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ABSTRACT
We apply a class of stochastic differential equations to model individual growth in a
randomly fluctuating environment using cattle weight data. We have used maximum
likelihood theory to estimate the parameters. However, for cattle data, it is often not
feasible to obtain animal’s observations at equally spaced ages nor even at the same
ages for different animals and there is typically a small number of observations at
older ages. For these reasons, maximum likelihood estimates can be quite inaccurate,
being interesting to consider in the likelihood function a weight function associated
to the elapsed times between two consecutive observations of each animal, which re-
sults in the weighted maximum likelihood method. We compare the results obtained
from both methods in several data structures and conclude that the weighted maxi-
mum likelihood improves the estimation when observations at older ages are scarce
and the observation instants are unequally spaced, whereas the maximum likelihood
estimates are recommended when animals are weighted at equally spaced ages. For
unequally spaced observations, a bootstrap estimation method was also applied in
order to correct the bias of the maximum likelihood estimates; it revealed to be a
more precise alternative, except when the available data only has young animals.

KEYWORDS
bootstrap estimation; cattle growth; stochastic differential equations; weighted
maximum likelihood estimation.
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1. Introduction

Individual growth models represent changes in the size of a single individual over
time. To describe and predict individual growth, deterministic models are frequently
applied and it is usual to treat random variations of the data using classical regression
models. These type of models can be written in the form of ordinary differential
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equations that describe the average dynamics behind the growth patterns. Although
our study is exclusively dedicated to individual growth, many of the models applied
to population growth are also used to model individual growth.
The most commonly used deterministic growth models are the Misterlich model or
monomolecular model, the logistic model, the Gompertz model and the Bertalanffy-
Richards model. These type of models have been commonly used in the most diverse
areas [2–4,12,16–18,23,25].

In order to take into account the random fluctuations in the internal and external
conditions that affect the growth process (hereby named environmental conditions),
stochastic versions of deterministic models, in the form of stochastic differential equa-
tions (SDE) have been proposed ([11,13,19,20,22]).

In early work (see, for instance, [7–10]), we have studied stochastic versions of a
class of deterministic models where an adequate transformation of the size allows us
to work with a general SDE model taking the form of a variant of the Ornstein-
Uhlenbeck model. That class includes the monomolecular, the logistic, the Gompertz
and the Bertallanffy-Richards models, among others. We have applied such class of
models using real data on the evolution of bovine weight. This type of models might be
useful in animal breeding, aquaculture or forestry in order to optimize the exploitation
of such resources.

For the class of SDE models studied, focused on our application, we have seen that
one of the most adequate transformations of the animals weight was the logarithm,
which lead us to the Stochastic Gompertz Model ([10]). For this model, we have
obtained the log-likelihood function and computed the maximum likelihood (ML)
estimates of the parameters and the limits of the asymptotic confidence intervals
based on the asymptotic variance-covariance matrix (inverse of the empirical Fisher
information matrix). The parameters of the model are quite important on farmers’
optimization issues as shown in [15]. However the real data on the evolution of bovine
weight is not obtained at the same ages for each animal and since the animals are
raised for the meat market, there are very few observations of the animal’s weight
(particularly at older ages), which turns the parameter estimation through the ML
method inaccurate. To cope with this problem, we adapted a weighted maximum
likelihood (WML) estimation method to obtain the WML estimates and compare
with the results obtained by ML estimation. For the WML method the weights are
built such that the time elapsed between observations is considered in the likelihood
function ([14,21,26]).

We have performed simulation studies to compare both estimation methods un-
der several scenarios for the observed data. We have worked with simulated data for
scenarios corresponding to weights measured at equally spaced ages using different
spacings (15 and 30 days) and different maximum ages (2, 4 and 6 years). The ”real”
ages scenario was also considered with simulation of weights at the effective observed
ages of a group of animals randomly selected from the 16029 animals on the database.

