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Abstract: Dry-cured sausages are traditional in Mediterranean countries, and Paio do Alentejo (PA) 

is one of the most popular in South Portugal. The aim of the present work was to evaluate the effect 

of combined starters on the safety and quality of PA preserving its sensory quality. Physicochemical 

parameters, namely pH and water activity (aW), microbiological parameters, biogenic amines, color, 

texture, and sensory attributes were assessed. Three starter cultures were used, namely 

Staphylococcus equorum S2M7 and Lactobacillus sakei CV3C2, both separate and combined with the 

2RB4 yeast strain at a concentration of 106 cfu/g. Dextrose 0.25% was added to the meat batter. 

Starters had a significant effect on the reduction of aW values (0.845 to 0.823). The treatment with L. 

sakei as well as the co-inoculation of L. sakei with S. equorum effectively reduced the L. monocytogenes 

counts to undetectable levels. Sausages co-inoculated with S. equorum S2M7/L. sakei CV3C2 showed 

a significant reduction in the content of vasoactive amines, namely tryptamine (26.21 to 15.70) and 

β-phenylethylamine (4.80 to 3.69). Regarding texture, control PA showed higher hardness values, 

and the starters promoted the cohesiveness of the batter while reducing chewiness. The studied 

starters did not compromise the sensory characteristics of PA. 

Keywords: dry-cured sausages; starter cultures; staphylococci; lactic acid bacteria; food safety;  

biogenic amines; Listeria monocytogenes; food quality 
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1. Introduction 

Dry-cured sausages are traditional food products that are greatly diverse in terms of 

raw materials, organoleptic characteristics, and manufacturing methods. Paio do Alentejo 

is a popular dry-cured sausage in Portugal because it is manufactured using pork meat 

from autochthonous breeds as well as typical nonmeat ingredients in small processing 

units according to traditional practices specific to each geographical area. This type of 

sausage has long been spontaneously fermented using empirical methods, but sometimes, 

the sensory characteristics of the final products vary. In Portugal, the use of starters has 

not been a common practice in micro and small processing units [1]. However, 

manufacturing units are becoming more interested in the use of starter cultures in the 

production of fermented sausages, due to their potential improvement in safety and in 

standardizing the desirable technological properties [2–4]. These starter cultures should 

be autochthonous, i.e., isolated from the native microbiota of these products, so that they 

will be better adapted to the specific environmental conditions [5]. 

In fermented meat products, bacteria including lactic acid bacteria (LAB) and 

Gram-positive catalase-positive cocci (G+C+C), such as coagulase-negative staphylococci 

(CNS), but also yeasts and molds influence the technological properties of the product 

and its quality and safety [3,6]. Therefore, the most frequently used starters in the meat 

processing industry belong to the four cited microbial groups. 

LAB ferment sugars thus boosting the production of lactic acid. The consequent 

reduction in pH reduces the growth rate of undesirable microorganisms [7,8]. However, 

and given the fact that LAB are among the most competitive microorganisms throughout 

the manufacturing process, they are considered to be biopreservatives and bioprotectors. 

In fact, together with intrinsic food factors, such as pH, temperature and aW, they can 

impair the growth of pathogenic and spoilage microorganisms, making food products 

safer even without the use of conservation techniques, such as modified atmospheres, 

high pressure treatments, and chemical or other preservatives [9]. 

CNS are able to reduce nitrate and degrade hydrogen peroxide, with advantages at 

the quality and color stability level, and metabolize nitrogenous and lipid compounds, 

improving flavor [10,11]. According to Cocconcelli and Fontana [12], CNS have the ability 

to release enzymes, lipases, and proteases capable of forming low molecular weight 

compounds, such as peptides, amino acids, aldehydes, amines, and fatty acids that 

influence texture and the development of aroma compounds. 

Yeasts and molds are used less frequently as starter cultures. The application of 

molds and yeasts as surface starter cultures, normally by immersion or spraying, can 

improve specific sensory and external characteristics [13]. Surface starters form a 

protective layer, which favors color formation and hinders the occurrence of premature 

autoxidation phenomena of fats due to the activity of catalase [14]. 

Biogenic amines (BA) are nitrogenous compounds of low molecular weight formed 

from amino acids by decarboxylation or from aldehydes and ketones by amination and 

transamination [15]. The most prevalent biogenic amines in meat and meat products are 

tyramine, putrescine, cadaverine, and histamine [16,17]. Formation of BA depends on the 

availability of specific amino acids, the presence of bacteria with decarboxylase activity, 

and on the establishment of conditions favorable to bacterial growth and enzymatic 

activity [4]. It should be noted that BA are thermostable, as further steps do not eliminate 

them [18] and could contribute to the formation of nitrosamines with the nitrite 

derivatives [19,20]. Despite some studies that have reported the inefficiency of starters in 

reducing the content of BA [21,22], recent works have shown that autochthonous starter 

cultures may control the accumulation of BA in fermented meat products [1,23,24]. 

The aim of the present study was to evaluate the effects of different autochthonous 

starter cultures used both in separate and in mixed cultures on the safety and quality of 

Paio do Alentejo, a traditional Portuguese sausage manufactured on a small scale in a local 

manufacturing unit in the Alentejo region. Moreover, starters were used to help in the 
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control of an existing problem with Listeria monocytogenes in the manufacturing unit, 

together with other corrective and preventive measures. 

