from October 6, 2018 to September 25, 2019
(the most recent year available when data was collected) and (b) from
October 3, 2015 to September 28, 2016 (the year corresponding to the
EC readings). The data extracted for the 2018-2019 time window corre-
sponds to orbit 147 from both satellites because for Sentinel-1B there was
only data for that orbit (although information from more orbits existed
for Sentinel-1A). For 2015-2016 time window data was collected from 3
available orbits: 43, 50 and 145.

Similarly to the previous study [1], the 2018-2019 data is composed
by 120 descriptive attributes corresponding to VV and VH values from
both satellites over the considered time window (60 different dates; 30
from each satellite). Since satellite Sentinel-1B was only launched in
2016, the 2015-2016 data is composed by VV and VH values from Sentinel-
1A, composed by 27, 26 and 29 different dates for orbits 43, 50 and 145,
respectively.

Table 1 presents a characterisation of the radar values for each po-
larisation and satellite during the 2018-2019 time window. It is easly
seen that the range of values for VH polarisation is much smaller than
the range for VV polarisation. On the other hand, both satellite present
similar ranges.

Sat A Sat B Sat A+B
VH VV VH VV VH VV

mean 95.81 216.82 88.09 219.49 91.95 218.16
std 24.93 66.60 24.05 67.88 24.80 67.26
min 28.33 62.11 25.11 58.78 25.11 58.78
25% 77.78 173.56 70.89 173.44 74.11 173.56
50% 94.78 207.89 86.78 209.89 90.67 208.89
75% 111.89 248.44 103.00 253.78 107.67 251.11
max 250.44 2009.33 242.22 1988.78 250.44 2009.33

Table 1: Characterisation of the attributes over a one year period.

2.2 Algorithms
Several machine learning algorithms for regression were tested namely
Support Vector Machines (SVM), K Nearest-Neighbours (KNN), Ridge
and Lasso.

2.3 Experiments
A first set of experiments was done using the 2018-2019 data to study
the algorithms and the sets of features that generate the most performing
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models. SVM was tested with linear kernel and C = {0.1,1,10}, KNN
tested with K = {1,5,9}, Ridge with α = {0.1,1,10} and Lasso with
α = {1,0.01,0.0001} (the rest of the parameters were the default for all
algorithms). Models were built using VV and VH values, alone and to-
gether, for all available dates (60 attributes per polarisation), by monthly
averaging them (12 attributes per polarisation) and by using trimester val-
ues (15 attributes per polarisation) instead of the full year.

A second set of experiments, using the 2015-2016 data (using one and
both polarisations), was also experimented, aiming to check if the models
performed differently using radar information from different years.

2.4 Experimental Setup
For developing the models Python (v3.7.9) with scikit-learn (v0.23.2)
were used and a stratified train-test split generated with 75% for train-
ing (48752 samples) and 25% for testing (16250 samples). The models
were evaluated using the coefficient of determination, R2, a performance
measure that normally ranges between 0 and 1, with 0 corresponding to
a constant model that always predict the training test average value and 1
corresponding to a perfect prediction. Experiments were also performed
to check if the existence of outliers (namely, very high values of VV)
influenced the results; no influence was found.

3 Results

This section presents and discusses the results obtained with 2018-2019
and 2015-2016 time windows data sets.

3.1 2018-2019 data
First, a set of experiments, aiming to find the algorithm and parameters,
was performed using both polarisations and all dates (120 attributes) and a
5-folds cross-validation over the training set. Table 2 presents the results
over the test set for the best parameters found. As can be seen, KNN
performs best by a large margin.

Algorithm Parameters R2

LinearSVM C = 1 0.243
KNN K = 5 0.883
Ridge α = 1 0.331
Lasso α = 0.01 0.331

Table 2: R2 results for the best performing parameters.

Then, a more thorough search over the KNN parameters was con-
ducted (also using a 5-folds cross-validation over the training set) with
K={1,3,5,7,9}, weights={uniform, distance} and Minkowski distance with
p = {1,2,3}. The parameters with best results were K = 3, p = 1 and
weights=distance.

Finally, using the fine-tuned parameters, the different sets of attributes
mentioned in subsection 2.3 were tested. Table 3 presents results using the
full year data (all dates and monthly average) and trimester data.

Pol all m. avg Oct-Dec Jan-Mar Apr-Jun Jul-Sep
VH 0.888 0.777 0.636 0.662 0.777 0.718
VV 0.884 0.716 0.606 0.571 0.714 0.657
both 0.886 0.860 0.839 0.848 0.867 0.854

Table 3: R2 results for full year and trimester dates.

Looking at the full year data one can conclude that, when using yearly
individual dates, the results obtained are very similar using one (60 at-
tributes) or both polarisations (120 attributes), with VH presenting the
best result with R2 = 0.888. This is not true when using monthly values:
the best results, by a large margin, are obtained using information from
both polarisations (12 attributes for each polarisation), with a result of
R2 = 0.860. Nonetheless, when comparing single polarisations, VH con-
tinues to carry more discriminant information than VV (R2 = 0.777 vs.
R2 = 0.716).

When comparing trimester data one can conclude that Apr-Jun trimester
data is the most informative one reaching a value of R2 = 0.867 with both
polarisations (30 attributes). On the other end Oct-Dec trimester data is
the least informative. Also, when using trimester data, using both po-
larisations increase the performance substantially (more than 10%, with
higher increases for the least performing trimesters).

3.2 2015-2016 data
As previously mentioned, this set of experiments aimed at checking if
the models performed differently using radar information from different
years; 2015-2016 time window was chosen to include the on-site EC read-
ings. Since Sentinel-1B was only launched in 2016, this data only con-
tains values from Sentinel-1A, but readings of the 3 available orbits were
collected. Parameter fine-tuning was also conducted over KNN algorithm,
with the best performance obtained with the the same parameters.

In order to compare the results between the two time windows, an
additional experiment with 2018-2019 data was conducted using only the
Sentinel-1A readings. Table 4 presents the results.

2015-2016 2018-2019
Pol Orb 43 Orb 50 Orb 145 Orb 147
VH 0.869 0.869 0.880 0.876
VV 0.865 0.879 0.876 0.873
both 0.880 0.876 0.885 0.886

Table 4: 2015 data set scores for each orbit and polarisation combination.

As can be seen from the table, when using a full year radar infor-
mation, different orbits generate models with similar performances (with
higher values for orbit 145 possibly because it contains more dates); once
again VH polarisation outperforms VV and a minor improvement over
VH performance is observed when adding VV information. On the other
hand, it is easily seen that the results seem to be independent of the time
window of the collected radar data.

4 Conclusions and Future Work
This work presents a regression model to determine the soil eletro-con-
dutivity using radar information. The developed models reached a R2

performance of 88.8% using data from both satellites and a full year time
window (2018-2019 data). Nonetheless, similar performances were ob-
tained using information from just one satellite (88.6%). Moreover, VH
polarisation seems to carry out more descriptive information when com-
pared with VV, obtaining a similar performance to using both polarisa-
tions (when using a full year time window). Also, when using trimester
data, Apr-Jun has the highest R2 (86.7%) while Oct-Dez has the low-
est (83.9%). Finally, performance results seem to be independent of the
yearly radar data time-window.

As future work, we intend further investigate the use of radar data
aiming to produce better models (joining info from different orbits and/or
different years) and to build an application that, given a site’s set of radar
images, is able to generate the corresponding electro-conductivity map.
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