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Abstract: This paper presents sufficient conditions for the existence of a bifurcation point for nonlinear
periodic third-order fully differential equations. In short, the main discussion on the parameter s
about the existence, non-existence, or the multiplicity of solutions, states that there are some critical
numbers σ0 and σ1 such that the problem has no solution, at least one or at least two solutions if s < σ0,
s = σ0 or σ0 > s > σ1, respectively, or with reversed inequalities. The main tool is the different speed
of variation between the variables, together with a new type of (strict) lower and upper solutions, not
necessarily ordered. The arguments are based in the Leray–Schauder’s topological degree theory.
An example suggests a technique to estimate for the critical values σ0 and σ1 of the parameter.
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1. Introduction

This work deals with a third-order nonlinear fully differential equation with a weighted
parameter

v′′′(t) + f
(
t, v(t), v′(t), v′(t)

)
= s h(t), t ∈ [0, T], T > 0, (1)

where f : [0, T] × R3 → R and h : [0, T] → (0,+∞) are continuous functions, σ ∈ R,
together with the usual periodic boundary conditions

v(i)(0) = v(i)(T), i = 0, 1, 2. (2)

Third-order equations, known in the literature as jerk equations, have been studied
by many authors, not only from a purely mathematical approach but also in several
fields where the study of the jerk dynamics is relevant. As examples, we mention: the
Lorenz–Dirac equation for one of a pair of interacting electrons when radiation reaction
is included [1]; the model of the transverse motion of a piano string to simulate the
effect of a frequency-dependent decay [2]; the global dynamics of some jerk dynamical
systems studying necessary and sufficient requirements in a time-continuous, autonomous
dynamical system, to exhibit chaos [3]; the existence of attractors in chaotic flows in three
dimensions dissipative and conservative dynamical systems [4,5].

The study of the periodic orbits of differential equations is an important line of re-
search, namely: to obtain sufficient conditions for the non-existence and multiplicity for
strongly nonlinear differential equations [6]; the existence of periodic orbits as limit cy-
cles [7], or as solutions of the φ-Laplacian generalized Liénard equations [8]; solvability
of higher-order periodic problems with fully differential equations [9], and singular third
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order problems via cones theory [10]; equations with asymptotically sign-changed nonlin-
earities [11], or with anti-periodic boundary conditions [12]; oscillations of nonlinear even
order differential equations [13].

Equations with parameters, as in (1), are called Ambrosetti–Prodi type equations,
as they have been introduced in [14]. Since then, they have been studied in several
boundary value problems, such as two-point boundary conditions [15], Neuman’s type [16],
three-point problems [17], the periodic case [18–20], analysis for parametric problems
driven by the nonlinear Robin (p, q)-Laplace operator [21], with different asymptotically
behaviours [22] or with the fractional Laplacian [23], among others.

In short, the main discussion on the parameter s about the existence, non-existence,
or the multiplicity of solutions, is given by the so-called Alternative by Ambrosetti–Prodi:
there are real numbers σ0 and σ1 such that the problem has no solution, one or two solutions
if s < σ0, s = σ0 or σ0 > s > σ1, respectively, or with reversed inequalities.

In [24], for a particular case of the problem (1) and (2), the authors prove the existence
of solutions for the values of the parameter s such that there are lower and upper solutions
for the problem. This paper completes the discussion of the non-existence and multiplicity
of periodic solutions of (1) and (2), on the weighted parameter s.

These new discussions were possible due to a condition that requires different speeds
of variation between the variables (see (11) in Theorem 2 and (18) in Theorem 3). A new
type of (strict) lower and upper solutions, not necessarily ordered, plays a key role in the
periodic structure of the problem, together with a Nagumo-type growth condition, which
implies a subquadratic growth on the nonlinear part. The main tool for the multiplicity
discussion is the Leray–Schauder’s topological degree theory.

Moreover, for the first time, it exemplified a method to have approximations of the
critical values of the parameter. This is particularly useful in applications, as in the thyroid-
pituitary homeostatic mechanism studied in [25–27], where the various parameters have
well-defined biological and physiological meanings, as it is shown in [24].