For small population sizes, ML estimates may have non-negligible biases and the
confidence intervals obtained from the Fisher information matrix may be quite un-
reliable. In such case, bootstrap methods are recommended ([5]). Since that was the
case of the ”real” ages scenario, a parametric bootstrap estimation method was also
applied to the corresponding simulated data set, allowing us to correct the bias and
improve the standard error of the ML estimates. A comparison among the 3 methods
is presented.
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This work was developed within the project GOBov+: Productivity improvement
in the system of bovine raising for meat, an Operational Group that involves the par-
ticipation of several institutions (University of Évora, Veterinary Research Institute,
several producer associations). Data was provided by the Associação de Criadores
de Bovinos Mertolengos (ACBM), which performs the growing and finishing phases
of young Mertolengo males, and by associated breeders, whose agricultural holdings
are located in the Alentejo region in Portugal. The ACBM action takes place at its
Testing and Breeding Center at Herdade dos Currais e Simalhas (CTR), located 15

km from the city of Évora. ACBM enables breeders to breed and finish their cattle,
allowing them to obtain a higher economic value than is normally achieved in weaning
sales and, at the same time, helping to solve the problem of breeding and finishing
when farms do not have technical and/or economic conditions for that purpose. The
Mertolengo cattle is, at the moment, considered by many as the Portuguese cattle
breed with higher progression in terms of population increment and market potential.

This paper is organized as follows. In Section 2 we describe the stochastic growth
models used. In Section 3 the maximum likelihood and the weighted maximum like-
lihood estimation methods are presented. In Section 4 the results of the application
of the methods to the bovine growth are obtained. In Section 5 we present the main
conclusions reached.

2. Stochastic differential equations growth models

Most of the classical deterministic models used in the literature to describe the indi-
vidual growth of an animal with size Xt (weight, volume, height, length, etc.) at age
t follow a differential equation of the form

dYt
dt

= β(α− Yt), Yt0 = y0,

where Yt = h(Xt) is the modified size, obtained by rescaling the actual size using a
monotonous continuously differentiable scaling function h (a model specific function
we assume to be known). Then y0 = h(x0) and α = h(A), where x0 is the observed size
at time t0 (the first observation) and A represents the asymptotic size or the size at
maturity of the individual. The parameter β, always positive, is the growth coefficient
and represents the rate of approach to maturity. The choice of h leads to some well
known classic models. For instance, when h(x) = x we get the monomolecular model;
the Bertalanffy-Richards model [3,23] corresponds to the case h(x) = xc (c > 0),
the Gompertz model to the case h(x) = lnx (can be considered the limiting case of
the Bertalanffy-Richards model when c → 0), and the logistic model [25] to the case
h(x) = x−1.

In the determinist individual growth models, random variations in data have been
treated by classical regression models. The traditional assumption of regression models
is that observed deviations from the regression curve are independent, which would
be quite appropriate if the deviations were due to measurement errors (negligible in
our case) but is totally unrealistic when the deviations are due to random changes
on growth rates induced by environmental random fluctuations. Stochastic differential
equation models are the most appropriate since they incorporate the dynamics of
the growth process and the effect environmental random fluctuations have on such
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dynamics. Thus, we have considered that individual growth in a random environment
can be described by stochastic differential equations of the form

dYt = β(α− Yt)dt+ σdWt, Yt0 = y0, (1)

where σ is an environmental noise intensity parameter and Wt is the standard Wiener
process. This model is a variant of the Ornstein-Uhlenbeck model and is known in the
financial literature as the Vasicek model [24] (used to study interest rate dynamics).

The solution of (1), Yt, is easily obtained

Y (t) = α+ e−β(t−t0)(y0 − α) + σe−βt
∫ t

t0

eβsdW (s)

and, for ages tk−1 < tk, the transition distribution is

Y (tk)|(Y (tk−1) = yk−1) ∼ N
(
α+ (yk−1 − α)e−β(tk−tk−1),

σ2(1− e−2β(tk−tk−1))

2β

)
(2)

3. Parameter estimation

Unlike other applications, we assume that the observation ages of each animal are
not equidistant nor equal among different animals. Therefore, assume we have data
on m animals and, for animal j (j = 1, 2, . . . ,m), we observe at the age instants
tj,0, tj,1, . . . , tj,nj , the weights Xtj0

, Xtj,1 , . . . , Xtj,nj
. The transformed weights are given

by Yj,k = Y (tj,k) = h(X(tj,k)) (j = 1, 2, . . . ,m, k = 0, 1, . . . , nj). We assume the
trajectories of the different animals correspond to different independent realizations
of the Wiener process.

We have used maximum likelihood (ML) estimation theory to estimate the
parameter vector p = (α, β, σ). We describe details on this procedure, for instance in
[8,10] and [9].