2. Materials and Methods 

2.1. Dry-Cured Sausage Manufacturing and Sampling 

Paio do Alentejo, a traditional dry-cured sausage, was manufactured in a local 

factory using commercial black pig breed (Alentejano pig breed × Duroc pig breed) meat. 

Pork meat trimmings (70% lean meat/30% fat) were mechanically cut into cubes of 

approximately 25 mm and mixed with white wine (8.0% v/v), salt (2.5% w/w), red pepper 

(Capsicum annuum L.) paste (2.5% w/w), garlic (Allium sativum L.) paste (0.8% w/w), 

polyphosphates (0.06% w/w), nitrates (0.007% w/w), nitrites (0.003% w/w), ascorbic acid 

(0.03% w/w), and sodium ascorbate (0.02% w/w). A total of 150 kg of meat batter was 

prepared and then divided into five portions of 30 kg each. Five treatments were 

considered: 1—control (no starter cultures added); 2—Staphylococcus equorum S2M7; 3—

Lactobacillus sakei CV3C2; 4—S. equorum S2M7/L. sakei CV3C2; and 5—S. equorum S2M7/L. 

sakei CV3C2/yeast 2RB4. 

Staphylococcus starter strains were selected for their performance in the phenotypic 

characterization tests, namely nitrate reductase, lipolytic and proteolytic activities, as well 

as absence of resistance to antimicrobials and decarboxylase activity [25]. Lactobacillus 

starter strains were selected for their bacteriocinogenic profile and the absence of both 

resistance to antimicrobials and decarboxylase activity [25,26]. 

Starter culture composition and concentrations were selected based on previous trials 

[27] and were inoculated in the meat batter. All cultures were inoculated to achieve a final 

concentration of each starter strain of 106 cfu/g of meat batter. 

Three independent manufacturing batches of each treatment were prepared. Food 

grade dextrose (0.25%) was added to all treatments. 

Seasoned and inoculated meat batter was stored under controlled conditions at 5 °C 

and 90% relative humidity (RH) for 72 h and then stuffed into desalted pork natural 

casings 50 to 55 mm in diameter. Sausages were smoked for 24 h at 18.0 to 24.0 °C and 

28.0–72.0% RH in a traditional smokehouse. After smoking, drying was carried out in a 

controlled storeroom at 8.0–12.0 °C and at an RH between 60–80% for approximately 30 

days 38–40% initial weight loss was reached. 

Two sausages per treatment and per batch were analyzed throughout the curing 

process at three different steps: meat batter (immediately before stuffing), half-cured 

sausage (10 days after stuffing), and end-product (38–40% weight loss). 

pH, aW, microbiological parameters, and contents of biogenic amines were 

determined at all curing steps. Color, texture profile and sensory analyses were performed 

only for end-products. Samples were immediately processed for physicochemical, 

microbiological, and sensory analyses and stored at −20 °C until analysis of the content of 

biogenic amines. 

2.2. Physicochemical Analyses 

2.2.1. Determination of pH and aW 

For the determination of pH and aW, samples were prepared and measurements were 

made as described previously [1], following ISO 2917 [28], for pH measurements. Five 

replicates per sample were used for both determinations. 

2.2.2. Color 

Color CIELab chromatic coordinates were measured as described previously [1]. Five 

replicates per sample were examined. 
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2.2.3. Texture Profile Analysis (TPA) 

Texture profile analysis (TPA) was performed at room temperature (20 ± 1 °C) using 

a Stable Micro System TA-Hdi (Stable Micro Systems, Godalming, United Kingdom), as 

described previously [29,30]. Samples were prepared according to the procedures de-

scribed by Dias et al. [1]. Five replicates per sample were analyzed. 

2.3. Microbiological Analyses 

Several microbiological parameters were analyzed following international standards 

and established procedures: mesophiles ISO 4833-1 [31]; psychrotrophic microorganisms 

ISO 17410 [32]; lactic acid bacteria ISO 15214 [33]; staphylococci [34]; yeasts and molds 

ISO 21527-2 [35]; enterobacteria ISO 21528-2 [36]; and Listeria monocytogenes ISO 11290-2 

[37]. Salmonella spp. detection was performed with VIDAS (bioMérieux, Marcy-l’Étoile, 

France) and confirmed according to ISO 6579-1 [38] as described previously [34]. All mi-

crobiological analyses were performed in triplicate, and the results are expressed as log 

colony-forming units (cfu)/g, except for L. monocytogenes counts, which are reported as 

cfu/g. 

2.4. Biogenic Amine Profiles 

The content of biogenic amines was assessed as described previously [34,39]. Briefly, 

eight grams of each previously homogenized sample were extracted with 0.4 M perchloric 

acid aqueous solution and filtered. 1,7-Diaminoheptane was used as internal standard. 

Biogenic amines were then derivatized with dansyl chloride under alkaline conditions. 

