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Abstract 

 
The maximization of control power is considered for an aircraft with multiple control surfaces, which may be 
decoupled or coupled; the force and moment coefficients are specified by polynomials of the control surface 
deflections, of any degree not less than two. The optimal deflections, which maximize and minimize any force or 
moment coefficient are determined subject to constraints on the range of deflection of each control surface. The 
results are applied to a flying wing configuration to determine: (i/ii) the pitch trim, at the lowest drag for the fastest 
climb, and at the highest drag for the steepest descent; (iii) the maximum and minimum pitching moment and the 
associated range of trimmed c.g. positions for several engine configurations; (iv) the maximum and minimum yaw 
control power and the fraction needed to compensate an outboard engine failure for several propulsion 
configurations; (v) the maximum and minimum rolling moment and the strongest wake vortex which can be 
compensated. The optimal case of all control surfaces has significant advantages over using just one, e.g., the 
range of drag modulation with pitch trim is much wider and the maximum and minimum available control moments 
larger.      
 

Keywords: yaw control power, multiple control surfaces, flying wing configuration  

1. Introduction 

There is a substantial literature on the optimization of the deflection of several control surfaces [1-5], 
for example to minimize trim drag in cruise; this is particularly relevant to the flying wing configuration 
or blended wing body [6-9], that has the whole span available at the trailing-edge for control and high-
lift surfaces, and a large fraction of the leading-edge. For example, the trailing-edge surfaces may 
consist of a body flap inner and outer flaps and ailerons, that may be used for lift, pitch or roll control. 
The present work extends existing knowledge on the subject in two directions: (Part I) on theoretical 
side [10-13] by allowing for the interactions among different control surfaces, in the sense that the 
deflection of one control surface may affect the forces or moments produced by neighboring ones; 
(Part II) on the application side [14-17] by considering not only minimum drag but also maximum drag 
(e.g. for fast descent) and maximum control moments for emergencies, such an engine-out condition 
or a wake vortex encounter. These applications are made to a flying wing, extending the scope of the 
literature [18-22] that concentrates mostly on minimum drag for pitch trim in cruise. Thus, the present 
paper is also a contribution to the expanding literature on various aspects of the Blended Wing Body 
(BWB) aircraft [23-26].    

The theory (Part I) concerns the maximization of control power in low-speed flight for a flying 
wing aircraft configuration and is considered as concerns several components of control forces and 
moments. First a method of finding the minimum and maximum forces and/or moments is presented 
(§1); it finds the extrema (§3) of forces and moments (§2), considering the range of possible control 
surface deflections (§4). The method is presented first (§2-4) assuming (i) decoupled controls 
specified by (ii) polynomials of second degree in the deflections. These two restrictions are removed 
in turn, viz. (i) in §5 and (ii) in §6, and both in §7. Thus, the optimization theory applies to coupled 
controls specified by polynomials of arbitrary degree (§7); the number of input data points increases 
with the degree of the control polynomials and the extent of cross-coupling (§8).  
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The theory (Part I) is applied to a flying wing aircraft configuration (Part II) with five control surfaces: 
a body flap, wing inner, middle and outer flaps, and rudders. A baseline low speed straight and level 
steady flight condition (§9) is considered in several situations: (i) the minimum drag decrease (10%) 
to achieve pitch trim with highest climb rate after take-off (§10); (ii) maximum drag (§11) increase 
(135%) with constant lift and pitch trim to achieve the steepest descent to land; (ii) the maximum and 
minimum pitching moment (§12); (iv) this has implications on the c.g. range for several aircraft 
configurations with engines overwing or underwing relative to the aircraft datum as concerns pitch-
down or pitch-up (§13); (v) the maximum and minimum yawing moment (§14); (vi) the implications 
for the worst case of outboard engine failure (§15); (vii) the maximum and minimum rolling moment 
(§16); (viii) the implications as concerns the maximum difference in vertical velocity at the wing tips 
which can be compensated  in a wake vortex encounter (§17). The conclusion (§18) summarizes the 
low-speed control capabilities which result from the optimization method.  
 

PART I – OPTIMIZATION OF HIGH-ORDER INTERDEPENDENT CONTROLS  
Considering an aircraft with multiple control surfaces, the choice of deflections which maximize and 
minimize any force or moment is considered (§2) first under two assumptions: (a) the controls are 
independent or decoupled; (b) the control forces and moments are specified by quadratic functions 
of the deflections. Using these assumptions (a, b) leads to the simplest application of the method to 
find the extrema (maxima and minima) of the control forces and moments (§3), whether they lie inside 
the interval of possible deflections or at the limit deflections (§4). The method is then extended to the 
case of coupled or interdependent controls (§5) and to the case of control forces and moments 
specified by a polynomial or arbitrary degree of the deflections (§6), thus removing one at a time of 
the two restrictions (a) and (b) above; both restrictions can be removed in the general case of coupled 
controls specified by high-order polynomials (§7), which requires more aerodynamic data (§8).  

2. Forces and moments due to multiple control surfaces  

The forces and moments along the three axes are denoted (1b) by C  with the index   running (1a) 

from one to six: 

 1,2,...,6: , , , , ,C X Y Z L M N = = ;                  (1a,b) 

the index i numbers the N control surfaces. 

 1,..., 5: body flap,inner flap,middle flap,outer flap,rudderi N i= = = ;                (2a,b) 

The forces and moments due to the deflection 
j  of a surface are assumed to: (a) depend only on 

the deflection of that surface; (b) to be specified by a polynomial of the second degree:  

( ) ( )
2

0i i i i iC C a b     = + + ,                    (3) 

( )0 0iC C  = = ,  i
i

i

dC
a

d





= ,   

2

2
2 i

i

i

d C
b

d





= ,            (4a-c) 

which involves: (i) the static coefficient (4a); (ii) the control slope (4b); (iii) the control curvature (4c). 
The assumptions (a) and (b) will be removed in the sequel (§4-6), first one at a time, and then the 
two together (§7). The presentation of the method of maximization of control power is made first under 
the assumptions (a) and (b). The control effect for the surface j is the deviation from the static value.  

( ) ( ) ( )
2

0i i i i i i i iC C C a b        = − = + .                   (5) 

The sum over all control surfaces of (3)/(5) specifies: 

( )
2

0

1 1

N N

i i i i i

i i

C C C a b     
= =

 = = + +
   ,                   (6) 

( )
2

1 1

N N

i i i i i

i i

C C a b    
= =

  =  = +
   ,                   (7) 

the total force/moment (6) and the total control effect (7).  

3. Extrema (maximum and minimum) of forces and moments 
The extremum of a force or moment is obtained for the deflection which leads to a zero derivative 
(8a): 
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0 2 ,
2

i i
i i i i

i i

dC a
a b

d b

 
 



 


= = + = − .              (8a,b) 

In the case of quadratic control polynomial (3) there is only one extremum (8b). If the second-order 
derivative is positive/negative the extremum is a minimum/maximum: 

2

2

0 implies  is minimum of ,  
2

0 implies  is maximum of .  

i ii
i

i i i

Cd C
b

d C








 


= = 


            (9a,b) 

The value of the extremum is:  

( ) ( )
2

2

0 0
2 2

i i
i i i i i i i i i

i i

a a
C C C a b C a b

b b

 
       

 

  
   

= = + + = + − + −   
   

,                  (10) 

which simplifies to (11b): 

  
min max

:i i i        
( )

2

0
2

i

i

i

a
C C

b



 



 − .             (11a,b) 

This extremum (11b) is achievable only if the value (8b) lies within the limits of deflection of the control 
surface (11a). If not, then the extremum lies at one of the deflection limits, as detailed next.  

4. Extrema in the deflection range or at the limits  
 

Consider first that a maximum of iC  is sought. It will occur in the range of deflection if (9b,11a) are 

met: 

( )
( )

min max max

2

0; 0 :
2 2


   

 

    = −   = = −
ii

i i i i i i i

i i

aa
b C C C

b b
.              (12a-c) 

If (12a) is not met the maximum (12c) is not achievable, because it lies outside the deflection range; 
if (12b) is not met there is no maximum, and there is a minimum instead. In both cases the maximum 
will be at one of the extreme deflections. If the extreme defections are symmetric (13a):  

min max
:i i = −    

( )

( )
max

max

min

if >0,  

if <0,  

i i i

i

i i i

C a
C

C a

 



 








= 


              (13a,b) 

the maximum will be at: (i) the largest deflection (13a) for positive slope; (ii) the lowest deflection 
(13b) for negative slope. The reason is that symmetric deflection (14a) implies (14b).  

min max
:i i = −     ( ) ( )

min max

22

i i i ib b  = ,              (15a,b) 

and thus: 

    ( ) ( ) ( )
max min min maxi i i i i i iC C a     − = − .               (15c) 

Thus, the maximum is at 
max

 if 0i ia   and at  if 0
mimi ia  .  

 In the case a minimum is sought the same reasonings apply. The minimum lies within the range 
of deflection if (9a)=(16a) and (11a)=(16b) are met, and then takes the value (11b)=(16c):  

( ) ( )
min max min

2

0/ 2 , 0 : / 2           = −   = = −i i i i i i i i i i ia b b C C C a b .         (16a-c) 

If one of the conditions (16a,b) is not met the minimum is at an extreme of the range of deflection. In 
the case of symmetric maximum deflections, the minimum is: (i) at the lowest deflection (17a) for 
positive slope; (ii) at the largest deflection (17b) for negative slope:  

min max
:i i = −     

( )

( )
min

min

max

if >0,  

if <0;  

i i i

i

i i i

C a
C

C a

 



 








= 


                     (17a,b) 

these conclusions follow from (15a-c) mutatis mutandis.  

