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Abstract: This paper presents a computer application to assist in decisions about sustainability en-

hancement due to the effect of shifting demand from less favorable periods to periods that are more 

convenient for the operation of a microgrid. Specifically, assessing how the decisions affect the eco-

nomic participation of the aggregating agent of the microgrid bidding in an electricity day-ahead 

market. The aggregating agent must manage microturbines, wind systems, photovoltaic systems, 

energy storage systems, and loads, facing load uncertainty and further uncertainties due to the use 

of renewable sources of energy and participation in the day-ahead market. These uncertainties can-

not be removed from the decision making, and, therefore, require proper formulation, and the pro-

posed approach customizes a stochastic programming problem for this operation. Case studies 

show that under these uncertainties and the shifting of demand to convenient periods, there are 

opportunities to make decisions that lead to significant enhancements of the expected profit. These 

enhancements are due to better bidding in the day-ahead market and shifting energy consumption 

in periods of favorable market prices for exporting energy. Through the case studies it is concluded 

that the proposed approach is useful for the operation of a microgrid. 

Keywords: microgrid; demand response; stochastic programming; energy management; renewable 

energy 

 

1. Introduction 

Environmental and social sustainability concerns have driven the transition of power 

systems from a paradigm of natural monopoly to a market paradigm guided by the ob-

jective of liberalization, free access to the grid, and deregulation [1–4], which are part of 

the contemporary paradigm of the electricity sector. Although the transition has had tech-

nical and economic implications for the management of an electric grid, centralized pro-

duction is still seen in large power plants, usually in association with extensive lines for 

delivering energy to geographic sites with a large population. Therefore, it is expected 

that the distribution grid will have a more active role in the future, which remains an 

opportunity to be explored since an essentially passive attitude has been exercised [5]. 

Thus, a more active attitude towards the distribution grid is also expected, through pro-

duction from distributed energy resources that try to ensure local energy sustainability, 

including the possibility of energy exporting. A contemporary electric grid should have 

systems that offer the intelligence of a smart grid [6,7]. 

The indiscriminate integration of distributed energy resources presents challenges 

for the safe management and control of power systems [5]. In the context of ensuring local 

energy sustainability, including the possibility of exporting energy, the best way to take 

advantage of the potential of production from distributed energy resources is through the 

approach of a power system that considers production and a set of loads as a subsystem 

of the power system itself. Therefore, production sources and loads are physically close, 
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which increase system reliability and consequently the power quality. This consideration 

has led to the concept of microgrids [8] as an electrical subsystem delimited by borders 

within the distribution grid itself that simultaneously control and coordinate in a decen-

tralized manner, distributed energy resources, energy storage devices, and loads [9]. Mi-

crogrids as a subsystem of the power systems have a certain level of independence, e.g., 

island mode, characterized as an operation without connection of the subsystem to the 

power system [10]. Microgrids are a suggested solution to deal with the lack of electricity 

in developing countries that have renewable energy sources [11]. The Department of En-

ergy (DOE) of the United States of America defines a microgrid as [12] a subsystem of the 

grid that locally manages loads and distributed energy resources with clearly defined 

electrical boundaries for the grid. A microgrid can operate in grid-connected or island 

mode. The development of microgrids may imply the implementation of energy markets 

within the microgrid, as proposed in [13,14]. A new concept regarding energy markets in 

microgrids is proposed in [14]: the concept of the transactive energy market. 

Flexible loads, liable to apply demand-side management strategies, can also have an 

important role in distribution grids, for the contemporary paradigm to fully realize the 

opportunities that it offers. Currently, energy flexibility is typically associated with a sense 

of smartness [15]. In this sense, demand response is highlighted as a promising approach 

for providing demand flexibility to a power system [16]. According to the DOE of the 

United States, demand response is [17] “changes in electric usage by end-use customers 

from their normal consumption patterns in response to changes in the price of electricity 

over time, or to incentive payments designed to induce lower electricity use at times of 

high wholesale market prices or when system reliability is jeopardized”. 

Energy management and operational planning of microgrids arises in the context of 

the contemporary paradigm of electrical systems and is generally a non-linear problem 

with a significant number of restrictions and variables, either continuous or integers. 

Therefore, research into appropriate methodologies without too much computation re-

quirements must be carried out in due time to support decisions. There are crucial con-

cerns to take into consideration in the microgrid operation planning process, namely, par-

ticipation in the electricity market, market prices, the microgrid control model, the fact 

that renewable sources are generally non-dispatchable, and the interconnection with the 

grid. Participation in the electricity market introduces further uncertainty that has signif-

icant impacts on the planning of the microgrid. Researching these impacts has been within 

the scope of several approaches, i.e., microgrid management has particular viewpoints in 

research and development approaches, e.g., using deterministic, stochastic, heuristic, or 

hybrid methodologies. The first two are usually in the group of traditional mathematical 

programming methods [18]. Many of these deterministic and stochastic methodologies 

have relatively low computation times, which are hugely suitable for large-scale optimi-

zation problems, but not for short-term microgrid optimal planning, which is generally a 

non-linear and non-convex problem [18]. Furthermore, mainly due to the restructuring 

and deregulation of the electricity sector creating an environment dominated by uncer-

tainty, deterministic methodologies cannot reveal the appropriate settings for the interac-

tions of the processes involved in short-term microgrid optimal planning. Heuristic meth-

odologies have the advantage of flexibility and the representation of restrictions that are 

appropriated for the techno-economic configuration of the processes involved in this type 

of planning. Furthermore, heuristic methodologies can determine feasible decisions for 

planning with acceptable computational times and performances but cannot ensure a so-

lution at the global optimum, i.e., only ensuring solutions that are near a local optimum. 

