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Simple Summary: Burning mouth syndrome (BMS) is a chronic oral condition characterized by an
intraoral burning sensation, taste alterations, and dry mouth sensations. The disease affects 0.7–15%
of the general population, being most common in post-menopausal women. Although BMS is related
to anxiety and/or depression and sleep disturbances, its etiology as well as its diagnosis remain
unclear. Therefore, the present study aimed to contribute to the knowledge about this syndrome
and to look for objective diagnostic tools. Therefore, whole saliva proteomes of patients suffering
from BMS were compared to those of healthy persons. The results of this study manifest alterations
in salivary proteins related to stress, immune system, and inflammation and, therefore, suggest
implication of these pathways in BMS development. Moreover, biomarkers related to stress, immune
system, and inflammation, such as salivary amyloid A, immunoglobulins, or leukocyte elastase
inhibitors, among others, could contribute to BMC management, although further research is needed
to confirm these suppositions.

Abstract: Burning mouth syndrome (BMS) is a chronic oral condition characterized by an intraoral
burning sensation, taste alterations, and dry mouth sensations. Although a number of factors have
been closely related to the appearance of the symptoms, including anxiety, depression, and sleep
disturbances, the etiology of BMS remains unclear. Furthermore, currently no objective diagnostic
tools exist, making its diagnosis challenging. Therefore, to contribute to the knowledge about BMS
etiology and look for objective tools for its diagnosis, the present study was conducted. Thus, the aim
of this study was to analyze the proteomic profile of the resting whole saliva of patients with BMS and
age and sex-matched controls using two-dimensional electrophoresis. The results showed evidence
of changes in saliva at the level of proteins related to important pathways such as stress (sAA),
immune system (Ig), and inflammation (leukocyte elastase inhibitor). While some of our findings
have been previously described others, such as the deregulation of the coiled-coin domain containing
protein 25 in BMS, are presented here for the first time to our knowledge. Thus, saliva provides us
with relevant information about BMS pathophysiology and could be considered a suitable biofluid
for its study and/or diagnosis.

Keywords: burning mouth syndrome; saliva; proteomics

1. Introduction

The Third Edition of the International Classification of Headache Disorders (2018) has
defined burning mouth syndrome (BMS) as an “intraoral burning sensation or dysesthesia
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manifesting daily for more than two hours during a period of over three months, with
no clinically manifest causal lesions” [1]. The literature also contemplates other terms
describing this disorder, such as glossodynia or stomatopyrosis, referring mainly to a
burning sensation of the oral mucosa and not to the global symptoms that conform the
syndrome. The term “burning mouth syndrome”, therefore, is considered to be the most
appropriate [2]. The etiology of BMS is unclear, although a number of factors have been
closely related to the appearance of the symptoms, such as anxiety and/or depression,
and sleep disturbances [3,4]. Taste alterations (dysgeusia) and dry mouth (xerostomia)
also have been described [5,6]. Due to the indistinctness of the pathology, the diagnosis
also is complicated and often controversial and is basically dependent upon the clinical
manifestations [7,8]. Furthermore, in approximately 3% of patients, burning symptoms
spontaneously disappear five years after their appearance [9], making this disease even
more difficult to understand and diagnose.

Saliva has gained special importance in recent years as a diagnostic fluid, since it is easy
to obtain, noninvasive, and economical. More than 3000 proteins have been identified in
saliva, constituting potential biomarkers of different pathologies [10]. Differences have been
found in the saliva of patients with BMS with respect to healthy controls in biomarkers of
the immune system (Immunoglobulin A, macrophage inflammatory protein-4), adrenergic
system (salivary α-amylase), and oxidative stress (uric acid and plasma iron reduction
capacity), among others [5,6,11]. Furthermore, associations between salivary biomarkers
and clinical variables such as pain and psychological disorders were detected [5,6,11].