The extract was diluted in acetonitrile; filtered through an Acrodisc 25 mm GHP, GF 0.45 

lm membrane (Gelman Sciences, Inc., Port Washington, NY, USA); and injected in-to an 

HPLC system (Thermo Scientific Dionex, Ultimate 3000, Waltham, MA, USA). Chromato-

graphic conditions were as follows: A RP-18 reverse phase column (5 µm of 4.0 × 125 mm 

and 100 Å) was used (Merck, Kenilworth, NJ, USA), coupled to an Alliance Separation 

Module 2695 (Waters, Milford, MA, USA), along with a gradient elution program that 

combines aqueous ammonium acetate solution and ace-tonitrile (Panreac, Barcelona, 

Spain), and detection was conducted at 254 nm using a Dual k UV/Vis Detector 2487 (Wa-

ters, Milford, MA, USA). 

All samples were extracted in duplicate; each replicate was twofold derivatized and 

injected in duplicate. Tryptamine, β-phenylethylamine, putrescine, cadaverine, hista-

mine, tyramine, spermidine, and spermine were quantified and are expressed in mg/kg 

of fresh weight. The content of vasoactive amines was calculated, summing tryptamine, 

β-phenylethylamine, histamine, and tyramine [15]. The total content of biogenic amines 

was the sum of each individual amine. Chromatographic data were analyzed with Chro-

meleon software version 6.8 (Thermo Scientific Dionex, Waltham, MA, USA). 

2.5. Sensory Analysis 

Panelists were selected and trained according to ISO 8586-1[40] in a sensory evalua-

tion room prepared in accordance with ISO 8589-1 [41]. 

Thirty minutes prior to each session, sausages were sliced (3 mm thick) and slices 

randomly distributed in white dishes, each identified with a random three-digit number. 

Crackers and mineral water were supplied to the panelists as palate cleansers. 

The sensory evaluation attributes studied were color intensity, off-colors, marbled 

appearance, aroma intensity, and off-aromas. The panelists were asked to evaluate these 

attributes using a quantitative descriptive analysis with a scale ranging from 0 to 100 cor-

responding to “no perception” or “maximum perception”. Due to the presence of Salmo-

nella spp. in some samples, only a visual and olfactive sensory analysis was performed. 

Each of the 10 panelists evaluated six samples per session. 
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2.6. Statistical Analysis 

Data were analyzed using STATISTICA v.12.0 software from Statsoft (StatSoft Inc, 

1984–2014, Tulsa, OK, USA). Outliers were detected using the Grubbs test (α = 0.05). Fac-

torial or one-way ANOVAs were performed, and significantly different means were com-

pared with Tukey’s HSD test (p < 0.05). 

3. Results 

3.1. pH and aW 

Table 1 summarizes the results for pH and aW of sausages subjected to the different 

treatments throughout the curing process. 

For pH, significantly different mean pH values were observed between meat batter 

and the other two curing steps (half-cured sausages and end-products). Regarding an 

evaluation by curing step, the sausages inoculated with S. equorum S2M7/L. sakei CV3C2 

showed an initial mean value (5.29 ± 0.51) significantly lower than that of sausages with 

L. sakei CV3C2 (5.48 ± 0.31). Regarding end-products, sausages inoculated with L. sakei 

CV3C2 had the lowest mean pH value (4.94 ± 0.07), and the only pH mean value lower 

than that of the control (4.97 ± 0.14). 

As for aW, significant differences were observed between curing steps, with signifi-

cantly lower mean values for the end-products. Concerning meat batter, inoculated sau-

sages generally showed lower aW values. Regarding half-cured sausages, control sausages 

still had a significantly higher mean aW (0.948 ± 0.007). Except for the end-products inoc-

ulated with L. sakei CV3C2 (0.852 ± 0.002), all other sausages presented a significant reduc-

tion in the aW mean values when compared to the control (0.845 ± 0.024), thus contributing 

to their safety. 

Table 1. Effect of starter cultures on pH and aW of sausages. 

Parameters Treatment 
Curing Steps 

Meat Batter Half-Cured Sausage End-Product 

pH 

1 5.48 A,ab ± 0.25 5.05 B,c ± 0.08 4.97 B,bc ± 0.14 

2 5.46 A,ab ± 0.28 5.20 B,a ± 0.09 5.05 B,ab ± 0.14 

3 5.48 A,a ± 0.31 5.13 B,b ± 0.09 4.94 B,c ± 0.07 

4 5.29 A,b ± 0.51 5.06 B,c ± 0,09 5.10 AB,a ± 0.01 

5 5.42 A,ab ± 0.32 5.19 B,a ± 0.09 5.10 B,a ± 0.10 

aW 

1 0.967 A,a ± 0.008 0.948 B,a ± 0.007 0.845 C,a ± 0.024 

2 0.962 A,bc ± 0.006 0.937 B,bc ± 0.009 0.826 C,b ± 0.031 

3 0.960 A,b ± 0.008 0.941 B,b ± 0.004 0.852 C,a ± 0.002 

4 0.960 A,b ± 0.007 0.941 B,b ± 0.004 0.823 C,b ± 0.030 

5 0.963 A,ab ± 0.002 0.934 B,c ± 0.004 0.824 C,b ± 0.014 

Data are expressed as means ± SD. 1—Control; 2—S. equorum S2M7; 3—L. sakei CV3C2; 4—S. 

equorum S2M7/L. sakei CV3C2; 5—S. equorum S2M7/L. sakei CV3C2/yeast 2RB4. For the same treat-

ment and in the same row, distinct capital letters (A–C) represent significantly different means (p < 

0.05). For each curing step and in the same column, distinct lowercase letters (a–c) represent signifi-

cantly different means (p < 0.05). 