5. Effect of mutual interaction between controls  
In the preceding analysis it was assumed that the deflection of one control surface does not create 
forces or moments upon the others; the assumption of independent or decoupled controls implies 
that the global extremum (maximum or minimum) is the sum of the extrema (maximum or minimum) 
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for each control surface: 

( )
2

0

1 1

N N

i i i i i

i i

C C C a b     
= =

 = = + +
    ,                 (18) 

where the  optimal deflections for each control surface are determined separately for each of them. If 
all deflections were maxima (19a) within the range of deflection (19b) the maximum force/moment 
would be (19c): 

min max
0, / 2 :i i i i i ib a b      =    ( )

2

max 0

1

/ 2
N

i i

i

C C a b   
=

= − .                     (19a-c) 

If some 
i  are not maxima or lie outside the range of possible deflections, then the corresponding 

terms in (19c) must be substituted as in (13a,b). Likewise for a minimum. 
       In the case of interdependent or coupled controls, the force and moment on one surface are 
affected at most by the deflections of all others:  

0

1 , 1

N N

i i ij j ijk j k

i j k

C C a b     
= =

= + +  ,                             (20) 

assuming still a polynomial of second degree: (i) the static values are unchanged (4a); (ii) the slopes 

are specified by a matrix (21a) indicating the effect of the deflection of control surface 
j  on the forces 

and moments on control surface iC : 

2

; 2i i
ij ijk

j j k

C C
a b 
 

  

 
= =
  

;           (21a,b) 

(iii) the curvatures (21b) involve a multiplicity with three indices.  
 The extremum cannot be found separately for each surface, but only for all together:  

1 , 1 1

0 2
N N N

i j ij ijk k

i i j k

dC dC d a b    
= = =

 
= = = + 

 
   ,                           (22) 

where the multiplicity of slopes is symmetric in the last two indices (23a)  

   

2 2

:  
 

   

 
= =

   

i i
ijk ikj

j k k j

C C
b b ,              (23a,b) 

on account of (21b). The deflections for the extrema are given by (23) 

( )
1

,

, 1

1

2

N

i ij ijk

j k

a b  
−

=

= −  ,                           (23c) 

where ( )
1

ijkb
−

 is the inverse matrix of 
ijkb  with regard to jk . The extremum will be a 

maximum/minimum if the two-dimensional differential form is positive/negative:  
2

2 2

1 , , 1 , , 1

0 minimum,
2

0 maximum;

N N N
i

i i j ijk j k

i i j k i j ki j

C
d C d C d d b d d

     
 = = =

  
= = =       
                   (24a,b) 

 

this is equivalent to the matrix 
ijkb  being positive/negative definite in ( ),j k  for every i , i.e., having 

all eigenvalues real and positive (negative):  

is positive-definite implies  is local minimum, 

is negative-definite implies  is local maximum. 

i

ijk

i

b





= 


              (25a,b) 

If these conditions [(24a) or (24b)] are not all met for some ( ),i   or the values (23) lie outside the 

range of possible deflections, the maximum/minimum occur at the extreme deflections. The case of 

coupled controls (20) reduces to independent controls (3) when for each    the matrix 
ija  and 

multiplicity 
ijkb  are replaced by two vectors ( ),i ia b  . 

6. Controls specified by polynomials of high degree  
Next the assumption of decoupled controls is retained, but the control forces and moments are not 
restricted to polynomials of degree two in (3); polynomials of any degree M are considered:  
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( )( )

1

M
mm

i i i

m

C A  
=

= ,                      (26) 

where: (i) the static values (27a), slopes (27b) and curvatures (27c) are retained:  
  

( )
2

(0) (1) (2) ( )

0 2
0 , , 2 2 , ! ,

m
mi i i

i i i i i i i m

i i i

dC d C d C
A C C A a A b m A

d d d

  
       

  
  =  =              (27a-d) 

and derivatives of order m up to M are added. The extremum can be obtained independently for each 
decoupled surface. The total extremum is the sum of partial extrema. Thus, only partial extrema need 
to be considered. The extremum corresponds to the vanishing of the derivative of a polynomial:  

( )
1

( )

1

0
M

m
mi
i i

mi

dC
A m

d


 



−

=

= = .                      (28) 

In the case of second-degree (8a) there was only one root (8b), whereas in the case of degree M 
there are M-1 roots. Of these roots, those with positive/negative second-order derivative can be local 
minima/maxima:  

( )( )
2

2
( )

2
2

0 implies  is local minimum,
1

0 implies  is local maximum;

M
m

m ii
i i

mi i

d C
A m m

d







 

−

=


= − 


                (29a,b) 

if there are several local minima/maxima then the lowest/highest is chosen as the overall 
minimum/maximum.  

It may happen that the second order derivative vanishes, and some higher-order derivatives 
vanish also. Not all derivatives up to order M can vanish otherwise the polynomial would reduce to a 

constant. Suppose that the first derivative which does not vanish at 
i  is of order s; if s is odd the 

i  

is an inflexion point, not a maximum or a minimum (30a): 

( ) ( ) ( ) ( ) ( )1  is odd implies  is an inflexion-point,
... 0

 is even  implies  is an extremum;         

s s i

i i i i i i

i

s
C C C

s
  


  



− 
 = = =  


      (30a-b) 

if s is even then 
i  is an extremum and the sign decides if it is a maximum or minimum.  

( ) ( ) ( ) ( ) ( )2 1 2 0 implies  is local minimum,
... 0

0 implies  is local maximum.

s s i

i i i i i i

i

C C C  


  



− 
 = = =  


                (31a-b) 

All local maxima/minima, arising at second-order derivative (29a,b) or at any derivative s of higher 
even order (31a,b) are considered for the overall maximum and minimum: 

( )  ( ) max minsup infi i i i i iC C C C    =  = .    (32) 

If the deflection 
i  lies outside the range of possible deflections, then the corresponding extremum 

is at one of the deflection limits. The extrema for each decoupled control specify by addition the 
overall extrema.  

7. High order polynomials together with coupled controls  
The optimization method applies most simply (§2-4) to decoupled controls specified by second-order 
polynomials. These two restrictions were relaxed to allow either coupled controls (§5) or high-order 
polynomials (§6). Next both constraints are removed, so that the controls can be coupled and 
specified by polynomials of any degree. If the highest degree is M, all polynomials can be written, 
possibly with some zero coefficients, in the form:  

1 1

1

...

1 , 1 0 ,..., 1

... ...
m m

m

N N M N

i i i i ik i k ij j j j

j j k m j j

C A A A A        
= = = =

= + + + =    .                             (33) 

where: (i) the static values (4a) are unchanged; (ii) the slopes (34a) and curvatures (34b) are as 
before in the coupled case (21a,b).  

1

1

2

..., 2 2 , !
... m

m

m

i i i
ij ij ijk ijk ij j

j j k j j

C C C
a A b A m A  
    

    

  
= = = = =
    

;         (34a-c) 

(iii) the higher-order derivatives (34c) may all be designated by the same letter A and distinguished 

by the number of indices ( )1,..., mj j  for 0 m M  .  
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 Due to the coupling the extremum must be sought jointly for all controls together:  

1 1 1

1

...

1 1 1 ,..., 1

0 ...
m m

m

N M N N

i ij j j j j

i m i j j

dC dC m A d     
= = = =

= = =    ;                     (35) 

the roots of (35) specify the extrema. If the second variation is positive/negative the extremum is a 
minimum/maximum  

( )
1 1 1 2

1

2 2

...

1 1 1 ,..., 1

1 ...
m m

m

N M N N

i ij j j j j j

i m i j j

d C d C m m A d d      
= = = =

= = −        

0 implies  is local minimum,

0 implies  is local maximum;

i

i









                                 (36a-c) 

this is equivalent to stating that the matrix (37a) is positive/negative definite, i.e., as all eigenvalues 
real and positive (negative) 

( )
1 2 1 3

1

...

2 1 ,..., 1

1 ...
m m

m

M N N

j j ij j j j

m i j j

X m m A  
= = =

= −  
positive-definite implies local minimum,

negative-definite implies local maximum.





         (37a-c) 

The matrix (37a) may be not definite, e.g. it may be indefinite, positive or negative semi-definite, i.e. 

have eigenvalues with opposite signs, or some zero eigenvalues, in this case 
i  is not an extremum. 

If all eigenvalues of (37a) are zero, then it is necessary to proceed to higher order to know if 
i  is an 

extremum.   
If the differential form (38a) of lowest order which does not vanish is of odd order (38b) then 

i  is an inflexion, not an extremum:  

( ) ( ) ( ) ( ) ( )1
... 0

s s

i î i î i îdC d C d C X    
−

= = =  =

 is odd implies  is inflexion point,

0 implies  is local minimum,
 is even

0 implies  is local maximum;

i

i

i

s

s














                                                                                                                                           (38a-d) 

if the first non-vanishing differential is of even order then 
i  is an extremum (38c,d) viz. a local 

minimum/maximum if it is always positive/negative. If X does not have a fixed sign, then 
i  is not an 

extremum. If the value 
i  lies outside the range of possible deflections, then the extremum is at one 

of the extreme deflections. The set of values 
i  is then used to calculate the overall maximum and 

minimum in (33). 

