The Halpern-Mann iteration in CAT(0) spaces

Bruno Dinis (joint work with Pedro Pinto)

Universidade de Évora - CIMA - CMAFcIO bruno.dinis@uevora.pt

This work is funded by national funds through FCT - Foundation for Science and Technology, project reference: UIDB/04561/2020

Days in Logic – Faro June 30, 2022

This talk in a nutshell

In the nonlinear setting of CAT(0) spaces, we studied an iteration alternating between the Halpern and the Krasnoselskii-Mann iterative schemas:

(HM)
$$x_0 \in C$$
,
$$\begin{cases} x_{2n+1} := (1 - \alpha_n) T(x_{2n}) \oplus \alpha_n u \\ x_{2n+2} := (1 - \beta_n) U(x_{2n+1}) \oplus \beta_n x_{2n+1} \end{cases}$$

This talk in a nutshell

In the nonlinear setting of CAT(0) spaces, we studied an iteration alternating between the Halpern and the Krasnoselskii-Mann iterative schemas:

(HM)
$$x_0 \in C$$
,
$$\begin{cases} x_{2n+1} := (1 - \alpha_n) T(x_{2n}) \oplus \alpha_n u \\ x_{2n+2} := (1 - \beta_n) U(x_{2n+1}) \oplus \beta_n x_{2n+1} \end{cases}$$

We obtained:

- Rates of asymptotic regularity;
- Rate of metastability;
- \triangleright (x_n) converges strongly to $P_F(u)$.

This talk in a nutshell

In the nonlinear setting of CAT(0) spaces, we studied an iteration alternating between the Halpern and the Krasnoselskii-Mann iterative schemas:

(HM)
$$x_0 \in C$$
,
$$\begin{cases} x_{2n+1} := (1 - \alpha_n) T(x_{2n}) \oplus \alpha_n u \\ x_{2n+2} := (1 - \beta_n) U(x_{2n+1}) \oplus \beta_n x_{2n+1} \end{cases}$$

We obtained:

- Rates of asymptotic regularity;
- Rate of metastability;
- \blacktriangleright (x_n) converges strongly to $P_F(u)$.

Our argument uses proof mining ideas and a technique that allows to bypass sequential weak compactness (when in Hilbert spaces)

- Our results extend recent work of Boţ, Csetnek and Meier, and of Leuştean and Cheval.
- ▶ If we take $U = Id_C$ and $\beta_n \equiv \frac{1}{2}$, then we recover in $z_n = x_{2n}$ the Halpern iteration

$$x_0 \in C$$
, $x_{2n+2} = x_{2n+1} = (1 - \alpha_n)T(x_{2n}) + \alpha_n u$

- Our results extend recent work of Boţ, Csetnek and Meier, and of Leuştean and Cheval.
- ▶ If we take $U = Id_C$ and $\beta_n \equiv \frac{1}{2}$, then we recover in $z_n = x_{2n}$ the Halpern iteration

$$x_0 \in C$$
, $x_{2n+2} = x_{2n+1} = (1 - \alpha_n)T(x_{2n}) + \alpha_n u$

- ➤ So in particular, we have also established the strong convergence of the Halpern iteration in *CAT*(0) spaces, recovering Saejung's result (2010), and obtained the relevant quantitative information.
- Saejung's proof was previously analysed in the context of proof mining by Kohlenbach and Leuştean (2012) relying on a technique to eliminate the use of Banach limits needed in the original proof.