The paper is organized in the following way: in Section 2 we have the definition
of lower and upper solutions, an a priori bound for the second derivative via Nagumo’s
condition, and an already known existence theorem. Section 3 contains a first existence
and non-existence discussion on the parameter s, and in Section 4 it is obtained sufficient
conditions for the existence of a bifurcation point. In the last section, we present an example
and a technique that allows estimates for the critical values σ0 and σ1 of the parameter.

2. Definitions and a Priori Estimations

In higher-order periodic boundary value problems, the order between lower and
upper solutions is an issue that should be avoided. The next definition follows a method to
overcome it, shifting upper and lower solutions by perturbation with the sup norm,

‖w‖ := sup
t∈[0,T]

|w(t)|,

as it is suggested in [9]:

Definition 1. The function γ ∈ C3[0, T] is a lower solution of problem (1) and (2) if:

(i) γ′′′(t) + f (t, γ0(t), γ′(t), γ′′(t)) ≥ s h(t)

where
γ0(t) := γ(t)− ‖γ‖; (3)

(ii) γ′(0) = γ′(T), γ′′(0) ≥ γ′′(T).

The function Γ ∈ C3[0, T] is an upper solution of problem (1) and (2) if:

(iii) Γ′′′(t) + f (t, Γ0(t), Γ′(t), Γ′′(t)) ≤ s h(t)

where
Γ0(t) := Γ(t) + ‖Γ‖; (4)
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(iv) Γ′(0) = Γ′(T), Γ′′(0) ≤ Γ′′(T).

We underline that although γ and Γ are not necessarily ordered, the auxiliary functions
γ0 and Γ0 are well ordered, as

γ0(t) ≤ 0 ≤ Γ0(t), for every t ∈ [0, T].

The unique growth condition to require on the nonlinearity in (1) is given by a bilateral
Nagumo-type condition, following [15]:

Definition 2. A continuous function ϕ : [0, T] × R3 → R verifies a Nagumo-type condition
relatively to some continuous functions γi, Γi, i = 0, 1, such that γi(t) ≤ Γi(t), for every t ∈ [0, T],
in the set

S =
{
(t, x0, x1, x2) ∈ [0, T]×R3 : γi(t) ≤ xi ≤ Γi(t), i = 0, 1

}
,

if there is a continuous function ψS : [0,+∞[→]0,+∞[ such that

|ϕ(t, x0, x1, x2)| ≤ ψS(|x2|), ∀(t, x0, x1, x2) ∈ S, (5)

with ∫ +∞

0

z
ψS(z)

dz = +∞ . (6)

From this condition, it is possible to estimate the second derivative as it was proved
in [28]:

Lemma 1. Let ϕ : [0, T]×R3 → R be a continuous function verifying the Nagumo-type condi-
tions (5) and (6) in S. Then there is ρ > 0 such that every solution y(t) of (1) verifying

γ0(t) ≤ y(t) ≤ Γ0(t), γ1(t) ≤ y′(t) ≤ Γ1(t)

for every t ∈ [0, T], satisfies ∥∥y′′
∥∥ < ρ.

Remark 1. The radius ρ depends only on the parameter s and on the functions ψS, γ1 and Γ1 and
it can be taken independent of s as long as it belongs to a bounded set.

For the values of the parameter s such that there are upper and lower solutions of (1)
and (2) where the first derivatives are well ordered, we refer the following theorem in [24],
defined for t ∈ [0, 1], but easily adapted to a more general interval [0, T]:

Theorem 1. Let f : [0, 1]×R3 → R and h : [0, 1]→ R+ be continuous functions. Assume that
there are lower and upper solutions to Equations (1) and (2), γ(t) and Γ(t), respectively, accordingly
Definition 1, such that

γ′(t) ≤ Γ′(t), for t ∈ [0, 1],

and f verifies the Nagumo-type conditions (5) and (6) in S.
If

f (t, γ0(t), x1, x2) ≤ f (t, x0, x1, x2) ≤ f (t, Γ0(t), x1, x2), (7)

for fixed (t, x1, x2) ∈ [0, 1]×R2 and γ0(t) ≤ x0 ≤ Γ0(t), then (1) and (2) has at least one solution
v(t) ∈ C3([0, 1]) such that γ0(t) ≤ v(t) ≤ Γ0(t), γ′(t) ≤ v′(t) ≤ Γ′(t), ∀t ∈ [0, 1].