8. Data points for coupled/uncoupled  
 
The number of data points needed is lowest (6) for the three forces and moments (total 6), for N 

decoupled control surfaces ( 6 N ), for second-degree polynomials with 3 coefficients each: 

0Q 6 3 18N N=   = .                  (39) 

If the controls remain decoupled but the polynomials are (26) of degree M, the 3 coefficients are 
replaced by M+1, and the number of data points need is: 

( ) ( )1Q 6 1 6 1N M N M=   + = + ;            (40) 

this reduces to (39) for M=2. In the case (20) of a polynomial of degree M=2 and N coupled controls, 

there are 6N static values, 
26N  first-order derivatives and 

36N  second-order derivatives; the latter 

are symmetric (23a), reducing their number to ( )26 1 / 2N N +  in: 

2:M =    ( ) ( )2 2 2 3

3Q 6 1 / 2 3 2 3N N N N N N N = + + + = + +  .                       (41) 

In the general case (33) of polynomials of degree M and N coupled controls for each force and 

moment there is one static value, 
2N  slopes, ( )2 1 / 2N N +  curvatures and 1,2,... :m =

 ( ) ( )
1

1 ! / ! 1 !
N m

N N m N m N
m

+ − 
 = + − −   

 
 ( )( ) ( )2 1 2 ... 1 / !N N N N m m= + + + − ,         (42a) 
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coefficients of order m that are symmetric in all indices; the total number of data points is: 

( ) ( ) 3

1

1
Q 6 1 1 / 2 ... ... 1 / ! 6 1

M

m

N m
N N N N N N M M N

m=

 + − 
= + + + + + + − = +  

  
 .         (42b) 

For polynomials of second degree the number of data points (42b) agrees with (41), and it increases 
for polynomials of third degree to:  

( ) ( )( ) 2 3 4

4M=3: Q 6 1 1 / 2 1 2 / 6 6 11 6N N N N N N N N N N N = + + + + + + = + + +  .    (43) 

As can be seen in the TABLE I the number of data points needed increases rapidly with the degree 
of the polynomial, more so in the coupled case.  

The interaction between control surfaces farther apart would be weaker and could be 
neglected to reduce the number of data points needed. Suppose that there are N control surfaces 
each interacting only with its neighbors: (i) the first and last surfaces have each one neighbor, and 

thus one coefficient of degree zero, two of degree one ( )1 2,  , three of degree two 2 2

1 2 1 2, ,      , 

four of degree three ( ) ( ) ( )
3 3 32

1 1 2 1 2 2, , ,      
 

, and ( )1m+  of degree m ; (ii) the ( )2N −  control 

surfaces not at either end have two neighbors, and hence one coefficient of zero degree, three of 

first degree  ( )1 2 3, ,   , six of second degree 2 2 2

1 2 3 1 2 1 3 2 3, , , , ,            and ( )( )1 2 / 2m m+ +  

coefficients of degree m ; (iii) these coefficients add for all degrees from 0 to M , for each of three 

components of forces and moments:  

2:N    ( ) ( ) ( )( )2

0 0

Q 6 2 1 2 1 2 / 2
M M

m m

m N m m
= =

 
= + + − + + 

 
   

     ( )( ) ( ) ( )( )
0

6 1 2 3 2 1 2 / 2
M

m

M M N m m
=

 
= + + + − + + 

 
 .              (44) 

This is the number of data points in the case of N control surfaces coupled only to the nearest 
neighbor, and polynomial of degree M. For two control surfaces the number of parameters is: (i) the 
same for neighboring interactions (44) or all interactions (42b); (ii) larger than for decoupled controls 
(40):  

2:N =  ( )( ) ( ) ( )2 3 1

0 0

1
Q 6 1 2 12 1 12 Q 12 1 Q

M M

m m

m
M M m M

m= =

+ 
= + + = + = =  + = 

 
  .      (45) 

For more than two control surfaces, the number of parameters for neighboring interaction (44) is: (i) 
larger than (40) for decoupled controls; (ii) smaller than (42b) for all controls coupled:  

    ( ) ( ) ( )2 1Q 1 12 6 2 6 1 QM N N M  + + − = +   ,   (46a) 

3:N    ( ) ( )( ) ( )2

0 0

2
Q 6 2 1 2 6 2

2

M M

m m

m
N m m N

= =

+ 
 − + + = −  

 
   

         
0 0

2 1
6 6

M M

m m

m N m
N N

m m= =

+ + −   
    

   
  ;              (46b) 

in (46b) it was considered that the first term on the l.h.s. of (44) is smaller than the second, because 
the control surfaces at one end have less parameters than the others. In the case of polynomials of 
degree two (47a) and (47b) the number of parameters for neighboring interaction: 

2:M =     ( )2Q 72 60 2 60 48N N= + − = − ,       (47a) 

3:M =     ( ) ( )2Q 120 120 2 120 1N N= + − = − ,                (47b) 

is indicated in TABLE I in comparison with decoupled (40) and fully coupled (41,43) controls. The case of 
each control surface interacting only with its neighbor(s) significantly reduces the number of data points 
needed and should account for control coupling with good accuracy. Since the method applies both to 
coupled and uncoupled controls, and polynomials of any degree, it can be illustrated for the simplest case, 
for which data is more readily available.   

PART II – APPLICATION TO MULTIPLE CONTROL SURFACES ON A FLYING WING.  
The preceding method of optimization of control power is particularly relevant to low-speed flight for 
which low dynamic pressure requires larger control deflections. The method applies to decoupled and 
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coupled controls, specified by polynomials of second or higher degree. The method is illustrated most 
clearly and simply for decoupled controls specified by polynomials of second-degree for a reference 
large passenger BWB configuration. This configuration is considered for straight and level steady 
flight at low speed as the baseline equilibrium condition (§9). Pitch trim is achieved choosing control 
surface deflections for minimum drag (§10) e.g., for the fastest climb; the control surface deflections 
are also obtained in the opposite case of maximum drag (§11) e.g., for the highest possible 
deceleration for the steepest descent on approach to land. The minimum and maximum pitching 
moment are considered to establish center-of-gravity limits (§12); for several aircraft configurations 
with engines above and below the wing (§13). The minimum and maximum yawing moment are 
considered (§14); the available yaw control power is compared with that needed to compensate the 
failure of the outboard engine in a two-, three- or four-engined aircraft (§15). The maximum and 
minimum rolling moment are determined (§16); these are compared with the rolling induced by a 
wake vortex encounter (§17), to specify the maximum vertical velocity component at the wing tip 
which can be compensated. The conclusion (§18) discusses the general and iterative optimization 
methods.  

9. Reference low-speed flight condition  
A straight and level steady flight at M = 0.2 is assumed, for a reference large passenger BWB whose 
aerodynamic and control data indicated in the Tables II to IV. The data in TABLE II leads to a lift 
coefficient that balances the weight:  

2

0 2 / / 0.14916LC W SV W qS= = = .                                      (48a) 

The static lift coefficient is given in TABLE III for zero sideslip:  
2

00: 0.0117 3.3516 0.16966LC  = = − + − .                    (48b) 

For the value (48a) of the lift coefficient (48b) the AoA is a root of (49a): 
2 219.7548 0.94813 0; 4.8112 10 2.7566ºrad   −− + = =  = ,          (49a,b) 

the only root with a reasonable value is (49b). The value (49b) of the AoA leads to the drag (50a), 
side force (50b), pitching (50c), yaw (50d) and rolling (50e) moment coefficients: 

3

0 7.1036 10DC −=  ,   0 0.0YC = ,  
2

0 2.5121 10mC −=  ,  

6

0 3.8997 10nC −= −  ,  
5

0 3.9361 10lC −=  ,             (50a-e) 

that are calculated from the formula:  

( ) 2

0 0 1 20iC C a a a       = = + + ,                (51) 

using the static coefficients in TABLE III.  
The horizontal and vertical force coefficients in body axis are specified by the lift and drag 

coefficients by: 
1

0 0

5
0 0

cos sin 1.4933 10

sin cos 7.822 10

Z L

X D

C C

C C

 

 

−

−

      
= =      

− −       
.            (52a,b) 

The lift coefficient (48a) and the vertical force coefficient (52a) are close because the AoA is small; 
the horizontal force coefficient (52b) is much smaller than the drag coefficient (50c) and with opposite 
sign. The pitch trim is considered FIGURE 1 with: (i) the weight applied at the center of gravity at 
quarter chord (53a); (ii) the pitching moment, as all other aerodynamic forces at the reference point 
(53b); (iii) relative distance is (53c): 

0.25 14.74 ,cgx c m= =        0.565 33.31 ,refx c m= =     

0.315 18.57 .ref cgx x x c m= − = =                (53a-c) 

The balance of pitching moment for lift equal to weight (54a) is (54b): 

:L W=      0M M W x= − ,    
2

0 02 /m m m mC C Wx SU C C= −  + ,            (54a-c) 

corresponding to (54c) the reference length is (55a). It leads to the pitching moment coefficient (55b):  

36.416m= ;   
2 22 / 7.6064 10mC W x SU − =− = −  ,              (55a,b) 

using also the values from TABLE II. From (50c) and (56b) it follows that the pitching moment 
coefficient to be trimmed is 

