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We present results for the quark mass function in Minkowski space
calculated from an interaction kernel that consists of an effective one-gluon-
exchange and a constant interaction. We analyze the gauge dependence of
our results and compare them in the spacelike region to the available lattice
QCD data.
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1. Introduction

QCD at low energies requires an essentially non-perturbative treatment
which makes the theoretical description of hadrons difficult. For the light
mesons, in particular the pion, the implementation of dynamical chiral sym-
metry breaking (DχSB) is indispensable. In this work, we present recent
results on the quark self-energy obtained in the Covariant Spectator Theory
(CST) [1, 2], which has already been applied successfully to mesons pre-
viously [3–16]. The CST is a covariant approach formulated in Minkowski
space and related to the Bethe–Salpeter/Dyson–Schwinger formalism (for
a recent review, see [17]). It uses a quark–quark interaction kernel that
includes, in addition to the one-gluon-exchange (OGE) kernel, a covariant
phenomenological generalization of a linear confining potential.
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2. Quark self-energy in CST

The dynamical quark mass generation is described by the Dyson equation
for the dressed quark propagator given by

S(p) = S0(p)− S0(p)Z2Σ(/p)S(p) , (1)

where S0(p) =
(
m0 − /p− iε

)−1 and S(p) =
(
m0 − /p+ Z2Σ(/p)− iε

)−1 are
the bare and dressed quark propagators, respectively, with m0 the bare
(current) quark mass, Z2 a renormalization constant, and Σ(/p) the quark
self-energy which can be written in terms of invariant functions as

Σ(/p) = A
(
p2
)
+ /pB

(
p2
)
. (2)

The quark mass function and wave function normalization are related to the
self-energy by

M
(
p2
)
= Z

(
p2
) [
m0 + Z2A

(
p2
)]

and Z
(
p2
)
=

1

1− Z2B (p2)
, (3)

respectively. One of the central assumptions of the CST is the existence of
a real mass pole of the dressed quark propagator at p2 = m2, identified as
the constituent quark mass m, such that M(p2) and Z(p2) satisfy

M
(
m2
)
= m and Z

(
m2
)
= Z2

[
1− 2m

dM
(
p2
)

dp2

∣∣∣∣
p2=m2

]
, (4)

respectively. In CST, the zero-components of loop momenta are integrated
by calculating only the residues of the quark propagator poles, such that the
CST self-energy (times Z2) is given by

Z2Σ(/p) =
Z2
2

2

∑
σ=±

∫
k

V
(
p, k̂σ

)(m+ /̂kσ
2m

)
, (5)

where
∫
k ≡

∫
d3k
(2π)3

m
Ek

, σ = ± labels the positive- and negative-energy
on-shell momenta (corresponding to the positions of the quark propagator
poles), k̂σ = (σEk,k), with Ek =

√
m2 + k2 and V(p, k̂σ) is the interaction

kernel given by

V
(
p, k̂σ

)
=

(
1

4

∑
a

λa ⊗ λa

){[(
1⊗ 1+ γ5 ⊗ γ5

)]
V`

(
p, k̂σ

)
− γµ ⊗ γν

[
∆µν
g

(
q2σ
)
Vg

(
p, k̂σ

)
+ t∆µν

c

(
q2σ
)
Vc

(
p, k̂σ

)]}
.(6)
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Here, qσ = p − k̂σ, V` is a covariant generalization of a linear confining
potential,

Vg

(
p, k̂σ

)
= −4παs

g(y)(
p− k̂σ

)2 (7)

is the OGE interaction with αs the unrenormalized strong coupling constant,
g(y) a regularization form factor depending on the covariant variable y2 =
(p·k)2
p2k2

,

Vc

(
p, k̂σ

)
=

CEk
2m

(2π)3 δ3
(
k − m√

p2
p

)
h
(
p2
)
, (8)

is a covariant form of a constant potential with C the unrenormalized
strength and h is a strong quark form factor normalized as h(m2) = 1. The
∆µν ’s in Eq. (6) are factors given in general linear covariant gauge specified
by the gauge parameter ξ and chosen in this work as

∆µν
c

(
q2σ
)
= gµν − (1− ξ)q

µ
σqνσ
q2σ

and ∆µν
g

(
q2σ
)
= − q2σ

M2
g + |q2σ|

∆µν
c

(
q2σ
)
. (9)

Notice that this choice effectively gives the gluon a finite mass Mg and
replaces q2 → −|q2|, which removes the singularity in the gluon propagator.
Further recall [11] that the linear confining part of V gives no contribution
to the CST self-energy (5), which simplifies the calculation substantially.

