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Abstract: This work concerns with the solvability of third-order periodic fully problems with a
weighted parameter, where the nonlinearity must verify only a local monotone condition and no
periodic, coercivity or super or sublinearity restrictions are assumed, as usual in the literature. The
arguments are based on a new type of lower and upper solutions method, not necessarily well
ordered. A Nagumo growth condition and Leray–Schauder’s topological degree theory are the
existence tools. Only the existence of solution is studied here and it will remain open the discussion
on the non-existence and the multiplicity of solutions. Last section contains a nonlinear third-order
differential model for periodic catatonic phenomena, depending on biological and/or chemical
parameters.

Keywords: higher-order periodic problems; lower and upper solutions; nagumo condition; degree
theory; periodic catatonic phenomena
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1. Introduction

In this paper we consider a third-order periodic problem composed by the differential
equation

u′′′(t) + f
(
t, u(t), u′(t), u′′(t)

)
= s g(t), t ∈ [0, 1], (1)

where f : [0, 1]×R3 → R and g : [0, 1]→ R+ are continuous functions, s ∈ R a parameter,
and the periodic boundary conditions

u(0) = u(1),

u′(0) = u′(1), (2)

u′′(0) = u′′(1).

The so-called Ambrosetti–Prodi problem for an equation of the form

G(x) = s, (3)

was introduced in [1], and the existence, non-existence or the multiplicity of solutions
depend on the parameter. In short, it guarantees the existence of some number s0 such
that (3) has zero, at least one or at least two solutions if s < s0, s = s0 or s > s0, not
necessarily by this order.

Since then, Ambrosetti–Prodi results have been obtained for different types of bound-
ary value problems, such as with separated boundary conditions [2–4], Neuman’s type [5],
three-point boundary conditions [6], among others.

The periodic case has been studied, in last decades, by in several authors, as, for ex-
ample, [7–17]. However, third-order or higher-order periodic problems, with fully general
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nonlinearities, not necessarily periodic, are scarce in the literature (to the best of our
knowledge, we mention [18,19].

Motivated by the above papers, we present in this work a first approach for third-order
periodic fully differential equations, where the existence of periodic solutions depends on
a weighted parameter, as in (1). The arguments are based on a new type of lower and
upper solutions method, not necessarily well ordered, together with well-ordered adequate
auxiliary functions, obtained from translation of lower and upper solutions. A Nagumo
growth condition and Leray–Schauder’s topological degree theory, complete the existence
tools to guarantee the solvability of our problem, for some values of the parameter s.
We underline that the nonlinearity must verify only a local monotone assumption and
no periodic, coercivity or super and/or sublinearity conditions are assumed, as usual in
the literature.

Remark that, it will remain open the issue of what are the sufficient conditions on the
nonlinearity to have the non-existence and the multiplicity of solutions, depending on s.

Periodic problems have a huge variety of applications. Here we consider a reaction-
diffusion linear system for the thyroid-pituitary interaction, which is translated by a
nonlinear third-order differential equation. In this case the role of the parameter s is played
by some coefficients with biological and chemical meaning, which ensuring the existence
of periodic catatonia phenomena. Moreover, this application take advantage from the
localization part of the main theorem, to show that the periodic solutions are not trivial.

This paper is organized as it follows: Section 2 contains the definitions and the a priori
bounds for the second derivative, from Nagumo’s condition. In Section 3, we present the
main result: an existence and localization theorem for the values of the parameter such that
there are lower and upper solutions. Last section discuss the existence of periodic catatonic
episodes based on some relations of certain coefficients, considered as parameters.

2. Definitions and a Priori Estimations

In higher-order periodic boundary value problems, the order between lower and
upper solutions is an issue that should be avoided. The next definition suggests a method
to overcome it, by translating, up and down, of upper and lower solutions, respectively,
by perturbating them with the sup norm:

‖w‖∞ := sup
t∈[0,1]

|w(t)|.

Definition 1. The function α ∈ C3[0, 1] is a lower solution of problem (1) and (2) if:

(i) α′′′(t) + f (t, α0(t), α′(t), α′′(t)) ≥ s g(t), t ∈ [0, 1],

where
α0(t) := α(t)− ‖α‖∞; (4)

(ii) α′′(0) ≥ α′′(1), α′(0) = α′(1).