                      
2

0 5.0943 10m m mC C C −= + =−  ,                (56) 

 that is a pitch down.  
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10. Pitch trim with minimum drag  
The pitching moment coefficient (55b) must be balanced by deflection of the control surfaces:  

5
2 2

1

7.6064 10 Mi i Mi i

i

a b −

=

−  = + ,           (57) 

where i  is the deflection of each flap, and all flap coefficients ia  and ib  are listed in TABLE IV; 

they were calculated from tables for zero angle-of-sideslip 0 =  and angles-of-attack 4º =  and 

6º = , interpolating linearly for the AoA (49b). These interpolated polynomial coefficients are then 

used to calculate forces and moments coefficients, e.g., the pitching moment (57) for the exact AoA 

(49b). The (i) linear interpolation of force and moment coefficients would have given an error ( )2  

equivalent to neglecting the second-order term; the (ii) interpolation of the polynomial coefficients 

should give in the force and moment with an error  ( )3 , consistent with retaining the second-order 

term and omitting the third-order term. The former (i) would represent a degradation in accuracy 
whereas the latter (ii) does not, and hence is adopted in the present calculation. The trimming should 
not change the lift (58a)  

( ) ( ) ( )
5 5

2 2

min
1 1

0 ,Li i Li i D Di i Di i

i i

a b C a b   
= =

= + = +  ,           (58a,b) 

and should minimize the drag (58b). Using the values in TABLE IV, the optimization problem is: (i) to 
keep constant the lift (59) and pitching moment (60): 

( ) ( )
2 2

1 1 2 2 30 0.23344 0.00455 0.19079 0.02808 0.12024LC     =  = − + − +   

  ( ) ( ) ( )
2 2 2

3 4 4 5 50.00674 0.05995 0.00478 0.05101 0.00246    − + − − − ;              (59) 

( ) ( )
2 22

1 1 2 2 32.5121 10 0.07267 0.00037 0.00340 0.00590 0.01656mC     −=  − + − + −  

  ( ) ( ) ( )
2 2 2

3 4 4 5 50.00234 0.01563 0.00158 0.01885 0.00206    + − + + + ;              (60) 

( ) ( ) ( )
2 2

1 1 2 2 3min
0.00537 0.01867 0.003745 0.01283 0.00067DC      = + + + +   

  ( ) ( ) ( )
2 2 2

3 4 4 5 50.00930 0.00005 0.00596 0.00093 0.00824    + − + − + .              (61) 

(ii) to minimize the drag (61). Eight optimization methods with constraints were presented in an earlier 
paper [6]; of this method VIII offered the best combination of accuracy, simplicity and clarity of 
interpretation. It is based on selecting the most effective control surfaces to generate each component 
of the aerodynamic force or moment of interest. This method is used in the sequel with suitable 
adaptations.  
 For a first iteration only terms linear in the deflections are considered. Concerning the drag it is 
reduced (Table IV) by: (i) negative deflection of the first three flaps, with the body flap being most 
effective; (ii) positive deflection or the outer flap and rudder, with the rudder being most effective. As 
concerns drag control the least effective surfaces are the middle and outer flaps; thus the optimization 

is performed most accurately if the deflections 4  and 3  are eliminated from the system of equations 

(59-61), as follows: (i) the linear form of (59) is used to express approximately the deflection of the 
outer wing flap in terms of the others:  

      
4 1 2 3 53.8939 3.1825 2.0057 0.8509    = − − − + ;               (62) 

(ii) this is substituted in the remaining constraint, i.e., constant pitching moment (60; 56), and the 

objective, i.e., minimum drag (61), which became independent of 
4 : 

2

1 2 3 57.6064 10 0.01181 0.04634 0.01479 0.005550   −−  = − + + + ,                 (63a) 

1 2 3 50.005565 0.003901 0.0007703 0.0009725DC     = + + − ;             (63b) 

(iii) the deflection 
3  of the next least effective control surface is expressed in terms of the remaining 

more effective using the second constraint (63a) of constant pitching  moment:  

3 1 2 55.1429 0.7985 3.1332 0.3753   = − + − − ;               (64) 

(iv) substituting (64) into (63b) specifies the drag, satisfying both constraints on lift and pitching 
moment, in terms of the deflections of the three most effective control surfaces: 

1 2 50.003969 0.006173 0.001488 0.001262DC    = − + + − ;          (65) 
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(v) the quadratic terms are re-introduced in the drag in the same proportion to the linear terms as 
before in (61): 

( )

( ) ( )

1 1

2 2 5 5

0.0003969 0.006173 1 3.4767

0.001488 1 3.4259 0.001262 1 8.8602 ,

 

   

 = − + +

+ + − −

DC
                (66) 

leaving a formula for minimization without constraints, with three independent variables. 

The next steps are: (vi) the deflections of the body 1  and inner 2  flaps must be negative to 

minimize the drag, whereas the deflection of the rudder must be positive to further reduce drag, as 
follows from (8b):    

( )1 1/ 2 3.4767 0.14381 8.2399ºrad = −  = − = − ,               (67a) 

( )2 1/ 2 3.4259 0.14595 8.3621ºrad = −  = − = − ,               (67b) 

( )5 1/ 2 8.8602 0.056432 3.2333ºrad =  = = ;        (67c) 

(vii) the substitution of (67a-c) in (64) and (62) would lead to the deflection of the two least effective 
surfaces,  

3 4.8218 276.27ºrad = − = − ,   
4 9.532 546.16ºrad = = ;          (67d,e) 

(viii) the values (67d,e) exceeds the limit 0 25º = ; (ix) since these are the least effective control 

surfaces, the values (67d,e) are discarded, viz. these surface are not used 3 40 = = , so the 

deflections are:  

           ( ) ( )0.1438, 0.1459,0,0, 0.05643 8.239, 8.362,0,0, 3.233 ºi rad = − − + = − − + ;        (68) 

(viii) the corresponding drag (61) is (69a): 

( ) ( ) ( )4

0min min
6.8567 10 , / 0.096524D D D i D DC C C C C −   =  = −   = − ,             (69a,b) 

and thus the pitch trim decreases drag (50a) by 9.65% in (69b) to the value:  

( ) 3 4 3

min 0 min
7.1036 10 6.8567 10 7.035 10D D DC C C − − −= +  =  −  =  ,      (69c) 

(x) the comparison with pitch trim by the body flap alone (70a) i.e., the first term of (60) leads (70b) 
to a large deflection (70c), close to the limit 25º :  

( )
2

2 2 2 2 1 1 10 : 196.41 67.895 0, 0.34633 19.84º;      = = = = − + = = − = −rad             (70a-d) 

(xi) the associated drag would be a penalty (70e) instead of a reduction for the optimal solution (69b), 
that is as increase (70f) of 57.69% instead of a reduction (69b) of 9.65%: 

( ) ( )
2

3

1 10.00537 0.01867 4.098 10 ,D D iC C    − =  = + =    
0/ 0.57689.D DC C =    (70e,f) 

In conclusion the optimal pitch trim (68) compared with deflection of body flap alone (70a,c) gives: (a) 
smaller deflections of control surfaces (68) vs. (70d); (b) lower trim drag (69a) vs. (70e) by a difference 
(71a) that corresponds (71b) to 67.34% of the drag;  

           ( )3

04.7837 10 , / 0.67342D D D D DC C C C C− − = −   −  = ;           (71a,b) 

(c) a trim drag reduction of 9.65% in (69b) the optimal case vs. a drag penalty of 57.69% in (70f) using 
the body flap alone.   

11. Maximum drag for greatest retardation  
The minimum drag for pitch trim is desirable for the fastest climb after take-off; the reverse, the 
maximum drag with pitch trim, may be desirable for the steepest descent to land. The preceding 
analysis applies because in both cases lift balance and pitch trim must be maintained, and the most 
effective control surfaces should be used, leading to the total drag (66) without constraint. The only 

difference is that (66) should be maximized rather than minimized: (i) since ( )1 2,   lead to a minimum 

(67a,b), the maximum is at maximum positive deflection, taken to be 25º in (72a,b); (ii) conversely 

the maximum drag for  5  is at the smallest deflection in (72c): 

       1 2 3 4 5 0 0 0, , , , 25º ,25º ,0,0, 25º 0.43633 1,1,0,0, 1 , ,0,0,rad       = − = −  − ;         (72a-c) 

(iii) the two least effective control surfaces are not used in the drag difference (66) leading to (73): 

( ) 2 3

0 0max
0.0003969 0.006399 0.03774 9.5804 10DC   − = − + + =  ;          (73) 

(iv) the maximum extra drag (73) with a limit of 25º on deflection is (74a) more than the baseline drag 
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(50a):  

( ) 0max
/ 1.3487D DC C = , ( ) ( )

max min
/ 13.972D DC C  = ,          (74a,b) 

and is over 13 times (74b) the minimum drag (69a) for pitch trim; (v) thus the maximum trimmed drag 
is more than twice the untrimmed drag (75): 

min 0 0 max 00.9035 / / / 2.3487D D D D D DC C C C C C k     ;            (75) 

 (vi) this shows the range of possible trimmed drag coefficients: 
3 2

min max7.035 10 1.6684 10D D DC C C− −      .               (76) 

In conclusion, there is a wide range of trimmed drag variations obtained by optimizing control surface 
deflections, from a reduction of 9.65% in (69b) to an increase of 134.87% in (74a). If the body flap 
alone had been used at maximum deflection (77a) the drag increase (66) would be smaller (77b): 