In a competitive environment, the bidding of an aggregating agent of a microgrid must 

take the appropriate inclusion of uncertainty and conditions into consideration to guar-

antee the global optimum. This consideration is a meaningful accomplishment for a line 

of research on more powerful satisfactory methodologies [19]. Consequently, stochastic 

methodologies are in development for this type of planning due to the high degree of 

uncertainty in the decision-making process. For instance, when a microgrid participates 
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in the electricity market, the consideration of a stochastic methodology to deal with the 

uncertainty of electricity market prices and fluctuations in the power of non-dispatchable 

sources is of significant relevance. The application of hybrid methods has been suggested 

for applications in microgrid planning. The advantage of these methods lies in the poten-

tiality of combining two or more methods, taking advantage of the potential of each one 

for delivering more satisfactory microgrid planning. 

Deterministic methodologies for the energy management of microgrids considering 

demand response are the core of the applications in [20,21]. In [20], the application is an 

energy management system for a building that includes loads, renewable sources, energy 

storage devices, electric vehicles, and demand response strategies. The goal is to minimize 

the daily cost due to the consumption of energy. The problem is formulated by the frame-

work of mixed-integer linear programming (MILP). In [21], the application is an opera-

tional planning of a microgrid, including microturbines, a photovoltaic (PV) system, and 

an energy storage system to help satisfy thermal and electrical loads, with an overall ob-

jective of minimal operating cost. The proposed model has demand response strategies 

for both thermal and electrical consumptions. The MILP formulates the problem and the 

results show a reduction in cost due to the demand response strategy. 

Stochastic methodologies for energy management of microgrids considering demand 

response are the core of the applications in [22–25]. In [22], the application is an optimal 

planning of a microgrid with wind generators, microturbines, fuel cells, energy storage 

systems based on batteries, and loads. The objective is to maximize the aggregator’s profit 

in an electricity market environment. The framework of the stochastic programming prob-

lem formulates the problem with a reformulation as a MILP problem. The uncertain pa-

rameters are wind power, day-ahead market prices, and loads. The number of scenarios 

after a reduction in the original set of scenarios is 100. The results show that the imple-

mentation of the demand response is favorable for the aggregator. In [23], the application 

is an instance of operation planning for a microgrid participating in electricity markets, 

namely in the day-ahead market and the reserve market. The microgrid includes several 

distributed energy resources, namely, diesel generators, wind generators, a PV system, 

and a battery. The microgrid has residential, commercial, and industrial loads subjected 

to demand response programs. The objective is to minimize the operation cost of the mi-

crogrid under uncertainty related to wind power and PV power. The results show that 

the application of demand response programs can reduce the cost of operation of the mi-

crogrid and lead to a more energy-efficient use. In [24], a stochastic methodology is ap-

plied to a planning operation of a distribution grid consisting of renewable and non-re-

newable sources, energy storage devices, electric vehicles, and loads, including the possi-

bility of implementing demand response. The distribution grid managed by the aggrega-

tor participates in the electricity market, buying or selling energy. The uncertainty in the 

problem is due to PV and wind power, electric vehicles, loads, and market prices. The 

objective is the minimization of the cost of operation of the microgrid, and the final prob-

lem is a reformulation as a MILP problem. The conclusion favors the stochastic method-

ology in comparison to the deterministic one. In [25], a planning operation is proposed for 

a microgrid consisting of microturbines, wind generators, a wind system, and energy stor-

age devices and fuel cells. The microgrid is in an electricity market and implements strat-

egies for demand response. The objective is to minimize the operation cost of the mi-

crogrid. The problem is a stochastic programming problem reformulated as a MILP prob-

lem. The uncertainty is related to market prices and the power of renewable sources. The 

initial number of scenarios goes through a reduction to achieve a reasonable number of 

scenarios. The conclusion favors demand response to achieve a further reduction in the 

operation cost of the microgrid. 

Heuristic and hybrid methods for energy management of microgrids considering de-

mand response are instances of applications in [26,27]. In [26], an approach based on a 

particle swarm optimization algorithm addressing the operation of households with the 

objective of minimization of the electricity usage operation cost shows that the proposed 
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approach contributes to supporting the addressing of favorable decisions. In [27], an in-

stance of an approach offers planning for the operation of a microgrid participating in the 

electricity day-ahead market. The approach includes treatment for uncertainty in prices 

of the day-ahead market, PV power, energy demand for traditional loads, and demand 

for electric vehicles. There are 5000 scenarios describing the uncertainty, generated by 

Monte Carlo simulation and subsequently subjected to a reduction to deliver 500 repre-

sentative scenarios. The objective is the minimization of the operation cost of the mi-

crogrid using demand-side management strategies, namely demand response, in a for-

mulation based on a stochastic programming problem. The algorithm used to solve this 

type of planning implements several heuristics, namely variable neighborhood search, 

differential evolution, and particle swarm optimization. A comparison shows that the pro-

posed planning presents advantages over other heuristics. 

The main contributions of the work are as follows: 

 The development of a computer application based on a formulation of the problem 

as a stochastic programming problem for assisting decisions about sustainability en-

hancement due to demand response in microgrids. In this paper, the application of 

stochastic programming allows the consideration of the uncertainty of wind power, 

PV power, loads, day-ahead market prices, and imbalance prices. Most of the re-

search considers some of these parameters as deterministic. This paper overcomes 

this issue. 

 The presentation of several case studies capable of assessing the performance of the 

microgrid in the presence of increasing levels of demand response. Specifically, the 

analysis of the effect of demand response on the energy balance of the microgrid, on 

the energy offers, on the energy consumption profile, and the expected profit. 