▶ It was also possible to extend our results to a relaxed iteration which allows for error terms (δ_n) :

$$(\mathrm{HM}_{e}) \quad \begin{cases} d(x_{2n+1}, (1-\alpha_{n})T(x_{2n}) \oplus \alpha_{n}u) & \leq \delta_{2n} \\ d(x_{2n+2}, (1-\beta_{n})U(x_{2n+1}) \oplus \beta_{n}x_{2n+1}) & \leq \delta_{2n+1} \end{cases}$$

▶ It was also possible to extend our results to a relaxed iteration which allows for error terms (δ_n) :

$$(\mathrm{HM}_{e}) \quad \begin{cases} d(x_{2n+1}, (1-\alpha_{n})T(x_{2n}) \oplus \alpha_{n}u) & \leq \delta_{2n} \\ d(x_{2n+2}, (1-\beta_{n})U(x_{2n+1}) \oplus \beta_{n}x_{2n+1}) & \leq \delta_{2n+1} \end{cases}$$

► Motivated by the strong convergence of **(HM)**, we defined strongly convergent versions of the <u>Forward-Backwards</u> and <u>Douglas-Rachford</u> splitting methods for finding zeros for the sum of two operators, in the setting of Hilbert spaces.

A convergence statement is a Π_3 -statement, and thus a realizer for it (a rate of convergence) is not guaranteed to exist.

- A convergence statement is a Π_3 -statement, and thus a realizer for it (a rate of convergence) is not guaranteed to exist.
- ▶ In fact, there exist explicit examples ("Specker sequences") of sequences of computable reals with no computable limit and thus with no computable rate of convergence.

- A convergence statement is a Π_3 -statement, and thus a realizer for it (a rate of convergence) is not guaranteed to exist.
- ► The next best thing is then what Terence Tao called a *rate of metastability*, i.e., a bound on the *N* in the statement

- A convergence statement is a Π_3 -statement, and thus a realizer for it (a rate of convergence) is not guaranteed to exist.
- ► The next best thing is then what Terence Tao called a *rate of metastability*, i.e., a bound on the *N* in the statement

$$\forall \varepsilon > 0 \,\forall f : \mathbb{N} \to \mathbb{N} \,\exists N \,\forall i, j \in [N, N + f(N)](d(x_i, x_j) \leq \varepsilon)$$

- A convergence statement is a Π_3 -statement, and thus a realizer for it (a rate of convergence) is not guaranteed to exist.
- ► The next best thing is then what Terence Tao called a *rate of metastability*, i.e., a bound on the *N* in the statement

$$\forall \mathbf{k} \in \mathbb{N} \, \forall f : \mathbb{N} \to \mathbb{N} \, \exists \mathbf{N} \, \forall i, j \in [\mathbf{N}, \mathbf{N} + f(\mathbf{N})] \left(d(\mathbf{x}_i, \mathbf{x}_j) \le \frac{1}{\mathbf{k} + 1} \right)$$

- A convergence statement is a Π_3 -statement, and thus a realizer for it (a rate of convergence) is not guaranteed to exist.
- ► The next best thing is then what Terence Tao called a *rate of metastability*, i.e., a bound on the *N* in the statement

$$\forall k \in \mathbb{N} \, \forall f : \mathbb{N} \to \mathbb{N} \, \exists N \, \forall i, j \in [N, f(N)] \left(d(x_i, x_j) \leq \frac{1}{k+1} \right)$$

- A convergence statement is a Π_3 -statement, and thus a realizer for it (a rate of convergence) is not guaranteed to exist.
- ► The next best thing is then what Terence Tao called a *rate of metastability*, i.e., a bound on the *N* in the statement

Metastability

$$\forall k \in \mathbb{N} \, \forall f : \mathbb{N} \to \mathbb{N} \, \exists N \, \forall i, j \in [N, f(N)] \left(d(x_i, x_j) \leq \frac{1}{k+1} \right)$$

which is a Herbrandization of the Cauchy property of a sequence.

Proof mining program \rightarrow analyses of mathematical proofs with the help of proof theoretic techniques, including functional interpretations, in search of concrete new information: effective bounds, algorithms, weakening of premisses, ...

Proof mining program \rightarrow analyses of mathematical proofs with the help of proof theoretic techniques, including functional interpretations, in search of concrete new information: effective bounds, algorithms, weakening of premisses, ...