3.2. Characterization of the Microbiota of Sausages 

Table 2 shows no differences between control and inoculated sausages for the same 

curing step. However, in end-products, inoculated sausages tended to have higher counts 

of mesophiles, psychrotrophic microorganisms, and LAB. Regarding staphylococci, the 

sausages inoculated with S. equorum S2M7/L. sakei CV3C2/yeast 2RB4 showed the highest 

number. 
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No significant differences were observed for enterobacteria between treatments; 

however, their mean values were significantly lower in end-products, probably associated 

with the increase in LAB and the consequently lower pH and the lower aW values. 

L. monocytogenes was present in all curing steps. When L. sakei CV3C2 was inoculated 

alone or combined with S. equorum S2M7, the elimination of L. monocytogenes was more 

effective, to levels below the legal limit of 100 cfu/g, according to regulation 2073/2005 

[42]. 

Salmonella spp. were present throughout the curing process but absent in end-prod-

ucts, with the exception of sausages inoculated with S. equorum S2M7. 

Table 2. Effect of starter cultures on microbiological parameters of sausages. 

Parameters Treatment 
Curing Steps 

Meat Batter Half-Cured Sausage End-Product 

mesophiles 

1 7.00 B ± 0.77 8.46 A ± 0.67 7.38 B ± 0.60 

2 7.23 B ± 0.96 7.70 A ± 0.65 7.65 AB ± 0.54 

3 7.16 ± 0.70 7.77 ± 0.29 8.39 ± 0.97 

4 7.72 ± 1.20 8.61 ± 0.82 8.03 ± 1.06 

5 7.35 ± 0.76 8.12 ± 1.07 8.48 ± 1.19 

psychrotrophic 

microorganisms 

1 6.60 ± 1.17 7.01 ± 1.22 5.66 ± 0.29 

2 6.81 A ± 0.99 6.50 AB ± 0.37 5.69 B ± 0.26 

3 6.74 ± 0.75 6.51 ± 0.58 6.20 ± 0.18 

4 7.32 ± 1.50 7.45 ± 1.29 5.89 ± 0.44 

5 7.18 ± 1.09 7.01 ± 1.22 6.48 ± 0.52 

LAB 

1 6.64 B ± 0.57 7.95 A ± 0.30 8.06 A ± 0.77 

2 6.58 B ± 0.39 7.59 A ± 0.28 7.96 A ± 0.67 

3 6.32 B ± 0.27 7.70 A ± 0.45 8.49 A ± 1.15 

4 6.80 B ± 0.60 7.93 AB ± 0.14 8.15 A ± 1.09 

5 7.01 B ± 0.26 8.18 AB ± 1.11 8.56 A ± 1.10 

staphylococci 

1 9.14 ± 0.66 10.17 ± 1.77 8.68 ± 1.03 

2 8.97 ± 1.42 9.26 ± 0.98 8.34 ± 0.49 

3 7.57 ± 1.48 9.14 ± 0.79 8.49 ± 0.71 

4 10.88 ± 3.96 10.47 ± 1.47 8.38 ± 2.14 

5 8.40 ± 1.74 9.66 ± 1.10 10.31 ± 1.29 

enterobacteria 

1 5.99A ± 0.49 6.35 A ± 1.13 2.75 B ± 0.36 

2 6.55 A ± 1.16 5.54 A ± 0.24 2.69 B ± 0.50 

3 6.73 A ± 0.67 5.63 A ± 0.40 2.24 B ± 0.39 

4 7.02 A ± 1.34 6.45 A ± 1.04 2.48 B ± 0.40 

5 6.54 A ± 0.42 6.62 A ± 1.30 2.51 B ± 0.55 

yeasts 

1 3.88 ± 0.48 4.33 ± 1.09 4.61 ± 0.35 

2 3.78 B ± 0.23 3.15 C ± 0.18 4.70 A ± 0.47 

3 3.90 ± 0.90 3.82 ± 0.85 4.85 ± 0.42 

4 5.73 ± 2.44 4.56 ± 0.69 4.96 ± 0.74 

5 4.04 ± 0.37 4.47 ± 0.77 4.74 ± 0.69 

molds 

1 0.17 ± 0.41 0.67 ± 1.21 0.58 ± 1.20 

2 0.50 ± 0.84 0.25 ± 0.60 <DL 

3 <DL <DL 0.33 ± 0.82 

4 <DL <DL <DL 

5 <DL <DL <DL 

L. monocytogenes 
1 2.22 ± 2.38 1.52 ± 1.91 2.06 ± 2.38 

2 2.00 ± 2.10 1.82 ± 1.91 2.17 ± 2.37 
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3 2.12 ± 2.17 2.47 ± 2.73 <DL 

4 2.14 ± 2.22 2.26 ± 2.06 <DL 

5 2.50 ± 2.55 1.92 ± 1.87 2.17 ± 2.43 

Salmonella spp. 