The function β ∈ C3[0, 1] is an upper solution of problem (1) and (2) if:

(iii) β′′′(t) + f (t, β0(t), β′(t), β′′(t)) ≤ s g(t), t ∈ [0, 1],

where
β0(t) := β(t) + ‖β‖∞; (5)

(iv) β′′(0) ≤ β′′(1), β′(0) = β′(1).

We underline that although α and β are not necessarily ordered, the auxiliary functions
α0 and β0 are well ordered, as

α0(t) ≤ 0 ≤ β0(t), for every t ∈ [0, 1].

The unique growth assumption required on the nonlinearity in (1) is given by a
Nagumo-type condition:
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Definition 2. A continuous function h : [0, 1] × R3 → R verifies a Nagumo-type condition
relatively to some continuous functions γi, Γi, i = 0, 1, such that γi(t) ≤ Γi(t), for every t ∈ [0, 1],
in the set

S =
{
(t, x0, x1, x2) ∈ [0, 1]×R3 : γi(t) ≤ xi ≤ Γi(t), i = 0, 1

}
,

if there is a continuous function ψS : [0,+∞[→ [k,+∞[ (k > 0) such that

|h(t, x0, x1, x2)| ≤ ψS(|x2|), ∀(t, x0, x1, x2) ∈ S, (6)

with ∫ +∞

0

z
ψS(z)

dz = +∞ . (7)

Now we can have an a priori estimation for the second derivatives of possible solutions
of (1), as it was proved in [20], Lemma 1.

Lemma 1. Let h : [0, 1]×R3 → R be a continuous function verifying the Nagumo-type condi-
tions (6) and (7) in S. Then there is r > 0 such that every solution y(t) of (1) verifying

γ0(t) ≤ y(t) ≤ Γ0(t), γ1(t) ≤ y′(t) ≤ Γ1(t)

for every t ∈ [0, 1], satisfies ∥∥y′′
∥∥ < r.

Remark 1. The radius r depends only on the parameter s and on the functions h, ψs, γ1 and Γ1
and it can be taken independent of s as long as it belongs to a bounded set.

3. Existence Result

For the values of the parameter s such that there are upper and lower solutions of (1)
and (2), where the first derivatives are well ordered, we obtain the following result:

Theorem 1. Let f : [0, 1]×R3 → R and g : [0, 1]→ R+ be continuous functions. Assume that
there are lower and upper solutions of problem (1) and (2), α(t) and β(t), respectively, accordingly
Definition 1, such that

α′(t) ≤ β′(t), for t ∈ [0, 1],

and f verifies the Nagumo-type conditions (6) and (7) in

S∗ =
{

(t, x0, x1, x2) ∈ [0, 1]×R3 : α0(t) ≤ x0 ≤ β0(t),
α′(t) ≤ x1 ≤ β′(t)

}
.

If
f (t, α0(t), x1, x2) ≤ f (t, x0, x1, x2) ≤ f (t, β0(t), x1, x2), (8)

for fixed (t, x1, x2) ∈ [0, 1]×R2 and α0(t) ≤ x0 ≤ β0(t), then (1) and (2) has at least a solution
u(t) ∈ C3([0, 1]) such that α0(t) ≤ u(t) ≤ β0(t), α′(t) ≤ u′(t) ≤ β′(t), ∀t ∈ [0, 1].

Proof. For λ ∈ [0, 1] consider the homotopic and truncated auxiliary equation

u′′′(t) + λ f
(
t, δ0(t, u(t)), δ1

(
t, u′(t)

)
, u′′(t)

)
(9)

−u′(t) + λδ1
(
t, u′(t)

)
= λs g(t)

where the continuos functions δ0, δ1 : [0, 1]×R −→ R, are given by

�0(t, x) =


β0(t) if x > β0(t)

x if α0(t) ≤ x ≤ β0(t)
α0(t) if x < α0(t),

(10)
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and

�1(t, y) =


β′(t) , y > β′(t)

y , α′(t) ≤ y ≤ β′(t)
α′(t) , y < α′(t),

(11)

with α0 and β0 defined in (4) and (5), respectively, together with the boundary conditions

u(0) = λη0(u(1)),
u′(0) = u′(1),
u′′(0) = u′′(1),

(12)

where the function η0 : R 7−→ R, is defined by

η0(u(1)) =


β0(1) , u(1) > β0(0)
u(1) , α0(0) ≤ u(1) ≤ β0(0)
α0(1) , u(1) < α0(0).