Proteomic studies relate their presence with different physiological and metabolic
states, and help in clarifying the role of each of those proteins. This is very useful, since
proteins that are either over- or under-expressed in a given disease process may serve as
biomarkers of the disease [12]. Proteomics, therefore, is a very important tool that can
define a specific altered protein profile for each disease condition, thus contributing to
the understanding of the underlying pathophysiology and serving as a diagnostic and
monitoring tool, as well as opening new treatment perspectives [12]. Salivary proteomic
profiles were studied in a number of oral disorders such as oral squamous cell carcinoma
(OSCC), Sjögren’s syndrome, periodontitis, and BMS [13]. Proteomic studies performed
in BMS were conducted using different methodologies, isobaric tags for relative and ab-
solute quantitation labelling and liquid chromatography-tandem mass spectrometry [14],
liquid chromatography coupled with electrospray-ionization mass spectrometry [15], and
two dimensional gel electrophoresis (2-DE) after depletion of 21 high abundance pro-
teins [16]. Concerning all cases, salivary proteoms of patients with BMS and of controls
were performed.

Considering the need for objective diagnostic tests that can contribute to clarifying
the causes of the symptoms in patients with BMS, the present study was conducted. The
aim of this study was to analyze the proteomic profile of the resting whole saliva of
patients with BMS, as well as that of age and sex-matched controls, using two-dimensional
electrophoresis in a simple and noninvasive manner. This gel-based method was chosen
since (1) it allows the visualization of different forms (e.g., phosphorylation, glycosylation,
etc.) of the most abundant salivary proteins; (2) the depletion of the most abundant
proteins could alter the profile of the less abundant proteins, therefore untreated whole
saliva samples were used in this study; and (3) it allows the identification of proteins that are
present in relatively high concentrations that would allow their subsequent determination
with specific methods and, thus, be used in a clinical setting.

2. Materials and Methods
2.1. Study Design and Subjects

The present cross-sectional study was conducted in the Unit of Oral Medicine (Uni-
versity of Murcia, Spain) and in the Mediterranean Institute for Agriculture, Environment
and Development (MED, University of Évora, Portugal) between the months of September
2019 and September 2020. The study complied with the Declaration of Helsinki and was
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approved by the Ethics Committee of the University of Murcia (Ref.: 2203/2018). All
patients gave informed consent to participation. The clinical data and salivary samples
were collected in the University of Murcia, and the proteomics analysis was performed in
the laboratories of the University of Évora.

2.2. Sample Description

A total of 11 patients (6 females) with the age range between 42 and 83 years (mean,
54 years), were included in the study. The patients were diagnosed with BMS according to
the criteria of the International Classification of Headache Disorders (2018) (1): “intraoral
burning sensation or dysesthesia manifesting daily for more than two hours during a
period of over three months, with no clinically manifest causal lesions”.

The control group in turn consisted of 11 age and sex-matched healthy subjects
(6 females) with ages between 40 and 88 years (mean, 54 years).

All participants underwent oral exploration by the same expert in oral medicine
(CCF), with the evaluation of oral and dental health. Regarding all cases, exclusion criteria
included the presence of poor oral hygiene, caries, periodontitis, smoking, as well as
pregnant women and individuals subjected to chemotherapy/radiotherapy, or those with
any oral condition capable of accounting for the symptoms were excluded.

Six patients with BMS and 3 controls were users of dentures (Chi-square, p = 0.193).

2.3. Saliva Collection

Resting whole saliva was collected using the drainage technique, with a collection
time of 5 min. To avoid possible contamination from other sources, the patients were
instructed to rinse the mouth thoroughly before saliva sample collection. The subjects
were required to avoid heavy physical exercise and abstain from food and drink intake
during one hour before sampling. The samples were collected at about the same time in
all subjects (8:00–11:00 a.m.). Immediately after collection, samples were placed in coolers
and transported to the laboratory, where saliva was vortexed and centrifuged (3000× g for
10 min at 4 ◦C), and the supernatant was transferred into polypropylene tubes and stored
at −80 ◦C until analysis.