2. Problem Settings 

Historical data of energy demand enables the extraction of patterns of information to 

support the forecast of energy demand. However, as well as renewable production, en-

ergy demand is a source of uncertainty in the electrical system due to the random instan-

taneous usage of energy exhibited by consumers [28]. The change in demand affects the 

distribution of energy spontaneously, for instance: an increase in demand, not foreseen, 

requires a timely response from costly units that are sufficiently quick, either spinning 

reserve or energy storage systems. Issues that can contribute to the change in energy de-

mand include electricity prices, weather conditions, renewable production, and major so-

cial events. Thus, an area with high growth potential in an electricity market environment 

is demand response based on stimuli, namely the prices of electricity markets. Demand 

response is a program that encourages consumers to reduce energy consumption during 

peak hours and increase consumption during off-peak hours or periods of high energy 

production. Demand response allows for a reduction in electricity bill cost and an increase 

in the operating efficiency of the entire electrical system, both technically and economi-

cally. Usually, demand response programs are based on subsidized tariffs, due to the flex-

ibility that ensures the grid. A microgrid is an indispensable part of the paradigm shift 

regarding electrical efficiency and maximization of profit, which requires a mathematical 

model that fits these factors in electricity markets. Thus, in this work, it is considered that 

part of the energy that is required in the microgrid in a given period can be consumed in 

a more economically favorable period. Electrical efficiency may imply a shift of energy 

consumption to periods when energy is abundant and cheap and the microgrid aggrega-

tor must have a convenient strategy for persuading consumers to agree on deferring the 

usage of energy. 
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2.1. Approach Proposed 

In this paper, the microgrid has the following equipment: wind and PV systems, mi-

croturbines, energy storage, and loads, and some are flexible loads. As usual, the losses in 

the electric lines of the microgrid are negligible to assist decisions about sustainability 

enhancement because of shifting demand. The objective is the maximization of the ex-

pected profit of the microgrid participating in electricity markets. The problem formula-

tion is in the framework of a stochastic programming problem reformulated as a MILP. 

The consideration of stochastic programming allows a convenient way to model uncer-

tainty in the management of the microgrid by considering a set of realizations of the un-

certain parameters, i.e., the scenarios. The combination of all realizations of the uncertain 

parameters results in the scenario tree of the problem. Then, the initial set of scenarios is 

reduced. Optimal energy bids in the day-ahead market, optimal operating points of the 

equipment of the microgrid, and the expected profit are obtained from the proposed ap-

proach based on two-stage stochastic programming. The proposed approach based on 

two-stage stochastic programming has the advantage of consideration of the uncertainty 

of wind power, PV power, loads, day-ahead market prices, and imbalance prices, in con-

trast to the deterministic one. The flowchart of the proposed approach is shown in Figure 

1. 

 

Historical data of 
wind power

Scenario generation 
(all possible combinations)

6x10x8x5x5=12,000 initial scenarios

Historical data of day-
ahead market price

Historical data of
PV power

Historical data of 
energy demand

Historical data of
 imbalance price

Scenario reduction
GAMS/SCENRED

12,000 initial scenarios           1000 scenarios

Two-stage stochastic programming
(MILP)

Microsource
parameters

Level of
demand response

Optimal hourly bids
Optimal operating points

Expected profit  

Figure 1. Flowchart of the proposed approach is shown. X 12,000. 

2.2. Problem Formulation 

The condition usually assumed for no market power is the point of view followed for 

the formulation of the short-term microgrid optimal planning of the aggregator in this 

paper, i.e., the aggregator is not able to exercise influence on the prices by manipulating 

the offers, and consequently, the problem is as follows: 

max∑ ∑ 𝜋𝑠[𝜆𝑠𝑡
𝐷𝐴𝑀𝑃𝑡

𝐷𝐴𝑀 + 𝑑𝑒𝑣𝑠𝑡
+𝜆𝑠𝑡

+ − 𝑑𝑒𝑣𝑠𝑡
−𝜆𝑠𝑡

− − 𝜆𝑊𝑃𝑠𝑡
𝑊 − 𝜆𝑃𝑉𝑃𝑠𝑡

𝑃𝑉 −
𝑁𝑇
𝑡=1

𝑁𝑆
𝑠=1

∑ (𝐴𝑖𝑢𝑠𝑡𝑖 + 𝑏𝑠𝑡𝑖
𝑀𝑇)𝐼

𝑖 − ∑ (𝐶𝑆−𝑢𝑝𝑀𝑇𝑦𝑠𝑡𝑖)
𝐼
𝑖 −∑ (𝐶𝑆−𝑑𝑜𝑤𝑛𝑀𝑇𝑧𝑠𝑡𝑖)

𝐼
𝑖 + 𝜆𝐿𝑃𝑡𝑠

𝐷], 

subject to: 

(1) 

−𝑃𝑃𝐵 ≤ 𝑃𝑡
𝐷𝐴𝑀 ≤ 𝑃𝑆𝐵 (2) 
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𝑑𝑒𝑣𝑠𝑡 = 𝑑𝑒𝑣𝑠𝑡
+ − 𝑑𝑒𝑣𝑠𝑡

− , (3) 

0 ≤ 𝑑𝑒𝑣𝑠𝑡
+ ≤ 𝑀,𝑀 = 𝑃𝑃𝐵 + 𝑃𝑆𝐵, (4) 

0 ≤ 𝑑𝑒𝑣𝑠𝑡
− ≤ 𝑀, (5) 

𝑃𝑠𝑡
𝑊 + 𝑃𝑠𝑡

𝑃𝑉 + ∑ 𝑃𝑠𝑡𝑖
𝑀𝑇𝐼

𝑖=1 + 𝑃𝑠𝑡
𝑑𝐵 + 𝑑𝑒𝑣𝑠𝑡

− = 𝑃𝑠𝑡
𝑐𝐵 + 𝑃𝑡𝑠

𝐷 + 𝑃𝑡
𝐷𝐴𝑀 + 𝑑𝑒𝑣𝑠𝑡

+ , (6) 