(13)

Take r1 > 0 such that, for t ∈ [0, 1],

−r1 ≤ α′(t) ≤ β′(t) ≤ r1,
s g(t)− f (t, α0(t), α′(t), 0)− r1 − α′(t) < 0,
s g(t)− f (t, β0(t), β′(t), 0) + r1 − β′(t) > 0.

(14)

Step 1: Every solution of the problem (1) and (2) satisfies for every t ∈ [0, 1]∣∣u′(t)∣∣< r1,

independently of λ ∈ [0, 1].

Assume, by contradiction, that exist t ∈ [0, 1] such that |u′(t)| ≥ r1.Consider the case
u′(t) ≥ r1 and define

u′(t0) := max
t∈[0,1]

u′(t) ≥ r1 > 0. (15)

If t0 ∈ ]0, 1[ and λ ∈ ]0, 1[, then u′′(t0) = 0 and u′′′(t0) ≤ 0. By (10), (11) and (14),
the following contradiction holds

0 ≥ u′′′(t0)

= λsg(t0)− λ f
(
t0, δ0(t0, u(t0)), δ1

(
t0, u′(t0)

)
, u′′(t0)

)
+u′(t0)− λδ1

(
t0, u′(t0)

)
≥ λ

[
sg(t0)− f

(
t0, β0(t0), β

′
(t0), 0

)
+ r1 − β

′
(t0)

]
> 0.

If λ = 0 the contradiction results from (15):

0 ≥ u′′′(t0) = u′(t0) ≥ r1 > 0.

If t0 = 0 then
u′(0) = max

t∈[0,1]
u′(t).

By (12), u′(0) = u′(1), then u′(1) is a maximum, too, and

0 ≥ u′′(0) = u′′(1) ≥ 0,

therefore u′′(0) = 0 and u′′(0) ≤ 0.
The case t0 = 1 is analogous and so u′(t) < r1, for every t ∈ [0, 1].
As the inequality u′(t) > −r1, for every t ∈ [0, 1], can be proved by the same argu-

ments, then ∣∣u′(t)∣∣ < r1, ∀t ∈ [0, 1].
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By integration in [0, t], of previous inequality, using (12) and considering

ξ0 = max{β0(0),−α0(0)},

the following relations are obtained

u(t) < u(0) + r1t = λη0(u(1)) + r1t (16)

≤ λβ0(0) + r1 ≤ β0(0) + r1

≤ ξ0 + r1,

and
u(t) > u(0)− r1t ≥ α0(0)− r1 ≥ −ξ0 − r1. (17)

By (16) and (17), therefore |u(t)| < r0, ∀t ∈ [0, 1], with r0 = ξ0 + r1.

Step 2: There exist r > 0 such that every solution u of problem (9)–(12) satisfies∣∣u′′(t)∣∣ < r, ∀t ∈ [0, 1],

independently of λ ∈ [0, 1] .

For r0 and r1, given in the previous step, consider the set

Er =
{
(t, x, y, z) ∈ [0, 1]×R3 : |x| < r0, |y| < r1

}
,

and the function Fλ : Er 7−→ R given by

Fλ(t, x, y, z) = λ f (t, δ0(t, x), δ1(t, y), z)− y + λδ1
(
t, u′(t)

)
As f satisfies the Nagumo-type conditions (6) and (7) in S∗, therefore Fλ the same

conditions in Er.
In fact, by (11), (12) and λ ∈ [0, 1],

|Fλ(t, x, y, z)| ≤ | f (t, δ0(t, x), δ1(t, y), z)|+ y +
∣∣δ1
(
t, u′(t)

)∣∣
≤ ψS∗(|z|) + r1 + r1 = ψS∗(|z|) + 2r1,

Consider, hEr (w) := ψS∗(w) + 2r1 (w ≥ 0). As ψS∗ : [0,+∞[→ [k,+∞[ (k > 0) is a
continuous function, then, by (7),

+∞∫
0

τ

hEr (τ)
dτ =

+∞∫
0

τ

ψS∗(τ) + 2r1
dτ =

+∞∫
0

τ

ψS∗(τ)
[
1 + 2r1

ψS∗ (τ)

]dτ

≥ 1

1 + 2r1
k

+∞∫
0

τ

ψS∗(τ)
dτ = +∞.