In [10], we have seen that one of the best models for our cattle data was the stochas-
tic Gompertz model (SGM), which we are going to use along this paper. So, from
now on the transformed weight is Y (t) = lnX(t). Notice that α is the transformed
asymptotic weight in the deterministic case (i.e., when σ = 0) and the corresponding
untransformed asymptotic weight is A = eα.

For animal j, since Y (t) is a Markov process, knowing the initial weight X(tj,0),
the likelihood function for that animal is obtained by the product of the transition
densities between consecutive observation ages, so the log-likelihood for animal j is
given by

LYj
(p) = −nj

2
ln (2π)− nj

2
ln

(
σ2

2β

)
− 1

2

nj∑
k=1

ln
(

1− E2β
j,k

)

− β

σ2

nj∑
k=1

(
yj,k − α− (yj,k−1 − α)Eβj,k

)2

1− E2β
j,k

, (3)

with Ej,k = e−(tj,k−tj,k−1). By independence, the global log-likelihood function for the
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m animals is given by:

LY(p) = LY1,Y2,...,Ym
(p) =

m∑
j=1

LYj
(p). (4)

Maximizing (4), we obtain the ML estimator of p.

We now present an alternative method to estimate parameters for the individual
growth of bovines when the weights of the animals are not taken at equally spaced
age instants. In [21] it was suggested to use the weighted maximum likelihood (WML)
estimation method. This method uses a known non-decreasing weight function λ and
the weights Λj,k = λ(tj,k)−λ(tj,k−1), which take into account the time elapsed between
observations. The weighted log-likelihood function is given by

LY(p) = ln

 m∏
j=1

nj∏
k=1

(
fYj,k|Yj,k−1=yj,k−1

(yj,k)
)Λj,k

=

(
−1

2
ln(2π)− 1

2
ln

(
σ2

2β

)) m∑
j=1

nj∑
k=1

Λj,k −
1

2

m∑
j=1

nj∑
k=1

Λj,k ln
(

1− E2β
j,k

)

− β

σ2

m∑
j=1

nj∑
k=1

Λj,k
(Yj,k − α− (Yj,k−1 − α)Eβj,k)

2

1− E2β
j,k

. (5)

The weight function λ gives more leverage to animal’s weights taken at higher ages
and at higher interval between observations. In this paper we consider a function of
the form λ(t) = tw, and we are particularly interested in the effect of the power w on
the quality of the weighted maximum likelihood estimators. Note that if λ(t) = t and
the observations are taken at the same equally spaced ages for all animals, we are in
the case of the usual log-likelihood function (3).

Maximizing (5) with λ(t) = tw, we obtain the WML estimator of p. Measurability,
consistency and asymptotic normality of WML estimators are assured under conditions
that are met in our case and can be seen in [21]. It is possible to find closed formulas
for the estimators of the parameter α as a function of the WML estimator of β, as
follows,

α̂ =

∑m
j=1

∑nj
k=1 Λj,k

(Yj,k−Yj,k−1E
β̂
j,k)

1+Eβ̂j,k∑m
j=1

∑nj
k=1 Λj,k

1−Eβ̂j,k
1+Eβ̂j,k

(6)

and then obtain σ̂2 as a function of α̂ and β̂

σ̂2 = 2β̂

∑m
j=1

∑nj
k=1 Λj,k

(Yj,k−α̂−(Yj,k−1−α̂)Eβ̂j,k)2

1−E2β̂
j,k∑m

j=1

∑nj
k=1 Λj,k

. (7)

If we replace expressions (6) and (7) in (5), we can obtain the maximum log-likelihood
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as a function of β̂, which then can be maximized with respect to β̂ through numerical

methods. Replacing this estimate for β̂ in the expression of α̂ and σ̂2, we obtain the
WML estimate of the whole parameter vector p. The asymptotic confidence bands
can also be obtained based on the empirical Fisher information matrix.