1 5 225º; 0 :  = = =      ( ) 36.3829 10 ,D D iC C  − =  =       
0/ 0.89854,D DC C =          (77a-c) 

viz. 89.85% in (77b) instead of 134.87% in (74a). Thus, maximum deflection of the body flap alone 
would have less than doubled the trim drag (77a), whereas optimal deflections more than doubles it 
(74a). The range of drag modulation using optimal controls is much larger than using body flap alone 
because: (i) the minimum trimmed drag is smaller (78a) and the maximum trimmed drag is larger 
(78b):   

( )1 min
/ 9.309D Dk C C   = ;      ( )2 max

/ 1.501D Dk C C   = ;      1 2 13.972k k = ;         (78a-c) 

(ii) the product (78c)  (74b) shows that the range of drag modulation with optimal controls is more 
than 13 times larger than with body flap alone. This demonstrates the contrast between: (a) choosing 
“à priori” single control surface, even the most effective (body flap), which requires a large deflection 
(70d) for pitch trim with minimum drag, and would became saturated for not much larger drag, giving 
a small range of drag modulation; (b) using optimal deflections of all control surfaces, which allows 
pitch trim with a drag reduction (69b), and can also lead to a large drag increase (74a), providing a 
wide range of drag modulation (76). A wide range of drag is useful for steep descent allowing a 
continuous adaptation of the trajectory. The results on the range of possible drag modulation with 
pitch trim are compared in the TABLE V using total drag or thrust instead of drag coefficient by 
multiplying by: 

2 61
/ 6.1343 10

2
DD C SU N= =  .                       (79) 

It demonstrates the superiority of pitch control by optimal deflection of all surfaces versus body flap 
alone.  

12. Maximum and minimum achievable pitching moment  
The maximum and minimum pitching moment (§12) determines the extremes of the c.g. range which 
can be trimmed for several possible engine positions in the vertical plane relative to the aircraft datum 
(§13). The aim next is to find the maximum and minimum of the pitching moment (80a) keeping 
constant the lift (48a)  (80b) and drag (50a)  (80c) coefficients (80b,c):   

3

max,min 0 0: 0.14916, 7.1036 10m L L D DC C C C C −= = = =  .   (80a-c) 

The TABLE IV shows that the least effective control surfaces for the pitching moment (60) are the 

inner 2  and outer 4  wing flaps; thus, these are eliminated using the constraints. The sequence of 

steps is as follows: (i) the deflection 2  of the least effective control surface is expressed in terms of 

all the other deflections from the condition (80b) of constant lift in the linearized form of (59):  

2 1 3 4 51.22350 0.63022 0.31422 0.26736    = − − − + ;         (81) 

(ii) substitution of the condition (81) of constant lift in the drag (61; 69a) and in the pitching moment 

(60), eliminates the deflections 2 , and leaves the remaining deflections: 

4

1 3 4 56.8567 10 0.00078799 0.0016902 0.0012268 0.000071263   −−  = − − + ,            (82a) 

1 3 4 50.025121 0.068510 0.014417 0.014562 0.017941mC    = − − − + ;             (82b) 

(iii) the condition of constant drag (82a) is used to express the deflection 
4  of the second least 

effective pitch control surface in terms of the remaining deflections.  

4 1 3 50.55891 0.64224 1.3777 0.0058037   = + − + ;           (83) 

(iv) substitution of (83) in (82b) eliminates the deflection of the two least effective control surfaces:  
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1 3 50.016982 0.077862 0.0056451 0.017681mC   = − + + ,          (84) 

from the pitching moment (84), which is thus unconstrained.  
Next (v) the non-linear terms in the pitching moment are restored in the same proportion as in 

(60), leading to:  

( )

( ) ( )

1 1

4 4 5 5

0.016962 0.077862 1 0.0050915

       0.0056451 1 0.10109 0.017681 1 0.10928 ;

mC  

   

= − −

− − + +
              (85) 

(vi) the extrema of the pitching moment relative to the three most effective pitch control surfaces (with 
the other two implicitly included through the constraints) are minima at the deflections (8b), leading 
to the values: 

   1 3 5, , 98.202,4.946, 4.575   = − ;            (86) 

(vii) these values (86) are far outside the range of possible deflections (87a): 

025º 0.43633i rad  = = ;  
0 1 4 5

ˆ ˆ ˆ   = − = − = ; 
0 1 4 5   = = = − ,            (87a-c) 

thus the maximum (minimum) pitching moment occur respectively for the deflections (87b) and (87c); 
(viii) these correspond to:   

( ) ( ) 2

max

ˆ 6.1686 10m m îC C  −= =  ,  ( ) ( ) 2

min
2.8192 10m m iC C  −= = −  ,         (88a,b) 

the maximum (88a) and minimum (88b) pitching moment.  

13. Centre of gravity range as a function of the engine configuration  
For a flying wing aircraft: (i) overwing engines provide noise shielding and cause a pitchdown; (ii) 
underwing engines have better inlet flow conditions and cause a pitch-up. Thus, the limits of trimmable 
engine configurations will be found both for two and four overwing (O2/O4) and underwing (U2/U4) 
engines and a mixed combination (M) of the over/underwing engines. The static pitch balance is made 
first ignoring the engines, which is equivalent to assuming that they lie at the aircraft horizontal datum. 
The balance of static pitching moment (FIGURE 1) leads (53c,54c) to:  

( )( )2

0 2 /m m ref cgC C W SU x x= − − ,             (89) 

that can be solved for the c.g. position  

( )( )2

0/ 2cg ref m mx x SU W C C= + − .               (90) 

Substituting the values from TABLE II  and (55a) leads to: 

( )2

033.31 2.4414 10cg m mx C C= +  − .               (91) 

The range of pitching moments (88a,b) together with (50c) leads to (92): 

( ) ( )2 2

0 0 0min max
5.3313 10 3.6565 10m m m m m mC C C C C C− −−   −  −  −  +  ;          (92) 

this leads by (90) to a trimmable c.g. range (93a): 

20.294 42.237cgm x m  ,   0.3442 / 0.7164cgx c  ,              (93a,b) 

corresponding to (93b) in terms of the mean aerodynamic chord (53a). 
The pitch trim is considered next (FIGURE 2) for a total engine thrust T at a distance z from 

the horizontal datum, so that (54b) is replaced by (94b): 

T D= :             ( )0 0 ref cgM M W x T h M W x x D z= − − = − − − ,              (94a,b) 

where lift equals weight (54a), and thrust equals drag (94a) . The relation (94b) can be put in a 
dimensionless form like (54c):   

( )( )2

0 02 / /m m cg ref DC C W SU x x C z= + − − .           (95) 

This can be solved again for the c.g. position:  

( )( )2

0 0/ 2 /cg ref m m Dx x SU W C C C z= + − + .           (96) 

Using the same values as before in TABLE II plus (50a) yields: 

( )2 2 433.31 2.4414 10 2.5121 10 1.9507 10cg mx C z− −= +  −  +  .              (97) 

The maximum (88a) and minimum (88b) pitching moment coefficients are used  (FIGURE 3) for the 
configurations: (i/ii) four (O4) or two (O2) engines over the center-body at a height (98a) above the 
horizontal datum lead to the c.g. range (98b,c):  

10z m+ = :  20.770 42.713cgm x m  ,    0.3523 / 0.7244cgx c  ;                  (98a-c) 

(iii/iv) four (U4) or two (U2) underwing engines at a height (99a) below the horizontal datum, lead to 
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the c.g. range (99b,c):   

10z m− = − :  19.818 41.761cgm x m  ,    0.3361 / 0.7083cgx c  ;                  (99a-c) 

(v) the mixed configuration (M) with one engine over the center-body and two underwing at the same 
distance (98a) (99a) from the horizontal datum, corresponds to one-third distance (100a) below the 
horizontal datum 

0 3.33z m= − :  20.135 42.078cgm x m  ,    0.3415 / 0.7137cgx c  ;               (100a-c) 

and the c.g. range (100b,c). These results are summarized in TABLE VI. 

14. Maximum and minimum achievable yawing moment  
The engine position relative to the horizontal datum and the maximum and minimum pitching moment 
(§12) determine the trimmable c.g. range (§13). The compensation of an outboard engine failure 
(§15) depends on the maximum and minimum yawing moment (§14), which are calculated next. The 
yawing moment coefficient is given by the data in TABLE IV: 

( ) ( ) ( )
2 2 2

1 1 2 2 3 30.01396 0.00537 0.00464 0.00821 0.00136 0.00966nC      = − − + − + −            

      ( ) ( )
2 2

4 4 5 50.00066 0.00814 0.03454 0.00209 .   + − + −                          (101)   

The maximum and minimum are sought at constant lift (48a)  (102a), drag (50a) (102b)  and 
pitching moment (56) (102c).  