Proof mining program \rightarrow analyses of mathematical proofs with the help of proof theoretic techniques, including functional interpretations, in search of concrete new information: effective bounds, algorithms, weakening of premisses, ...

The underlying theoretical tools:

 Ensure that we are always able to extract information for the corresponding quantitative versions

Proof mining program \rightarrow analyses of mathematical proofs with the help of proof theoretic techniques, including functional interpretations, in search of concrete new information: effective bounds, algorithms, weakening of premisses, ...

- Ensure that we are always able to extract information for the corresponding quantitative versions
- Help navigate the original proof

Proof mining program \rightarrow analyses of mathematical proofs with the help of proof theoretic techniques, including functional interpretations, in search of concrete new information: effective bounds, algorithms, weakening of premisses, ...

- Ensure that we are always able to extract information for the corresponding quantitative versions
- Help navigate the original proof
- ► Allow to avoid non-essential principles

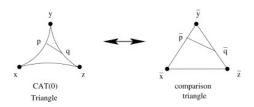
Proof mining program \rightarrow analyses of mathematical proofs with the help of proof theoretic techniques, including functional interpretations, in search of concrete new information: effective bounds, algorithms, weakening of premisses, ...

- ► Ensure that we are always able to extract information for the corresponding quantitative versions
- Help navigate the original proof
- Allow to avoid non-essential principles
- Allow to obtain explicit bounds

CAT(0) spaces

The metric space (X, d) is said to be CAT(0) if every two points of X can be joined by a geodesic and every geodesic triangle $\Delta(x, y, z)$ of X verifies the hypothesis

$$\forall p, q \in \Delta(x, y, z) (d(p, q) \leq d_E(\bar{p}, \bar{q}))$$



```
Hilbert spaces:

[weak compactness]

CAT(0) spaces:

(???????)
```

```
Hilbert spaces:

[weak compactness]

CAT(0) spaces:

(????????)

T+:

("Removal technique")

(x_n) is Cauchy
```

```
Hilbert spaces:
             weak compactness \lim x_n = P_F(u)
CAT(0) spaces:
     ____(???????)
\mathcal{T}^+:
             ("Removal technique") (x_n) is Cauchy

    ↓ Proof mining

CAT(0) spaces:
                                     \lim x_n = P_F(u)
              (x_n) is metastable
```

```
Hilbert spaces:
                                        \longrightarrow lim x_n = P_F(u)
               -{weak compactness}-
CAT(0) spaces:
      ____(???????)
\mathcal{T}^+:
                 "Removal technique" \longrightarrow (x_n) is Cauchy

    ↓ Proof mining

CAT(0) spaces:
                                        \frac{?}{\lim x_n = P_F(u)}
                 (x_n) is metastable
```

Main Theorem

We consider the following conditions:

(i)
$$\lim \alpha_n = 0$$
, (ii) $\sum \alpha_n = \infty$, (iii) $\sum |\alpha_{n+1} - \alpha_n| < \infty$, (iv) $\sum |\beta_{n+1} - \beta_n| < \infty$, (v) $0 < \liminf \beta_n \le \limsup \beta_n < 1$.

Main Theorem

We consider the following conditions:

(i)
$$\lim \alpha_n = 0$$
, (ii) $\sum \alpha_n = \infty$, (iii) $\sum |\alpha_{n+1} - \alpha_n| < \infty$, (iv) $\sum |\beta_{n+1} - \beta_n| < \infty$, (v) $0 < \liminf \beta_n \le \limsup \beta_n < 1$.