1 present in 6/6 samples present in 6/6 samples ND 

2 present in 5/6 samples present in 6/6 samples present in 1/6 samples 

3 present in 1/6 samples present in 2/6 samples ND 

4 present in 5/6 samples present in 4/6 samples ND 

5 present in 3/6 samples present in 3/6 samples ND 

Data are expressed as means ± SD. < DL: below the detection limit of the corresponding analytical method (10 cfu/g for 

molds and 100 cfu/g for L. monocytogenes). ND—Not detected (absence in 25 g). Results are expressed in log cfu/g. 1—

Control; 2—S. equorum S2M7; 3—L. sakei CV3C2; 4—S. equorum S2M7/L. sakei CV3C2; 5—S. equorum S2M7/L. sakei 

CV3C2/yeast 2RB4. For the same treatment and in the same row, distinct capital letters (A–C) represent significantly differ-

ent means (p < 0.05). 

3.3. Biogenic Amines 

Table 3 generally shows that the content of biogenic amines decreased throughout 

the curing process. Moreover, the content of biogenic amines of inoculated sausages was 

lower than that of control sausages throughout the entire process. 

Natural polyamines, namely spermidine and spermine, did not show large variations 

in their mean values during the curing process. Cadaverine, putrescine, and tyramine 

were the most abundantly detected biogenic amines in end-products, in descending order. 

The contents in histamine and tyramine reduced over time and were lower in end-

products (13 and 114 mg/kg, respectively). 

Sausages inoculated with S. equorum S2M7/L. sakei CV3C2/yeast 2RB4 had the highest 

mean values (148.12 ± 20.75 mg/kg), while the co-inoculation of S. equorum S2M7/L. sakei 

CV3C2 significantly reduced the content of vasoactive biogenic amines. Moreover, the to-

tal content of biogenic amines globally decreased during ripening, with higher contents 

in control end-product sausages (973.01 ± 140.14 mg/kg) and sausages inoculated with S. 

equorum S2M7/L. sakei CV3C2 (792.72 ± 175.93 mg/kg) showing significantly lower con-

tents. Concerning end-products, all treatments showed a mean content of total biogenic 

amines below 1000 mg/kg. 

Table 3. Effect of starter cultures on the content of biogenic amines (mg/kg fresh weight) of sausages. 

Parameters Treatment 
Curing Steps 

Meat Batter Half-Cured Sausage End-Product 

tryptamine 

1 50.42 A,ab ± 5.78 38.46 B,ab ± 5.80 26.21 C,ab ± 5.59 

2 35.66 A,c ± 11.95 26.79 B,c ± 4.32 14.73 C,c ± 4.61 

3 43.44 A,bc ± 5.42 31.50 B,bc ± 5.40 19.28 C,bc ± 5.20 

4 40.32 A,bc ± 6.28 25.88 B,c ± 9.38 15.70 C,c ± 6.08 

5 59.61 A,a ± 16.64 47.60 AB,a ± 16.97 35.60 B,a ± 16.43 

β-phenylethylamine 

1 20.22 A ± 0.84 12.75 B,a ± 0.87 4.80 C,a ± 0.83 

2 17.63 A ± 5.50 11.75 B,ab ± 0.31 3.85 C,b ± 0.28 

3 19.36 A ± 0.72 11.90 B,ab ± 0.72 3.98 C,b ± 0.70 

4 19.08 A ± 0.56 10.77 B,b ± 3.09 3.69 C,b ± 0.51 

5 20.47 A ± 0.47 13.00 B,a ± 0.46 5.16 C,a ± 0.57 

putrescine 

1 466.47 A,a ± 51.42 401.79 B ± 51.69 329.11 C ± 50.82 

2 366.30 b ± 145.51 327.98 ± 91.38 255.70 ± 90.69 

3 407.36 A,ab ± 50.99 342.86 B ± 51.05 270.25 C ± 50.34 

4 422.68 A,ab ± 79.72 324.99 B ± 116.88 278.92 B ± 65.91 

5 417.69 A,ab ± 67.86 352.77 A ± 67.19 283.86 B ± 77.31 

cadaverine 1 570.34 A ± 100.89 517.32 AB,a ± 101.11 439.42 C ± 98.35 
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2 488.14 ± 157.62 483.83 ab ± 46.10 407.69 ± 47.15 