0 0.14916LC = ,  
0 0.0071036DC = ,  

0 0.050943mC = − .               (102a-c) 

The three least effective yaw control surfaces are the outer 
4 , middle 

3  and inner 
2  flaps; the 

optimal deflections of the two most effective control surfaces ( )1 5,   follow from (8b), and are given 

by (110a,b). Since they exceed the limit deflection (87a), the latter is used to calculate the maximum 
and minimum pitching moment (111-112a,b). As a preliminary illustration their deflections will be 
eliminated from the yawing moment (101) using the constraints (102a-c) of constant lift, drag and 
pitching moment. The sequence of steps is as follows: (i) the constraint of constant lift (102a) in 
linearized form (59) is used to specify the deflection of the least effective yaw control surface (the 
outer flap) in terms of the others:  

4 1 2 3 53.8939 3.1825 2.0057 0.85087    = − − − + ;                        (103) 

(ii) the deflection of the least effective yaw control surface is eliminated from the drag (61,69a)   
(104a), pitching (60,55b) (104b) and yawing (101) (104c) moment:  

4

1 2 3 56.8567 10 0.0055647 0.0039041 0.0007703 0.0009725   −−  = + + − ,          (104a) 

1 2 3 50.076064 0.011808 0.046334 0.014789 0.0055509   − = − + + + ,           (104b) 

1 2 3 50.01653 0,0025396 0.000362 0.035102nC    = − + + + ;              (104c) 

using (103). 

The next step (iii) is to express the deflection 
3  of the second least effective yaw control 

surface (middle flap) in terms of the remaining deflections, e.g., using (104a): 

3 1 2 50.89013 7.2241 5.0683 1.2625   = − − − + ;                         (105) 

(iv) substitution on (105) eliminates the deflections of the two least effective yaw control surfaces from 
the condition of constant pitching moment (104b) and from the yawing moment (104c): 

1 2 50.0629 0.11865 0.028621 0.024222  − = − − + ;            (106a) 

1 2 50.0003222 0.019145 0.0007049 0.035559nC   = − − + + ;           (106b) 

(v) the deflection of the third least effective yaw control surface (inner flap) is expressed in terms of 
the remaining two using (106a).  

2 1 52.19769 4.14556 0.8463  = − + ;               (107) 

(vi) substitution of (107) in (106b) specifies the yawing moment in terms of the deflections of the two 
most effective yaw control surfaces:  

1 50.001227 0.022067 0.036156nC  = − + ;              (108) 

(vii) the non-linear terms in the yawing moment (101) are restored in the same proportion to the linear 
terms:  

( ) ( )1 1 5 50.001227 0.02067 1 0.38467 0.036156 1 0.06051nC    = − + + − ;            (109) 

(viii) the extrema are (8b) a minimum yawing moment for the deflection of the body flap (110a) and a 
maximum for the deflection of the rudder (110b): 
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1 1.29981 = − ,  
2 8.26316 = ;                    (110a,b) 

(ix) the values (110a,b) are far outside the range of possible deflections, so the maximum and 
minimum yawing moments are obtained:   

( )1 5 min
25º 0.43633 : 0.02621,nrad C = − = = = −                        (112a,b) 

( )1 5 max
25º 0.43633 : 0.024599,nrad C − = = = = +                      (112c,d) 

at the extreme opposite deflections of rudder and body flap.  

15. Yaw control margin with outboard engine failure  
The worst-case scenario for yaw control is an outboard engine failure. For an aircraft with n identical 
engines with thrust T, and the outer engine at a distance y  from the aircraft axis, the engine-out 

yawing moment is (113b):  
: /= = =D nT N yT y D n ,                   (113a,b) 

where the total thrust (113a) is assumed to equal the reference drag (94a); this corresponds to the 
yawing moment coefficient.  

( ) ( )( )2 22 / / 2 / /n DC N U S y n D U S C y n = = = ;            (114a) 

using the values (50a), (55a) and (94a) leads to: 

       ( ) ( )( ) ( )2 2 4

02 / / 2 / / / 1.9507 10 /n DC N U S y n D U S C y n y n  −= = = =  ,             (114b) 

showing that the yawing moment: (i) increases with the distance of the outboard engine from the 
centerline; (ii) decreases with the number of engines, since for the same total drag, each engine has 
less thrust. The same 5 engine configurations (FIGURE 3) are considered: (i) four engines (115a) 
above the center-body (O4) with failure of outboard engine at distance (115b) from centerline leads 
to a yawing coefficient (115c): 

4, 8 :n y m−= =  43.9014 10 ,nC −=     ( )
max

/ 0.01586n nC C = ,    ( )
min

/ 0.014885n nC C = − ,     (115a-e) 

which is less than 1.6% of the maximum available yaw control power; (ii) for two engines (116a) at 
the same outboard position over the center-body 

2, 8n y m−= = :  47.8027 10nC −=  ,    ( )
max

/ 0.03172n nC C = ,    ( )
min

/ 0.02977n nC C = − ,      (116a-e) 

the yawing moment is doubled, because each engine has double thrust, and less than 3.2% of the 
maximum yaw control power is used; (iii) for four underwing engines (U4) and failure of the outboard 
engine at a distance (117b) from the axis: 

4, 35n y m+= = :  31.7068 10 ,nC −=     ( )
max

/ 0.069387,n nC C =    ( )
min

/ 0.065122,n nC C = −     (117a-e) 

the yawing moment is less than 7%  of the maximum available; (iv) for two underwing engines (U2) 
at the same outboard position: 

2, 35 :n y m+= =  33.4137 10 ,nC −=     ( )
max

/ 0.13877,n nC C =     ( )
min

/ 0.13024,n nC C = −       (118a-e) 

the yawing moment is still less than 14% of the maximum available, though this would be an extreme 
case of two very powerful engines far outboard; (v) for a mixed configuration (M) with one engine over 
the center-body and two under the outer wings at the same distance from the axis, the yawing moment 
would be intermediate between the two preceding cases: 

3, 35 :n y m+= =  32.2758 10 ,nC −=     ( )
max

/ 0.092516,n nC C =    ( )
min

/ 0.086829,n nC C = −     (119a-e) 

i.e., use less than 9.3% of the available control power. The results for the five engine configurations 
are summarized in TABLE VI. 
 If rudder alone had been used, then the maximum and minimum yawing coefficient would have 
been (101) given by:  

         ( )2 3

0 00.01396 0.00537 5.0688, 7.1136 10nC   −=  − = + −  ;                (120) 

the fraction of available yaw control power needed to compensate an outboard engine failure in the 
five cases would be: 

4, 2, 4, , 2 :O O U M U     / 0.076969,0.15394,0.33673,0.44898,0.67347 ,n nC C+ =                     (121a) 

             / 0.054841,0.10968,0.23993,0.31992,0.47988 .n nC C− = −                  (121b) 

In all cases the percentage of available yaw control power needed to compensate an outboard engine 
out condition is much smaller for optimal controls than for rudders alone, because the yaw control 
authority:  

         ( )
max

/ 4.853,n nC C+ =          ( )
max

/ 3.6845n nC C− = ,                         (122a,b) 
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is increased by a factor of 3 to 5 using optimal controls, and thus there is a much larger safety margin 
to cope with other events.  

16. Maximum and minimum rolling moment  
The rolling moment is specified by the data in TABLE IV:  

( ) ( ) ( )
2 2 2

1 1 2 2 3 30.01866 0.00122 0.09317 0.00997 0.09150 0.00900lC      = + + − + −  

  ( ) ( )
2 2

4 4 5 50.06039 0.00597 0.01552 0.00093   + − − − .              (123) 

The maximum and minimum rolling moment will be sought at constant lift, drag and pitching moment 
(101a-c) (124a-c) and no yawing moment (124d): 

0 0 0 00.14916, 0.0071036, 0.050943, 0L D m nC C C C= = = − = .                   (124a-d) 

The least effective roll control surfaces are the rudders ( )5  and the body flap ( )1 ; the outer flap 

( )4  is less effective than the middle flap ( )3  and the inner flap ( )2  marginally more effective. The 

most effective control surface 
2  has (8b) optimal deflection (133a) which exceeds the limit (87a); the 

latter limit is thus taken to calculate the maximum and minimum rolling moment (133b,c). As a 
preliminary the deflections of the first four least effective control surfaces will be eliminated in this 

order using the constraints: (i) the rudder deflection 
5  is expressed in terms of the remaining using 

the condition (124d) of zero yawing moment in linearized form (101), leading to (125):  

5 1 2 3 40.40417 0.13434 0.039375 0.019108    = − − − ;             (125) 

(ii) the deflection of the least effective roll control surface (rudder) is eliminated by replacing (125) in 
the conditions of constant lift (59) (126a), drag (61; 69a) (126b) and pitching moment (60, 55b)
(126c):  

1 2 3 40 0.21282 0.19764 0.12225 0.060925   = + + + ;             (126a) 

4

1 2 3 46.8567 10 0.0049941 0.0038699 0.0007066 0.0000322   −−  = + + − ;          (126b) 

1 2 3 40.076064 0.065051 0.0059323 0.017302 0.01599   − = − − − − ;           (126c) 

             
1 2 3 40.012387 0.095259 0.092111 0.060687lC    = + + + ;                     (126d) 

and also in the rolling moment (123)  (120d); (iii) the deflection 
1  of the second least effective control 

surface (body flap) is expressed in terms of the remaining from the lift (126a)  (127):  

1 2 3 40.92867 0.57443 0.28627   = − − − ;                         (127) 

(iv) substitution in the drag (126b), pitch (126c) and rolling moment (126d) coefficients eliminates the 
deflections of the two least effective roll control surfaces:  

4

2 3 46.8567 10 0.0007911 0.0021622 0.0014619  −−  = − − − ,           (128a) 

2 3 40.076064 0.054479 0.020065 0.0026321  − = + + ,           (128b) 

2 3 40.083756 0.085 0.057141lC   = + + ;                       (128c) 