Main Theorem

We consider the following conditions:

$$\begin{split} \text{(i)} & \lim \alpha_n = 0, \quad \text{(ii)} \sum \alpha_n = \infty, \quad \text{(iii)} \sum |\alpha_{n+1} - \alpha_n| < \infty, \\ \text{(iv)} & \sum |\beta_{n+1} - \beta_n| < \infty, \quad \text{(v)} & 0 < \liminf \beta_n \leq \limsup \beta_n < 1. \end{split}$$

Theorem (D., Pinto (2021))

Let X be a complete CAT(0) space and C a nonempty closed convex subset. Consider nonexpansive maps $T, U : C \to C$ such that $F := Fix(T) \cap Fix(U) \neq \emptyset$ and $u, x_0 \in C$. Assume that $(\alpha_n) \subset [0,1], (\beta_n) \subset (0,1)$ are sequences of real numbers satisfying (i)-(v). Then (x_n) generated by **(HM)** converges strongly to $P_F(u)$.

Meanwhile in Hilbert spaces

Let us briefly look at the proof in the particular setting of Hilbert spaces. First we recall three useful results.

A: Projection characterization

For $S \subset X$ a nonempty closed convex subset and $u \in X$, we have $\forall y \in S \ (\langle u - P_S(u), y - P_S(u) \rangle \leq 0)$.

Meanwhile in Hilbert spaces

Let us briefly look at the proof in the particular setting of Hilbert spaces. First we recall three useful results.

A: Projection characterization

For $S \subset X$ a nonempty closed convex subset and $u \in X$, we have $\forall y \in S \ (\langle u - P_S(u), y - P_S(u) \rangle \leq 0)$.

B: Demiclosedness

For C closed convex subset and $T: C \to C$ a nonexpansive map, $(x_n \rightharpoonup y \land T(x_n) - x_n \to 0) \Rightarrow y \in Fix(T)$.

Meanwhile in Hilbert spaces

C: Xu's Lemma

For
$$(a_n) \subset [0,1]$$
, $(r_n) \subset \mathbb{R}$ and $(s_n) \subset \mathbb{R}^+_0$, we have
$$\left(s_{n+1} \leq (1-a_n) s_n + a_n r_n \wedge \left\{ \sum_{l \in \mathbb{N}} a_n = \infty \atop \lim \sup r_n \leq 0 \right\} \right) \Rightarrow s_n \to 0$$

The proof in Hilbert spaces

- \triangleright (x_n) is bounded: by induction.
- Asymptotic regularity of (x_n) : requires (a version of) C.

The proof in Hilbert spaces

- \triangleright (x_n) is bounded: by induction.
- Asymptotic regularity of (x_n) : requires (a version of) C.
- ▶ Projection argument: Consider the point $\tilde{x} = P_F(u)$.
- Combinatorial part: With $s_n = d^2(x_{2n}, \tilde{x}) = ||x_{2n} \tilde{x}||^2$, deduce

$$\begin{bmatrix} s_{n+1} \le (1 - \alpha_n)s_n + \alpha_n R_n \end{bmatrix},$$
+ $K(u - \tilde{v}, v_0 - \tilde{v})$ with $S \to 0$ and $K > 0$

where $R_n = S_n + K\langle u - \tilde{x}, x_{2n} - \tilde{x} \rangle$, with $S_n \to 0$ and K > 0.

The proof in Hilbert spaces

- \triangleright (x_n) is bounded: by induction.
- Asymptotic regularity of (x_n) : requires (a version of) C.
- ▶ Projection argument: Consider the point $\tilde{x} = P_F(u)$.
- Combinatorial part: With $s_n = d^2(x_{2n}, \tilde{x}) = ||x_{2n} \tilde{x}||^2$, deduce

Sequential weak compactness: Take a subsequence (x_{2n_j}) of (x_{2n}) such that $x_{2n_j} \rightharpoonup y$ and

$$\left|\limsup\langle u-\tilde{x},x_{2n}-\tilde{x}\rangle=\lim_{j}\langle u-\tilde{x},x_{2n_{j}}-\tilde{x}\rangle\right|.$$

By B (twice) and A, we conclude that $\limsup R_n \leq 0$, and applying C we derive $x_n \to P_F(u)$.