The dataset contains information on the weight, in kg, of 16029 Mertolengo cattle
males, where each animal has several observations with a minimum of 3 and a max-
imum of 33 weights at ages varying between birth and a maximum age that ranges
between 0.2 and 16 years, totalling 96204 observations. Since we have a very high num-
ber of animals, for the purpose of our analysis and to obtain the simulation results
in an acceptable running time we need a smaller number of animals. For this reason
we consider a baseline random sample of 100 animals from the entire dataset of 16029
animals. For these randomly selected 100 animals, we obtain the ML estimates of the
parameter vector p obtained for the SGM, which we consider as ours true parameters
values for the purpose of the simulation studies we are going to undertake in order
to compare the different estimation methods. These parameters are shown in Table 1.
Note that also in this sample we have a high heterogeneity between animals in terms
of animal’s ages and number of observations per animal.

Table 1. ML estimates and asymptotic standard deviations for the baseline random sample of 100 animals
(taken from the entire database of 16029 animals).

ML estimate std. dev.
β (year−1) 1.479 0.061
σ2 (year−1) 0.086 0.005

α 6.415 0.048
A = eα (kg) 611.16 29.218

The goal is to assess the performance of the WML estimators compared with the
ML estimators, considering the estimation of the whole parameter vector p. Usually,
when estimating the parameters to describe animal growth, the true parameters are
not known and maximum likelihood estimation is used with an inherent statistical
uncertainty and possible biases due to heterogeneities among animals and ages at
which weight measurements are taken.

To evaluate the performance of the methods, we will assume from now on that
the true parameter values (on which all simulations for the ML and the WML
methods are based) are known and are exactly A = eα = 611.16kg (corresponding to
α = 6.415), β = 1.479 year−1 and σ2 = 0.086 year−1.

Using such true parameter values and the SGM model, we do a simulation study
consisting of N = 100 Monte Carlo independent simulations of age/weight data sets
(N could be any number of our choice, not necessarily 100), taking advantage of the
Markov property of the model solution and using its Gaussian transition distributions
(obtained in (2)). In each of the N data sets we have the simulated weights of 100
animals at the same age instants tj,k, j = 1, 2, . . . ,m, k = 1, 2, . . . , nj as the real
observation ages of the baseline random sample (let us call those age instants the
”real” age scheme). Notice that we know the true parameter values of the N simulated
data sets. Finally, we can use the different estimation methods on each simulated
data set and see how well they behave.
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Notice that the ”real” age scheme of the 100 baseline sample is heterogeneous,
differing among the 100 animals j = 1, 2, . . . ,m = 100 in number of observations
nj and/or in the observation ages tj,k (k = 1, 2, . . . , nj). At this stage, we have
a simulated study with N = 100 simulated replications, each consisting of a
data set of 100 animals. What all N data sets have in common is the ”real” age
scheme they all use, but the weights at such ages of the 100 animals of each data
sample vary from data sample to data sample (since they are Monte Carlos simulated).

In order to study the performance of the estimation methods under homogeneous
observation ages, we repeat the simulation study, again consisting of a Monte Carlo
simulation of N = 100 data sets but, instead of using the ”real” age scheme, we use
a homogeneous age scheme (with equidistant and common observation ages for the
animals in a data set, starting at birth). Of course, we use the same homogeneous
age scheme for all the N data sets in a simulation study. We will do 6 simulation
studies (of N = 100 data sets) for 6 homogeneous age schemes, with two choices of
age intervals between consecutive weight observations (intervals of 15 days and 30
days) and three choices of the last observation age (2 years old, 4 years old and 6
years old).

The main goal with these different 7 simulated studies (one with the ”real” age
scheme and the other 6 with the different homogeneous age schemes just mentioned)
is to evaluate the influence of having different data structures in the parameter esti-
mates: the influence of having equally spaced ages versus non-equally spaced ages; the
influence of having a higher versus a smaller elapsed time between two consecutive
ages; the influence of having younger ages versus having older ages. Remember that
our ”real” age scheme is a little bit of everything: not equally spaced age instants,
animals with a small number of weights and a large portion of animals at younger
ages.

For each simulated dataset we estimate the parameters through the ML method
and the WML methods. Since we wish also to optimize the weight function, we search
for the optimal weight function, more precisely, the optimal w within the family of
functions given by Λwj,k = λ(tj,k) − λ(tj,k−1) = twj,k − twj,k−1, j = 1, 2, . . . ,m, k =
1, 2, . . . , nj . So, for each replica of the simulated data for whom we know the true
parameters, we obtain, for each value w, the WML estimates of the parameter vector
(α, β, σ2) for the SGM. The WML estimates obtained for each w were then compared
with the true values. Notice that for equally spaced weight instants (with spacing δ),
when w = 1, the WML estimates correspond to the ML estimates, since we have the
constant weights Λ1

j,k = λ(tj,k)−λ(tj,k−1) = t1j,k− t1j,k−1 = δ. Then, for the simulation
studies with homogeneous age schemes, when w = 1 we are in fact using the ML
estimates, and when w 6= 1 we are using the WML estimates. For the simulated study
with the ”real” age scheme, the ML estimates have to be obtained separately.