2.4. Two-Dimensional Electrophoresis, Computational Image, and Mass Tandem Spectrometry

Protein content was determined using the Bradford Determination [17], and 150
milligrams of proteins from each saliva sample were employed. The quantitative proteomic
analysis consisted of two-dimensional polyacrylamide gels followed by mass spectrometry
(MS), which were run in duplicate, as described elsewhere [18]. Briefly, for each salivary
sample isoelectric focusing was conducted in 3-11 pH non-linear (NL) immobilized pH
gradient (IPG) strips of 7 cm length (GE Healthcare Life Sciences); while the second
dimension was performed after reduction and alkylation of the IPG strips. Sodium-dodecyl
sulphate-polyacrylamide electrophoresis (SDS-PAGE) protein separation was performed in
homemade 14% polyacrylamide gels. Gels were stained using Coomassie Brilliant Blue
R-250 (2% CBB, 40% methanol, 10% acetic acid), and destained in 10% acetic acid, using a
protocol compatible with MS analysis.

The 2-DE gels were digitalized and analyzed using ImageMaster v7.0 software (GE
Healthcare Life Sciences, Piscataway, NJ, USA). Spot detection was made automatically and
edited manually. The match analysis included manual alignment by defining landmarks
distributed over each entire image that clearly represented the same protein form, after
which automatic matching was done and posteriorly revised for confirmation. To identify
those protein spots which differed significantly in abundance between the control and test
gels, the software for analysis (Metaboanalyst, https://www.metaboanalyst.ca/, accessed
on 1 June 2020) was used.

Mass spectrometry was performed as described elsewhere [19]. Briefly, those spots
that showed differences of statistical relevance between the two groups were manually
excised, washed, destained, reduced, and alkylated [20,21]. After tryptic digestion for 8 h

https://www.metaboanalyst.ca/
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at 37 ◦C (Trypsin Gold, Mass Spectrometry Grade, Pro-mega, Madison, WI, USA), peptides
were extracted using three portions of 30 µL of 5% trifluoro acidic acid in 50% aqueous ace-
tonitrile and dried in a vacuum concentrator (Eppendorf, Hamburg, Germany). Peptides
were then separated and analyzed using Ekspert nano LC 425 (Sciex) coupled to a high res-
olution quadrupole time-of-flight mass spectrometer (Triple TOF 6600, Sciex). The database
for protein identification was downloaded from the UniProt database (www.uniprot.org,
accessed on 1 June 2020).

2.5. Statistical and Bioinformatics Analysis

Regarding analysis of gel spots, as data did not follow Gaussian distribution, data were
log-transformed and a Student’s T-test was performed to compare each spot abundance
between the two groups, while multivariate analyses were performed to consider potential
interactions among protein spots in group comparisons. PLS-DA (partial Least Square-
Discriminant Analysis) was performed for this, and VIP (Variable Importance in Projection)
scores higher or equal to 2.0 were considered to discern the spots contributing most to
group separation. All p-values < 0.05 were considered to be significantly differentially
expressed.

Genes encoding the differentially abundant proteins between the BMS and healthy
groups were used to determine the Gene Ontology (GO) terms over-represented in BMS
using the Protein Analysis Through Evolutionary Relationships (PANTHER) classification
tool (http://www.pantherdb.org/, accessed on 1 June 2020).

3. Results

No statistically significant differences were detected between patients with burning
mouth syndrome and the controls in terms of salivary total protein concentration (patients,
569.9 ± 254.8 µg/mL vs. controls, 537.3 ± 196.0 µg/mL; p = 0.745) and salivary flow rate
(BMS patients, 3.7 ± 1.6 mL vs. controls, 2.3 ± 1.6 mL; p = 0.132).

Representative gel images are shown in Figure 1. The 2D image analysis revealed a
total of 141 spots that were matched between the two groups. Considering those, nine
spots (2, 43, 58, 118, 141, 170, 174, 192, 209) were observed to present a different relative
abundance between the healthy and BMC groups (p < 0.05), when univariate analysis was
performed and, therefore, were selected for identification by mass spectrometry (Table 1).