𝑏𝑠𝑡𝑖
𝑀𝑇 = ∑ 𝐹𝑖

𝑙𝜀𝑠𝑡𝑖
𝑙𝐿

𝑙=1 , (7) 

𝑃𝑠𝑡𝑖
𝑀𝑇 = 𝑃𝑖

𝑚𝑖𝑛𝑢𝑠𝑡𝑖 + ∑ 𝜀𝑠𝑡𝑖
𝑙𝐿

𝑙=1 , (8) 

(𝑇𝑖
1 − 𝑃𝑖

𝑚𝑖𝑛)𝑡𝑠𝑡𝑖
1 ≤ 𝜀𝑠𝑡𝑖

1 , (9) 

𝜀𝑠𝑡𝑖
1 ≤ (𝑇𝑖

1 − 𝑃𝑖
𝑚𝑖𝑛)𝑢𝑠𝑡𝑖, (10) 

(𝑇𝑖
𝑙 − 𝑇𝑖

𝑙−1)𝑡𝑠𝑡𝑖
𝑙 ≤ 𝜀𝑠𝑡𝑖

𝑙 , (11) 

𝜀𝑠𝑡𝑖
𝑙 ≤ (𝑇𝑖

𝑙 − 𝑇𝑖
𝑙−1)𝑡𝑠𝑡𝑖

𝑙−1, (12) 

0 ≤ 𝜀𝑠𝑡𝑖
𝐿 ≤ (𝑃𝑖

𝑚𝑎𝑥 − 𝑇𝑖
𝐿−1)𝑡𝑠𝑡𝑖

𝐿−1, (13) 

𝑃𝑖
𝑚𝑖𝑛𝑢𝑠𝑖𝑡 ≤ 𝑃𝑠𝑡𝑖

𝑀𝑇 ≤ 𝑝𝑠𝑖𝑡
𝑚𝑎𝑥, (14) 

𝑝𝑠𝑡𝑖
𝑚𝑎𝑥 ≤ 𝑃𝑖

𝑚𝑎𝑥(𝑢𝑠𝑡𝑖 − 𝑧𝑠𝑡+1𝑖) + 𝑆𝐷𝑧𝑠𝑡+1𝑖, (15) 

𝑝𝑠𝑡𝑖
𝑚𝑎𝑥 ≤ 𝑝𝑠𝑡−1𝑖

𝑚𝑎𝑥 + 𝑅𝑈𝑢𝑠𝑡−1𝑖 + 𝑆𝑈𝑦𝑠𝑡𝑖, (16) 

𝑃𝑠𝑡−1𝑖
𝑀𝑇 − 𝑃𝑠𝑡𝑖

𝑀𝑇 ≤ 𝑅𝐷𝑢𝑠𝑡𝑖 + 𝑆𝐷𝑧𝑠𝑡𝑖, (17) 

∑ (1 − 𝑢𝑠𝑡𝑖)
𝑁𝑖
𝑡=1 = 0, (18) 

𝑁𝑖 = 𝑚𝑖𝑛{ 𝑇, (𝑈𝑇𝑖 − 𝑈𝑠0𝑖)𝑢𝑠𝑡𝑖}, (19) 

∑ 𝑢𝑠𝑡𝑖
𝑘+𝑈𝑇𝑖−1
𝑡=𝑘 ≥ 𝑈𝑇𝑖𝑦𝑠𝑡𝑖  ∀ 𝑘 = 𝑁𝑖 + 1…𝑇 − 𝑈𝑇𝑖 + 1, (20) 

∑ (𝑢𝑠𝑡𝑖 − 𝑧𝑠𝑡𝑖)
𝑇
𝑡=𝑘 ≥ 0 ∀ 𝑘 = 𝑇 − 𝑈𝑇𝑖 + 2…𝑇, (21) 

∑ 𝑢𝑠𝑡𝑖
𝐽𝑖
𝑡=1 = 0, (22) 

𝐽𝑖 = 𝑚𝑖𝑛{ 𝑇, (𝐷𝑇𝑖 − 𝑠𝑠0𝑖)(1 − 𝑢𝑠𝑡𝑖)}, (23) 

∑ (1 − 𝑢𝑠𝑡𝑖)
𝑘+𝐷𝑇𝑖−1
𝑡=𝑘 ≥ 𝐷𝑇𝑖𝑧𝑠𝑡𝑖  ∀ 𝑘 = 𝐽𝑖 + 1…𝑇 − 𝐷𝑇𝑖 + 1, (24) 

∑ (1 − 𝑢𝑠𝑡𝑖 − 𝑧𝑠𝑡𝑖)
𝑇
𝑡=𝑘 ≥ 0 ∀ 𝑘 = 𝑇 − 𝐷𝑇𝑖 + 2…𝑇 , (25) 

𝑦𝑠𝑡𝑖 − 𝑧𝑠𝑡𝑖 = 𝑢𝑠𝑡𝑖 − 𝑢𝑠𝑡𝑖−1, (26) 

𝑦𝑠𝑡𝑖 + 𝑧𝑠𝑡𝑖 ≤ 1, (27) 

𝑃𝑑𝐵𝜎𝑠𝑡
𝑑𝐵 ≤ 𝑃𝑠𝑡

𝑑𝐵 ≤ 𝑃𝑑𝐵𝜎𝑠𝑡
𝑑𝐵, (28) 

𝑃𝑐𝐵𝜎𝑠𝑡
𝑐𝐵 ≤ 𝑃𝑠𝑡

𝑐𝐵 ≤ 𝑃𝑐𝐵𝜎𝑠𝑡
𝑐𝐵, (29) 