7



4. Results

To select the best value w, we consider an error measurement given by the root mean
squared relative error (RMSRE)

RMSRE =

√√√√1

3

(∑N
i=1(α̂i − α)2

Nα2
+

∑N
i=1(β̂i − β)2

Nβ2
+

∑N
i=1(σ̂2

i − σ2)2

N(σ2)2

)
, (8)

where the α̂i, β̂i and σ̂2
i are the estimates obtained on simulation number i (i =

1, . . . , N) of the parameters α, β and σ2. This is the square root of the mean value
for the three parameters of their estimated mean square errors expressed in relative
terms (i.e., each divided by their squared values). We then choose the value w that
minimizes the statistic RMSRE.

In Table 2 we present the mean and standard deviation of the WML estimates
(based on (5)) of the parameters α, β and σ2, only for the best value w used in the
weight function according to the RMSRE. We do it for the 6 simulated studies with
homogeneous age schemes and for the simulation study with the ”real” age scheme.
For this latter scheme, we also present the results using the ML method (4).

Table 2. Mean estimated parameters, empirical standard deviations and RMSRE for the WML method for

the best choice of w. With the exception of the ”real” age scheme, results coincides with the ML method when
w = 1. For the ”real” age scheme, the table also presents results for the ML method.

2y15d 2y30d 4y15d 4y30d 6y15d 6y30d Real Age
WML

Real Age
ML

w 1.0 0.8 1.0 1.0 1.0 1.0 3.2 −
RMSRE 0.015 0.021 0.013 0.010 0.010 0.011 0.176 0.213

β (year−1) 1.476 1.470 1.480 1.481 1.481 1.486 1.478 1.454
std. dev. 0.021 0.022 0.021 0.020 0.020 0.017 0.301 0.062
σ2 (year−1) 0.086 0.086 0.086 0.086 0.086 0.086 0.091 0.116
std. dev. 0.002 0.003 0.001 0.001 0.001 0.001 0.019 0.009
α 6.417 6.422 6.414 6.415 6.415 6.412 6.383 6.421
std. dev. 0.018 0.021 0.012 0.011 0.011 0.007 0.157 0.046

A=eα (kg) 612.6 615.4 610.4 611.2 611.0 609.1 599.0 614.9
std. dev. 10.579 12.809 7.461 6.509 6.509 4.238 94.567 28.080

The results on table 2 show that the estimation of the parameter vector p increases
its precision and decreases its variability when we have homogeneous age schemes
with animals with older ages and more regular equally spaced observations. This is
even more clear observing the RMSRE. Only the estimate of the parameter σ2 does
not seem to be influenced by the animals age or the interval between observations,
when having a homogeneous age scheme of observations. It is also clear that, when we
observe the results for the simulated study with the ”real” age scheme, the estimates
have much lower precision and higher variability and the choice of an accurate weight
function through the parameter w could be a good approach to obtain more accurate
estimates.

It is interesting also to note that, for homogeneous age schemes, the best w obtained
for the WML method is always around w = 1, which gives a real evidence about the
ML method as the best estimation method for these age schemes.
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According to the RMSRE for the simulation study with the ”real” age scheme, the
use of the WML method is slightly better for the estimation of the whole parameter
vector p, having and error 17% lower. If we envisage only the estimation of the two
most influential parameters in applications, α and β, then the ML method not only
provides a low bias but also has a lower RMSRE by about 77%, showing the influence
of the precision estimation of σ2 in the ML method.