Partial Least Square—Discriminant Analysis revealed that groups of healthy individu-
als can be distinguished from BMS patients (Figure 2). The BMS groups nested distantly
from healthy groups in component 1, which explained 18.5% of the total variance. Ten
spots presented VIP scores greater or equal to 2.0 (0, 43, 53, 56, 58, 113, 116, 170, 192, 209),
as identified by MS since they were among those that contributed most to group separation
(Table 1).

www.uniprot.org
http://www.pantherdb.org/
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Figure 1. Representative two-dimensional gel electrophoresis of salivary proteins of patient with 

BMS (upper) and healthy control (lower). Proteins with statistically significantly different abun-

dance between groups were circled in red (higher in BMS) or squared (higher in healthy control 

group). 

Table 1. Mass spectrometry results on identified spots. Abundances are expressed as median (25–75 percentile). 

Figure 1. Representative two-dimensional gel electrophoresis of salivary proteins of patient with
BMS (upper) and healthy control (lower). Proteins with statistically significantly different abundance
between groups were circled in red (higher in BMS) or squared (higher in healthy control group).
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Table 1. Mass spectrometry results on identified spots. Abundances are expressed as median (25–75 percentile).

Spot Spectra Peptides Score Coverage Intensity Protein
mw

Accession
Number Entry Name Control Burning Mouth

Syndrome p

58

5 4 34.68 4.9 2.22 × 104 69,365.5 P02768 Albumin
0.684

(0426–0.684)
0.086

(0.029–0.421) 0.001
5 3 31.59 17.8 6.65 × 104 16,572.2 P12273 Prolactin-inducible protein
5 3 30.68 25.4 2.44 × 104 11,283.7 P81605 Dermcidin
2 1 14.54 4.3 2.43 × 104 24,478.4 Q86WR0 Coiled-coil domain-containing protein 25

118
12 7 84.61 12.9 1.35 × 105 57,766.8 P04745 Alpha-amylase 1 0.207

(0.074–0.207)
0.005

(0.005–0.056) 0.0236 3 32.42 47.6 6.03 × 104 11,764.8 P01834 Immunoglobulin kappa constant

192
81 24 362.45 51.6 3.20 × 106 57,766.8 P04745 Alpha-amylase 1 1.038

(0.595–1.285)
0.121

(0.326–1.090) 0.0025 3 36.75 8.7 4.16 × 104 37,654 P01876 Immunoglobulin heavy constant alpha 1
2 1 11.96 4.3 2.33 × 104 24,478.4 Q86WR0 Coiled-coil domain-containing protein 25

2
4 3 28.1 3.4 2.45 × 104 69,365.5 P02768 Albumin 0.118

(0.052–0.198)
0.007

(0.007–0.051) 0.0041 1 15.97 4.3 9.20 × 103 24,478.4 Q86WR0 Coiled-coil domain-containing protein 25

141
7 4 49.52 24.5 5.03 × 104 11,283.7 P81605 Dermcidin 0.116

(0.070–0.132)
0.007

(0.007–0.028) 0.00011 1 11.92 4.3 2.11 × 104 24,478.4 Q86WR0 Coiled-coil domain-containing protein 25
2 1 10.93 0.4 3.13 × 104 21,6853.7 Q8TF72 Protein Shroom3

170 9 9 97.49 24.2 5.68 × 104 42,741 P30740 Leukocyte elastase inhibitor 0.476
(0.157–0.600)

0.012
(0.012–0.047) 0.0004

43
7 5 49.82 34.5 6.48 × 104 11,283.7 P81605 Dermcidin 0.330

(0.266–0.658)
0.013

(0.013–0.053) 0.00046 3 34.96 33.3 9.31 × 104 16,387.4 P01037 Cystatin-SN

209
19 13 147.03 25.8 2.05 × 105 57,766.8 P04745 Alpha-amylase 1 0.049

(0.049–0.147)
1.586

(0.841–3.629) 0.0014 3 36.45 7.9 2.69 × 104 37,654 P01876 Immunoglobulin heavy constant alpha 1
2 2 16.14 15.4 1.08 × 104 11,283.7 P81605 Dermcidin