𝜎𝑠𝑡
𝑑𝐵 + 𝜎𝑠𝑡

𝑐𝐵 ≤ 1, (30) 

𝑆𝑜𝐶𝑠𝑡
𝐵 = 𝑆𝑜𝐶𝑠𝑡−1

𝐵𝑖 +
𝜂𝑐𝐵𝑃𝑠𝑡

𝑐𝐵

𝐸𝐵
−

𝑃𝑠𝑡
𝑑𝐵

𝐸𝐵𝜂𝑑𝐵
, (31) 

𝑆𝑜𝐶𝐵 ≤ 𝑆𝑜𝐶𝑠𝑡
𝐵 ≤ 𝑆𝑜𝐶𝐵 , (32) 

𝑆𝑜𝐶𝑠0
𝐵 = 0.5, (33) 

(1 − ∆max)𝑃𝑡𝑠
𝐿 ≤ 𝑃𝑡𝑠

𝐷 ≤ (1 + ∆max)𝑃𝑡𝑠
𝐿 , (34) 

∑𝑃𝑡𝑠
𝐷

𝑇

𝑡=1

=∑𝑃𝑡𝑠
𝐿

𝑇

𝑡=1

. (35) 
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The parameters and variables of Equations (1)–(35) are defined in Table 1. 

Table 1. Parameters and variables. 

 Description 
1st Stage 

Variable  

2nd Stage 

Variable  
Parameter 

𝑃𝑡
𝐷𝐴𝑀 Hourly bid X   

𝑑𝑒𝑣𝑠𝑡
+ /𝑑𝑒𝑣𝑠𝑡

−  Positive/negative deviation  X  

𝑃𝑠𝑡𝑖
𝑀𝑇/𝑝𝑠𝑡𝑖

𝑚𝑎𝑥 
Power generated/maximum available power of micro-

turbine 
 X  

𝑏𝑠𝑡𝑖
𝑀𝑇 Linearized variable cost of microturbine  X  

𝑃𝑠𝑡
𝑐𝐵/𝑃𝑠𝑡

𝑑𝐵/𝜎𝑠𝑡
𝑐𝐵/𝜎𝑠𝑡

𝑑𝐵 Charge/discharge power/charge/discharge decision  X  

𝜆𝑠𝑡
𝐷𝐴𝑀/𝜆𝑠𝑡

+ /𝜆𝑠𝑡
−  Day-ahead market price/positive/negative imbalance price   X 

𝑃𝑠𝑡
𝑃𝑉/𝑃𝑠𝑡

𝑊/𝑃𝑡𝑠
𝐿  Scenario of PV power/wind power/load   X 

𝐹𝑖
𝑙 

Slope of segment l of piecewise linear variable cost of mi-

croturbine 
  X 

𝜀𝑠𝑡𝑖
𝑙  Segment power l of microturbine  X  

𝑢𝑠𝑖𝑡/𝑦𝑠𝑖𝑡/𝑧𝑠𝑖𝑡 On/off/start-up/shut-down decision of microturbine  X  

𝜋𝑠 Probability of scenario s   X 

𝑃𝑡𝑠
𝐷 Optimal demand in scenario s  X  

∆max Level of demand response [0, 0.25]   X 

In (1) is the statement of maximization of the objective function, having the following 

terms, respectively: the cost/income for purchasing/selling energy in the day-ahead mar-

ket, the income from selling excess of production in the balancing market, the cost due to 

the purchasing of deficits of energy in the balancing market, the cost for wind power, the 

cost for PV power, the variable cost for the microturbines, the start-up cost for the micro-

turbines, the cost for shut-down of microturbines, and the income from the selling of en-

ergy to the consumers. In (2) are the constraints for the maximum values of bidding in the 

day-ahead market. In (3)–(5) is the model for the representation of energy deviation, given 

by two non-negative deviations [28]. In (6) is the equation of energy balance, with the left 

side assigned to the available power in the microgrid and the right side to the energy that 

comes out of the microgrid. In (7)–(13) are the constraints for the variable cost of the mi-

croturbines given by a piecewise linear function [29,30]. In (14)–(17) are the constraints for 

the output power and the maximum available power of the microturbines [29,30]. In (18)–

(21) are the constraints for the minimum downtime of the microturbines [29,30]. In (22)–

(25) are the constraints for the minimum uptime of the microturbines. In (26) and (27) are 

the constraints for the binary variables modeling start-up, shut-down, and online/offline 

of microturbines [29,30]. In (28)–(33) are the constraints for the energy storage system. In 

(34) and (35) are the constraints for implementing demand response if allowed by the end-

users. The problem above can be structured in blocks as follows: 

𝑀𝑖𝑐𝑟𝑜𝑔𝑟𝑖𝑑

{
 
 
 
 

 
 
 
 

max   𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑓𝑖𝑡                      
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                    

𝐵𝑖𝑑 → (2)                    
                     𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 → (3) − (5)

      𝐸𝑛𝑒𝑟𝑔𝑦 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 → (6)

                  𝑀𝑖𝑐𝑟𝑜𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠 → (7) − (27)

                       𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 → (28) − (33)

                           𝐷𝑒𝑚𝑎𝑛𝑑 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 → (34) − (35)

  

In the above structure, Expected profit, Bid, Energy deviation, Energy balance, Micro-

turbines, Energy storage, Demand response are the main blocks for the short-term microgrid 

optimal planning and matters for further research. 
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3. Case Studies and Results 

As usual, the condition of no market power is assumed for the aggregator of the mi-

crogrid. The total generation power is 12.4 MW, and the total load is 8.0 MW. The maxi-

mum purchase power in the electricity market is 5.0 MW and the maximum selling power 

in the electricity market is equal to the total generation power of the microgrid. 