In fact, we have concluded that with lower ages and non equidistant observations,
the ML method can have a higher error than the error observed with homogeneous age
schemes of observation. For that reason we forced a simulation study with the same
true parameters but using a new more realistic baseline age scheme, hereby called
”realistic” age scheme. This age scheme is the same age scheme of a new random sample
of 100 animals extracted from our database, but restricting the choice to animals
that have at least 4 weight observations with the last observation happening at the
maximum age of 18 months. Notice that this is in fact the scenario we face in ACBM,
since the purpose of the Association is to raise cattle to sell in the meat market, and
according to the dataset the mean selling age of a bovine male is about 14 months old.
For this new simulation study, we also generate N = 100 replications of 100 animals
with the ”realistic” age scheme of observations, and obtained the ML and the WML
estimates for each w. The results are presented in Table 3.

Table 3. Mean estimated parameters, empirical standard deviations and RMSRE for the WML (with the
best choice of w) and ML methods for the simulation study with the ”realistic” data scheme (at least 4

observations and last observation at maximum age of 18 months).

Realistic ages WML Realistic ages ML
w 0.4 −

RMSRE 0.095 0.977

β (year−1) 1.535 1.661
std. dev. 0.086 0.059

σ2 (year−1) 0.094 0.216
std. dev. 0.010 0.008

α 6.352 6.304
std. dev. 0.075 0.071

A=eα (kg) 575.5.0 545.3
std. dev. 43.671 39.213

Observing the results in Table 3 we can conclude that the lack of data at higher ages
does not allow the ML method to estimate accurately the model parameters. However,
the use of weights in the maximum likelihood allows to recoup the lack of information.
The RMSRE has a decrease of about 90%. Note, though, that the best value of w is
only 0.4. However, if we use the value seen in previous results of w = 3.2 for the weight
function, the RMSRE increases (the same happens to the RMSRE of the parameter
α and of the parameter β), but it is still 80% lower that the error of the MLE. If
we envisage only the estimation of the two most influential parameters, α and β, the
WML method is still a better method than ML method, having a RMSRE about 52%
lower. We also tested the same results but allowing animals to have a maximum age
of 30 months. The allowance of this additional information about animal’s weights at
higher ages is enough to make the ML method perform better than the WML method.
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4.1. Optimization of the weight function

In this section, we evaluate the influence of the power w in the weight function Λwj,k =

λ(tj,k) − λ(tj,k−1) = twj,k − twj,k−1, j = 1, 2, . . . ,m, k = 1, 2, . . . , nj . We wish to better
understand the range of values w that improves the estimation of the parameter vector
p along the 7 simulation studies, 6 with homogeneous age schemes and one with the
”real” age scheme.

In Figures 1, 2 and 3 we present the comparison of the WML estimates of the
parameters α, β and σ2, respectively, for a wide range of w values in the weight
function Λwj,k = λ(tj,k) − λ(tj,k−1) = twj,k − twj,k−1. The 95% confidence bands for the
parameter estimate for the ”real” age scheme simulation study are also plotted.

Looking at the three plots, we see that, for homogeneous age schemes of obser-
vations, the choice of w has a mild influence, but the best estimates occur when
we have an age scheme with older animals. For these homogeneous age schemes,
the ML (corresponding to w = 1), which was the best (or almost the best) method
for the overall estimation of the three parameters, may be slightly outperformed on
the estimation of individual parameters by the WML method with appropriate w,
particularly when older ages data are not available.

The panorama is quite different for the heterogeneous ”real” age scheme of obser-
vations. We have seen that an appropriate choice of w was relevant for the overall
estimation of the three parameters, but we can see now that it is also very influential
on the estimation of each parameter individually. The major problem is that the best
w values for individual parameter estimation differ from one parameter to another, a
good compromise occurring for w values between 3 and 4.

4.2. Bootstrap Estimation

For the simulation study with the ”real” age scheme, for which we know the true
parameters, we are going to compare the ML and the WML approaches used above
with a new estimation method, which we call for short Bootstrap method and consists
in applying a bootstrap bias correction to the parameter estimates of the ML method.
In fact, the bootstrap methodology is often used to correct the bias of the maximum
likelihood estimates and also to obtain better confidence intervals for the parameter
estimates, since the asymptotic confidence intervals based on the Fisher information
matrix may be quite unreliable for small sample sizes.