174
8 6 79.02 11.3 9.81 × 104 57,766.8 P04745 Alpha-amylase 1 0.011

(0.011–0.147)
0.206

(0.159–0.427) 0.000057 4 56.48 9.9 7.86 × 104 37,654 P01876 Immunoglobulin heavy constant alpha 1
2 1 12.29 4.3 1.16 × 104 24,478.4 Q86WR0 Coiled-coil domain-containing protein 25

0 56 22 298.52 51.2 2.01 × 106 57,766.8 P04745 Alpha-amylase 1 0.027
(0.027–0.027)

0.382
(0.142–0.539) 0.049
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Table 1. Cont.

Spot Spectra Peptides Score Coverage Intensity Protein
mw

Accession
Number Entry Name Control Burning Mouth

Syndrome p

113

12 4 55.29 60.7 2.95 × 105 11,764.8 P01834 Immunoglobulin kappa constant 0.512
(0.024–0.890)

0.024
(0.024–0.094) 0.030

2 2 22.19 13.4 1.74 × 104 13,147.6 A0A0C4DH55 Immunoglobulin kappa variable 3D-7
2 2 18.76 13.9 1.32 × 104 12,625 A0A0A0MRZ8 Immunoglobulin kappa variable 3D-11
3 2 15.57 13.7 2.04 × 104 12,556.9 P01619 Immunoglobulin kappa variable 3-20

216 143 27 468.85 66.9 2.37 × 107 57,766.8 P04745 Alpha-amylase 1 0.013
(0.013–0.013)

0.105
(0.025–0.146) 0.016

53
27 7 91.17 63.1 1.16 × 106 16,387.4 P01037 Cystatin-SN 1.914

(1.351–3.299)
0.709

(0.211–1.823) 0.035

18 4 50.6 34 1.05 × 106 16,214.1 P01036 Cystatin-S



Biology 2021, 10, 392 8 of 13

Biology 2021, 10, x  7 of 12 
 

Partial Least Square—Discriminant Analysis revealed that groups of healthy individ-
uals can be distinguished from BMS patients (Figure 2). The BMS groups nested distantly 
from healthy groups in component 1, which explained 18.5% of the total variance. Ten 
spots presented VIP scores greater or equal to 2.0 (0, 43, 53, 56, 58, 113, 116, 170, 192, 209), 
as identified by MS since they were among those that contributed most to group separa-
tion (Table 1). 

  
(a) (b) 

Figure 2. (a) Two-dimensional representation of components from Partial Least Square – Discriminant Analysis (PLS-DA), 
showing clear separation between healthy (1) and burning mouth syndrome (2) groups. (b) VIP (Variable Importance in 
Projection) describing the spots contributing most to group separation. 

A total of ten proteins were identified as composing the nine statistically significant 
modulated spots, which represented differences between the two groups. These were al-
bumin, alpha-amylase 1, coiled-coil domain-containing protein 25, cystatin-S, cystatin-SN, 
dermcidin, immunoglobulin heavy constant alpha 1, immunoglobulin kappa constant, 
leukocyte elastase, prolactin-inducible protein, and protein shroom 3. Seven spots, com-
posed by the all above mentioned proteins, were down-regulated in BMS, with a fold 
change (Group1/Group2) ranging from 4.92- to 15.3-folds lower in abundance. 

To contrast, four spots (0, 174, 209, and 216) containing alpha-amylase 1, immuno-
globulin heavy constant alpha 1, and dermcidin or coiled-coil domain-containing protein 
25 were most represented in the BMS group, with an up to 14-folds higher abundance. 