Therefore, Fλ satisfies the Nagumo condition in Er with hS∗ replaced hEr , indepen-
dently of λ.

Defining
γi := −ri, Γi := ri, for i = 0, 1,

the assumptions of (1) are satisfied with S∗ replaced be Er.
So there exist R > 0, depending only on ri, i = 0, 1, and hEr , such that∣∣u′′(t)∣∣ < R, ∀t ∈ [0, 1].

Step 3: For λ = 1 the problem (9)–(12) has a solution u1 .
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Consider the operators

L : C3([0, 1]) ⊂ C2([0, 1]) 7−→ C([0, 1])×R3,

and, for λ ∈ [0, 1],

Θλ : C3([0, 1]) ⊂ C2([0, 1]) 7−→ C([0, 1])×R3,

Where
L u =

(
u′′′, u(0), u′(0), u′′(0)

)
and

Θλu =

 −λ f (t, δ0(t, u(t)), δ1(t, u′(t)), u′′(t)) + u′(t)− λδ1(t, u′(t))
+λs g(t),

λη0(u(1)), u′(1), u′′(1)

.

As L has a compact inverse it can be considered the completely continuous operator

Ψλ :
(

C2([0, 1]),R
)
7−→

(
C2([0, 1]),R

)
defined by

Ψλu =
[
L −1Θλ

]
(u).

For r given by Step 2, consider the set

Ω =
{

u ∈ C2([0, 1]) : ‖u‖∞ < r0 ,
∥∥u′
∥∥

∞ < r1 ,
∥∥u′′

∥∥
∞ < r

}
By Steps 1 and 2, for every u solution of (9)–(12), u /∈ ∂Ω, and so the degree d(Ψλ, Ω)

is well defined for every λ ∈ [0, 1] and, by homotopy invariance,

d(Ψ0, Ω) = d(Ψ1, Ω).

As the equation x = Ψ0(x) has only the trivial solution, by degree theory,

d(Ψ0, Ω) = ±1.

Therefore, the equation u = Ψ1(u) has at least one solution. As

Ψ1(u) = u,

is equivalent to
Θ1u = L u,

then

u′′′(t) = sg(t)− f
(
t, δ0(t, u(t)), δ1

(
t, u′(t)

)
, u′′(t)

)
− δ1

(
t, u′(t)

)
+ u′(t),

η0(u(1)) = u(0) (18)

u′(1) = u′(0)
u′′(1) = u′′(0).

So, the problem (9)–(12), has least a solution u1 in Ω.

Step 4: u1 is a solution of (1) and (2).

This solution u1 is a solution of (1) and (2) if it verifies,∀t ∈ [0, 1]

α′(t) ≤ u′1(t) ≤ β′(t), (19)

α0(t) ≤ u1(t) ≤ β0(t), (20)

α0(0) ≤ u1(1) ≤ β0(0).
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Suppose, by contradiction, that there is t ∈ [0, 1] such that

α′(t) > u′1(t),

and define
min

t∈[0,1]

[
u′1(t)− α′(t)

]
:= u′1(t1)− α′(t1) < 0.

If t1 ∈ ]0, 1[, then u′′1 (t1)− α′′(t1) = 0 and u′′1 (t1)− α′′′(t1) ≥ 0. Therefore, by (1), (10),
(11) and (8), we obtain the following contradiction

0 ≤ u′′′1 (t1)− α′′′(t1)

≤ f
(
t1, δ0(t1, u1(t)), δ1

(
t1, u′1(t1)

)
, u′′1 (t1)

)
+u′1(t1)− α′(t1)− f

(
t1, α0(t1), α′(t1), α′′(t1)

)
≤ u′1(t)− α′(t) < 0.

If t1 = 0 then
min

t∈[0,1]

[
u′1(t)− α′(t)

]
:= u′1(0)− α′(0) < 0.

By (1)
0 ≤ u′′1 (0)− α′′(0) ≤ u′′1 (1)− α′′(1) ≤ 0

and, therefore,
u′′1 (0) = α′′(0), u′′′1 (0) ≥ α′′′(0).