3 533.10 A ± 72.79 480.35 A,ab ± 73.51 403.29 B ± 71.73 

4 492.71 A ± 90.66 393.79 AB,b ± 128.61 353.27 B ± 49.91 

5 485.12 A ± 51.29 431.95 B,ab ± 51.66 360.81 C ± 89.05 

histamine 

1 32.81 A,ab ± 9.10 25.72 A.ab ± 9.03 10.58 B,ab ± 8.01 

2 29.54 A,ab ± 11.34 24.81 A,ab ± 6.72 10.13 B,ab ± 5.03 

3 30.99 A,ab ± 7.51 23.93 A.ab ± 7.46 8.20 B,ab ± 6.92 

4 26.50 A,b ± 2.24 18.06 B,b ± 5.57 3.17 C,b ± 2.20 

5 36.21 A,a ± 4.01 29.13 B,a ± 4.01 12.96 C,a ± 3.92 

tyramine 

1 162.13 A ± 33.62 139.50 AB ± 33.49 113.99 B ± 32.99 

2 141.65 ± 60.07 134.18 ± 41.76 108.80 ± 40.96 

3 137.87 A ± 17.37 115.31 B ± 17.25 89.72 C ± 16.95 

4 136.85 A ± 21.41 104.22 B ± 35.39 88.44 B ± 21.49 

5 142.85 A ± 19.95 120.22 B ± 20.06 94.40 C ± 19.52 

spermidine 

1 12.48 A ± 1.34 12.01 AB ± 1.33 11.02 B ± 1.38 

2 11.16 ± 3.71 11.79 ± 1.36 10.86 ± 1.34 

3 12.19 A ± 1.14 11.72 AB ± 1.12 10.78 C ± 1.12 

4 12.24 ± 0.73 10.83 ± 3.11 11.37 ± 0.94 

5 12.75 A ± 0.90 12.28 AB ± 0.90 10.82 b ± 0.78 

spermine 

1 46.81 ± 11.12 42.89 ± 11.06 37.88 ± 10.92 

2 40.71 ± 16.30 40.96 ± 10.39 35.97 ± 10.21 

3 43.28 ± 9.46 39.37 ± 9.39 34.40 ± 9.31 

4 44.26 A ± 6.05 36.77 B ± 11.58 38.16 AB ± 5.95 

5 47.17 A ± 6.16 43.24 AB ± 6.16 35.29 B ± 6.24 

vasoactive amines 

1 265.58 A ± 36.90 216.44 B,a ± 36.64 155.58 C,a ± 37.29 

2 224.48 A ± 80.05 197.53 A,ab ± 39.78 137.51 B,ab ± 39.95 

3 231.66 A ± 21.72 182.64 B,ab ± 21.41 121.18 C,ab ± 21.95 

4 222.75 A ± 22.37 158.93 B,b ± 48.96 111.00 C,b ± 23.66 

5 259.15 A ± 20.21 209.95 B,a ± 20.03 148.12 C,a ± 20.75 

total amines 

1 1361.68 A ± 141.42 1190.45 B,a ± 141.92 973.01 C,a ± 140.14 

2 1130.79 A ± 381.98 1062.09 AB,ab ± 146.00 847.73 C,ab ± 149.84 

3 1227.58 A ± 102.13 1056.95 B,ab ± 103.01 839.90 C,ab ± 101.51 

4 1194.64 A ± 177.13 925.30 A,b ± 295.33 792.72 B,b ± 175.93 

5 1221.88 A ± 95.62 1050.20 B,ab ± 94.67 838.90 C,ab ± 94.05 

Data are expressed as means ± SD. 1—Control; 2—S. equorum S2M7; 3—L. sakei CV3C2; 4—S. equorum S2M7/L. sakei CV3C2; 

5—S. equorum S2M7/L. sakei CV3C2/yeast 2RB4. For the same treatment and in the same row, distinct capital letters (A–C) 

represent significantly different means (p < 0.05). For each curing step and in the same column, distinct lowercase letters 

(a–c) represent significantly different means (p < 0.05). 

3.4. Color 

Table 4 summarizes the color data for each treatment. Regarding L*, significant dif-

ferences were observed between treatments with the sausages co-inoculated with S. 

equorum/L. sakei CV3C2/yeast 2RB4 being the darkest. No significantly different results 

were obtained for all other color parameters. 
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Table 4. Effect of starter cultures on the color parameters of end-product sausages. 

Treatment 
Color Parameters 

L * (Lightness) a * (Redness/Greenness) b * (Yellowness/Blueness) C * (Chroma) H° (Hue Angle) 

1 42.32 a ± 4.63 18.58 ± 2.86 15.64 ± 5.00 24.44 ± 6.74 39.16 ± 6.74 

2 43.41 a ± 5.03 19.43 ± 3.66 15.72 ± 5.26 25.14 ± 5.81 38.13 ± 5.91 

3 41.32 ab ± 4.26 19.15 ± 3.80 15.87 ± 5.53 25.00 ± 6.17 38.69 ± 6.14 

4 42.00 a ± 4.66 19.13 ± 2.97 16.26 ± 4.40 25.21 ± 4.79 39.80 ± 5.31 

5 38.14 b ± 5.24 18.37 ± 2.61 15.02 ± 4.79 23.90 ± 4.62 38.55 ± 6.42 

Data are expressed as means ± SD. 1—Control; 2—S. equorum S2M7; 3—L. sakei CV3C2; 4—S. equorum S2M7/L. sakei CV3C2; 

5—S. equorum S2M7/L. sakei CV3C2/yeast 2RB4. In the same column, different letters (a and b) represent significantly dif-

ferent means (p < 0.05). 

3.5. Texture Profile Analysis (TPA) 

The results for the texture profile analysis (TPA) are shown in Table 5. Hardness val-

ues tended to be higher in control sausages. Regarding cohesiveness and resilience, no 

statistical differences were observed between treatments. Nevertheless, sausages inocu-

lated with L. sakei CV3C2 showed the highest values, which might indicate more cohesive 

meat batter. For chewiness, higher values were obtained in the control treatment, which 

indicates that the inoculated sausages were easier to chew. 

Table 5. Effect of starter cultures on TPA parameters of end-product sausages. 