3. Existence and Non-Existence Theorem

The first discussion on s about the existence and nonexistence of a solution will be
done in this section, for nonlinearities verifying an adequate speed growth condition.
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Theorem 2. Consider f : [0, T] × R3 → R a continuous function satisfying a Nagumo-type
condition such that:

(i) for (t, y, z) ∈ [0, T]×R2

x1 ≥ x2 ⇒ f (t, x1, y, z) ≥ f (t, x2, y, z); (8)

(ii) for (t, x, z) ∈ [0, T]×R2

y1 ≥ y2 ⇒ f (t, x, y1, z) ≤ f (t, x, y2, z); (9)

(iii) there are σ1 ∈ R and r > 0 such that

f (t, 0, 0, 0)
h(t)

< σ1 <
f (t, x,−r, 0)

h(t)
, (10)

for every t ∈ [0, T] and every x ≤ −r;
(iv) for ν > 0 such that, for every (t, x, y, z) ∈ [0, T]×R3 and T ≤ ξ ≤ 2T,

f (t, x + ξν, y + ν, z) ≤ f (t, x, y, z). (11)

Then there is σ0 < σ1 (eventually σ0 = −∞) such that:

(1) for s < σ0, (1) and (2) has no solution;
(2) for σ0 < s ≤ σ1, (1) and (2) has at least one solution.

Proof.

Claim 1. There is σ∗ < σ1 such that (Eσ∗ )-(2) has a solution.

Defining

σ∗ = max
{

f (t, 0, 0, 0)
h(t)

, t ∈ [0, T]
}

,

by (10), there exist t∗ ∈ [0, T] such that

f (t, 0, 0, 0)
h(t)

≤ σ∗ =
f (t∗, 0, 0, 0)

h(t∗)
< σ1, ∀t ∈ [0, T]. (12)

Thus Γ(t) ≡ 0 is a trivial upper solution of (Eσ∗ )-(2).
The function γ(t) = −rt is a lower solution of (Eσ∗ )-(2) with γ0(t) = −rt− rT, as

by (8) and (10)

γ′′′(t) = 0 > σ1h(t)− f (t,−rt− r,−r, 0)

> σ∗h(t)− f (t,−rt− r,−r, 0).

So, by Theorem 1, there is at least a solution of (Eσ∗ )-(2) with σ∗ < σ1.

Claim 2. If (1) and (2) has a solution for s < σ1, then it has at least one solution for σ ∈ [s, σ1].

Suppose that (1) and (2) has a solution vs(t). For σ such that s ≤ σ ≤ σ1, R > 0, and,
by (11),

v′′′s (t) = sh(t)− f
(
t, vs(t), v′s(t), v′′s (t)

)
≤ sh(t)− f

(
t, vs(t) + R(t + T), v′s(t) + R, v′′s (t)

)
≤ σh(t)− f

(
t, vs(t) + R(t + T), v′s(t) + R, v′′s (t)

)
,
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and so vs(t) + Rt is an upper solution of (1) and (2), for every σ ∈ [s, σ1], with
Γ0(t) = vs(t) + ‖vs‖∞ + R(t + T).

For r > 0 given by (10), take R large enough such that RT ≥ r,

v′s(0) ≥ −R, v′s(T) ≥ −R and min
t∈[0,T]

vs(t) ≥ −R (13)

By (8) and (10) ,for σ ≤ σ1,

0 > σ1h(t)− f (t,−R(t + T),−r, 0) ≥ σh(t)− f (t,−R(t + T),−R, 0).

Then γ(t) = −Rt is a lower solution of (1) and (2) for σ ≤ σ1, with γ0(t) = −Rt− RT.
To apply Theorem 2, the condition

− R ≤ v′s(t) + R, ∀t ∈ [0, T], (14)

must be verified. Suppose that (14) is not true. Therefore there is t ∈ [0, T] such that
v′s(t) < −2R.

Defining
min

t∈[0,T]
v′s(t) : = v′s(t0) (15)

then, by (13), t0 ∈ [0, T] and, by (15), v′′σ(t0) = 0 and v′′′σ (t0) > 0.
By (9), (10) and (13), the following contradiction holds

0 ≤ v′′′s (t0) = sh(t0)− f
(
t0, vs(t0), v′s(t0), v′′s (t0)

)
≤ sh(t0)− f (t0, vs(t0),−R, 0)

≤ σ1h(t0)− f (t0,−R,−R, 0) < 0.