For the case where t1 = 1 the proof is identical and so

α′(t) ≤ u′1(t), ∀t ∈ [0, 1]. (21)

Applying the same arguments, one can verify that

u′1(t) ≤ β′(t), ∀t ∈ [0, 1]. (22)

Integrating (21) in [0, t], by (4) and (13)

u1(t) ≥ u1(0) + α(t)− α(0)

≥ α0(0) + α(t)− α(0)

= α(t) ≥ α(t)− ‖α‖∞ = α0(t).

Analogously, Integrating (22), by (5) and (13)

u1(t) ≤ u1(0) + β(t)− β(0)

≤ β0(0) + β(t)− β(0)

= β(t) ≤ β(t) + ‖β‖∞ = β0(t),

and, therefore,
α0(t) ≤ u1(t) ≤ β0(t), ∀t ∈ [0, 1].

4. Periodic Catatonic Phenomena with a Parameter

In the literature there are several references studying reaction-diffusion phenomena of
the thyroid-pituitary interaction. In short, the anterior lobe of the pituitary gland produces
the hormone thyrotropin, under the influence of a thyroid releasing factor (TRF), a releasing
hormone secreted by the hypothalamus. The thyrotropin induces the thyroid gland to
generate an enzyme, that will produce thyroxine, when activated. The thyroxine has a
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negative feedback effect on the release of thyrotropin by the pituitary gland. The following
diagram , Figure 1, outlines this type of interaction .

Figure 1. Thyroid-pituitary interaction.

In [21], the authors describe these interactions by the system
dθ

dt
=

k1mP(t)
1 + mP(t)

− bθ(t)

dP
dt

=
c− k2nθ(t)
1 + nθ(t)

− gP(t)

where
P and θ represent the concentrations of thyrotropin and the thyroid hormone (thyrox-

ine), respectively, at any time t;
c is the rate of production of thyrotropin in the absence of thyroid inhibition;
k1 is a constant equal to the theoretical maximum production rate of the thyroid gland;
k2 a constant assumed to be greater than c so that the production of thyrotropin may

be zero for sufficiently large θ;
m and n are the constants in the Langmuir adsorption equations;
b and g are the loss constants.
In [22,23] the authors introduce the concentration of activated enzyme, E(t), consider-

ing the linearized system

dP
dt

=


c− hθ(t)− gP(t) , θ(t) ≤ c

h ,

−gP(t) , θ(t) > c
h ,

dE
dt

= mP(t)− kE(t) (23)

dθ

dt
= aE(t)− bθ(t)

where
k represents the loss constants of activated enzyme;
a and h are constants expressing the sensitivities of the glands to stimulation or inhibition.
With the new variables

x(t) =
g
h

P(t), y(t) =
gk
hm

E(t),
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and the constants

C =
c
h

, K =
ahm
bgk

,

T1 =
1
g

, T2 =
1
k

, T3 =
1
b

,

the system (23) becomes

T1x′(t) + x(t) = C− θ(t), if θ(t) ≤ C,

T1x′(t) + x(t) = 0, if θ(t) > C, (24)

T2y′(t) + y(t) = x(t),

T3θ′(t) + θ(t) = Ky(t).

Eliminating both variables x and y in (24) we obtain two third order linear differential
equations:

d3θ

dt3 +
a2

a1

d2θ

dt2 +
a3

a1

dθ

dt
+

1 + K
a1

θ(t) =
KC
a1

, if θ(t) ≤ C, (25)

and
d3θ

dt3 +
a2

a1

d2θ

dt2 +
a3

a1

dθ

dt
+

K
a1

θ(t) = 0, if θ(t) > C,

with the constants

a1 = T1T2T3 =
k

ahm

a2 = T1T2 + T1T3 + T2T3 =
k(b + g)

ahm
+

1
gb

a3 = T1 + T2 + T3 =
Kb + gb + gK

gKb
.