Treatment 

Texture Parameters  

Hardness (N) 
Adhesiveness 

(N s−1) 
Cohesiveness Springiness Resilience Chewiness (N) 

1 63.169 a ± 15.151 −3.398 ± 1.741 0.594 ab ± 0.035 0.881 ± 0.094 0.133 ab ± 0.014 33.325 a ± 10.504 

2 49.606 c ± 10.171 −2.778 ± 1.529 0.600 ab ± 0.053 0.913 ± 0.097 0.134 ab ± 0.029 27.036 b ± 6.168 

3 58.404 ab ± 14.308 −2.837 ± 1.852 0.622 a ± 0.058 0.901 ± 0.173 0.144 a ± 0.022 32.158 ab ± 8.002 

4 52.785 bc ± 9.826 −3.003 ± 1.827 0.581 b ± 0.044 0.889 ± 0.070 0.128 b ± 0.025 27.192 b ± 5.355 

5 51.220 bc ± 11.199 −2.629 ± 1.553 0.609 ab ± 0.046 0.966 ± 0.256 0.136 ab ± 0.016 29.777 ab ± 8.926 

Data are expressed as means ± SD. 1—Control; 2—S. equorum S2M7; 3—L. sakei CV3C2; 4—S. equorum S2M7/L. sakei CV3C2; 

5—S. equorum S2M7/L. sakei CV3C2/yeast 2RB4. In the same column, different letters (a–c) represent significantly different 

means (p < 0.05). 

3.6. Sensory Analysis 

Regarding sensory analysis (Table 6), the panelists did not detect significant differ-

ences for any of the evaluated attributes. Nevertheless, L. sakei CV3C2 inoculated sausages 

presented the highest mean color intensity (74 ± 15) and lowest mean value for off colors 

(0 ± 1). Control sausages had a lower aroma intensity (67 ± 17), and those inoculated with 

S. equorum S2M7/L. sakei CV3C2/yeast 2RB4 the highest (74 ± 13). 

Table 6. Effect of starter cultures on the sensory attributes of sausages evaluated in end-products. 

Treatment 
Sensory Attributes 

Color Intensity Off Colors Marbled Aroma Intensity Off Aromas 

1 72 ± 15 1 ± 2 64 ± 16 67 ± 17 3 ± 4 

2 73 ± 14 1 ± 2 66 ± 16 71 ± 11 3 ± 4 

3 74 ± 15 0 ± 1 67 ± 17 73 ± 17 3 ± 4 

4 67 ± 18 1 ± 3 67 ± 16 72 ± 11 3 ± 5 

5 69 ± 19 1 ± 3 63 ± 19 74 ± 13 3 ± 6 

Data are expressed as means ± SD. 1—Control; 2—S. equorum S2M7; 3—L. sakei CV3C2; 4—S. equorum S2M7/L. sakei CV3C2; 

5—S. equorum S2M7/L. sakei CV3C2/yeast 2RB4. In the same column, different letters represent significantly different 

means (p < 0.05). 
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4. Discussion 

Paio do Alentejo is a traditionally manufactured dry-cured high-quality sausage with 

characteristic organoleptic features that however needs to meet all legal standardization 

and food safety criteria. 

Although pH and aW usually contribute to the stability of sausages [13], in this work, 

starters did not have a noticeable effect on the pH of sausages. The fact that starters were 

not able to significantly lower pH, compared to the control, indicates that the lactic micro-

biota naturally present in the meat batter (to which dextrose was provided) also exhibits 

a high acidifying ability. In fact, dextrose can be immediately metabolized by all LAB pre-

sent in the meat batter, autochthonous and starters, as their main source of energy. Our 

pH values were lower than those of Elias et al. [43] for Paio do Alentejo inoculated with a 

commercial culture (TEXEL® ELSE BR) of Lactobacillus spp., Micrococcaceae, and yeast and 

an experimental starter culture with L. sakei/S. xylosus, and those of Simion et al. [44] for 

traditional Romanian sausages (Dacia) inoculated with a mixed culture of L. sakei 

CECT5764 and S. equorum SA25. One possible reason for our lower pH values is the use 

of dextrose (0.25%). 

Regarding aW, inoculated sausages generally showed lower values, therefore contrib-

uting to food safety. pH also contributes to the drying process, due to the decrease in the 

water holding capacity of meat proteins, when pH values reach the isoelectric point (5.0-

5.2), with the consequent reduction in aW [45,46]. Control sausages (0.845 ± 0.024) and sau-

sages inoculated with L. sakei CV3C2 (0.852 ± 0.002) had significantly higher aW values, 

probably because they had lower pH values when compared to the other treatments. Our 

aW values are similar to those of Simion et al. [44] and lower than those of other authors 

[1,43,47]. 

Enterobacteria counts were 2.24–2.75 log cfu/g in end-product sausages, which are 

borderline values for ready-to-eat foods according to the Health Protection Agency guide-

lines (2–4 log cfu/g) [48]. However, similar results been reported previously for dry-fer-

mented sausages from Portugal and other Mediterranean countries [25,29]. Nevertheless, 

these values are higher than those reported by other authors for Portuguese and Italian 

sausages, respectively [1,49], indicating the need to improve hygiene procedures and to 

use better quality raw materials. 