The electricity tariff established by the aggregator of the microgrid for flexible loads 

is reduced by 12% over the estimated price of electricity on the day under consideration, 

i.e., the aggregator offers a cost reduction from 0.062 $/kWh to 0.054 $/kWh on the road to 

persuade the end user to consent to flexible loads. Data for the microturbines and energy 

storage system are in [31]. The scenarios of the uncertain parameters are in [32–34], and 

are 6, 10, 8, 5, 5, respectively, for the day-ahead market price, the positive/negative imbal-

ance prices, the wind power, the PV power, and energy demand. Therefore, the initial set 

of scenarios has 12,000 (6 × 10 × 8 × 5 × 5) scenarios. 

The program modeling language and the solver for implementation of the case stud-

ies are, respectively, GAMS and the CPLEX 12.1 run on a 3.6 GHz processor with 16 GB 

of RAM. A scenario reduction from 12,000 to 1000 scenarios by the GAMS/SCENRED fast-

backward reduction method package is at the beginning of the program execution per-

formed to reduce the computation time. 

The parameters of power segments and slope for the piecewise linear function mod-

eling the variable cost per hour are in Table 2. 

Table 2. Microturbine parameters. 

Microturbine i 𝑻𝒊
𝟏(kW) 𝑻𝒊

𝟐(kW) 𝑭𝒊
𝟏($/kW) 𝑭𝒊

𝟐($/kW) 𝑭𝒊
𝟑($/kW) 𝑨𝒊($/h) 

MT1 76.67 138.33 0.047 0.051 0.054 2.11 

MT2 230.00 415.00 0.047 0.051 0.054 6.30 

MT3 230.00 415.00 0.047 0.051 0.054 6.30 

MT4 230.00 415.00 0.047 0.051 0.054 6.30 

MT5 133.33 166.67 0.048 0.054 0.058 6.17 

MT6 133.33 166.67 0.048 0.054 0.058 6.17 

MT7 76.67 138.33 0.047 0.051 0.054 2.11 

MT8 230.00 415.00 0.047 0.051 0.054 6.30 

MT9 230.00 415.00 0.047 0.051 0.054 6.30 

MT10 230.00 415.00 0.047 0.051 0.054 6.30 

MT11 133.33 166.67 0.048 0.054 0.058 6.17 

MT12 133.33 166.67 0.048 0.054 0.058 6.17 

The scenarios considered for day-ahead market prices and positive and negative im-

balance prices [32] are, respectively, in Figure 2a,b. 

 
 

(a) (b) 

Figure 2. Scenarios: (a) day-ahead market price; (b) yellow: negative imbalance price, pink: positive imbalance price. 
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The scenarios for wind and PV power [33,34] and load [33] are shown in Figure 3. 

  

(a) (b) 

Figure 3. Scenarios: (a) blue: wind power, green: PV power; (b) load. 

3.1. Analysis of Energy Balance of Microgrid without Demand Response 

This case study analyzes how the microgrid behaves in the absence of demand re-

sponse. This analysis is the starting point for comparison with the following cases. The 

energy balance of a microgrid without demand response is shown in Figure 4. 

 

Figure 4. Energy balance of microgrid without demand response is shown. 

Figure 4 shows, as expected, that all incoming energy is equal to the outgoing energy, 

i.e., there is an even balance in the microgrid. The positive part represents the energy 

available due to production in the microgrid and the purchase in the market, compensat-

ing for the deficit. The negative part represents the energy removed from the microgrid, 

i.e., the usage by the loads, and the energy sold on the market due to overproduction. In 

a market environment in each period, either there is a positive or a negative deviation. 

The positive or negative deviations and the charge or discharge of storage devices are 

merely indicative. In Figure 3, purchase offers on the market between hour 1 and hour 7 

are above 1300 kW because it is a period of low prices in the day-ahead market. In this 

period, it is more rewarding to purchase energy on the market than to produce energy 

with microturbines, so their contribution in these hours is below 290 kW. Between hour 3 
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and hour 6, the storage devices are called to store energy to later satisfy the demand or 

eventually store energy to sell it in periods of higher compensating day-ahead market 

prices, between hour 19 and hour 21. Hour 21 corresponds to the period of the highest 

day-ahead market price, so in this period the energy storage device is called to discharge 

energy. Additionally, regarding microturbines, from hour 8 onwards, the contribution has 

a significant value. 

3.2. Effect of Demand Response on the Energy Balance of the Microgrid 

This case study analyzes how the microgrid behaves in the presence of demand re-

sponse. The case study considers three levels of demand response: 5%, 10%, and 25%. The 

energy balance of the microgrid with demand response is shown in Figure 5. 

 

Figure 5. Energy balance of microgrid with demand response is shown: high levels of demand 

response, high purchase offers, and high selling offers. 

Figure 5 shows a tendency for higher purchase offers with higher levels of demand 

response. When the day-ahead market price is high, there is a progressive increase in sales 

offers and a decrease in energy consumption for higher levels of demand response. The 

increase in the level of demand response does not change the behavior of energy storage 

in the batteries, with charges and discharges happening at low and high prices, respec-

tively. 
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3.3. Effect of Demand Response on the Energy Offers 

The results of a simulation for an analysis of the effect of flexible loads to improve 

the management of the microgrid for a series of day-ahead market prices are shown in 

Figure 6. 

 

Figure 6. Effect of demand response on the energy bid is shown: high market price, high selling 

offer; low market price, high purchase offer. 