3. Results and discussion

In the quark’s rest frame, where p = {p0,0}, the OGE contributions to
the invariant self-energy functions are

Z2Ag
(
p20
)
=

8παr
s

3
m
∑
σ

∫
k

(3 + ξ)g(y)

M2
g + |q2σ|

,

Z2Bg
(
p20
)
= −8παr

s

3

∑
σ

∫
k

g(y)

M2
g + |q2σ|

{
σ(3− ξ)Ek

p0
+

2(1− ξ)k2

q2σ

}
, (10)

where αr
s = Z2

2αs is the renormalized strong coupling constant. The renor-
malization of αs arises from a factor of

√
Z2 attached to each quark line

either entering or leaving an interaction vertex. For Mg, we take the value
Mg = 0.6 GeV and for g(y), we chose the form

g(y) =
Λ8
g

Λ8
g +m8(y2 − 1)4

, (11)
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where Λg is an adjustable scale parameter. It can be shown analytically that
the on-shell equations (4) for the OGE contributions (10) are independent
of ξ, and so are the constituent quark mass m and Z2. When Eq. (4) is
solved in the chiral limit (m0 = 0) with m = 0.3 GeV and Λg . 2 GeV for
the OGE kernel alone, then the value for αr

s turns out to be unnaturally
large as compared to the approximate value known from experiment. The
additional constant kernel, which can be regarded as a correction to the
OGE contribution, solves this issue and leads to realistic values of our model
parameters. Its contributions are

Z2Ac

(
p2
)

= 1
4(3 + ξ)Cr h

(
p2
)
, Z2Bc

(
p2
)
= 0 , (12)

where Cr = Z2
2C is the renormalized strength. If Z2Ac(p

2) is to satisfy (4)
in the chiral limit in arbitrary gauge, then Cr → 4m/(3 + ξ), and if the
constant kernel is to supplement the OGE kernel, then it is appropriate to
choose h(p2) = Ag(p

2)/Ag(m
2).

Since each contribution (10) and (12) satisfies (4) separately, this sug-
gests to write the total result as a linear combination of these contributions

Z2A
(
p2
)
=

[
η +

m(1− η)
Z2Ag(m2)

]
Z2Ag

(
p2
)
, Z2B

(
p2
)
= ηZ2Bg

(
p2
)
, (13)

where η is a mixing parameter chosen to maintain the effective OGE strength
ηαr

s = 0.5 regardless of the choice of Λg, which is roughly adjusted to agree
with the lattice QCD data [18]. The results for the chiral-limit quark mass
function are summarized in Fig. 1.

Notice that in Landau gauge (ξ = 0), there is a pole in the mass function
at some small timelike p2, where Z2B(p2) = 1. Such poles are not present
in the Feynman (ξ = 1) and Yennie (ξ = 3) gauge results. Further notice
that, in order to make the dressed gluon propagator non-singular, we have
introduced particular gluon dressing functions in Eq. (9). The disadvantage
of this choice is that the mass function develops a discontinuity at p2 = 0 (not
displayed in the figure). Fortunately, the size of the discontinuity depends on
the gauge and we find that the quark mass function is continuous at p2 = 0
only for the Yennie gauge, which, therefore, constitutes the preferred gauge
in this calculation. In the timelike region, there is a strong dependence of the
quark mass function results on the gauge, however, on-mass-shell results are
gauge-independent — a natural feature of the CST. In the spacelike region,
the gauge dependence is very weak, allowing us to use the existing lattice
QCD data for the mass function to calibrate the model. We now have a mass
function that can be used in meson calculations where the quark dressing
and the quark–quark interaction are completely consistent.
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Fig. 1. (Color online) The mass function (in GeV) vs. p2 (in GeV2) for ξ = 0

and Λg = 0.9 GeV (dashed red line), ξ = 1 and Λg = 0.6 GeV (dotted blue
line), and ξ = 3 and Λg = 0.45 GeV (black solid line). The top panel shows the
spacelike region with lattice QCD data taken from [18] (red discs) and [19] (brown
squares). The middle and bottom panels show the spacelike and timelike regions
on logarithmic scales, respectively, where the intersection of the curves with

√
p2

(gray dot-dashed line) marks the ξ-independent on-shell point p2 = m2.
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