Notice that, when one applies the bootstrap bias correction, one does not know
the true parameter values and so the correction is based on simulations using the
ML parameter estimates as proxies. To obtain the estimates using the parametric
bootstrap method, we proceed as follows:

• For each simulated data set i = 1, 2, . . . , N = 100 (consisting of simulated weights
of 100 animals at the ages of the ”real” age scheme), we obtain the ML estimate

p̂∗i = (α̂i, β̂i, σ̂
2
i ) of the parameter vector;

• The estimate p̂∗i is an approximation of the true parameter vector. Now, we use
p̂∗i as a proxy (of the now assumed unknown true parameter vector) to simulate
500 new data sets (of 100 animal each and with the same ”real” age scheme)

y∗i,kj = (y∗i,kj,0 , y
∗i,k
j,1 , ..., y

∗i,k
j,nj

), k= 1, 2, . . . , 500, i= 1, ..., N = 100, j = 1, ...,m= 100.
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Figure 1. WML estimates of the parameter A = eα as a function of w for the simulation studies with the
indicated age schemes. For the ”real” age scheme, the 95% confidence intervals are also shown.

For that we use the Markov property of the Y process and the transition distri-
butions given by (2).
• For each k = 1, 2, . . . , 500, a new parameter vector is estimated by the ML

method and the sample mean of the 500 obtained values, denoted by p̄∗i, is used
as an approximation of the expectation of the ML estimate of p̂∗i, thus showing
that the ML method tends to give a bias of around p̄∗i − p̂∗i;
• So, the original ML estimate p̂∗i should suffer the corresponding bias correction,

resulting in a bias corrected ML estimate p∗i,B = p̂∗i − (p̄∗i − p̂∗i);
• Finally the sample mean pB, the standard deviation and the empirical 2.5%,

50% and 97.5% empirical quantiles of the 100 bias corrected ML estimates p∗i,B

(i = 1, . . . , N = 100) are also obtained.

In Table 4 are shown the true parameter vector, the mean of the ML and of the
WML (with w = 3.2) estimates of the 100 replicates and the estimates obtained from
the bootstrap method and respective 2,5%, 50% and 97,5% quantiles.

Observing the results in the Table 4, we conclude that the parametric Bootstrap
method is the most precise method to estimate the growth parameters of bovine
weight for the ”real” age scheme of observations. The method was able to reduce the
error of the estimates (measured through RMSRE) in 66% w.r.t. the ML method and
in about 60% w.r.t. WML method. The estimates obtained are not only more precise
than the estimates obtained by the other methods, but also have lower variability.

As seen in section 4, the MLE performs badly for the ”realistic” age scheme, where

11



1.4

1.6

1.8

2.0

2.2

2 4 6
Weigth

E
st

im
at

ed
 b

dataset

2y 15d

2y 30d

4y 15d

4y 30d

6y 15d

6y 30d

Real Ages

95% LCI

95% UCI

b

Figure 2. WML estimates of the parameter β (in the plot, b stands for β) as a function of w for the simulation
studies with the indicated age schemes. For the ”real” age scheme, the 95% confidence intervals are also shown.

Table 4. True parameter values, mean estimated parameters, empirical standard deviations and RMSRE

for the ML method, the WML method (with w = 3.2) and the Bootstrap method for the simulation study
with the ”real” age scheme. For the Bootstrap method, the empirical 2,5%, 50% and 97,5% quantiles are also

shown.

Parametric Bootstrap Method
True MLE WMLE Bootstrap q2.5% q50% q97.5%

RMSRE - 0.213 0.176 0.072 - - -

β (year−1) 1.479 1.454 1.478 1.478 1.368 1.475 1.596
std. dev. - 0.062 0.301 0.059 - - -

σ2 (year−1) 0.086 0.116 0.090 0.083 0.070 0.082 0.098
std. dev. - 0.009 0.019 0.008 - - -

α 6.415 6.421 6.383 6.416 6.322 6.417 6.504
std. dev. - 0.046 0.152 0.046 - - -

A = eα (kg) 611.16 614.92 599.0 610.99 556.28 611.25 666.79
std. dev. - 28.08 94.68 27.79 - - -

animals have observations at most at the age of 18 months. In Table 5, we present
the results of the Bootstrap method for the simulation study with the ”realistic” age
scheme. Observing the results in Table 5, we can conclude that the Bootstrap method
largely corrects the estimates of the ML method, reducing the error in 60%. However,
the WML method accomplishes a much lower error, showing an error reduction of 90%.
The ML and the Bootstrap methods mainly fail in the estimation of the parameter σ2
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Figure 3. WML estimates of the parameter σ2 (in the plot, s2 stands for σ2) as a function of w for the
simulation studies with the indicated age schemes. For the ”real” age scheme, the 95% confidence intervals are

also shown.

that measures the intensity of random environment fluctuations. If we observe the error
measured just for the parameters α and β, the most influencial in many applications,
the error of the Bootstrap method is 52% less than the error of the ML method and
only 1% lower than the error of the WML method.