So −R ≤ v′s(t),for every t ∈ [0, T], and, by Theorem 2, problem (1) and (2) has at least
one solution v(t) for every σ such that s ≤ σ ≤ σ1.

Claim 3. There is σ0 ∈ R such that:

• for s < σ0, (1) and (2) has no solution;
• for s ∈]σ0, σ1], (1) and (2) has at least one solution.

Let C = {σ ∈ R : (1) and (2) has at least a solution}.
As, by Claim 1, σ∗ ∈ C then C 6= ∅.
Defining σ0 = inf C, by Claim 1, σ0 ≤ σ∗ < σ1 and, by Claim 2, (1) and (2) has at least

a solution for s ∈ [σ0, σ1] and (1) and (2) has no solution for s < σ0.
If σ0 = −∞ then, by Claim 2, (1) and (2) has a solution for every s ≤ σ1.

4. Existence of a Bifurcation Point

The existence of a bifurcation point will be proved in presence of strict lower and
upper solutions, according to the next definition:

Definition 3. The function γ ∈ C3[0, T] is a strict lower solution of problem (1) and (2) if

(i) γ′′′(t) + f (t, γ0(t), γ′(t), γ′′(t)) > s h(t), with γ0 given by (3);
(ii) γ′(0) = γ′(T), γ′′(0) ≥ γ′′(T).

The function Γ ∈ C3[0, T] is a strict upper solution of problem (1) and (2) if

(iii) Γ′′′(t) + f (t, Γ0(t), Γ′(t), Γ′′(t)) < s h(t), with Γ0 given by (4);
(iv) Γ′(0) = Γ′(T), Γ′′(0) ≤ Γ′′(T).
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The multiplicity of solutions is proven by the topological degree theory applied to
a homotopic modified and perturbed problem. In short, the main assumptions require that
f is bounded from below verifying some adequate growth conditions.

Theorem 3. We assume that f : [0, T]×R3 → R is a continuous function verifying the assump-
tions of Theorem 2.

If there are B > 0 such that every solution v of (1) and (2) with s ≤ σ1, verifies

∣∣v′(t)∣∣ ≤ B
2

, ∀t ∈ [0, T], (16)

and b ∈ R such that
f (t, x, y, z) ≥ b h(t), (17)

for every (t, x, y, z) ∈ [0, T]× [−rT + γ0(0), BT + Γ0(0)]× [−r, B]×R, with r given by (10),
then σ0, given by Theorem 2, is finite and:

(1) if s < σ0, (1) and (2) has no solution;
(2) if s = σ0, (1) and (2) has at least one solution.

Moreover, if condition (11) is replaced by,

f (t, x + ξν1 + ν2, y + ξ, z) ≤ f (t, x, y, z), (18)

for every (t, x, y, z) ∈ [0, T]× [−C, C]2×R, where C := max{r, rT− γ0(0), BT + Γ0(0)},
and ν1, ν2, ξ are positive constants, then

(3) for s ∈]σ0, σ1], (1) and (2) has at least two solutions.

Proof. Consider the truncature functions

δ0(t, x) =


Γ0(t) , x > Γ0(t)
x , γ0(t) ≤ x ≤ Γ0(t)
γ0(t) , x < γ0(t),

δ1(t, y) =


Γ′(t) , y > Γ′(t)
y , γ′(t) ≤ y ≤ Γ′(t)
γ′(t) , y < γ′(t),

(19)

and the modified problem composed of the homotopic and perturbed differential equation

v′′′(t) + λ f
(
t, δ0(t, v(t)), δ1(t, v′(t)), v′′(t)

)
(20)

−v′(t) = λ
[
s h(t)− δ1(t, v′(t))

]
,

for λ ∈ [0, 1], and the homotopic boundary conditions

v(0) = λδ∗(v(T)),
v(j)(0) = v(j)(T)

(21)

with j = 1, 2, and

δ∗(w) =


Γ0(0) , w > Γ0(0)
w , γ0(0) ≤ w ≤ Γ0(0)
γ0(0) , w < γ0(0).

(22)

Consider the set

Y =
{

y ∈ C2([0, T]) : y(j)(0) = y(j)(T), j = 0, 1, 2
}

.