In present study, L. monocytogenes was present in most analyzed samples. Other au-

thors reported the presence of L. monocytogenes in inoculated and non-inoculated sau-

sages, but this presence was drastically reduced throughout the curing process, in some 

cases, to values below the detection limit of the method [47,50]. However, Lebert et al. [51] 

confirmed the presence of L. monocytogenes in three of nine ready-to-eat sausages pro-

duced in France, with mean values between 1.2 and 2.8 log cfu/g, i.e., values sometimes 

higher than those obtained in the present study and exceeding the legal limit (100 cfu/g) 

[42]. 

Salmonella spp. were absent in end-products, except in those inoculated with S. 

equorum S2M7. Some outbreaks caused by Salmonella spp. have been identified in Euro-

pean fermented sausages, such as those reported by Gossner et al. [52] and Kuhn et al. 

[53] for a French sausage and a Danish salami, respectively. Biogenic amines levels gen-

erally decreased throughout the curing process. Although this is not always the case, other 

authors have reported a similar behavior [54]. On the contrary, Xie et al. [55] verified in-

creases throughout the production process. Laranjo et al. [56] and Simion et al. [44] 

showed average values that did not follow the same trend for all amines, i.e., some con-

tents increased, others decreased, and others increased until the intermediate stage of cur-

ing and decreased again in the finished product. These variations are likely associated 

with the manufacturing process as well as with the microbiota that has a major influence 

on the decarboxylation of amino acids, precursors of biogenic amines [13,20]. 

Dry-fermented sausages can easily accumulate high levels of BA, especially putres-

cine, cadaverine, and tyramine, the most abundant biogenic amines in the present study 
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[16,17,57], probably due to the high numbers of enterobacteria, LAB, and staphylococci, 

the main bacterial groups responsible for the formation of BA [15]. 

Histamine and tyramine are the most toxic biogenic amines [58,59] and are conse-

quently very relevant for food safety [60]. Nuñez et al. [61] reported that for healthy 

adults, foods containing more than 500 mg/kg histamine and 1000 mg/kg tyramine are 

considered toxic or likely to jeopardize consumer health. The concentrations of histamine 

(3.17 ± 2.20 to 12.96 ± 3.92 mg/kg) and tyramine (88.44 ± 21.49 to 113.99 ± 32.99 mg/kg) 

obtained in end-products in the present work were much lower than those indicated by 

[61], and the treatment with S. equorum S2M7/L. sakei CV3C2 showed the lowest concen-

trations in all curing steps. 

The co-inoculation of S. equorum S2M7 with L. sakei CV3C2 promoted of 70% reduc-

tion in the histamine content when compared to the control sausages in end-products. 

Authors such as Wang et al. [62] and Casquete et al. [63] also observed pronounced re-

ductions in the content of histamine in sausages inoculated with starter cultures. 

For vasoactive amines, Papavergou et al. [64] suggest 200 mg/kg as an indicator of 

good manufacturing practices and safe consumption. In the present study we observed a 

reduction throughout the curing process, and in end-products all sausages showed values 

below 200 mg/kg. Nevertheless, sausages inoculated with S. equorum S2M7/L. sakei CV3C2 

significantly had the lowest mean value, representing 28.65% fewer vasoactive amines 

(111.00 ± 23.66 mg/kg), than control sausages (155.58 ± 37.29 mg/kg). This corroborates the 

previous starter selection, which showed that S. equorum S2M7 and L. sakei CV3C2 were 

low producers of biogenic amines [26]. 

In general, inoculated sausages had lower concentrations of biogenic amines in end-

products, except for the treatment with the yeast strain, which seemed to increase the lev-

els of tryptamine and histamine. Higher contents in biogenic amines had been reported 

previously for sausages inoculated with Debaryomyces and Candida strains [65]. 

In the present work, no significant differences were observed between the different 

treatments regarding most color parameters, as had been reported previously by [62,66–

68] contrary to the findings of Ravyts et al. [69] and Talon et al. [70], who reported the 

positive contribution of starter cultures to sausage color. 

The fact that the control sausages were harder could be associated with some prote-

olytic action of starters that softened the inoculated sausages [71,72]. 

In general, we may conclude that inoculation with starters did not depreciate the 

sensory characteristics of the sausages as had been reported previously by others [44] and 

even seemed to have some positive effect, namely in terms of aroma intensity, which had 

also been reported by other authors [73,74]. 

5. Conclusions 

The inoculation of Paio do Alentejo with starters did not have a noticeable effect on 

the pH or improve color. However, significantly lower aW values were obtained for inoc-

ulated sausages, except for sausages inoculated with L. sakei CV3C2. 

The absence of significant differences, particularly for LAB, staphylococci, and 

yeasts, between inoculated and control sausages could be explained by the fact that start-

ers do not “add” to the established microbiota but rather replace it by competitive exclu-

sion. 

The co-inoculation of S. equorum S2M7 and L. sakei CV3C2 promoted a reduction close 

to 30% and 20% respectively for vasoactive and total amines. 

Regarding texture parameters, control sausages showed higher hardness values, and 

the use of starter cultures promoted the cohesiveness of meat batter and the reduction of 

chewiness. 

In summary, the co-inoculation of Paio do Alentejo with S. equorum and L. sakei sig-

nificantly reduced vasoactive biogenic amines. Moreover, the use of starter cultures did 

not compromise the quality of traditional dry-cured sausages regarding their sensory ac-

ceptability. 
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