Figure 6 shows the selling offers and the purchase offers, respectively, indicated by 

positive and negative powers, showing the potential as expected from the effect of allow-

ing for controllable loads. At hours having lower day-ahead market prices (blue line), the 

purchase offers tend to increase if higher levels of demand response are allowed, e.g., the 

purchase increases from hour 1 to hour 8, due to the shifting of the consumption of con-

trollable loads to these hours. The highest power difference due to the strategies without 

demand response and with the demand response at 25% is in hour 2, having low market 

prices. As shown, the increase from 0% to 25% in demand response implies increasing the 

purchase from 1.96 MW to 3.14 MW in hour 2, i.e., about 60% of demand increasing in a 

convenient hour. On the contrary, at hours having higher day-ahead market prices, the 

selling offers tend to increase if higher levels of demand response are allowed, e.g., the 

increase from hour 9 to hour 14, due to the shifting of the consumption of controllable 

loads to a convenient hour. The shift in energy usage to periods of low day-ahead market 

prices liberates energy in hours of high day-ahead market prices, which increases the sell-

ing offers. The highest power difference due to the strategies without demand response 

and with the demand response at 25% is in hour 21, at the highest price. As shown, the 

increase from 0% to 25% in demand response implies increasing the selling from 0.84 MW 

to 2.48 MW in hour 21, i.e., about three times more. 

3.4. Effect of Demand Response on the Energy Consumption 

The results of a simulation for an analysis of the potential benefit of having several 

levels of demand response on the energy demand profile for confirming the improvement 

in the management of the microgrid for a series of day-ahead market prices are shown in 

Figure 7. 
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Figure 7. Effect of demand response on the energy demand is shown: high market price, low en-

ergy demand; low market price, high energy demand. 

Figure 7 shows that at hours where the day-ahead market price is low, the increase 

in the level of demand response tends to imply more usage of energy at these hours, e.g., 

from hour 1 to hour 8, the day-ahead market price is low, and higher energy consumption 

happens because of a high level of demand response. A higher difference between a sce-

nario without demand response and at 25% of demand response is in hour 1. This increase 

is due to a lower market price, implying an increase in energy consumption of 25% at hour 

1 in comparison with the scenario without demand response, i.e., an increase from 4.76 

MW to 5.93 MW. Meanwhile, when the market price increases, energy consumption tends 

to decrease with higher levels of demand response, e.g., from hour 9 to hour 14, and due 

to the higher day-ahead market prices, there is a decrease in energy usage at 25% of de-

mand response, because of shifting energy demand to lower-priced hours. The highest 

reduction of energy consumption between a strategy without demand response and at 

25% of demand response is in hour 20, one of the hours with the highest market price. 

3.5. Effect of Demand Response on the Expected Profit 

The potential benefit of having several levels of demand response on the hourly ex-

pected profit is evident from the behavior, as shown in Figure 8. 

 

Figure 8. Effect of demand response on the hourly expected profit is shown: high market price, 

high expected profit; low market price, low expected profit. 
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Figure 8 shows that profit increases with the increase in the level of demand response 

in periods of higher day-ahead market prices. The periods where this difference is most 

important are from hour 10 to hour 12 and from hour 19 to hour 22. The highest difference 

between the profit without demand response and the profit with demand response of 25% 

is at hour 21 when the profit increases by about 80%, from USD 61 to about USD 109. The 

effect of applying demand response on the total expected profit is shown in Figure 9. 

 

Figure 9. Effect of demand response on the expected profit is shown: high level of demand re-

sponse, high expected profit. 

Figure 9 shows that the expected profit increases with the increase in the level of 

demand response, e.g., without demand response, the profit is USD 505, with demand 

response at 10% it is USD 618, and with demand response at 25% it is USD 770, and the 

increases are 23% and 53%, respectively. Consequently, the aggregator can increase the 

profit by convenient management of the level of demand response. However, this man-

agement depends on agreement with the consumers of the microgrid. 

3.6. Deterministic vs. Stochastic Solution 

The analysis of the level of uncertainty reveals how uncertainty affects the decision 

making of the microgrid aggregator. This analysis employs the following quality metric: 

the value of the stochastic solution (VSS). The quality metric VSS is involved in the com-

parison between considering a stochastic programming problem at the expense of a de-

terministic one. More specifically, VSS is the difference between the optimum value of the 

objective function 𝑍𝑆𝑃 for the stochastic programming problem, and the optimum value 

𝑍𝐷𝑃 for stochastic programming problem with the first state variables fixed at the respec-

tive expected values, i.e., the values resulting from the problem where the random param-

eters are replaced by mean values. The computation of the quality metric VSS is as follows: 

𝑉𝑆𝑆 = 𝑍𝑆𝑃 − 𝑍𝐷𝑃 . (36) 

In (36), 𝑍𝐷𝑃 is calculated using the fixed values of the first state decision variable 

𝑃𝑡
𝐷𝐴𝑀, corresponding to the hourly bids of the deterministic programming problem. In the 

case study, the value of the VSS as a percentage is 1.9%, which justifies the interest in 

considering a stochastic programming problem instead of a deterministic programming 

problem. 
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3.7. Discussion 

The simulations of the case studies are in favor of having flexible loads for taking 

advantage of demand-side management strategies through short-term microgrid optimal 

planning, allowing better performance in the management of the microgrid. Short-term 

microgrid optimal planning is an indispensable application in current power system par-

adigms, i.e., in terms of profiting from improved coordination of the participation in the 

electricity market with the demand-side management. From the point of view of those 

who manage the microgrid, having greater availability of energy to sell in periods of fa-

vorable market prices delivers more profitable market participation. From the point of 

view of end users, the application of the demand response allows consumers to have ad-

vantageous tariffs and an active contribution to the energy efficiency of the microgrid. 