Define the operators L : C3([0, T]) ∩Y → C2([0, T])×R3 given by

Lv =
(
v′′′ − v′, v(0), v′(0), v′′(0)

)
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and, for s ∈ R, Fs : C2([0, T]) ∩Y → C2([0, T])×R3 by

Fsv =

(
λ[s h(t)− f (t, δ0(t, v(t)), δ1(t, v′(t)), v′′(t))− δ1(t, v′(t))],

λδ∗(v(T)), v′(T), v′′(T)

)
.

As L−1 is compact then it can be defined the completely continuous operator Tλ :
C3([0, T])→ C3([0, T]) by

Tλv = L−1(Fsv).

Claim 4. Problem (1) and (21) has a solution for λ = 1.

Following the arguments in [24] (steps 1 and 2 in the proof of Theorem 1), we have
a priori estimations, that is, for every solution of the problem (1) and (21) exist ri > 0,
i = 0, 1, 2, such that ∥∥∥v(i)

∥∥∥ < ri, i = 0, 1, 2.

Consider the set

Ω1 =
{

v ∈ C2([0, T]) :
∥∥∥v(i)

∥∥∥ < ri, i = 0, 1, 2
}

.

By homotopic invariance of the degree

d(T0, Ω1) = d(T1, Ω1). (23)

The equation T0(v) = 0, corresponds to the linear problem

v′′′(t)− v′(t) = 0,
v(0) = 0,

v′(0) = v′(T),
v′′(0) = v′′(T),

which has only a trivial solution. Therefore, by degree theory,

d(T0, Ω1) = ±1. (24)

By (23) and (24), d(T1, Ω1) 6= 0, that is the equation, T1(v) = v, corresponding to
the problem

v′′′(t)− v′(t) = s h(t)− f (t, δ0(t, v(t)), δ1(t, v′(t)), v′′(t))− δ1(t, v′(t)),
v(0) = δ∗(v(T)),

v′(0) = v′(T),
v′′(0) = v′′(T),

has at least a solution v0 in Ω1.
Define the set

Ω =
{

v ∈ domL : γ0(t) < v(t) < Γ0(t), γ′(t) < v′(t) < Γ′(t),
∥∥v′′

∥∥ < r2
}

.

Claim 5. If v0 ∈ Ω1 is a solution of T1(v) = v then v0 ∈ Ω.

Suppose, by contradiction, that exists t ∈ [0, T] such that

v′0(t) ≤ γ′(t),

and
min

t∈[0,T]

[
v′0(t)− γ′(t)

]
:= v′0(t1)− γ′(t1) ≤ 0.
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If t1 ∈ ]0, T[, then
v′′0 (t1) = γ′′(t1),
v′′′0 (t1) ≥ γ′′′(t1).

(25)

By (8) and Definition 3, we have the following contradiction with (25):

v′′′0 (t1) = s h(t1)− f
(
t1, δ0(t1, v0(t1)), δ1(t1, v′0(t1)), v′′0 (t1)

)
+v′0(t1)− δ1(t1, v′0(t1))

≤ s h(t1)− f
(
t1,
0(t1),
′(t1),
′′(t1)

)
+ v′0(t1)−
′(t1)

≤ s h(t1)− f
(
t1,
0(t1),
′(t1),
′′(t1)

)
< γ′′′(t1).

Then v′0(t) > γ′(t), ∀t ∈ ]0, T[.
If t1 = 0 or t1 = T we have, by (2) and Definition 3 (ii),

min
t∈[0,T]

[
v′0(t)− γ′(t)

]
:= v′0(0)− γ′(0) = v′0(T)− γ′(T) ≤ 0,

and
0 ≤ v′′0 (0)− γ′′(0) ≤ v′′0 (T)− γ′′(T) ≤ 0.

Therefore
v′′0 (0)− γ′′(0) = 0 and v′′′0 (0)− γ′′′(0) ≥ 0 .

Applying an analogous technique to the previous case, it can be proved that
v′0(0) > γ′(0) and v′0(T) > γ′(T). Then

γ′(t) < v′0(t), ∀t ∈ [0, T].

Applying an analogous technique, we obtain v′0(t) < Γ′(t), ∀t ∈ [0, T], and so

γ′(t) < v′0(t) < Γ′(t), ∀t ∈ [0, T]. (26)

By integration of the second inequality of (26) on [0, t], we get, by (22) and Definition 3,

v0(t) < Γ(t)− Γ(0) + v0(0) = Γ(t)− Γ(0) + δ∗(v(T))
≤ Γ(t)− Γ(0) + Γ0(0)

= Γ(t) + ‖Γ‖ = Γ0(t), ∀t ∈ [0, T].