Relating to the initial parameters and our main result in the Equation (25), we have

f (t, θ(t), θ′(t), θ′′(t)) = S2θ′′(t) + S1θ′(t) +
1 + K

a1
θ(t),

with

S2 : =
a2

a1
= b + g +

ahm
kgb

,

S1 : =
a3

a1
=

(b + g)ahm

(kgb)2 +
1
k

,

1 + K
a1

=
bgkahm + (ahm)2

bgk2 ,

the parameter

s :=
KC
a1

=
a2m2hc

bgk2

and g(t) ≡ 1.
If there are lower and upper solutions of the periodic problem composed by the

nonlinear Equation (25) with the periodic boundary conditions

θ(i)(0) = θ(i)(1), i = 0, 1, 2, (26)
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α(t) and β(t), respectively, accordingly Definition 1, such that the assumptions of Theorem 1
hold, then there is a periodic solution of (25) and (26), if the parameters a, m, h, c, b, g and k
verify the relation

β′′′(t) + S2β′′(t) + S1β′(t) +
1 + K

a1
β0(t) ≤

a2m2hc
bgk2

≤ α′′′(t) + S2α′′(t) + S1α′(t) +
1 + K

a1
α0(t).

As a numeric example, we consider

a = 1, b = −0.5, c = 0.2, g = 0.2,

h = 0.2, m = 0.8, k = 0.1 .

Related with these values the functions

α(t) = 0.1t4 − t3 + 1.3t2 − 0.55t

and
β(t) = −0.1t4 + t3 − 1.3t2 + t

are, respectively, lower and upper solutions of (25), (26) with

α0(t) = 0.1t4 − t3 + 1.3t2 − 0.55t− 0.15

and
β0(t) = −0.1t4 + t3 − 1.3t2 + t + 0.6.

Remark that all the hypothesis of Theorem 1 are satisfied and, therefore, there is a
solution θ0 of (25), (26) for the parameter s = −25.6, and, moreover, this solution θ0 verifies
the following properties, for t ∈ [0, 1],

0.1t4 − t3 + 1.3t2 − 0.55t− 0.15 ≤ θ0(t) ≤ −0.1t4 + t3 − 1.3t2 + t + 0.6,

0.4t3 − 3t2 + 2.6t− 0.55 ≤ θ′0(t) ≤ −0.4t3 + 3t2 − 2.6t + 1.

as it is illustrated in Figures 2 and 3.

Figure 2. Variation of θ0(t).
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Figure 3. Variation of θ′0(t) .

Remark that, from the variation of θ′0(t) this periodic solution θ0(t) is not constant,
that is, θ0(t) is not a trivial periodic solution.

Author Contributions: Conceptualization: F.M.; Methodology: F.M.; Software: F.M. and N.O.;
Writing—original draft preparation: F.M. and N.O.; Writing—review and editing: F.M. and N.O. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ambrosetti, A.; Prodi, G. On the inversion of some differentiable mappings with singularities between Banach spaces. Ann. Mat.

Pura Appl. 1972, 93, 231–246. [CrossRef]
2. Minhós, F. On some third order nonlinear boundary value problems: Existence, location and multiplicity results. J. Math. Anal.

Appl. 2008, 339, 1342–1353. [CrossRef]
3. Minhós, F. Existence, nonexistence and multiplicity results for some beam equations. In Differential Equations, Chaos and Variational

Problems; Progr. Nonlinear Differential Equations Appl., 75; Springer: Basel, Switzerland, 2008; pp. 257–267.
4. Minhós, F.; Fialho, J. Existence and multiplicity of solutions in fourth order BVPs with unbounded nonlinearities. Am. Inst. Math.

Sci. 2013, 2013, 555–564. [CrossRef]
5. Sovrano, E. Ambrosetti-Prodi type result to a Neumann problem via a topological approach. Discret. Contin. Dyn. Syst. Ser. 2018,

11, 345–355. [CrossRef]
6. Senkyrik, M. Existence of multiple solutions for a third order three-point regular boundary value problem. Math. Bohem. 1994,

119, 113–121. [CrossRef]
7. Fabry, C.; Mawhin, J.; Nkashama, M.N. A multiplicity result for periodic solutions of forced nonlinear second order ordinary

differential equations. Bull. Lond. Math. Soc. 1986, 18, 173–180. [CrossRef]
8. Feltrin, G.; Sovrano, E.; Zanolin, F. Periodic solutions to parameter-dependent equations with a ϕ-Laplacian type operator.