Table 5. True parameter values, mean estimated parameters, empirical standard deviations and RMSRE
for the ML method, the WML method (with w = 0.4) and the Bootstrap method for the simulation study

with the ”realistic” age scheme (observations at most at the age of 18 months). For the Bootstrap method, the

empirical 2,5%, 50% and 97,5% quantiles are also shown.

Parametric Bootstrap Method
True MLE WMLE Bootstrap q2.5% q50% q97.5%

RMSRE - 0.977 0.095 0.388 - - -

β (year−1) 1.479 1.661 1.535 1.433 1.269 1.428 1.619
std. dev. - 0.114 0.086 0.091 - - -

σ2 (year−1) 0.086 0.216 0.094 0.052 <0.001 0.040 0.163
std. dev. - 0.064 0.010 0.046 - - -

α 6.415 6.304 6.352 6.411 6.266 6.415 6.541
std. dev. . - 0.071 0.075 0.077 - - -

A = eα (kg) 611.16 548.30 575.45 602.07 520.25 602.92 682.23
std. dev. - 39.243 43.671 45.942 - - -
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5. Conclusion

In this work we model individual growth in a randomly varying environment through
a general and flexible class of SDE models. Using the stochastic Gompertz model,
we estimate the model parameters through the maximum likelihood (ML) method.
However, in the literature most applications are in other areas where available
observations are equidistant in time, are taken at the same instant for all trajectories
and there are large time observations, sufficient for a reasonable knowledge of the
complete growth curve. For our application, regarding the real age schemes of
observation data on the evolution of bovine weight of Mertolengo cattle breed, the
observations are not taken at equidistant time ages nor are the animals weighted at
the same ages and, since the animals are raised for the meat market, there are very
few observations of animal weights at older ages. Also, most animals have a very few
number of observations.
Due to the structure of the real data, estimating the growth model parameters
through the ML method can be inaccurate. We propose estimating the parameters
using instead the weighted maximum likelihood (WML) estimation method, in an
attempt to improve the estimation when there are a small number of observations at
older ages. We also compared the estimation methods for different homogeneous age
schemes of observation, using equidistant observations, taken at every 15 or every 30
days, and until a maximum age of 2, 4 or 6 years.

We conclude that, when the age scheme of observations is homogeneous with equidis-
tant observation ages common to all animals and there are a reasonable number of
observations, the maximum likelihood estimates are recommended and the accuracy
of the estimates improves as the range of observations reaches older ages. For hetero-
geneous age schemes of observation, like the ones available in our application data for
the evolution of bovine weight of Mertolengo cattle breeds, the estimation methods
become much more imprecise. A sample of animals with an heterogeneous age scheme
of observations, but with a large number of observations and some of them for animals
with older ages, is enough for a similar performance of the ML and WML. However, if
in the dataset all the observations are for animals at younger ages, the WML method
performs a lot better than the ML method, being the recommended method in those
situations.

We have also compared the influence in the estimation of the power w on the weight
function Λwj,k = twj,k−twj,k−1. We have concluded that the value of w = 3.2 can be the one
that, for the heterogeneous ”real” age scheme in our case, provides a better estimate
of the whole parameter vector p. However, in real datasets with very young animals
(”realistic” age scheme), we can minimize the parameter estimation error by using a
very small value of w = 0.4.

Of course, in each application, the best w value should be sought performing a
study similar to the one we did here.

Having noticed that, when we are dealing with real data, the ML and the WML
methods can estimate the parameters with bias and high variability, we applied the
Bootstrap estimation method (which is the ML method followed by a parametric
bootstrap bias correction of the parameter estimates). The results showed that the
estimation error decreases significantly using this method when dealing with hetero-
geneous ”real” data schemes where some animals have older observation ages. When
facing the heterogeneous ”realistic” age scheme with only very young animals, the
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Bootstrap method improved significantly the ML estimation method, but, compared
with the WML method, the estimates have similar or even worse precision.
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