Similarly, we have
γ0(t) < v0(t), ∀t ∈ [0, T].

Therefore v0 ∈ Ω, and by the excision property of the topological degree

d(T1, Ω) = d(T1, Ω1) = ±1.

Claim 6. Every solution v of problem (1) and (2) for s ∈ [σ0, σ1], satisfies

−r < v′(t) <
B
2

and − rT + γ0(0) < v(t) <
B
2

T + Γ0(0), ∀t ∈ [0, T],

with r given by (10) and B by (16).

Assume, by contradiction, that there are s ∈ ]σ0, σ1], a solution, v, of (1) and (2) and
τ ∈ [0, T] such that

v′(τ) := min
t∈[0,T]

v′(t) ≤ −r.
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If τ ∈ ]0, T[, then v′′(τ) = 0 and v′′′(τ) ≥ 0. From (9),

0 ≤ v′′′(τ) = s h(τ)− f
(
τ, v(τ), v′(τ), v′′(τ)

)
≤ σ1 h(τ)− f (τ, v(τ),−r, 0).

For v(τ) < −r, from (10), we have the contradiction

0 ≤ σ1h(τ)− f (τ, v(τ),−r, 0) < 0.

In the case v(τ) ≥ −r, from (8) and (10), a similar contradiction is achieved

0 ≤ σ1h(τ)− f (τ, v(τ),−r, 0) ≤ σ1h(τ)− f (τ,−r,−r, 0) < 0.

If τ = 0 or τ = T,
min

t∈[0,T]
v′(t) = v′(0) = v′(T).

Then 0 ≤ v′′(0) = v′′(T) ≤ 0 and, therefore,

v′′(0) = v′′(T) = 0, v′′′(0) ≥ 0, v′′′(T) ≥ 0.

Applying an analogous technique to the previous case it can be proved similar contra-
dictions.

So, every solution v of (1) and (2), with σ0 < s ≤ σ1, verifies

v′(t) > −r, ∀t ∈ [0, T],

and, therefore,

−r < v′(t) <
B
2

, ∀t ∈ [0, T].

Integrating on [0, t], we obtain

−rT + γ0(0) < v(t) <
B
2

T + Γ0(0), ∀t ∈ [0, T].

Claim 7. σ0 is finite.

Assume that σ0 = −∞. So, by Theorem 2, for every s ≤ σ1 problem (1) and (2) has at
least a solution.

Define h1 := mint∈[0,T] h(t) > 0, and take s sufficiently small such that

b− s > 0 and
T(b− s)h1

16
> B. (27)

For v solution of (1) and (2), we have, by (17),

v′′′(t) = s h(t)− f
(
t, v(t), v′(t), v′′(t)

)
≤ (s− b)h(t)

and, by (2), there exists ξ ∈ ]0, T[ such that v′′(ξ) = 0. For t < ξ

v′′(t) = −
ξ∫

t

v′′′(τ)dτ ≥
ξ∫

t

(b− s)h(τ)dτ ≥ (b− s)(ξ − t)h1.

For t ≥ ξ

v′′(t) = −
t∫

ξ

v′′′(τ)dτ ≤ (s− b)(t− ξ)h1.
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Choose I =
[
0, T

4

]
,or I =

[ 3
4 T, T

]
, such that |ξ − t| ≥ T

4 , for every t ∈ I. If

I =
[
0, T

4

]
, then

v′′(t) ≥ T(b− s)
4

h1, ∀t ∈ I.

If I =
[ 3

4 T, T
]
, we have

v′′(t) ≤ T(b− s)
4

h1, ∀t ∈ I.

In the first case, by (27) and (16), we have the contradiction

0 =

T∫
0

v′′(τ)dτ =

T
4∫

0

v′′(τ)dτ +

T∫
T
4

v′′(τ)dτ

≥

T
4∫

0

T(b− s)
4

h1dτ + v′(T)− v′
(

T
4

)

> B + v′(T)− v′
(

T
4

)
≥ 0.