(v) the deflection 
4  of the third least effective roll control surface (outer flap) is expressed in terms 

of the remaining from the condition (128a) of constant drag:  

4 2 30.46903 0.54115 1.479 ;  = − −                (129) 

(vi) substitution of (129) leaves the deflections of the two most effective roll control surfaces in the 
pitching (128b)   (130a) and rolling moment (128c)   (130b):   

2 30.077298 0.053055 0.016172 − = + , 2 30.026801 0.052834 0.00048846 ;lC  = + +         (130a,b)  

(vii) the deflection of the fourth least effective roll control surface (middle flap) is expressed from the 
pitching moment (130a) as a function of the deflection of the most effective:  

3 2 24.7798 3.28067 ; 0.024467 0.051232lC  = − − = + ;                      (131a,b) 

(viii) this specifies the rolling moment in terms of  (131b) the most effective roll control surface (inner 
flap); (ix) the non-linear terms are restored to the rolling moment coefficient (131b) in the same 
proportion to the linear terms as in (123): 

( )2 20.24467 0.051232 1 0.10701lC  = + − ;                   (132) 

(xi) the extremum of (132) corresponds (8b) to a deflection (133a) far outside the range of possible 
values: 

( ) ( )2 0 max, min 04.6725, 60º 1.0472 , 0.035195, 0.072105  = = = =  = −l l lrad C C ;         (133a-d) 
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(xii) the maximum and minimum rolling moments (133b,c) thus occur at the extreme deflections, that 
are taken to be (133b).  

17. Compensation of the wake vortex encounter  
The wake vortex encounter is one of the events which places stronger demands on roll control power. 
The worst-case scenario is taken (FIGURE 4) of a vortex axis coincident with the aircraft axis and the 
whole wingspan within the vortex core. The question is the largest vertical component of the induced 
vortex velocity u  at the wing tip which can be compensated using the maximum available roll control 

power. The velocity profile in the core of the vortex is assumed to be linear (134a):  

( ) ( ) ( ) 2 2 2/ , / 2 /u x u x b q x u x b= = ,                                (134a,b) 

leading to a dynamic pressure (134b); the resulting rolling moment (135a): 

( ) ( ) ( ) ( )0

0

2 , 2 1 /

b

l q x c x x dx c x c x b= = − ,              (135a,b) 

involves the chord ( )c x  at station x , specified by (135b) for a delta wing of mean chord c  and root 

chord 2c . The rolling moment is thus: 

     ( )( ) ( ) ( )
2 3 2 2 4 5 2 2

0

0

2 / 2 / 2 1 / 2 / / 4 / 5 /10

b
b

o
l u b c x x b dx u c b x x b u cb   = − = − =  .  (136) 

The corresponding rolling moment coefficient is:  

( ) ( )( )
0

22 2

0

1
/ / / / / 5

2
lC l U S u U b S c

 
= = 

 
,                (137) 

and involves the aspect ratio (138a) and ratio (138b) of mean chord (43a) to reference length (55a):  

                ( )( )( )
0

224 / 4.8344, / 1.6191, / 20 / /lb S c C c u U = = = = .                    (138a-c) 

Thus, the vortex velocity at the wing tip:  

0 0
20 / / 1.5985l lu U C c U C= = ,                 (139) 

which can be compensated increases with: (i) the aircraft velocity and square root of the rolling 
moment coefficient, corresponding to a greater roll control power; (ii) the inverse square root of the 
aspect ratio showing that a wing with larger aspect ratio is more affected by a wake vortex encounter, 
since it increases the induced rolling moment. The substitution in (139) of the extreme values (133b,c) 
of the rolling moment coefficients specifies:  

0.29988 / 0.42924, 20.39 / 29.19 /u U m s u m s−   −   ,                      (140a,b) 

the maximum vortex velocities at the wing tip which can be countered in a wake vortex encounter. 
The results including the rolling moment: 

8

0 2.2339 10 . ,l N m=    ( )
0

67.8621,16.107 10 . ,lC N m= −              (141) 

are summarized in Table VIII. 

18. Conclusion  
The control limits of a flying wing configuration were explored in low-speed flight. The method used 
(Part I) can maximize or minimize (§3) any component of the aerodynamic forces or moments (§2) 
within the range of possible deflections of each control surface (§4); other components can be left 
free or constrained, e.g., by equilibrium conditions. The method applies to coupled or decoupled 
controls specified by polynomials of any degree (§5-7). The minimum set of data (§8) is second-
degree polynomials for decoupled controls. Applying this method (Part II) to a BWB in (§9) a low-

speed ( 0.2M = ) configuration: (i) shows that pitch trim can be obtained with a minimum drag 

reduction of 10%, which has beneficial effect on climb performance after take-off (§10); (ii) conversely 
a maximum drag increase of 58% can be obtained with the same AoA and pitch trim for the steepest 
descent to land (§11); (iii) the maximum and minimum pitching moment (§12) demonstrate the center-
of-gravity range for underwing or overbody engines or a combination of the two (§13); (iv) the 
maximum and minimum yawing moment (§14) specifies the yaw control authority available in the 
worst scenario of failure of an outboard engine (§15); (iv) the maximum and minimum rolling moment 
(§16) determine the vertical velocity at the wing tip of the strongest wake vortex that can be 
compensated (§17). The introduction (§1) outlines de problem, and the conclusion (§18) summarizes 
the results.   

 



ON THE MAXIMIZATION OF CONTROL POWER FOR A BWB 

 

17 

 

 

Acknowledgement 
 
This work was supported by FCT (Foundation for Science and Technology), through IDMEC (Institute of 
Mechanical Engineering), under LAETA, project UIDB/50022/2020. 

Contact Author Email Address 

jmgmarques@uevora.pt 

luis.campos@tecnico.ulisboa.pt  

Copyright Statement 

The authors confirm that they, and/or their company or organization, hold copyright on all of the original material 

included in this paper. The authors also confirm that they have obtained permission, from the copyright holder 

of any third party material included in this paper, to publish it as part of their paper. The authors confirm that 

they give permission, or have obtained permission from the copyright holder of this paper, for the publication 

and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings.  

 

References 
[1] L. McKinney, S. Dollyhigh, Some trim drag considerations for maneuvering aircraft, in: AIAA 2nd Aircraft 

Design and Operations Meeting, July 1970, pp. 1–10.  

[2] S. Goldstein, C. Combs, Trimmed drag and maximum flight efficiency of aft tail and canard configurations, 
in: AIAA 12th Aerospace Sciences Meeting, 1974, pp. 1–12.  

[3] M. McLaughlin, Calculations, and comparison with an ideal minimum, of trimmed drag for conventional 
and canard configurations having various levels of static stability, NASA Technical Note, 1977, pp. 1–22. 

[4] E. Kendall, The minimum induced drag, longitudinal trim and static longitudinal stability of two-surface and 
three-surface airplanes, in: AIAA 2nd Applied Aerodynamics Conference, August 1984, pp. 1–10.  

[5] R. Ende, The effects of aft-loaded airfoils on aircraft trim drag, in: AIAA 27th  Aerospace Sciences Meeting, 
January 1989, pp. 1–9.  

[6] L. Campos, J. Marques, On the minimization of cruise drag due to pitch trim for a flying wing configuration, 
in: 26th International Congress of the Aeronautical Sciences, Anchorage, Alaska, 2008, pp. 1–11. 

[7] N.U. Rahman, J.F. Whidborne, Propulsion and flight controls integration for a blended-wing-body transport 
aircraft, J. Aircr. 47 (3) (2010) 895–903.  

[8] D. Haiqiang, Y. Xiongqing, Y. Hailian, D. Feng, Trim drag prediction for blendedwing-body UAV 
configuration, Trans. Nanjing Univ. Aeronaut. Astronaut. 32 (1) (2015) 133–136.  

[9] B.J. Griffin, N.A. Brown, S.Y. Yoo, Intelligent control for drag reduction on the X-48B vehicle, in: AIAA 
Guidance, Navigation and Control Conference, Portland, Oregon, 8–11 August 2011.  

[10]  W. Durham, Constrained control allocation, J. Guid. Control Dyn. 16 (4) (1993) 717–725.  

[11]  O. Harkegard, Dynamic control allocation using constrained quadratic programming, J. Guid. Control Dyn. 
27 (6) (2004) 1028–1034.  

[12]  M.A. Bolender, D.B. Doman, Nonlinear control allocation using piecewise linear functions: a linear 
programming approach, J. Guid. Control Dyn. 28 (3) (2005) 558–562.  

[13]  M. Bodson, Evaluation of optimization methods for control allocation, J. Guid. Control Dyn. 34 (2) (2011) 
380–387.  

[14]  M.V. Cook, H.V. de Castro, The longitudinal flying qualities of a blended-wingbody civil transport aircraft, 
Aeronaut. J. 108 (1080) (2004) 75–84.  

[15] P.F. Roysdon, M. Khalid, Blended-wing-body lateral-directional stability investigation using 6DOF 
simulation, in: AIAA Infotech at Aerospace Conference and Exhibit, St. Louis, Missouri, 2011.  

[16]  T. Peterson, P.R. Grant, Handling qualities of a blended wing body aircraft, in: AIAA Atmospheric Flight 
Mechanics Conference, Portland, Oregon, 2011.  

[17]  D.W. Jung, M.H. Lowenberg, Stability and control assessment of a blended wing-body airliner 
configuration, in: AIAA Atmospheric Flight Mechanics Conference and Exhibit, San Francisco, California, 
2005.  