$$\langle u-\tilde{x},x_{2n}-\tilde{x}\rangle=\langle u-\tilde{x},x_{2n}-z\rangle+\langle u-\tilde{x},z-\tilde{x}\rangle\leq \langle u-\tilde{x},x_{2n}-z\rangle\to 0$$

we again conclude that $x_n \to P_F(u)$ [without weak compactness].

$$\langle u-\tilde{x}, x_{2n}-\tilde{x}\rangle = \langle u-\tilde{x}, x_{2n}-z\rangle + \langle u-\tilde{x}, z-\tilde{x}\rangle \leq \langle u-\tilde{x}, x_{2n}-z\rangle \to 0$$

we again conclude that $x_n \to P_F(u)$ [without weak compactness].

Thus by completeness if suffices to prove:

- \triangleright (x_n) is asymptotically regular,
- \triangleright (x_n) is a Cauchy sequence

$$\langle u-\tilde{x}, x_{2n}-\tilde{x}\rangle = \langle u-\tilde{x}, x_{2n}-z\rangle + \langle u-\tilde{x}, z-\tilde{x}\rangle \le \langle u-\tilde{x}, x_{2n}-z\rangle \to 0$$

we again conclude that $x_n \to P_F(u)$ [without weak compactness].

Thus by completeness if suffices to prove:

- \triangleright (x_n) is asymptotically regular,
- (x_n) is a Cauchy sequence

Moreover, this reasoning is easily generalized to CAT(0) spaces.

$$\langle u-\tilde{x}, x_{2n}-\tilde{x}\rangle = \langle u-\tilde{x}, x_{2n}-z\rangle + \langle u-\tilde{x}, z-\tilde{x}\rangle \le \langle u-\tilde{x}, x_{2n}-z\rangle \to 0$$

we again conclude that $x_n \to P_F(u)$ [without weak compactness].

Thus by completeness if suffices to prove:

- (x_n) is asymptotically regular,
- \triangleright (x_n) is a Cauchy sequence But how?

Moreover, this reasoning is easily generalized to CAT(0) spaces.

Theorem

Let X be a CAT(0) space and C a nonempty convex subset. Consider n.e. maps $T, U: C \to C$ with $Fix(T) \cap Fix(U) \neq \emptyset$. Let $(\alpha_n), (\beta_n) \subset [0,1]$ and $x_0, u \in C$. Assume that the conditions (Q1)-(Q5) hold, and let $N \in \mathbb{N} \setminus \{0\}$ be such that $N \geq \max\{d(x_0,p),2d(u,p)\}$ for some $p \in F$. Then (x_n) generated by **(HM)** has the metastability property with rate of metastability $\mu[\Gamma_1,\Gamma_2,\Gamma_3,\Gamma_4,\gamma,N](\varepsilon,f) = \cdots$.

References I

R. Boţ, E. Csetnek and, D. Meier Inducing strong convergence into the asymptotic behaviour of proximal splitting algorithms in Hilbert spaces, Optim. Methods Softw. 34(3), 489–514 (2019).

B. DINIS AND P. PINTO, *On the convergence of algorithms with Tikhonov regularization terms.* **Optimization Letters** (2020). https://doi.org/10.1007/s11590-020-01635-7

B. DINIS AND P. PINTO, Strong convergence for the alternating Halpern-Mann iteration in CAT(0) spaces, (submitted), 2021.

F. Ferreira, L. Leustean and P. Pinto, *On the removal of weak compactness arguments in proof mining*, **Advances in Mathematics**, vol 354, 106728 (2019).

U. Kohlenbach, **Applied Proof Theory: Proof Interpretations and their Use in Mathematics**, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2008.

H. CHEVAL AND L. LEUŞTEAN, Quadratic rates of asymptotic regularity for the Tikhonov-Mann iteration, Optimization Methods and Software, DOI: 10.1080/10556788.2022.2060974 (2021).

Thank you!