For I =
[ 3

4 T, T
]

a similar contradiction is achieved, and, therefore, σ0 is finite.

Claim 8. For s ∈ ]σ0, σ1] (1) and (2) has at least two solutions.

By Claim 7 and Theorem 2, for σ−1 < σ0, (1) and (2), has no solution.
From Lemma 1 and Remark 1, we can take r2 > 0 large enough such that ‖v′′‖ < r2,

for every solution v of (1) and (2), with s ∈ [σ−1, σ1].
Let B1 := max{r, B} and define the set

Ω2 =
{

y ∈ domL :
∥∥y′
∥∥ < B1,

∥∥y′′
∥∥ < ρ2

}
.

Then, by degree theory,
d
(
L−1Fσ−1 , Ω2

)
= 0. (28)

By Claim 8, if v is a solution of (1) and (2), with s ∈]σ−1, σ1], then v /∈ ∂Ω2.
Consider the convex combination of σ−1 and σ1, asH(λ) = (1− λ)σ−1 + λσ1 and the

corresponding homotopic problems (EH(λ))-(2). So, the topological degree d
(
L−1FH(λ), Ω2

)
is well defined for λ ∈ [0, 1] and for every s ∈]σ−1, σ1].

Therefore, by (28) and the invariance of the degree under homotopy,

0 = d
(
L−1Fσ−1 , Ω2

)
= d

(
L−1Fs, Ω2

)
, (29)

for s ∈]σ−1, σ1].
Take s ∈ ]σ0, σ1] ⊂]σ−1, σ1] and, by Theorem 2, let vs be the corresponding solution of

(EH(λ))-(2).
Consider δ > 0, small enough, such that∣∣v′s(t) + δ

∣∣ < B1, ∀t ∈ [0, T]. (30)
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Then v∗ := vs(t) + δt is a strict upper solution of (1) and (2), with s < σ ≤ σ1. Indeed,
by (9) and (18) with ξ = δ, v1 = t + T and v2 = ‖vσ‖, for such σ,

v′′′∗ (t) = v
′′′
s (t) = sh(t)− f

(
t, vs(t), v′s(t), v′′s (t)

)
< σh(t)− f

(
t, vs(t), v′s(t), v′′∗ (t)

)
≤ σh(t)− f

(
t, vs(t) + δ(t + T) + ‖vs‖, v′s(t) + δ, v′′∗ (t)

)
= σh(t)− f

(
t, vs(t) + δ(t + T) + ‖vs‖, v′∗(t), v′′∗ (t)

)
,

and, for the boundary conditions

v′∗(0) = v′s(0) + δ = v′s(T) + δ = v′∗(T),

v′′∗ (0) = v′′∗ (T).

Following the arguments as in Claim 7 of Theorem 2, it can be shown that γ(t) := −rt
is a strict lower solution of (1) and (2), for σ ≤ σ1.

By Claim 8, −r < v′s(t), for every t ∈ [0, T] and therefore −r < v′s(t) + δ, ∀t ∈ [0, T].
So, γ′(t) < v′∗(t), ∀t ∈ [0, T], and integrating in [0, t] we have

−rt < vs(t) + δt− vs(0) ≤ vs(t) + ‖vs‖+ δt, ∀t ∈ [0, T].

Remark that, as long as there are strict lower and upper solutions of (1) and (2), accord-
ingly Definition 3, and σ belongs to a bounded set, it can be defined as a set independently
of σ.

So, there exist ρ∗2 > 0, not dependent from σ, and the set

Ωδ =

{
y ∈ domL : −rt− r < y < vs(t) + ‖vs‖+ δt,−r < y′ < v′s(t) + δ,

‖y′′‖ <
−
ρ∗2

}

such that, by Claim 8,
d
(
L−1Fs, Ωδ

)
= ±1, for σ ∈ ]σ, σ1].

Considering ρ2 in Ω2 sufficiently large such that Ωδ ⊂ Ω2, by (29) and (30) and the
additivity of the degree, we have

d
(
L−1Fs, Ω2 −Ωδ

)
= ±1, for σ ∈ ]σ, σ1].

So, (1) and (2) has at least two solutions u and v such that u ∈ Ωδ and v ∈ Ω2 −Ωδ for
σ ∈ ]s, σ1], as s is arbitrary in ]σ0, σ1].

Claim 9. For s = σ0, the problem (1) and (2) has at least one solution.