[18]  D. Cameron, N. Princen, Control allocation challenges and requirements for the blended wing body, in: 
AIAA Guidance, Navigation and Control Conference and Exhibit, August 2000, pp. 1–5.  

[19]  A. Wildschek, F. Stroscher, T. Klimmek, Z. Sika, T. Vampola, M. Valasek, D. Gangsaas, N. Aversa, A. 
Berard, Gust load alleviation on a large blended wing body airliner, in: 27th International Congress of the 
Aeronautical Sciences, Nice, France, 2010.  

[20]  S.M. Waters, M. Voskuijl, L.L.M. Veldhuis, F.J.J.M.M. Geuskens, Control allocation performance for 
blended wing body aircraft and its impact on control surface design, Aerospace Science and Technology 

mailto:jmgmarques@uevora.pt
mailto:luis.campos@tecnico.ulisboa.pt


ON THE MAXIMIZATION OF CONTROL POWER FOR A BWB 

 

18 

 

 

29 (1) (2013) 18–27.  

[21]  A. Wildschek, Z. Bartosiewicz, D. Mozyrska, A multi-input multi-output adaptive feed-forward controller for 
vibration alleviation on a large blended wing body airliner, J. Sound Vib. 333 (2014) 3859–3880.  

[22]  M. Kozek, A. Schirrer, Modeling and Control for a Blended Wing Body Aircraft – A Case Study, Advances 
in Industrial Control, Springer, 2015.  

[23]  L. Peifeng, Z. Binqian, C. Yingchun, Y. Changsheng, L. Yu, Aerodynamic design methodology for a 
blended wing body transport, Chinese Journal of Aeronautics 25 (4), (2012) 508–516.  

[24]  L. Campos, On physical aeroacoustics with some implications for low-noise aircraft design and airport 
operations, Aerospace 2 (1)  (2015) 17-90. 

[25]  C. Huijts, M. Voskuijl, The impact of control allocation on trim drag of blended wing body aircraft, 
Aerospace Science and Technology 46 (2015) 72–81.  

[26]  P. Okonkwo, H. Smith, Review of evolving trends in blended wing body aircraft design, Progress in 
Aerospace Sciences 82 (2016) 1-23.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ON THE MAXIMIZATION OF CONTROL POWER FOR A BWB 

 

19 

 

 

 
 

TABLE I - Number of parameters needed for control specification 
 

Number of control 
surfaces 

N = 1 2 3 4 5 6 7 

Polynomial of degree M=2 
Q1 - all surfaces 
decoupled: (40) 

18 36 54 72 90 108 126 

Q2 - only neighboring 
surfaces coupled: (44) 

18 72 132 192 252 312 372 

Q3 - all surfaces coupled: 
(41) 

18 72 180 360 630 1008 1512 

Polynomial of degree M=3 
Q1 - all surfaces 
decoupled: (40) 

24 48 72 96 120 144 168 

Q2 - only neighboring 
surfaces coupled: (44) 

24 120 240 360 480 600 720 

Q4 - all surfaces coupled: 
(43) 

24 120 360 840 1680 3024 5040 

 
 

 
 
 

TABLE II - Reference flight condition  
 

Quantity Symbol Value Unit 

Mach number M  0.2 - 

Sound speed s  340 m/s 

Airspeed V sM=  68 m/s 

Air density   1.293 kg m-3 

Dynamic Pressure ( ) 2/ 2q V=  32.989 10  N m-2 

Wing area S  2052.0 m2 

Weight W  
59.15 10  N 

Vertical force coefficient 0ZC  0.14916  - 

Angle-of-attack   2.7566  º 

Angle-of-sideslip   0.0 º 

Pitching moment coefficient 
0MC  22.5555 10−  - 

Yawing moment coefficient 
0NC  64.0213 10−−   - 

Rolling moment coefficient 
0l

C  54.0140 10−  - 

Lateral force coefficient 
0YC  0.0 - 

Horizontal force coefficient 
0XC  66.5745 10−  - 

Lift coefficient 
0LC  0.14917  - 

Drag coefficient 
0DC  36.4451 10−  - 

Half-span b  49.8  m 

Aspect ratio   4.834  - 

Reference position for aerodynamic 
forces and moments refx  33.32  m 

 
 
 
 
 



ON THE MAXIMIZATION OF CONTROL POWER FOR A BWB 

 

20 

 

 

 

TABLE III - Static force and moment coefficients: 
2

0 1 2C a a a    = + +  at 0 =  

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

TABLE IV - Flap force and moment coefficients 
 

Flap number 1 2 3 4 5 

Location Body Inner wing Middle wing Outer wing Rudder 

Pitching moment 

coefficients mC  
mia  0.07267−  0.00340−  0.01656−  0.01563−  0.01885 

mib  0.00037  0.00590  0.00234  0.00158 0.00206  

Lift coefficients  

LC  
Lia  0.23344  0.19079  0.12024  0.05995 0.05101−  

Lib  0.00455−  0.02808−  0.00674−  0.00478−  0.00246−  

Drag coefficients 

DC  
Dia  0.00537  0.003745  0.00067  0.00005−  0.00093−  

Dib  0.01867  0.01283 0.00930  0.00596  0.00824  

Side force coefficients 

YC  
Yia  0.02489−  0.00433 0.00338 0.00197  0.05493 

Yib  0.00538−  0.00416−  0.00401−  0.00247−  0.00132−  

Yawing moment 

coefficients nC  
Nia  0.01396−  0.00464  0.00136  0.00066  0.03454  

Nib  0.00537−  0.00821−  0.00966−  0.00814−  0.00209−  

Rolling moment 

coefficients C  
ia  0.01866  0.09317  0.0915  0.06039  0.01552−  

ib  0.00122  0.00997−  0.00900−  0.00597−  0.00093−  

 
 

TABLE V - Effect of pitch trim on drag 
 

Drag (kN) Deflection of body flap alone Optimal deflection of all surfaces 

Untrimmed drag 43.575 kN 43.575 kN 

Drag due to trim: 
- minimum 
- maximum 

 
+ 25.138 kN 
+ 39.155 kN 

 
−4.206 kN 
+ 58.769 kN 

Percentage of untrimmed drag 
- minimum 
- maximum 
-ratio 

 
+ 57.69 % 
+ 89.85 % 
+ 1.56 

 
−9.65 % 
+ 134.87 % 
−13.98 

Total trimmed drag: 
- minimum 
- maximum 
-ratio 

 
68.713 kN 
82.730 kN 

1.204 

 
39.369 kN 
102.340 kN 

2.600 

Deflections of control surfaces 
- minimum drag 
- maximum drag 

 

(−19.84, 0, 0, 0, 0) rad 
(+25, 0, 0, 0, 0)º 

 

(−8.24, +8.36, 0, 0, +3.13) rad 

(+25, +25, 0, 0, −25)º 

 

Force/Moment 0c  1a  2b  

LC  21.1700 10−−   3.3516  11.6966 10−−   

DC  35.1880 10−  
36.8113 10−−   

16.9799 10−  

YC  0.0  0.0  0.0  

mC  21.1630 10−  
12.8915 10−  

11.8186 10−−   

nC  74.4050 10−  
41.0404 10−−   

42.8744 10−  

lC  51.8360 10−  
43.8850 10−  

49.9777 10−  
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TABLE VI - c.g. range for five engine configurations 

 
 

Engine configuration 
c.g. range 

cgx  (m) /cgx c  

along horizontal datum 20.294 – 42.237 34.42 – 71.64 % 

above centerbody4

102

O four

z mO two +

− 


=− 
 20.77 – 42.713 35.23 – 72.44 % 

M – one above center-body and 

two bellow wings:  10z m =  
19.818 – 41.761 33.61 – 70.83 % 

underwing4

102

U four

z mU two −

− 


=− 
 20.135 – 42.078 34.15 – 71.37 % 

 
 
 

TABLE VII - Yaw trim compensate outboard engine failure 
 

Configuration with outboard 
engine out 

Yawing 
moment 

Percentage of maximum yaw control power need for 
compensation  

with optimal controls with rudders alone 

O4- four above centerbody 

4n = , 8y m− =  
43.9014 10−  −1.49 % , +1.59 % −5.48 % , +7.70 % 

O2- two above centerbody 

2n = , 15y m− =  
47.8027 10−  −2.97 % , +3.17 % −10.97 % , +15.39 % 

U4- four underwing 

4n = , 35y m+ =  
31.7068 10−  −6.51 % , +6.94 % −23.99 % , +33.67 % 

C – one over centerbody and 
two underwing 

35y m+ =  

32.2758 10−  −8.69 % , +9.25 % −31.99 % , +44.90 % 

U2- two underwing 

2n = , 35y m+ =  
33.4137 10−  −13.0 % , +13.9 % −47.99 % , +67.35 % 

 
 

Table VIII - Compensation of a wave vortex encounter 
 

 
quantity 

 
symbol 

value  
unit maximum minimum 

Pitching moment   67.8621 10−   616.107 10+   N.m 

coefficient 
C  − 0.035198 + 0.072105 _ 

Vertical velocity 
at wing tip 

u − 20.39 + 29.19 m/s 
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FIGURE 1 
 

 

 

 

FIGURE 2 
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FIGURE 3 
 

 

 

 

 

 

 
 
 
 

 
FIGURE 4 

 

 

 

 

 

 

 