The fourteen unique genes identified in the spots differing in expression levels be-
tween the two groups or contributing to group separation were used for subsequent bio-
informatic analyses in terms of functional clusters, according to the PANTHER classifica-
tion system, as shown in Figure 3. The proteins were distributed within three different 
molecular functions: binding (GO:0005488) (57.1%), catalytic activity (GO:0003824) 
(28.6%), and molecular function regulator (GO:0098772) (14.3%). Cellular anatomical en-
tity (GO:0110165) was the main cellular component (75%), followed by intracellular 
(GO:0005622), and protein-containing complex (GO:0032991) (12.5% each). They partici-
pate in eight molecular processes, namely the immune system process (GO:0002376) 
(20%), response to stimulus (GO:0050896) (16.7%), metabolic process (GO:0008152), cellu-
lar process (GO:0009987), and biological regulation (GO:0065007) (13.3% each), localiza-
tion (GO:0051179) (10%), interspecies interaction between organisms (GO:0044419), and 
signaling (GO:0023052) (6.7% each). Last, five protein classes were identified, being the 
defense/immunity protein (PC00090) (the most represented at 55.6%), followed by the cy-
toskeletal protein (PC00085), the metabolite interconversion enzyme (PC00262), the pro-
tein-binding activity modulator (PC00095), and the transfer/carrier protein (PC00219) at 
11.1% each. 

Figure 2. (a) Two-dimensional representation of components from Partial Least Square-Discriminant Analysis (PLS-DA),
showing clear separation between healthy (1) and burning mouth syndrome (2) groups. (b) VIP (Variable Importance in
Projection) describing the spots contributing most to group separation.

A total of ten proteins were identified as composing the nine statistically significant
modulated spots, which represented differences between the two groups. These were albu-
min, alpha-amylase 1, coiled-coil domain-containing protein 25, cystatin-S, cystatin-SN,
dermcidin, immunoglobulin heavy constant alpha 1, immunoglobulin kappa constant,
leukocyte elastase, prolactin-inducible protein, and protein shroom 3. Seven spots, com-
posed by the all above mentioned proteins, were down-regulated in BMS, with a fold
change (Group1/Group2) ranging from 4.92- to 15.3-folds lower in abundance.

To contrast, four spots (0, 174, 209, and 216) containing alpha-amylase 1, immunoglob-
ulin heavy constant alpha 1, and dermcidin or coiled-coil domain-containing protein 25
were most represented in the BMS group, with an up to 14-folds higher abundance.

The fourteen unique genes identified in the spots differing in expression levels between
the two groups or contributing to group separation were used for subsequent bioinformatic
analyses in terms of functional clusters, according to the PANTHER classification system,
as shown in Figure 3. The proteins were distributed within three different molecular func-
tions: binding (GO:0005488) (57.1%), catalytic activity (GO:0003824) (28.6%), and molecular
function regulator (GO:0098772) (14.3%). Cellular anatomical entity (GO:0110165) was
the main cellular component (75%), followed by intracellular (GO:0005622), and protein-
containing complex (GO:0032991) (12.5% each). They participate in eight molecular pro-
cesses, namely the immune system process (GO:0002376) (20%), response to stimulus
(GO:0050896) (16.7%), metabolic process (GO:0008152), cellular process (GO:0009987), and
biological regulation (GO:0065007) (13.3% each), localization (GO:0051179) (10%), inter-
species interaction between organisms (GO:0044419), and signaling (GO:0023052) (6.7%
each). Last, five protein classes were identified, being the defense/immunity protein
(PC00090) (the most represented at 55.6%), followed by the cytoskeletal protein (PC00085),
the metabolite interconversion enzyme (PC00262), the protein-binding activity modulator
(PC00095), and the transfer/carrier protein (PC00219) at 11.1% each.
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Figure 3. Pie charts showing the molecular function, cellular component, biological process, and protein class between BMS
and healthy control groups based on the PANTHER classification system (http://www.pantherdb.org, accessed on 1 June
2020).