Take a sequence (σn) with σn ∈]σ0, σ1] and lim σn = σ0. By Theorem 2, for each σn,
(Eσn )-(2) has a solution vn. Applying the bounds given by Claim 9, we have ‖vn‖ < B1,
‖v′n‖ < B1, independently of n, and, there exists r̃2 > 0 sufficiently large such that
‖v′′n‖ < r̃2, independently of n. Therefore, sequences (vn) and (v′n), n ∈ N, are bounded in
C([0, T]). By the Arzèla-Ascoli Theorem, consider a subsequence of (vn) that converges in
C2([0, 1]) to a solution ṽ0(t) of (Eσ0 )-(2).

So, there is at least a solution for σ = σ0.

5. Example

Consider the problem composed of the nonlinear third order equation with the pa-
rameter σ ∈ R,

v′′′(t) + (3 + arctan(v(t)))e−v′(t) = σ, t ∈ [0, 1], (31)
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together with the periodic boundary conditions

v(i)(0) = v(i)(1), i = 0, 1, 2. (32)

It can be easily verified that the functions γ(t) ≡ 0 and Γ(t) = t are, respectively,
strict lower and upper solutions of problem (31) and (32), according to Definition 3, with
γ0(t) ≡ 0 and Γ0(t) = t + 1, for σ such that

3 + π
2

e
< σ < 3. (33)

The problem (31) and (32) is a particular case of (1) and (2) with

f (t, x, y, z) = (3 + arctan x)e−y, and h(t) ≡ 1,

which verifies the local monotony given by (7) and the Nagumo condition in

C =

{
(t, x, y, z) ∈ [0, 1]×R3 : 0 ≤ x ≤ t + 1,

0 ≤ y ≤ 1

}
, (34)

as ∣∣(3 + arctan x)e−y∣∣ ≤ 3 +
π

2
and ∫ +∞

0

z
3 + π

2
dz = +∞ .

Therefore, by Theorem 1, there is a periodic solution v0(t) of the problem (31) and (32)
for σ given by (33), and

0 ≤ v0(t) ≤ t + 1, ∀t ∈ [0, 1].

Remark that this solution v0(t) is not a trivial periodic one, that is a constant function,
because if we have v0(t) ≡ k ∈ [0.1], then

(3 + arctan k) = σ,

contradicts (33).
For the existence of a bifurcation parameter σ0, the assumptions (8) and (9) of Theorem 2

are trivially verified, (10) holds for

3 < σ1 <
(

3− π

2

)
er (35)

with r ≥ 0.75, and (11) is verified for ν = 1 and 1 ≤ ξ ≤ 2.
Therefore, by Theorem 2 there is σ0 < σ1 such that the problem (31) and (32) has no

solution for σ < σ0 , and at least one solution for σ0 < σ ≤ σ1.
Let us restrict the search of solutions for (31) and (32) on the set σ, given by (34).
So, every solution v0 of (31) and (32) satisfies (16) with B = 2. The condition (17) holds

with b = 0 for (t, x, y, z) ∈ [0, 1]×R3 and (18) is verified with ξ = 1, v1 = 2 and v2 = 1 for
(t, x, y, z) ∈ C.

Therefore, from (3), σ0 is finite, the problem (31) and (32) at least a solution for σ = σ0,
and, for σ ∈]σ0, σ1], (31) and (32) has at least two solutions.

Remark that, by (33),

σ0 >
3 + π

2
e
' 1.681

and, by (35),

σ1 <
(

3− π

2

)
e0.75 ' 3.025.
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6. Conclusions

This work presents sufficient conditions for third-order differential equations, with non-
linearities depending on all derivatives of the unknown function, have no solution, at least
one or at least two solutions, associated with adequate values of some real parameter s.

More precisely, it was proved for the first time in third order periodic problems,
that a speed-growth condition type, that is, the nonlinearity must have different growth
velocities on the unknown function and its derivative is a key point to discuss the non-
existence or the multiplicity of the solutions.

As a consequence, the lower and upper solutions techniques applied in this paper
allows some estimations on the critical values of the parameter, which may be an important
issue in studying periodic real phenomena modeled by third order problems.

Future research in this direction may rely on studying some methods and/or tech-
niques to avoid the speed growth condition or replacing it with a more general assumption.
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