Nonlinear Differ. Equ. Appl. 2019, 26, 38. [CrossRef]
9. Manásevich, R.; Mawhin, J. Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Differ. Equ. 1998, 145,

367–393. [CrossRef]
10. Mawhin, J. The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian. J. Eur. Math. Soc. 2006, 8,

375–388. [CrossRef]
11. JMawhin; Rebelo, C.; Zanolin, F. Continuation Theorems for Ambrosetti-Prodi Type Periodic Problems. Commun. Contemp. Math.

2000, 2, 87–126. . [CrossRef]
12. Mbadiwe, H. Periodic Solutions of Some Nonlinear Boundary Value Problems of ODE’s: Periodic Boundary Value Problems for Some

Nonlinear Higher Order Differential Equations; LAP Lambert Academic Publishing: Chisinau, Moldova, 2011; ISBN-13 978-
3844317602.

http://doi.org/10.1007/BF02412022
http://dx.doi.org/10.1016/j.jmaa.2007.08.005
http://dx.doi.org/10.3934/proc.2013.2013.555
http://dx.doi.org/10.3934/dcdss.2018019
http://dx.doi.org/10.21136/MB.1994.126080
http://dx.doi.org/10.1112/blms/18.2.173
http://dx.doi.org/10.1007/s00030-019-0585-3
http://dx.doi.org/10.1006/jdeq.1998.3425
http://dx.doi.org/10.4171/JEMS/58
http://dx.doi.org/10.1142/S0219199700000074


Axioms 2021, 10, 222 12 of 12

13. Obersnel, F.; Omari, P. On the periodic Ambrosetti–Prodi problem for a class of ODEs with nonlinearities indefinite in sign. Appl.
Math. Lett. 2021, 111, 106622. [CrossRef]

14. Sovrano, E.; Zanolin, F. Ambrosetti-Prodi periodic problem under local coercivity conditions. Adv. Nonlinear Stud. 2018, 18,
169–182. [CrossRef]

15. Torres, P. Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskiı̆ fixed point
theorem. J. Differ. Equ. 2003, 190, 643–662 . [CrossRef]

16. Yu, X.; Lu, S. A singular periodic Ambrosetti–Prodi problem of Rayleigh equations without coercivity conditions. Commun.
Contemp. Math. 2021. [CrossRef]

17. Bereanu, C.; Mawhin, J. Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and ϕ-Laplacian.
NoDEA Nonlinear Differ. Equ. Appl. 2008, 15, 159–168. [CrossRef]

18. Fialho, J.; Minhós, F. On higher order fully periodic boundary value problems. J. Math. Anal. Appl. 2012, 395, 616–625. [CrossRef]
19. Cabada, A.; López-Somoza, L. Lower and Upper Solutions for Even Order Boundary Value Problems. Mathematics 2019, 7, 878;

doi:10.3390/math7100878. [CrossRef]
20. Grossinho, M.R.; Minhós, F. Existence Result for Some Third Order Separated Boundary Value Problems. Nonlinear Anal. TMA

Ser. 2001, 47, 2407–2418. [CrossRef]
21. Danziger, L.; Elmergreen, G.L. Mathematical Theory of Periodic Relapsing Catatonia. Bull. Math. Biophys. 1954, 16, 15–21.

[CrossRef]
22. Danziger, L.; Elmergreen, G.L. The thyroid-pituitary homeostatic mechanism. Bull. Math. Biophys. 1956, 18, 1–13. [CrossRef]
23. Mukhopadhyay, B.; Bhattacharyya, R. A mathematical model describing the thyroid-pituitary axis with time delays in hormone

transportation. Appl. Math. 2006, 51, 549–564. [CrossRef]

http://dx.doi.org/10.1016/j.aml.2020.106622
http://dx.doi.org/10.1515/ans-2017-6040
http://dx.doi.org/10.1016/S0022-0396(02)00152-3
http://dx.doi.org/10.1142/S0219199721500127
http://dx.doi.org/10.1007/s00030-007-7004-x
http://dx.doi.org/10.1016/j.jmaa.2012.05.061
http://dx.doi.org/10.3390/math7100878
http://dx.doi.org/10.1016/S0362-546X(01)00364-9
http://dx.doi.org/10.1007/BF02481809
http://dx.doi.org/10.1007/BF02477840
http://dx.doi.org/10.1007/s10492-006-0020-z

	Introduction
	Definitions and a Priori Estimations
	Existence Result
	Periodic Catatonic Phenomena with a Parameter
	References