4. Discussion

During the present study, 13 spots differentially modulated between patients with
BMS and healthy controls were observed. Fourteen different unique genes were identified
from these spots, with most of them involved in the immune system, cellular, and metabolic
processes. Some of the proteins identified in this study, including albumin, immunoglob-
ulins, dermcidin, and alpha-amylase were previously reported to be modulated in BMS,
validating our findings [11,14–16], while others, such as coiled-coil domain-containing

http://www.pantherdb.org


Biology 2021, 10, 392 10 of 13

protein 25, were related to BMS herein for the first time. Furthermore, our results were in
accordance with the previous data analyzing salivary proteomes in healthy individuals and
BMS patients using different proteomic approaches [14–16], although some divergences
are present possibly due to the different populations and study designs used. Ji et al. [14]
identified 1130 proteins, using isobaric tags for relative and absolute quantitation labeling
and liquid chromatography-tandem mass spectrometry, having 39 differentially modulated
between the two groups and three proteins (alpha-enolase, interleukin-18, kallikrein-13)
confirmed by ELISA. Cabras et al. [15] investigated different proteins by liquid chromatog-
raphy coupled to electrospray-ionization mass spectrometry in different saliva samples and
only detected alterations in cystatin SN protein, which was up-regulated in patients with
BMS. These differences, where decreases in S-type cystatin spots were observed, may be
executed in different proteomic approaches relative to our study. Cabras et al. [15] did not
separate the different forms of cystatin SN protein, whereas two-dimensional electrophore-
sis (2DE) does this and allows us to observe the differences in each of them. Last, Krief
et al. [16] performed qualitative and quantitative two dimensional gel electrophoresis (2-
DE); however, and in contrast to this study, they previously performed depletion of 21 high
abundance proteins. Although protein depletion increases sensitivity for low-abundant
proteins, it can affect the levels/ratios of non-targeted proteins for depletion and cannot
reveal changes in depleted ones such as alpha-amylase or immunoglobulins that are known
to change in BMS [11]. Nevertheless, Krief et al. [16] identified 100 BMS-specific proteins
and 158 proteins up-regulated in BMS, more than threefold in comparison with healthy
controls. Overall, despite these differences, all studies outline alterations in immune system
function and, therefore, immune system biomarkers could be employed for improving
BMS diagnosis and treatment.

Only one of the differentially modulated spots was composed of a single protein
(leukocyte elastase inhibitor (SERPINB1)), which was down-regulated in BMS. This protein
plays a major role in the regulation of the innate immune response, cellular homeostasis
and inflammation, and in protecting cells from proteases. This result is in contrast to the
data reported by Krief et al. [16], who found higher SERPINB1 in patients with BMS in
comparison to healthy controls. It also is important to notice that, although some discrep-
ancies exist, SERPINB1 in saliva was related to periodontal inflammation [22,23]. Thus,
the contradictory results regarding SERPINB1 obtained in the present and previous [16]
studies could be attributed to the different proteomic approaches employed and/or dif-
ferent populations involved in terms of oral health status and BMS evolution. Therefore,
further studies evaluating SERPINB1 in patients with BMS, with and without periodontal
inflammation, should be performed to clarify these results.

Salivary alpha-amylase (sAA) was identified in six spots analyzed by MS. SAA is a
sensitive biomarker of stress [24]. A number of studies described increased total salivary
alpha-amylase levels in patients with BMS in comparison to healthy controls, possibly
related to physical pain and stress due to disease [6,25]. However, two spots that contained
sAA did not differ statistically between study groups; two were of higher and two of
lower abundance in BMS. These different abundances in relation to controls of the spots
containing sAA observed in the present study could be explained by two facts: (1) spots
contain more than one protein/isoform of protein that could be differentially affected by
the presence of BMS, giving a different total abundancy in relation to controls; and (2)
sAA is present in more than 140 gel spots due to post-translationally modified forms and
isoforms that could be altered differently in different situations [26]. Briefly, it is possible
that IgA contributes to the lower abundance of spot 39 rather than amylase and, since spot
29 has a lower apparent molecular mass than the usual forms of sAA, it probably can result
in proteolysis. However, future studies are needed to assess the response of different sAA
isoforms to BMS.