This contribution is not less use of energy, but a shift of part of the demand to periods of 

lower market prices, i.e., by allowing a change in the consumption profile. In general, this 

is to be expected in the intelligent grids of the future, and this type of contribution from 

the consumers. The simulations quantify a reduction in the electricity tariff for consumers 

of about 12% over the estimated price of electricity in the day under consideration. With-

out demand response, the energy cost would be higher. Consequently, in general, short-

term microgrid optimal planning coordinating the participation in the electricity market 

with the demand-side management has advantages for a better performance of the aggre-

gator of the microgrid and end users. Additionally, it is expected that demand response 

can provide flexibility for the grid, guarantee more efficient use of the electrical infrastruc-

ture, and be used to improve the stability of the power system. For instance, demand re-

sponse is used in frequency control. Further, demand response can be used to improve 

steady-state voltage stability. Additionally, demand response in a microgrid is important 

for the main grid, as the microgrid is seen as a single entity that aggregates a large volume 

of loads, which facilitates the operation of the system operator and the management of 

energy supply. For instance, the system operator can ask the microgrid aggregator to 

change the energy consumption profile to ensure safe operation and avoid congestion 

problems. 

4. Conclusions 

This paper presents short-term microgrid optimal planning formalized to address 

the capability of meeting the implications of an aggregator of a microgrid participating in 

the market environment and having demand-side management. This short-term mi-

crogrid optimal planning based on a two-state stochastic programming problem reformu-

lated as a MILP allows for the management of the microgrid following the sources of un-

certainty. The formularization of the sources of uncertainty is through a set of scenarios 

of historical data subjected to reduction. An analysis of the simulations shows that the 

application of demand-side management strategies, such as demand response, can guar-

antee a better operation in a market environment. For instance, the results show that by 

increasing the level of flexible loads by up to 25%, the energy bid in the day-ahead market 

may increase by 200% and there may be a reduction in energy consumption by 25% in 

periods of higher market prices. Likewise, the expected profit from participation in the 

market can increase by about 53% with a level of demand response of 25%. 
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List of Symbols 

𝐼, 𝑖 Set and index of microturbines 

𝐿, 𝑙 Set and index of segments for piecewise linear cost function of microturbines 

𝑆, 𝑠 Set and index of scenarios 

𝑇, 𝑡 Set and index of periods in the time horizon  

𝜆𝑠𝑡
𝐷𝐴𝑀 Day-ahead market price for scenario s at period t 

𝜆𝑠𝑡
+  Positive imbalance price for scenario s at period t 

𝜆𝑠𝑡
−  Negative imbalance price for scenario s at period t  

𝜆𝑊 Wind power price 

𝜆𝑃𝑉 PV power price 

𝜆𝐿𝑜𝑎𝑑 Price of energy consumption of loads 

𝜂𝑐𝐵/𝜂𝑑𝐵 Charge/discharge efficiency of batteries 

𝐴𝑖 Microturbine i fixed cost  

𝐹𝑖
𝑙 Microturbine i slope of segment l of the piecewise linear variable cost function 

𝐽𝑖 Microturbine i imposed number of periods offline 

𝑁𝑖 Microturbine i imposed number of periods online 

𝑃𝑑𝐵/𝑃𝑑𝐵 Maximum/minimum charging power of battery  

𝑃𝑃𝐵/𝑃𝑆𝐵 Maximum purchasing power/maximum selling power  

𝑃𝑖
𝑚𝑖𝑛, 𝑃𝑖

𝑚𝑎𝑥 Microturbine i minimum and maximum power 

𝑃𝑠𝑡
𝑃𝑉 PV power for scenario s at period t  

𝑅𝑈𝑖/𝑅𝐷𝑖 Microturbine i ramp-up/ramp-down 

𝐶𝑆−𝑑𝑜𝑤𝑛𝑀𝑇 Microturbine i shut-down cost 

𝐶𝑆−𝑢𝑝𝑀𝑇 Microturbine i start-up cost 

𝑆𝑈𝑖/𝑆𝐷𝑖 Microturbine i start-up and shut-down ramp rate 

𝑠𝑠𝑖0 Microturbine i offline time at the beginning of the time horizon for scenario s  

𝑇𝑖
𝑙 Microturbine i segment l upper limit of the piecewise linear variable cost function 

𝑈𝑇𝑖/𝐷𝑇𝑖 Microturbine i minimum up/down time  

𝑃𝑡
𝐷𝐴𝑀 Hourly bid in the day-ahead market  

𝜀𝑠𝑡𝑖
𝑙  Segment power l of microturbine i for scenario s at period t  

𝑑𝑒𝑣𝑠𝑡 Energy deviation for scenario s at period t  

𝑑𝑒𝑣𝑠𝑡
+  Positive energy deviation for scenario s at period t  

𝑑𝑒𝑣𝑠𝑡
−  Negative energy deviation for scenario s at period t  

𝑃𝑠𝑡𝑖
𝑀𝑇 Microturbine i power generated for scenario s at period t 

𝑝𝑠𝑡𝑖
𝑚𝑎𝑥 Microturbine i maximum available power for scenario s at period 

𝑏𝑠𝑡𝑖
𝑀𝑇 Microturbine i linearized variable cost function for scenario s at period 

𝑃𝑠𝑡
𝑐𝐵/𝑃𝑠𝑡

𝑑𝐵 Charge/discharge of energy storage for scenario s at period t 

𝜎𝑠𝑡
𝑐𝐵/𝜎𝑠𝑡

𝑑𝐵 Storage decisions for scenario s at period t: 1, if charges/discharges; 0, otherwise  

𝑡𝑠𝑖𝑡
𝑙  

Microturbine i decision for scenario s at period t: 1, if the power exceeds the power of 

segment l; 0, otherwise  

𝑢𝑠𝑖𝑡 Microturbine i commitment decision for scenario s at period t  

𝑦𝑠𝑖𝑡 Microturbine i start-up decision for scenario s at period t  

𝑧𝑠𝑖𝑡 Microturbine i shut-down decision for scenario s at period t 
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