MS analyses identified cystatin SN in two spots under-regulated in BMS. Although
the discrepancy could be explained by the identification of other proteins in the same
spots and by the differential analyses used, this finding was in discordance with Cabras,
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T. et al. [15] who found that cystatin was overexpressed in unstimulated saliva from
BMS patients, suggesting a relationship between cystatin SN and inflammation. Another
possible explanation for this discrepancy could be that Cabras et al. did not perform a
clinical evaluation to verify whether patients were affected by periodontitis or gingivitis,
which are known to affect the levels of salivary cystatins [27]; while, in the present study,
patients were excluded if presenting these conditions. Changes in cystatin SN in BMS
patients could reflect a defensive reaction against an on-going inflammation, which may be
one of the subjacent causes for BMS.

Immunoglobulins (alpha and kappa) were identified in deregulated spots and con-
tributed to group differentiation. Immunoglobulins are key proteins against pathogens,
although changes in salivary IgA also have been related to stress [28] and, in agreement
with our results, differences in immunoglobulins were previously observed in patients
with BMS in comparison to healthy individuals [6,11,25,29].

Albumin also was present in two spots of lower abundance in BMS, although other
proteins also were detected in these spots. This result was in agreement with previous
studies that reported higher levels of albumin and immunoglobulins in saliva in BMS
patients [6]. The authors reported the serum-borne (and not salivary gland) origin of these
proteins that leaked to saliva due the microscopic atrophy of the oral mucosa, has been
reported in 70% of BMS patients [30].

To the best of our knowledge, coiled-coil domain-containing protein 25 (CCDC25) has
been described in relation to BMS in this study for the first time. This protein is highly
conserved among mammals and its expression is almost ubiquitous in human tissues;
however, its function is still unclear [31]. This protein has been proposed recently as a
serum biomarker of chronic cholangitis and cholangiocarcinoma [31]. However, there is no
data about CCDC25 and saliva or BMS and, therefore, further studies should be performed
to clarify its possible relation.

Our study offers a number of novel data. Basically, it seeks to transfer the information
obtained from advanced proteomic techniques to clinical practice. These new technologies
are known to generate panels of potential biomarkers that must be validated and should
be traceable with the use of less costly analytical techniques to allow their transfer to
daily practice. Consequently, clinical trials are indicated for confirmation that the salivary
protein profiles differ between groups. Our study also has the advantage of complementing
previous studies, using a different proteomic approach consisting of 2-dimensional gel
electrophoresis in non-depleted salivary samples. Although gel-based proteomics is more
time consuming, both in terms of laboratory and image analysis, allowing only the analysis
of proteins that enter the gels (as such, excluding high or low molecular mass proteins,
as well as proteins with low solubility and extreme isoelectric points), this technique
allows the visualization of the different forms of the same protein. Regarding saliva
where abundant proteins, such as amylase and cystatins, among others, exist in different
isoforms, it allows us to compare them and to search for involvement at an individual
level. However, the proteomic methodologies are not limitation-free. The macrophage
inflammatory protein-4 (MIP4), for instance, was not identified in this study, while it was
observed to have statistically significant higher concentrations in the saliva of patients with
BMS compared to controls when a specific immunologic method was used [11]. Therefore,
the use of proteomic analysis should be considered as complementary and not singular
for new disease biomarker identification. Regarding the limitations of our study, mention
must be made of the small sample size and the case-control design involved. Further
large-scale trials are needed to confirm our findings and gain further knowledge of the
possible associations between these proteins and BMS.

5. Conclusions

The proteomic study performed evidenced changes in saliva that affect proteins
related to important pathways such as stress (sAA), the immune system (Ig), and inflam-
mation (leukocyte elastase inhibitor). While some of our findings have been previously
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described others, such as the deregulation of the coiled-coin domain containing protein 25
in BMS, have been described here for the first time. Thus, saliva provides us with relevant
information about BMS pathophysiology and could be considered as a suitable biofluid for
its study and/or diagnosis.
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